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Abstract. We introduce the notion of a coarse median on a met-
ric space. This satisfies the axioms of a median algebra up to
bounded distance. The existence of such a median on a geodesic
space is quasi-isometry invariant, and so it applies to finitely gen-
erated groups via their Cayley graphs. We show that asymptotic
cones of such spaces are topological median algebras. We define
a notion of rank for a coarse median and show that this bounds
the dimension of a quasi-isometrically embedded euclidean plane
in the space. Using the centroid construction of Behrstock and
Minsky, we show that the mapping class group has this property,
and recover the rank theorem of Behrstock and Minsky and of
Hamenstädt. We explore various other properties of such spaces,
and develop some of the background material regarding median
algebras.
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1. Introduction

In this paper we introduce the notion of a “coarse median” on a
metric space. The existence of such a structure can be viewed as a kind
of coarse non-positive curvature condition. It can also be applied to
finitely generated groups. Many naturally occuring spaces and groups
admit such structures. Simple examples include Gromov hyperbolic
spaces and CAT(0) cube complexes. It is also preserved under quasi-
isometry, relative hyperbolicity and direct products. Moreover, (using
the construction of [BehM2]) the mapping class group of a surface
admits such a structure. One might conjecture that it applies to a much
broader class of spaces that are in some sense non-positively curved,
such as CAT(0) spaces. Much of this work is inspired by the results
in [BehM1, BesBF, BehM2, BehBKM, BehDS, ChaDH]. It seems a
natural general setting in which to view some of this work.
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A “median algebra” is a set with a ternary operation satisfying cer-
tain conditions (see for example example [I, BaH, R, Che]). As we
will see, for many purposes, one can reduce the discussion to a finite
subalgebra. Any finite median algebra is canonically the vertex set of a
CAT(0) cube complex, with the median defined in the usual way. One
way to say this is that the median of three points is the unique point
which minimises the sum of the distances to these three points. For a
fuller discusion, see Sections 2, 4 and 5.

We will also define a “coarse median” as a ternary operation on a
metric space. We usually assume this to be a “geodesic space”, that is,
every pair of points can be connected by a geodesic. The coarse median
operation is assumed to satisfy the same conditions as a median algebra
up to bounded distance. We can define the “rank” of such a space
(which corresponds to the dimension of a CAT(0) complex). We show
that the asymptotic cone [VW, G2] of such a space is a topological
median algebra. It has a “separation dimension” which is at most the
rank, when this is finite. We remark that coarse median spaces of
rank 1 are the same as Gromov hyperbolic spaces. In such a case, the
asymptotic cone is an R-tree.

The existence of a coarse median on a geodesic space is a quasi-
isometry invariant, so we can apply this to finitely generated groups
via their Cayley graphs. We can thus define a “coarse median group”.
For example, a hyperbolic group is a coarse median group of rank
1, and a free abelian group is a coarse median group where “rank”
agrees with the standard notion. More substantially we show that the
mapping class group of a surface has a coarse median structure whose
rank equals the maximal rank of a free abelian subgroup. The median
we use for this is the centroid constructed in [BehM2]. In particular,
the asymptotic cone has at most (in fact precisely) this dimension,
thereby giving another proof the rank theorem of [BehM1] and [Ha].

Another class of examples arise from relatively hyperbolic groups.
We show in [Bo3] that a group that is hyperbolic relative to a collection
of coarse median groups (of rank at most ν) is itself coarse median (of
rank at most ν). Examples of such are geometrically finite kleinian
groups (of dimension ν) and Sela’s limit groups.

It is natural to ask what other classes of spaces or groups admit
such a structure. For example, it is conceivable that every CAT(0)
space does, where the rank might be bounded by the dimension. More
modestly one could ask this for higher rank symmetric spaces. The
only immediately evident constraint is that such a space should satisfy
a quadratic isoperimetric inequality.
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In [Bo2], we show that a metric median algebra of the type that arises
as an asymptotic cone of a finite rank coarse median space admits a
bilipschitz embedding into a finite product of R-trees. One consequence
is that coarse median groups have rapid decay. In fact, their proof of
rapid decay of the mapping class groups was the main motivation for
introducing centroids in [BehM2].

2. Statement of results

We begin by recalling the notion of a “median algebra”. This is a set
equipped with a ternary “median” operation satisfying certain axioms.
Discussion of these can be found in [I, BaH, R, Che]. We will give
a more detailed account in Sections 4 to 6. For the moment, we use
more intuitive formulations of the definitions. A finite median algebra
is essentially an equivalent structure to a finite cube complex. Recall
that a (finite) cube complex is a connected metric complex built out
of unit euclidean cubes. It is CAT(0) if it is simply connected and the
link of every cube is a flag complex. See [BriH] for a general discussion.
Note that a 1-dimensional CAT(0) cube complex is a simplicial tree.

Suppose M is a set, and µ : M3 −→M is a ternary operation. Given
a, b ∈ M , write [a, b] = {e ∈ M | µ(a, b, e) = e}. This is the interval
from a to b.

If M = V (Π) is the vertex set of a finite cube complex, Π, we can
define [a, b]Π to be the set of points of M which lie in some geodesic
from a to b in the 1-skeleton of Π. One can show that there is a
unique point, µΠ(a, b, c), lying in [a, b]Π ∩ [b, c]Π ∩ [c, a]Π. (In fact, it
is the unique point which minimises the sum of the distances in the
1-skeleton to a, b and c.)

For the purposes of this section, we can define a “finite median alge-
bra” to be a set M with a ternary operation: µ : M3 −→M such that
M admits a bijection to the vertex set, V (Π), of some finite CAT(0)
cube complex, Π, such that µ = µΠ. (This is equivalent to the standard
definition.) Given a, b ∈ M , write [a, b] = {e ∈ M | µ(a, b, e) = e}.
This is the interval from a to b. Under the bijection with V (Π) it can
be seen to agree with [a, b]Π. Note that µ(a, b, c) = µ(b, a, c) = µ(b, c, a)
and µ(a, a, b) = a for all a, b, c ∈ M . In fact, the complex Π is deter-
mined up to isomorphism by (M,µ), so we can define the “rank” of M
to be the dimension of Π. For more details, see Section 4.

In general, we say that a set, M , equipped with a ternary operation,
µ, is a “median algebra”, if every finite subset A ⊆ M is contained
in another finite subset, B ⊆ M , which is closed under µ and such
that (B, µ) is a finite median algebra. Note that, defining intervals
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in the same way, we again have [a, b] ∩ [b, c] ∩ [c, a] = {µ(a, b, c)} for
all a, b, c ∈ M . We say that M has “rank at most ν” if every finite
subalgebra has rank at most ν. It has “rank ν” if it has rank at most
ν but not at most ν − 1.

A median algebra of rank 1 is a treelike structure which has been
studied under a variety of different names. They appear in [S] and as
“tree algebras” in [BaH]. They have also been called “median pretrees”
etc.

We indroduce the following notion of a “coarse median space”. Let
(Λ, ρ) be a metric space and µ : Λ3 −→ Λ be a ternary operation. We
say that µ is a “coarse median” if it satisfies the following:

(C1): There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ Λ
we have

ρ(µ(a, b, c), µ(a′, b′, c′)) ≤ k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0).

(C2): There is a function, h : N −→ [0,∞), with the following property.
Suppose that A ⊆ Λ with 1 ≤ |A| ≤ p < ∞, then there is a finite
median algebra, (Π, µΠ) and maps π : A −→ Π and λ : Π −→ Λ such
that for all x, y, z ∈ Π we have:

ρ(λµΠ(x, y, z), µ(λx, λy, λz)) ≤ h(p)

and

ρ(a, λπa) ≤ h(p)

for all a ∈ A.

From (C2) we can deduce that, if a, b, c ∈ Λ, then µ(a, b, c), µ(b, a, c)
and µ(b, c, a) are a bounded distance apart, and that ρ(µ(a, a, b), a) is
bounded. Thus, there is no essential loss in assuming µ to be invariant
under permutation of a, b, c and assuming that µ(a, a, b) = a.

If (Λ, ρ) is a geodesic space, then we can replace (C2) by a condition
to the effect that if ρ(c, d) is less than some fixed positive constant (for
example, 1, for a graph) then ρ(µ(a, b, c), µ(a, b, d)) is bounded. It then
follows for any a, b, c, d that ρ(µ(a, b, c), µ(a, b, d)) is, in fact, linearly
bounded above in terms of ρ(c, d).

Definition. We refer to µ as a coarse median on (Λ, ρ) if it satisfies
(C1) and (C2) above. We refer to (Λ, ρ, µ) as a coarse median space.

If, in the above definition, we can strengthen (C2) to insist that Π
has rank most ν (independently of p), then we say that µ is a coarse
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median of rank at most ν, and that (Λ, ρ, µ) is a coarse median space
of rank at most ν.

We refer to the multiplicative constant k and the additive constants,
h(p), featuring in the definitions as the parameters of the coarse median
space.

Recall that a metric space is a “geodesic space” (or “length space”) if
every pair of points are connected by a geodesic (that is, a path whose
length equals the distance between its endpoints). In this context,
coarse median spaces of rank 1 are precisely Gromov hyperbolic spaces
(as defined in [G1]).

Theorem 2.1. Let (Λ, ρ) be a geodesic space. Then (Λ, ρ) is Gromov
hyperbolic if and only if it admits a structure as a coarse median space
of rank 1.

In the above one can determine the parameters explicitly in terms
of the hyperbolicity constant. The converse we offer here will be non-
constructive and based on the fact that any asymptotic cone is an
R-tree. (It is possible to give a constructive argument and explicit
constants, but we will not pursue that matter here.)

By a topological median algebra we mean a topological space, M ,
equipped with a median, µ, which is continuous as a map from M3

to M . Such structures are considered, for example, in [BaV]. We will
refer to a “metric median algebra” when the topology is induced by
some particular metric.

We define a notion of “local convexity” in Section 7. For a finite-
rank algebra this is equivalent to saying that an interval connecting two
points close together is arbitrarily small. We will also define a notion
of “separation dimension” of a topological space. This is analogous to
(though weaker than) the standard notion of “inductive dimension”.
The latter is equivalent to covering dimension [HuW, En]. Every locally
compact subspace of a space of separation dimension at most ν has
covering dimension at most ν. In particular, such a space does not
admit any continuous injective map of R

ν+1. We show:

Theorem 2.2. A locally convex topological median algebra of rank at
most ν has separation dimension at most ν.

This notion of dimension is weaker than the standard notions of
topological dimension referred to. For example, there is a totally dis-
connected space of positive covering dimension [Er], but this has sep-
aration dimension 0. (I thank Klaas Hart for providing me with this
reference.) Nevertheless, we see that every locally compact subspace
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of such a space has (covering) dimension at most ν. For the mapping
class group, this follows from [BehM1].

Topological median algebras arise as ultralimits of coarse median
algebras. We will recall the basic definitions in Section 9. Suppose
that ((Λi, ρi, µi))i∈I is sequence of coarse median spaces, where the
additive constants featuring in (C1) and (C2) tend to zero and where
the multiplicative constant, k, featuring in (C1) remains constant. Let
ei ∈ Λi be a sequence of basepoints. Given a non-principal ultrafilter
on I, we can pass to an ultralimit (Λ∞, ρ∞, µ∞), which is a topological
median algebra. (In fact, (Λ∞, ρ∞) is a complete metric space.)

Theorem 2.3. If the (Λi, ρi, µi) all have rank at most ν (with respect
to these constants) then (Λ∞, ρ∞, µ∞) is a locally convex topological
median algebra of rank at most ν.

Suppose we fix a coarse median space, (Λ, ρ, µ), of rank at most ν.
We take any sequence (ti)i of positive real numbers tending to 0, rescale
the metric Λi = Λ, ρi = tiρ and µi = µ. Fixing a base point e ∈ Λ,
and an ultrafilter, we then get an “asymptotic” cone, (Λ∞, ρ∞, µ∞) as
above. From this, we can deduce:

Corollary 2.4. If (Λ, ρ) is a geodesic space admitting a coarse median
of rank at most ν, then (Λ, ρ) admits no quasi-isometric embedding of
R

ν+1 (with the euclidean metric).

If it did, then an asymptotic cone would contain a bilipschitz copy
of R

ν+1. But this contradicts a combination of Theorems 2.2 and 2.3.
The existence, or otherwise, of a coarse median (or rank at most

ν) on a geodesic space is easily seen to be quasi-isometry invariant
(Lemma 8.1). This justifies the following:

Definition. We say that a finitely generated group Γ is coarse median
(of rank at most ν), if its Cayley graph admits a coarse median (of
rank at most ν).

Thus, in view of Theorem 2.1 “coarse median of rank 1” is the same
as “hyperbolic”. We observed in the Introduction that Z

ν is coarse
median of rank ν. We also note (Corollary 8.3) that a coarse median
group has (at worst) a quadratic Dehn function.

Note that we do not assume that the median is equivariant, though
in the examples we describe, it can be assumed to be equivariant up to
bounded distance.

One of the main motivations is to study mapping class groups. Let
Σ be a compact orientable surface of genus g and with p holes. Let
Map(Σ) be its mapping class group. Set ξ(Σ) = 3g − 3 + p for the
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complexity of Σ. We assume that ξ(Σ) > 1, in which case, ξ(Σ) is
exactly the maximal rank of any free abelian subgroup of Map(Σ).
Making use of ideas in [BehM2], we show:

Theorem 2.5. Map(Σ) is a coarse median group of rank at most ξ(Σ).

We therefore recover the fact [Mo] that the mapping class group has
quadratic Dehn function. Also, applying Corollary 2.4 we recover the
result of [BehM1] and [Ha]:

Theorem 2.6. There is no quasi-isometric embedding of R
ξ(Σ)+1 into

Map(Σ).

One can show that some (in fact any) free abelian subgroup of
Map(Σ) of rank ξ(Σ) is necessarily quasi-isometrically embedded [FLN].
In other words, the rank of Map(Σ) is exactly the maximal rank of a
free abelian subgroup.

In Section 12, be briefly discuss a strengthening of rank to the notion
of “colourability”. We show that the mapping class group has this
property.

As mentioned in the Introduction, it is shown in [Bo1] that an as-
ymptotic cone that arises in this way admits a bilipschitz embedding
into a finite product of R-trees. From this, one can deduce the rapid
decay of coarse median groups. For the mapping class group, such
an embedding was constructed in [BehDS] and rapid decay was shown
directly using medians in [BehM2].

3. Hyperbolic spaces

In this section, we briefly describe the rank-1 case which corresponds
to Gromov hyperbolicity [G1]. This case will be used again in Sections
10 and 11.

We suppose throughout this section that (Λ, ρ) is a geodesic space.
Let us suppose first that (Λ, ρ) is K-hyperbolic for some K ≥ 0. This

means that any geodesic triangle (α, β, γ) in Λ has a K-centre, that
is, some point d, with ρ(d, α) ≤ K, ρ(d, β) ≤ K and ρ(d, γ) ≤ K. If
a, b, c ∈ Λ we take K-centre, d, of any geodesic triangle with vertices at
a, b, c, and set µ(a, b, c) = d. (We can assume this to be invariant under
permutation of a, b, c.) This is well defined up to bounded distance. We
claim:

Lemma 3.1. (Λ, ρ, µ) is a rank-1 coarse median space whose parame-
ters depend only on K.

This is a simple consequence of the following standard fact [G1]
(which will be used again in Section 10, see Lemma 10.3).
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Lemma 3.2. There is some function h0 : N −→ [0,∞) such that
if (Λ, ρ) is K-hyperbolic and A ⊆ Λ with |A| ≤ p, then there is a
simplicial tree, τ , embedded in Λ such that for all a, b ∈ Λ we have
ρτ (a, b) ≤ ρ(a, b) +Kh0(p).

Here ρτ (a, b) is the length of the arc [a, b]τ from a to b in τ . Clearly,
ρτ (a, b) ≥ ρ(a, b). There is no loss in assuming that all the edges of τ are
geodesic in Λ. We can also assume that every extreme (degree 1) vertex
of τ lies in A. Now the length of any path in τ is at most the distance
between its endpoints plus Kh0(p). An elementary fact of hyperbolic
spaces tells us that if x, y ∈ τ , the [x, y]τ lies a bounded distance from
any geodesic in Λ from x to y. (In particular, it follows from stability of
quasigeodesics.) Thus, if x, y, z ∈ τ , then then µ(x, y, z) is a bounded
distance from the τ -median, µτ (x, y, z).

We can therefore set Π to be the vertex set, V (τ), of τ , and let
π : A −→ Π and λ : Π −→ Λ to be the inclusions.

Finally, it is well known (and also a consequence of Lemma 3.2) that
if a, b, c, d ∈ Λ, then ρ(µ(a, b, c), µ(a, b, d)) is linearly bounded above in
terms of ρ(c, d). In fact, it is sufficient to note that if we move any one
of the points a, b, c a bounded distance, say r, then the median thus
defined moves a bounded distance depending only on K and r.

We have now proven one direction of Theorem 2.1
For the converse, it is possible to give an constructive argument

which gives an explicit constants. However, here we note that it is a
consequence of the following statement proven in [G2].

Theorem 3.3. Let (Λ, ρ) be a geodesic space, and suppose that every
asymptotic cone of (Λ, ρ) is an R-tree, then (Λ, ρ) is Gromov hyperbolic.

The notion of an asymtotic cone is due to Van den Dries and Wilkie
[VW] and elaborated on in [G2] (see Section 9 here). We will see
(Theorem 2.2 and Lemma 9.6) that any asymptotic cone of a rank-
1 median algebra is an R-tree. From this we deduce the converse to
Lemma 3.1. This then proves Theorem 2.1.

4. General median Algebras

In this section we discuss some of the general theory regarding me-
dian algebras. We will elaborate on particular cases in Sections 5–7.
We first describe some general terms, and then, in turn, finite, infinite
and topological median algebras. Some of the basic material can be
found elsewhere, though the references are somewhat scattered, and of-
ten pursued from quite different perspectives. Some general references
are [I, BaH, R, Che].
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We begin with the standard formal definition, which is somewhat
unintuitive. In practice, all one needs to know is that every finite
subset of a median algebra is contained in a finite subalgebra (Lemma
4.2) which can be identified as the vertex set of a CAT(0) cube complex.
(In fact, this could serve as an equivalent definition.)

Let M be a set. A median on M is a ternary operation, µ : M3 −→
M , such that, for all a, b, c, d, e ∈M ,

(M1): µ(a, b, c) = µ(b, c, a) = µ(b, a, c),

(M2): µ(a, a, b) = a,

(M3): µ(a, b, µ(c, d, e)) = µ(µ(a, b, c), µ(a, b, d), e).

The axioms are usually given in the above form, though, in fact, (M3)
can be replaced by a condition on sets of four points (see [KM, BaH]).

We refer to (M,µ) as a median algebra.
Given a, b ∈M the interval [a, b] between a an b is defined by [a, b] =

{c ∈ M | µ(a, b, c) = c}. Clearly [a, a] = {a} and [a, b] = [b, a]. One
can also verify that [a, b] ∩ [b, c] ∩ [c, a] = {µ(a, b, c)}.

Definition. A (median) subalgebra of M is a subset closed under µ.

Given A ⊆ M , we write 〈A〉 for the subalgebra generated by A, i.e.
the smallest subalgebra containing A.

Definition. A subset C ⊆ M is convex if [a, b] ⊆ C for all a, b ∈ C.

Any convex subset is a subalgebra, but not necessarily conversely.
One can check that any interval in M is convex.

Definition. A (median) homomorphism between median algebras is
map which respects medians.

Note that a direct product of median algebras is a median algebra.
Also the two-point set, I = {−1, 1} has a unique structure as a median
algebra. Given any set, X, the direct product, IX , is naturally a median
algebra.

Definition. A hypercube is a median algebra isomorphic to IX for
some set X. If |X| = ν <∞, we refer to it as a ν-hypercube. A square
is a 2-hypercube.

If Y ⊆ X, then there is a natural projection epimorphism from IX

to IY . If a ∈ IX\Y , then F = IY × {a} is a convex hypercube in
IX , which we refer to as a face of IX . There is a natural projection
φF : IX −→ F .

Let M be a median algebra.
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Definition. A directed wall, W , is a pair, (H−(W ), H+(W )), where
{H−(W ), H+(W )} is a partition of M into two non-empty convex sub-
sets. We refer to the unordered pair, {H−(W ), H+(W )}, as an undi-
rected wall, or simply a wall.

We write W = W(M) for the set of all (undirected) walls in M .
Note that a directed wall, W , is equivalent to an epimorphism φ :

M −→ I, where H±(W ) = φ−1(±1). We say that W , separates two
subsets, A,B ⊆ M , if A ⊆ H−(W ) and B ⊆ H+(W ), or vice versa.
We write A|WB to mean that A,B are separated by the wall W . We
write (A|B) or (A|B)M to mean that there is some W ∈ W such that
A|WB.

The following gets the whole subject going:

Lemma 4.1. Any two distinct points of M are separated by a wall.

A proof can be found in [BaH]. In fact, it can be reduced to the case
of finite median algebras (cf. Theorem 6.1 here).

We note that Lemma 4.1 is equivalent to asserting that M can be
embedded in a hypercube. Indeed, Lemma 4.1 tells us that the natural
homomorphism from M to IW (after arbitrarily assigning a direction
to each wall) is injective.

Let S be any finite set. The free median algebra, M(S), on S can be
constructed as follows. First note that we can embed S in a hypercube
Q such that the co-ordinate projections to I are precisely the set of all
functions from S to Q. Thus, Q has dimension 2|S|. Now let M(S) be
the subalgebra of Q generated by S. Note that S naturally embeds in
M(S). It has the property that any function of S to any median alge-
bra, M , extends uniquely, to M(S). Indeed, this property determines
M(S) uniquely up to isomorphism fixing S.

Little seems to be known about the general structure of free median
algebras, though some discussion can be found in [R]. Here we just

note that |M(S)| < 22|S|
. As a consequence we note:

Lemma 4.2. Suppose that A ⊆ M with |S| ≤ p <∞, then |〈A〉| < 22p

.

Given A ⊆ M , write G(M) = {µ(a, b, c) | a, b, c ∈ A}. Define Gi(A)
inductively by G0(A) = A and Gi(A) = G(Gi−1(A)). From the above,
it follows that 〈A〉 = Gq(A) where q = 22p

.

5. Finite median algebras

We observed in Section 2 that the vertex set of a finite CAT(0) cube
complex has a median algebra structure. (See, for example, [BriH], for
a discussion of CAT(0) spaces.)
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Conversely, suppose that M is a finite median algebra.

Definition. A cube inM is a convex subset isomorphic to a hypercube.
If it has dimension ν <∞, then we refer to it as a ν-cube.

The set of all cubes in M gives M the structure of the vertex set,
V (Υ), of a finite cube complex Υ. One way to view this is to embed M
in the hypercube, IW , where W is the set of walls of M . The complex
Υ is then the full subcomplex of IW with vertex set M . One can verify
that Υ is simply connected, and that the link of every cube is a flag
complex. Thus, Υ is CAT(0). Moreover, the median structure induced
by Υ (as described in Section 2) agrees with the original. We can look
at this as follows. Given a, b ∈ M , let W(a, b) ⊆ W be the set of
walls separating a and b. We write ρΥ(a, b) = |W(a, b)|. Then, ρΥ is
the same as the combinatorial metric on M = V (Υ) induced from the
1-skeleton of Υ. In fact, if α is any shortest path in the 1-skeleton from
a to b, then the edges of α are in bijective correspondence with the
elements of W(a, b) — the endpoints of each edge are separated by a
unique element of W(a, b).

In other words, we see that Υ = Υ(M) is canonically determined
by M . We can define the “rank” of M as the dimension of Υ(M).
Since this description is only applicable to finite median algebras, we
describe some equivalent formulations below.

Let W ∈ W. It’s sometimes helpful to view W geometrically as a
closed totally geodesic codimension-1 subset, Υ0(W ), of Υ. This slices
in half every cube of Υ which meets both H−(W ) and H+(W ). Geo-
metrically this is closed and convex and has itself a natural structure
of a cube complex (one dimension down). There is a natural nearest
point retraction of Υ to Υ0(W ), which induces a median epimorphism.
We will describe this more combinatorially later.

Suppose W,W ′ ∈ W. There is a natural homomorphsim, φ : M −→
W ×W ′, to the square W ×W ′.

Definition. We say that W and W ′ cross if φ is surjective.

In other, words, each of the four sets H−(W ) ∩H−(W ′), H−(W ) ∩
H+(W ′), H+(W ) ∩H−(W ′) and H+(W ) ∩H+(W ′) is non-empty. (It
is also equivalent to saying that Υ0(W ) ∩ Υ0(W ′) 6= ∅.)

Lemma 5.1. Suppose that P is a finite-dimensional hypercube, and
that A ⊆ P is a median subalgebra such that φF (A) = F for the pro-
jection φF to each square face, F . Then A = P .

Proof. Suppose that F ⊆ P is a square face. First note that if A ∩ F
contains two opposite corners, a, b of F , then F ⊆ A. (Since, if c ∈ F ,
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then c = µ(a, b, d) for any d ∈ φ−1
F (c), and by assumption, A∩φ−1

F (c) 6=
∅.) Now we proceed by induction on the dimension ν ≥ 2. Let Q ⊆ P
be any (ν − 1)-face. Applying the inductive hypothesis to φQ(A) ⊆ Q,
we see that φQ(A) = Q. Now, by the (diagonal) observation above,
we see easily that there must be some a ∈ Q with φ−1

Q (a) ⊆ A. Again
using the same observation, we see that if b ∈ Q is adjacent to a (i.e.
{a, b} is a 1-face) then φ−1(b) ⊆ Q. Proceeding outwards from a, we
eventually see that this holds for all elements of Q, and so A = P as
required. �

One immediate consequence of this is the following. Suppose that
W0 ⊆ W is a collection of pairwise crossing walls. Then the natural
homomorphism, M −→

∏

W0 ≡ IW0 is surjective. In other words the
sets

⋂

W∈W0
Hǫ(W )(W ) are non-empty for all functions ǫ : W0 −→ I.

(In terms of CAT(0) complexes, this can be interpreted as the state-
ment that if the subspaces Υ0(W ) pairwise intersect, then

⋂

W∈W0
Υ0(W ) 6=

∅.)
Suppose now that φ : M −→ Q is an epimorphism of M to a hy-

percube, Q. (This corresponds to a collection of pairwise instersecting
walls as above.) We say that a ν-cube, P , of M is transverse to φ if
φ(P ) = Q, i.e. φ|P is an isomorphism. Let F = F(φ) be the set of
such faces, and write F (φ) =

⋃

F(φ). It’s not hard to see that F (φ)
is convex in M , and is isomorphic to the product F(φ) × Q, where
φ|F (φ) is projection to the second factor, and where each {a} ×Q is a
transverse face. Note that the sets F(φ) × {b} ⊆ F (φ) are all convex
in F (φ) and so also in M . (Reinterpreting in terms of CAT(0) cube
complexes, this corresponds to saying that the “walls” all intersect in a
codimension ν subspace, which intrinsically has the structure of a cube
compex naturally isomorphic to F(φ).)

Proposition 5.2. If φ : M −→ Q is an epimorphism to a hypercube,
then F(Q) 6= ∅.

Proof. One can proof this by induction on the dimension, ν, of Q.
If ν = 1, we have a single wall W . We can choose a ∈ H−(W ) and

b ∈ H+(W ) so as to minimise |W(a, b)|. In this case, one can verify
that W(a, b) = {W}, and so {a, b} is a transverse face.

If ν > 1, write Q = P × I, and let ψ : W −→ I be the composition
of φ with projection of Q to I. Given a ∈ P , note that M(a) =
φ−1({a}×I) is a convex subset of M . Now ψ|M(a) is an epimorphism,
so (by the case ν = 1), F(ψ|M(a)) 6= ∅. But F(ψ) is the disjoint union
of the sets F(ψ|M(a)) as a ranges over P . The natural epimorphism
from F(ψ) to P is therefore surjective, so by induction, there must be
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a transverse (ν−1)-face, say R, to this epimorphism. We see that
⋃

R
is now a transverse ν-cube to the original map φ. �

Proposition 5.3. Let M be a finite median algebra. Then the following
are equivalent.

(1) There is a ν-hypercube embedded in M .

(2) There is an epimorphism of M to a ν-hypercube.

(3) There is a set ν pairwise crossing walls in M .

(4) There is a ν-cube embedded in M .

Proof.
(1) implies (3): Let Q ⊆ M be a ν-hypercube. If {a, b} is any 1-face
of Q, then any wall of M separating a and b will also separate the
(ν − 1)-faces of Q containing a and b. In this way, we get a collection,
W0, of ν pairwise intersecting walls — one for each factor of Q.

(3) implies (2): As observed above, using Lemma 5.1, the map from
M to the product,

∏

W0 is surjective.

(2) implies (4): By Lemma 5.2

(4) implies (1): Trivial. �

Definition. We say that M has rank at least ν if any (hence all) the
conditions of Proposition 5.3 are satisfied. We say that M has rank ν
if it has rank at least ν but not at least ν + 1.

Note that the cubes of M correspond exactly to the cubical cells of
the complex Υ(M), so in view of (4), the definition is equivalent to
that given earlier in Section 2.

Lemma 5.4. Suppose that A,B ⊆ M are disjoint non-empty convex
subsets. Then there is a wall separating A and B.

Proof. Choose a ∈ A and b ∈ B so as to minimise |W(a, b)|. One can
check that any W ∈ W will separate A and B. �

In the case where A = {a}, there is unique b ∈ B which minimises
W(a, b). We write projB(a) = b. If a ∈ B, then we set projB(a) = a.
This gives us a “nearest point” projection map projB : M −→ B to
any non-empty convex subset, B, of M .

Now suppose W ∈ W. We write F(W ) for the set of transverse
1-faces. Note that F (W ) =

⋃

F(W ) ∼= F(W ) × I. In particular, it
follows that rank(F(W )) ≤ rank(M) − 1. Write S± = P × {±1} ⊆
H±(W ). If a ∈ H±(W ), then projH∓(W )(a) ∈ S∓(W ). We set ψW to
be the unique element of F(W ) containing projH∓(W )(a). This gives a
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map ψW : M −→ F(W ) which one can verify is a median epimorphism.
(Geometrically, this corresponds to the nearest point projection of Υ
the totally geodesic subspace Υ0(W ).)

Definition. The convex hull, hull(A), of a subset A ⊆M is the small-
est convex subset of M containing A.

One can verify that a /∈ A if and only if there is a wall ofM separating
a from A. We also note that if a, b ∈ M , then hull{a, b} = [a, b].

Definition. If A ⊆ M , the join, J(A), of A is defined by J(A) =
⋃

a,b∈A[a, b].

We define J i(A) iteratively by J0(A) = A, and J i(A) = J(J i−1(A)).
Clearly this must stabilise for some p ∈ N, and we see that hull(A) =
Jp(A). In fact:

Lemma 5.5. If rank(M) ≤ ν, and A ⊆M , then hull(A) = Jν(A).

Proof. Clearly, Jν(A) ⊆ hull(A). Suppose that a ∈ hull(A) \ Jν(A).
Choose b ∈ A so as to minimise |W(a, b)|. Choose W ∈ W(a, b)
so that a ∈ S−(W ) and b ∈ H+(W ) (for example, corresponding
to the first edge in the 1-skeleton of Υ in a shortest path from a to
b). Since a ∈ hull(A), A must meet both H−(W ) and H+(W ). Let
ψW : M −→ F(W ) be the projection defined above. We see that
⋃

ψW (A) ⊆ J(A). Now one can check (since ψW is an epimorphism)
that ψW (hull(A)) = hull(ψW (A)). Now rankF(W ) ≤ rankM − 1 ≤
ν − 1, so inductively, we have hull(ψW (A)) = Jν−1

W (ψW (A)) (where JW

denotes join in F(W )). But
⋃

JW (ψW (A)) = J(
⋃

ψW (A)), and so
⋃

hull(ψW (A)) ⊆
⋃

Jν−1
W (ψW (A)) = Jν−1(

⋃

ψW (A)) ⊆ Jν−1(J(A)) =
Jν(A). Thus,

⋃

ψW (hull(A)) ⊆ Jν(A). But a ∈ hull(A), and since
a ∈ S−(W ), we have a ∈ ψW (a) ⊆ ψW (hull(A)) ⊆ Jν(A). Technically,
this is a contradiction. In any case, we deduce that hull(A) ⊆ Jν(A)
as required. �

This is all we from Section 5 up to Section 9. We conclude this section
with some observations relevant to the discussion of the mapping class
group in Section 10.

Suppose that N ⊆ M is a subalgebra of M . We write hullN and JN

for the intrinsic hulls and joins in N . For future reference, we note that
the following does not make any use of finiteness.

Lemma 5.6. Suppose A ⊆ N , then hullN (A) = N ∩ hullM(A).

Proof. Since hull(A) =
⋃∞

i=0 J
i(A) and hullN(A) =

⋃∞
i=0 J

i
N (A), it is

enough to show that Jq
N (A) = N ∩ Jq(A) for any q. Clearly Jp

N(A) ⊆
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Jq(A). Conversely, suppose that a ∈ N∩Jq(A). Then a ∈ [b0, b1] where
b0, b1 ∈ Jq−1(A). (Here, [, ] denotes an interval in M .) Similarly, b0 ∈
[b00, b01], b1 ∈ [b10, b11], where b00, b01, b10, b11 ∈ Jq−2(A). Continuing in
this way, we get points bw ∈ Jq−j, where w is a word of length j in
{0, 1}, so that bw ∈ [bw0, bw1]. Let Bj ⊆ Jq−j(A) be the set of such bw.
We terminate with a set Bq ⊆ A.

We now work backwards, to give us points cw ∈ hullN (A), as follows.
If w has length q, we set cw = bw ∈ A. If w has length less than q, we
set cw = µ(a, cw0, cw1) ∈ [cw0, cw1]N . By reverse induction, we end up
with a point c = µ(a, c0, c1). We claim that c = a.

For suppose not. Then there is a wall W ∈ W(M) of M , with
a ∈ H+(W ) and c ∈ H−(W ). Since a /∈ H+(W ), we cannot have Bq ⊆
H−(W ). Thus, without loss of generality, we have c0q = b0q ∈ H+(W ),
where 0j is the word consisting of j 0s. Working backwards, we see
that c0j ∈ H+(W ) for all j. Finally, when j = 0, we arrive at the
contradiction that c ∈ H+(W ).

This shows that a = c ∈ hullN(A). �

Recall the notation (A|B)M to mean that subsets A,B ⊆ M are
separated by a wall in M . Note that, in view of Lemma 5.4 this is
equivalent to saying that hull(A) ∩ hull(B) 6= ∅. In fact, we note that:

Lemma 5.7. Suppose hull(A) ∩ hull(B) 6= ∅, then hull(A) ∩ hull(B) ∩
〈A ∪B〉 6= ∅.

Proof. Let P (A) = hull(A) ∩ 〈A ∪ B〉 and P (B) = hull(B) ∩ 〈A ∪ B〉.
Suppose that P (A) ∩ P (B) = ∅. Choose a ∈ P (A) and b ∈ P (B)
so as to minimise ρ(a, b) = |W(a, b)|. Choose any W ∈ W(a, b) with
a ∈ H−(W ) and and b ∈ H+(W ). Since hull(A) ∩ hull(B) = ∅, we
cannot have both A ⊆ H−(W ) and B ⊆ H+(W ), so without loss of
generality, we can find c ∈ B ∩ H−(W ). Let d = µ(a, b, c). Since
d ∈ [a, b] we have ρ(a, d) < ρ(a, b). But d ∈ P (B), so we contradict the
minimality of ρ(a, b). �

Lemma 5.8. Let N ⊆ M be a subalgebra of a finite median algebra
M . If A,B ⊆ N , then (A|B)N if and only if (A|B)M .

Proof. Clearly (A|B)M implies (A|B)N , so suppose that (A|B)M fails.
By Lemma 5.7, hullM(A) ∩ hullM(B) ∩ N 6= ∅, so by Lemma 5.6,
hullN (A) ∩ hullN (B), so (A|B)N fails. �

If M , N are median algebras, then there are natural inclusions of
W(M) and W(N) into W(M ×N) — by taking inverse images under
the co-ordinate projections. In fact, under this identification, we have:

Lemma 5.9. W(M ×N) = W(M) ⊔W(N).
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Proof. This is best seen using the geometric description in terms of
CAT(0) complexes. �

This result extends to finite (and indeed infinite) direct products.

6. Infinite median algebras

We now drop the assumption that M be finite. Let M be the set
of all finite median subalgebras of M , which we view as a directed set
under inclusion. By Lemma 5.2, M is cofinal in the directed set of all
finite subsets of M .

The definition of convex, wall, crossing etc. remain unchanged from
Section 5. However, we don’t have such an immediate geometrical
interpretation in terms of complexes. (If M is discrete, that is, all
intervals are finite, the it is again the vertex set of a CAT(0) cube
complex. However, we are not assuming discreteness here.) Let W be
the set of walls. The following was proven in [N].

Lemma 6.1. If A,B ⊆ M are disjoint convex subsets, then there is
some wall, W ∈ W, separating A from B.

Proof. For finite median algebras, this was Lemma 5.4. For the general
case, we use a compactness argument.

We identify the power set, P, ofM with the Tychonoff cube, {−1, 1}M ,
of all functions from M to {−1, 1}. Here, a function, f , is identified
with f−1(1). In particular, P is compact in this topology.

Suppose that C ⊆ M. Let C(C) ⊆ P be the set of subsets, H ⊆ P
with the property that C∩H and C \H are both convex in C and such
that C ∩H ⊆ A and C ∩H ∩B = ∅. In other words, (C ∩H,C \H) is
an intrinsic wall in A which separates C ∩ A from C ∩ B. By Lemma
5.4, C(C) 6= ∅. Moreover, C(C) is closed in P.

Note that if C ⊆ D, then C(D) ⊆ C(C). Since M is cofinal in
the set of all finite subsets, it follows that {C(C) | C ∈ M} has the
finite intersection property. By compactness,

⋂

C∈M C(C) 6= ∅. Let
H ∈

⋂

C∈M C(C).
If a ∈ A and b ∈ B, then there is some C ∈ M with a, b ∈ C. Since

C ∩A ⊆ H , we have a ∈ H , and since C ∩H ∩B = ∅, we have b /∈ H .
This shows that B ⊆ H and B ∩H = ∅.

Also, H , and M \ H are both convex. Suppose, for example, that
c, d ∈ H , and e ∈ [c, d] (the interval in M). Choose C ∈ M with
c, d, e ∈ C. Now [c, d]∩A is an interval in C. Also, c, d ∈ A∩H , which
is convex in C. Thus, e ∈ C ∩H ⊆ H . This shows that H is convex.
Similarly M \H is convex.
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We have shown that {H,M \ H} is a wall in M separating A and
B. �

In particular, any pair of distinct points of M are separated by a
wall. (This shows how Theorem 4.1 can be reduced to the finite case.)

Proposition 6.2. Let M be a median algebra. The following are equiv-
alent.

(1) There is a ν-hypercube embedded in M .

(2) There is an epimorphism of M to a ν-hypercube.

(3) There is a set of ν pairwise crossing walls in M .

Proof.
(1) implies (3): As in Proposition 5.3, this time using Lemma 6.1.

(3) implies (2): As in Proposition 5.3.

(2) implies (1): Let φ : M −→ Q be an epimorphism to an ν-hypercube.
There is some A ∈ M with φ(A) = Q. By Lemma 5.2, A contains a
ν-cube. This gives us a ν-hypercube in M . �

Definition. We say that the rank of M is at least ν if any (hence all)
the conditions of Proposition 6.2 hold. We say that it has rank ν if it
has rank at least ν but not at least ν+1. We write rank(M) ∈ N∪{∞}
for the rank of M .

Clearly the above agrees with the definition already given in the
finite case. Also, using Lemma 4.2 and Proposition 6.2, we see that
it is consistent with the descriptions of median algebras and rank as
given in Section 2.

Let A ⊆ M . We define hull(A), J(A) and J i(A) in the same way as
before. This time, hull(A) =

⋃∞
i=1 J

i(A).
If B ⊆ M is a finite median algebra, we write JB for the intrinsic

join in A, that is, JB(A) = B ∩ J(A) for A ⊆ B. Note also that, by
Lemma 5.6, B ∩ hull(A∩B) is the intrinsic convex hull of A∩B in B.

Lemma 6.3. If A ⊆ M , then hull(A) is the union of the sets B ∩
hull(A ∩B) as B ranges over M.

Proof. Note that hull(A) =
⋃∞

i=1 J
i(A). We prove inductively on i that

J i(A) =
⋃

B∈M(J i
B(A ∩ B)). First note that J0(A) = A = J0

B(A) for
any B ∈ M containing A. Suppose that a ∈ J i(A). Then a ∈ [b, c]
where b, c ∈ J i−1(A). By the inductive hypothesis, b ∈ J i−1

B (A∩B) and
c ∈ J i−1

C (A∩C) for B,C ∈ M. Now let D ∈ M with {a}∪B∪C ⊆ D.
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We see that b, c ∈ J i−1
D (A∩D), so a ∈ JD(J i−1

D (A∩D)) = J i
D(A ∩D).

This proves the inductive statement. Now note that if B ∈ M then
J i

B(A ∩ B) ⊆ B ∩ hull(A ∩B), proving the result. �

Lemma 6.4. Suppose that M has rank at most ν. Then for any A ⊆
M , we have hull(A) = Jν(A).

Proof. If a ∈ hull(A), then by Lemma 6.3, a ∈ B ∩ hull(A ∩ B) for
some B ∈ M. But B ∩ hull(A ∩ B) is the intrinsic convex hull of
A ∩ B in B. (Indeed, in the proof of Lemma 6.3, we saw directly
that a ∈

⋃∞
i=0 J

i
B(A ∩ B).) Thus, by Lemma 5.5, we see that a ∈

Jν
B(A ∩ B) ⊆ Jν(A) as required. �

Finally we note the following generalisation of Lemma 5.8 to arbi-
trary median algebras.

Lemma 6.5. Let N ⊆M be a subalgebra of the median algebra M . If
A,B ⊆ N , then (A|B)N if and only if (A|B)M .

Proof. First note that, by Lemma 5.6, for anyA ⊆ N , we have hullN(A) =
N ∩ hullM(A) (this did not make use of finiteness). We are there-
fore claiming that N ∩ hullM(A) ∩ hullM(B) = ∅ implies hullM(A) ∩
hullM(B) = ∅. This was shown by Lemma 5.8, when M was fi-
nite. In the general case, suppose, for contradiction that there is some
c ∈ hullM(A)∩hullM(B). It follows that c ∈ hullΠ(A∩Π)∩hullΠ(B∩Π)
for some finite subalgebra, Π, of M . Now, N ∩Π is a subalgebra of Π,
and so, from the finite case, we have N∩hullΠ(A∩Π)∩hullΠ(A∩Π) 6= ∅.
But this is contained in N ∩ hullM(A) ∩ hullM(B), so we get a contra-
diction. �

7. Topological median algebras

In this section we define the terms relevant to Theorem 2.2, and give
a proof.

By a topological median algebra we mean a hausdorff topological
space, M , together with a continuous ternary operation, µ : M3 −→ M
such that (M,µ) is a median algebra.

Definition. We say that M is locally convex if every point has a base
convex neighbourhoods.

Put another way, if a ∈M and U ∋ a is open, then there is another
open set V ∋ a with hull(V ) ⊆ U .

Definition. We say that M is weakly locally convex if, given any a ∈
M , an any open U ∋ a, there is an open set V ∋ a such that [b, c] ⊆ U
for all b, c ∈ V .
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In other words, J(V ) ⊆ U .

Lemma 7.1. If M has finite rank and is weakly locally convex, then it
is locally convex.

Proof. Let a ∈ U , where U ⊆ M is open. We inductively construct
open sets Ui with J i(Ui) ⊆ U . By Lemma 6.4 if ν = rank(M), then
hull(Uν) = Jν(Uν) ⊆ U , so we can set V = Uν . �

Given a set C ⊆ M , we write C̄ for its topological closure. The
following is an elementary observation:

Lemma 7.2. If C is convex, then so is C̄.

Suppose W ∈ W. By Lemma 7.2, the closures, H̄−(W ) and H̄+(W )
are both convex, and so therefore is L(W ) = H̄−(W ) ∩ H̄+(W ). Let
O±(W ) = M \ H̄∓(W ). Note that O±(W ) is contained in the interior
of H±(W ).

Definition. We say tht W strongly separates two points a, b ∈ M if
a ∈ O−(W ) and b ∈ O+(W ), or vice versa.

For the rest of this section, we will assume that M is locally convex.

Lemma 7.3. Any two distinct points of M are strongly separated by a
wall.

Proof. Let a, b ∈ M be distinct. Let A ∋ a and B ∋ b be disjoint
convex neighbourhoods. By Lemma 6.1, there is a wall W ∈ W with
A ⊆ H−(W ) and B ⊆ H+(W ). It now follows that a ∈ O−(W ) and
b ∈ O+(W ). �

Lemma 7.4. Suppose that Q ⊆ M is a finite dimensional hypercube,
and that {P−, P+} is an intrinsic wall of Q (i.e. a partition of Q into
two codimension-1 faces). Then there is a wall W ∈ W with P− ⊆
O−(W ) and P+ ⊆ O+(W ).

Proof. Choose a ∈ P− and b ∈ P+ so that {a, b} is a 1-face of Q. Let
W ∈ W be a wall as given by Lemma 7.3. Suppose c ∈ P−. Then
a ∈ [b, c]. Since H̄+(W ) is convex, if c ∈ H̄+(W ), we would arrive at
the contradiction that b ∈ H̄+(W ). It follows that c ∈ O−(W ). Thus
P− ⊆ O−(W ). Similarly, P+ ⊆ O+(W ). �

Lemma 7.5. If rank(M) ≤ ν and W ∈ W, then rank(L(W )) ≤ ν− 1.

Proof. Suppose, for contradiction, that Q ⊆ L(W ) is a ν-hypercube.
Let a : Iν −→ Q be an isomorphism. Given ǫ ∈ Iν , we write ǫi ∈
I = {−1,+1} for the ith co-ordinate. For each i ∈ {1, . . . , n}, we can
partition Q as P−

i ⊔ P+
i , where P−

i and P+
i correspond to ǫi = −1
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and ǫ+ = +1. By Lemma 7.4, there is a wall, Wi ∈ W with P−
i ⊆

O−(Wi) and P+
i ⊆ O+(Wi). Given ǫ ∈ Iν , let O(ǫ) =

⋂ν

i=1O
ǫi. Thus

O(ǫ) is an open subset of M containing a(ǫ). Now a(ǫ) ∈ L(W ) =
H̄−(W ) ∩ H̄+(W ). Thus, there are points, a±(ǫ) ∈ O(ǫ) ∩ H±(W ).
In particular, a±(ǫ) ∈ Hǫi(Wi) for all i. It now follows that the walls,
W1,W2, . . . ,Wν ,W , all pairwise intersect. We derive the contradiction
that rank(M) ≥ ν + 1. �

We also note that L(W ) is intrinsically a locally convex median al-
gebra.

We now move on to our definition of “separation dimension”.
Let D be a collection of (homeomorphism classes) of hausdorff topo-

logical spaces. Let Θ be a hausdorff topological space. We say two
points x, y ∈ Θ are D-separated if there are closed sets, X, Y ⊆ M
with x /∈ Y , y /∈ X, X ∪ Y = M and X ∩ Y ∈ D.

Define D(n) inductively as follows. Set D(−1) = {∅}. We say Θ ∈
D(n+ 1) if any two distinct points of Θ are D(n)-separated.

Definition. We say that a space is has separation dimension n if it
lies in D(n) \ D(n− 1).

Note that a space has separation dimension 0 if and only if it is
non-empty and totally disconnected (in contrast to covering dimension
[Er]).

Suppose that Θ ∈ D(n) and that Φ ⊆ Θ. Then Φ ∈ D(n). This can
be seen by induction on n as follows. Suppose that x, y ∈ Φ with x 6= y.
There are closed sets X, Y ⊆ Θ, with x /∈ Y , y /∈ X, X ∪ Y = Θ and
X ∩Y ∈ D(n− 1). Inductively, X ∩Y ∩Φ ∈ D(n− 1). But X ∩Φ and
Y ∩Φ are closed in Φ, x /∈ Y ∩Φ, y /∈ X∩Φ, and (X∩Φ)∪(Y ∩Φ) = Φ,
so x and y are D(n− 1)-separated in Φ.

We claim that if x, y ∈ Θ ∈ D(n), then there are open sets, U ∋ x
and V ∋ y with Ū ∪ V̄ = Θ and Ū ∩ V̄ ∈ D(n−1). To see this, let X, Y
be as in the definition of D(n). Let U = Θ \ Y and V = Θ \X. Now
U ⊆ X, so Ū ⊆ X. Thus, Θ \X ⊆ Θ \ Ū = V . Similarly, Θ \ V̄ ⊆ U .
In particular, x ∈ U and y ∈ V . Also Ū ∪ V̄ = Θ. We similarly have
V̄ ⊆ Y , and so Ū ∩ V̄ ⊆ X ∩ Y ∈ D(n − 1). Thus, by the preceding
paragraph, we have Ū ∩ V̄ ∈ D(n− 1), thereby proving the claim.

Conversely, if U, V are as above, then Ū and V̄ are as in the in-
ductive definition of D(n). This therefore gives rise to an equivalent
formulation of separation dimension.

Finally, putting together Lemmas 7.3 and 7.5, we see by induction
on n that if rank(M) ≤ n, then M has separation dimension at most
n, thereby proving Theorem 2.2.



COARSE MEDIAN SPACES 21

The usual notion of inductive dimension is similar — replacing sep-
aration of points with separation of disjoint closed sets. These notions
are equivalent for locally compact spaces (see for example Section III(6)
of [HuW]). In particular, we note:

Lemma 7.6. If Θ is a hausdorff topological space of separation di-
mension at most ν, then every locally compact subset has (covering)
dimension at most ν.

In particular, such a space does not admit any continuous injective
map of R

ν+1.

8. Coarse median spaces

We establish some basic facts about coarse median spaces. We show
that such a space satisfies certain quadratic isoperimetric inequality
(Proposition 8.2).

Let (Λ, ρ) be a geodesic space. (A path-metric space would be suffi-
cient.) Let µ : Λ3 −→ Λ be a ternary operation.

Definition. If (Π, µΠ) is a median algebra then a h-quasimorphism of
Π into Λ is a map λ : Π −→ Λ satisfying

ρ(λµΠ(x, y, z), µ(λx, λy, λz)) ≤ h

for all x, y, z ∈ Π.

Definition. We say that (Π, µΠ) is a coarse median space if it satisfies:

(C1): There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ Λ,

ρ(µ(a, b, c), µ(a′, b′, c′)) ≤ k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0).

(C2): There is a function h : N −→ [0,∞) such that 1 ≤ |A| ≤ p <∞,
then there is a finite median algebra and a h(p)-quasimorphism, λ :
Π −→ Λ such that for all a ∈ A, ρ(a, λπa) ≤ h(p).

We therefore have one multiplicative constant, k, and a sequence,
h(p), of additive constants. We can assume that h(p) is increasing in
p.

In (C2), we note that we can always assume that Π = 〈π(A)〉, so by
Lemma 4.2, |Π| ≤ 22p

. In particular, we can take Π to be finite. Our
definition therefore agrees with that given in Section 2.

Remark. Note that in defining a coarse median space, there would be
no loss in taking Π = M(A) to be the free median algebra on A (since
this will admit an epimorphism to any such Π). Also in (C1), there
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would be no loss in assuming that λπa = a for all a ∈ A. However,
when we define a “coarse median space of rank ν” below, we can no
longer assume these things.

Definition. If we can always take Π to have rank at most ν, then we
say that (Λ, ρ, µ) has rank at most ν.

Here, of course, the function h is fixed independently of ν.

Lemma 8.1. Suppose that (Λ, ρ) and (Λ′, ρ′) are quasi-isometric ge-
odesic spaces. Then (Λ, ρ) admits a coarse median (of rank n) if and
only if (Λ′, ρ′) does.

Proof. Let f : Λ −→ Λ′ and g : Λ′ −→ Λ be quasi-inverse quasi-
isometries. (That is, f ◦ g and g ◦ f are each a bounded distance from
the respective identity maps) We define µ′ on Λ′ by setting µ′(a, b, c) =
fµ(ga, gb, gc). �

Definition. A finitely generated group Γ is coarse median (of rank ν)
if and only if its Cayley graph with respect to any finite generating set
admits a coarse median.

Any two such Cayley graphs are quasi-isometric, so this is well de-
fined by Lemma 8.1.

Returning to Λ, suppose a, b, c ∈ Γ. Let A = {a, b, c}, and let
π : A −→ Π and λ : Π −→ Λ be as in (C2). Apply (C1), we see that

ρ(µ(a, b, c), µ(λπa, λπb, λπc)) ≤ kh(3) + h(0).

Also
ρ(µ(λπa, λπb, λπc), λµΠ(πa, πb, πc)) ≤ h(3),

and so

ρ(µ(a, b, c), λµΠ(πa, πb, πc)) ≤ (k + 1)h(3) + h(0).

The same holds for any permutation of a, b, c, and since µΠ is invariant
under such permutation, we deduce:

ρ(µ(a, b, c), µ(b, c, a)) ≤ (2k + 2)h(3) + 2h(0)

ρ(µ(a, b, c), µ(b, a, c)) ≤ (2k + 2)h(3) + 2h(0)

Since µΠ(πa, πa, πb) = πa, a similar argument gives

ρ(µ(a, a, b), a) ≤ (k + 2)h(3) + h(0).

In view of this, there is no essential loss in assuming (M1) and (M2),
namely, µ(a, b, c) = µ(b, c, a) = µ(b, a, c) and µ(a, a, b) = a. We have
already implicitly used this in Section 3.

Given this, we note that (C1) could be replaced by the assump-
tion that ρ(µ(a, b, c), µ(a, b, d)) is uniformly bounded above in terms of
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ρ(c, d). Given that (Λ, ρ) is a geodesic space, it is easy to see that such
a bound can always be taken to be linear.

Next, we discuss the quadratic isoperimetric inequality. Suppose,
l, L > 0.

Definition. An l-cycle is a cyclically ordered sequence of points, a0, a1, . . . , ap =
a0 in Λ, with ρ(ai, ai+1) ≤ l for all i.

Definition. An L-disc consists of a triangulation of the disc, together
with a map b : V −→ Λ of the vertex set, V , into Λ such that
ρ(b(x), b(y)) ≤ L whenever x, y ∈ V are adjacent in the 1-skeleton.

Definition. We say that b spans an l-cycle, (ai)i if we can label the
vertices on the boundary as xi such that xi+1 is adjacent to xi and with
ai = b(xi) for all i.

Proposition 8.2. Suppose that Λ is a coarse median space. Given any
l > 0, there is some L > 0, depending only on l and the parameters
such that for any p ∈ N, any l-cycle of length at most p bounds an
L-disc with at most p2 2-simplices.

In fact, all we require of µ is (M1) and (M2) and the statement that
ρ(µ(a, b, c), µ(a, b, d)) ≤ L/2 and whenever a, b, c, d ∈ Λ with ρ(c, d) ≤
l.

To see this, we construct a triangulation of the disc as follows. Let

V = {{0}} ∪ {{i, j} | 1 ≤ i, j ≤ p− 1}.

We define the edge set by deeming {i, j} to be adjacent to {i + 1, j}
and to {i + 1, j + 1} for all 1 ≤ i, j ≤ p − 2, and deeming {0} to be
adjacent to {1, i} and to {p − 1, i} for all 1 ≤ i ≤ p − 1. Note that
{i, i} = {i}, so {i} is adjacent to {i + 1} for all i. Filling in every
3-cycle with a 2-simplex, we can see that this defines a triangulation
of the disc whose boundary is the circuit with vertices ({i})i. In total,
it has 1

2
(p2 − p + 2) vertices, p

2
(3p− 5) edges and p2 − 2p triangles.

Now suppose that a0, a1, . . . , ap = a0 is an l-cycle in Λ. Define b :
V −→ Λ by b({i, j}) = µ(a0, ai, aj) thus, b({i}) = ai for all i. Now, if
{i′, j′} is adjacent to {i, j}, then |i − i′| ≤ 1 and |j − j′| ≤ 1, and so
ρ(b({i, j}), b({i′, j′})) ≤ 2(L/2) = L.

This proves Proposition 8.2.
Note that, if Λ is the Cayley graph of a finitely generated group, then

this implies that Γ is finitely presented, and that the Dehn function for
any finite presentation is at most quadratic. In other words:

Corollary 8.3. Any coarse median group is finitely presented, and has
Dehn function that is at most quadratic.
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The following observations will be needed in the next section.

Lemma 8.4. Suppose that Π is a finite median algebra generated by
B ⊆ Π, with |B| ≤ p. Suppose that λ : Π −→ Λ is a h-quasimorphsim.
then diam(λΠ) ≤ K0(diam(λB)+h(0)+h(p)), where the constant, K0,
depends only on k (the multiplicative constant of (C1)) and p.

Proof. Given C ⊆ Π, let G(C) = {µ(x, y, z) | x, y, z ∈ C}. Let Gi(C)
be the ith iterate of G. Set q = 22p

. By Lemma 4.2, |Π| ≤ q, so
Π = Cq(B).

Now suppose x, y, z ∈ Π and set w = µΠ(x, y, z). Now µΠ(x, x, y) =
x, and so ρ(µΠ(λx, λx, λy), λx) ≤ h. Also ρ(µ(λx, λy, λz), µ(λx, λx, λy)) ≤
kρ(x, y) + h(0), and ρ(λw, µ(λx, λy, λz)) ≤ h. Thus, ρ(λx, λw) ≤
kρ(x, y) + h(0) + 2h. It follows that if C ⊆ Π, then diam(λG(C)) ≤
k diam(λC) + h(0) + 2h.

Now iterating this q times, starting withB ⊆ Π, we obtain diam(λΠ) ≤
K0(diam(λB) + h(0) + h) where K0 = kq. �

Lemma 8.5. Supppose that A ⊆ Λ with 1 ≤ |A| ≤ p < ∞ and that
π : A −→ Π and λ : Π −→ Λ are as in (C2), with Π = 〈πA〉. Then
diam(λΠ) ≤ K(diam(A) + h(0) + h(p)), where K depends only on k
and p.

Proof. By Lemma 8.4, we have diam(λΠ) ≤ K0(diam(πA) + h(0) +
h(p)). But if a ∈ A, then ρ(a, λπa) ≤ h(p), so diam(λπA) ≤ diam(A)+
2h(p), and the result follows. �

9. Ultralimits

In this section we discuss ultralimits of coarse median spaces. When
the ultralimit is obtained through a sequence of rescalings of a given
space, we will refer to the resulting space as an “asymptotic cone”.
Asymptotic cones of groups and metric spaces were introduced by Van
den Dries and Wilkie [VW] and elaborated upon by Gromov [G2]. They
now play a major role in geometric group theory. We will show that
the asymptotic cone of a coarse median space of rank at most ν is a
locally convex topological median algebra of rank at most ν. (This was
stated as Theorem 2.3.)

First, we give a general discussion. We fix an indexing set, I, with
a non-principal ultrafilter. Throughout this section, if (ti)i∈I is a se-
quence of real numbers, we will write ti → t to mean that that ti tends
to t with respect to this ultrafilter. We refer to a sequence as bounded if
it is bounded with respect to the ultrafilter (i.e. there is some K ≥ 0 so
that the set of indices, i ∈ I for which |ti| ≤ K lies in the ultrafilter).
Note that any bounded sequence has a unique limit. We recall the
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following (eg. [G2]). Let ((Λi, ρi))i∈I be a collection of metric spaces
indexed by I. We will write a = (ai)i ∈

∏

i Λi for a typical sequence
of elements. We fix some basepoint e = (ei)i ∈

∏

i Λi. Let B be the set
of sequences a in

∏

i Λi such that ρi(ei, ai) is bounded (in the above
sense). Given a,b ∈ B, write a ∼ b to mean that ρi(ai, bi) is bounded.
This is an equivalence relation, and we write Λ∞ = B/∼. Given a ∈ B,
and a ∈ Λ∞, we write ai → a to mean that a is the equivalence class of
a. Given a, b ∈ Λ∞, choose any a,b ∈ B with ai → a and bi → b. Now
ρi(ai, bi) is bounded and we define ρ∞(a, b) to be the limit of ρi(ai, bi).
One can easily check that this is well defined, and that ρ∞ is a metric
on Λ∞. With a bit more work, one can see that (Λ∞, ρ∞) is complete.

Now suppose that ((Λi, ρi, µi))i∈I is a sequence of coarse median
spaces. We write ki and hi for the constants featuring in (C1) and
(C2). We suppose:

(U1): ki is bounded, and hi(p) → 0 for all p ∈ N.

We may as well fix ki = k.
Also, we will suppose that the spaces also satisfy properties (M1)

and (M2) of a median algebra (that is, with no additive constant). As
discussed earlier, there is no essential loss of generality in doing this.

Now suppose that a, b, c ∈ Λ∞. Choose ai → a, bi → b and ci → c.
Now ρi(ei, µi(ai, bi, ci)) ≤ k(ρi(ei, ai) + ρi(ei, bi) + ρi(ei, ci)) + hi(0),
so ρi(ei, µi(ai, bi, ci)) is bounded. Moreover, if a′i → a, b′i → b and
c′i → c, is another such sequence, then ρi(µi(ai, bi, ci), µi(a

′
i, b

′
i, c

′
i)) ≤

k(ρi(ai, a
′
i)+ρi(bi, b

′
i)+ρi(ci, c

′
i))+hi(0), so ρi(µi(ai, bi, ci), µi(a

′
i, b

′
i, c

′
i)) →

0. It follows that the limit of µi(ai, bi, ci) in Λ∞ is well defined, and we
write it as µ∞(a, b, c).

Now the metric ρ∞ defines a topology in Λ∞. With respect to this
topology, we claim:

Proposition 9.1. (Λ∞, ρ∞, µ∞) is a topological median algebra.

Proof. For this, we only need to consider a finite subset A ⊆ Λ∞. (In
view of fact that the median axioms only require sets of four points we
could restrict to the case where |A| ≤ 4 here, and hence only require
that hi(4) → 0. We will however need sets of arbitrary finite cardinality
later, when we need to bound the rank.)

Let A ⊆ Λ∞ be finite, and set p = |A|. We define maps fi : A −→ Λi

by choosing a sequence ai → a for all a ∈ Λ∞, and setting fi(a) = ai.
We write Ai = fi(A) ⊆ Λi. Thus |Ai| ≤ p. Let πi : Ai → Πi and
λi : Πi → Λi be as in (C2). Thus λi is an hi(p)-quasimorphism, and we
can assume that Πi = 〈πiAi〉, so that |Πi| ≤ 22p

. There are only finitely
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many possibilities for the median algebra (Πi, µΠi
) up to isomorphism,

so we can asssume that Πi = Π is fixed. We can now also assume
that the compositions πifi : A −→ Π are all equal to some fixed map
π : A −→ Π. Note again that Π = 〈πA〉.

Now diam(Ai) is bounded. By Lemma 8.5, diam(λiΠ) ≤ K(diam(Ai)+
hi(0) + hi(p)) is also bounded. (Here K depends only on k and p and
is therefore constant.) If a ∈ A, recall that ai = fi(a) → a. Also
ρi(ai, λiπiai) ≤ hi(p) → 0, so λiπiai → a. Now if x ∈ Π, then ρi(ai, λix)
is bounded, by the above. So ρi(ei, λix) is bounded, and so λix → b
for some b ∈ Λ∞. This gives us a well defined map λ : Π −→ Λ∞, with
λix→ λx.

Now Λi : Π → Λi is a hi(p)-quasimorphism where hi(p) → 0, so it
follows that λ : Π −→ Λ is a homomorphism, i.e. for all x, y, z ∈ Π,
λµΠ(x, y, z) = µ∞(λx, λy, λz). Moreover, if a ∈ A, we have seen that
λiπa = λiπifia = λiπiai → a. By definition of λ, we have λiπa→ λπa,
and so λπa = a. Setting B = λΠ we have A ⊆ B.

Now λ is a homomorphism, so it follows easily that B is closed under
µ∞. Also, since Π is a median algebra, it follows easily that (B, µ∞) is
intrinsically a median algebra.

In summary, we have shown that any finite subset, A ⊆ Λ∞, is con-
tained in another finite subset B ⊆ Λ∞ that is closed under µ∞ and
intrinsically a median algebra. It follows that (Λ∞, µ∞) is a median al-
gebra. Note in particular, that µ∞(a, b, c) is invariant under permuting
a, b, c.

Suppose that a, b, c, d ∈ Λ∞. Let ai → a, bi → b, ci → c and di → d.
Then

ρi(µi(ai, bi, ci), µi(ai, bi, di)) ≤ kρi(ci, di) + hi(0),

and so

ρ∞(µ∞(a, b, c), µ∞(a, b, d)) ≤ kρ∞(c, d).

We see that µ∞ : Λ3
∞ −→ Λ∞ is continuous. In other words, (Λ∞, ρ∞, µ∞)

is a topological median algebra. �

In fact, we can say more. Suppose a, b, c ∈ Λ∞ with c ∈ [a, b].
Now ρ∞(a, c) ≤ ρ∞(µ∞(a, a, c), µ∞(a, b, c)) ≤ kρ∞(a, b). Therefore,
diam([a, b]) ≤ kρ∞(a, b). We deduce:

Lemma 9.2. (Λ∞, ρ∞, µ∞) is weakly locally convex.

Note that the conclusion Lemma 9.2 is a consequence of the fact that
ρ∞(µ∞(a, b, c), µ∞(a, b, d)) ≤ kρ∞(c, d) for all a, b, c, d ∈ Λ∞. This is a
key property used in the embedding theorem in [Bo2].
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Suppose now that each (Λi, ρi, µi) is coarse median of rank at most
ν. We now interpret property (U1) above to mean that the constants
ki and hi(p) of (C2) refer to median algebras Πi of rank at most ν.

Following the proof of Proposition 9.1, we see that Π has rank at
most ν. It follows that B = λΠ also has rank at most ν (using, for
example, condition (2) of Proposition 6.2. We deduce:

Proposition 9.3. If the spaces (Λi, ρi, µi) all have rank at most ν and
satisfy (U1), then (Λ∞, ρ∞, µ∞) has rank at most ν.

Now, putting together the above results with Lemma 7.1, we deduce
that (Λ∞, ρ∞, µ∞) is locally convex.

This proves Theorem 2.3.
Now suppose that (Λ, ρ, µ) is a coarse median space. Let I = N

with any non-principal ultrafilter. Let ti be any sequence of positive
numbers with ti → 0 (with respect to the ultrafilter is enough). Let
Λi = Λ, ρi = tiρ and µi = µ. Let e ∈ Λ, and set ei = e for all
i to give us a fixed basepoint. The sequence (Λi, ρi, µi) satisfies the
condition of Proposition 9.1, and so we get a topological median algebra
(Λ∞, ρ∞, µ∞).

Definition. We refer to a topological median algebra arising in this
way as an asymptotic cone of (Λ, ρ, µ).

Thus (Λ∞, ρ∞) is an asymptotic cone in the traditional sense. The
following is an immediate consequence of the above:

Proposition 9.4. If (Λ, ρ, µ) has rank at most ν, then any asymptotic
cone is locally finite and has rank at most ν.

We can now deduce Corollary 2.4 as explained in Section 2.
Finally, we note:

Lemma 9.5. Any geodesic space which admits a structure as a rank-1
topological median algebra is an R-tree.

Proof. We see that any pair of distinct points are separated by a rank-
0 subalgebra, in other words, a point. This implies that a geodesic
connecting any pair of point must in fact be the unique arc connecting
those points. In other words, any two points are connected by a unique
arc which is isometric to a real interval. This is one of the standard
definitions of an R-tree. �

Using Proposition 9.4, we deduce

Lemma 9.6. Let (Λ, ρ) be a geodesic space which admits a rank-1
coarse median. Then any asymptotic cone of (Λ, ρ) is an R-tree.
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This now gives us what we need to complete the proof of Theorem
2.1 in Section 3.

10. Projection maps

In this section, we explain how the existence of certain projection
maps imply that a given ternary operation on a geodesic space is a
coarse median. We first give the constructions in a formal manner.
The main application we have in mind is to the mapping class group,
as we explain in Section 11.

Let (Λ, ρ) be a geodesic space, and let µ : Λ3 −→ Λ be a ternary
operation. Let X be an indexing set, and suppose that to each X ∈ X ,
we have associated a uniformly coarse median space (Θ(X), σX , µX),
together with a uniformly lipschitz quasimorphism, θX : Λ −→ Θ(X).
Here, “uniform” means that the various parameters are independent of
X. In particular, we are assuming that θX : (Λ, ρ) −→ (Θ(X), σX) is
k0-lipschitz, and that θX : (Λ, µ) −→ (Θ(X), µX) is a h0-quasimorphism
for fixed k0 and h0.

We also assume:

(P1): For all l there is some l′ such that if a, b ∈ Λ satisfy σX(θXa, θXb) ≤
l for all X ∈ X , then ρ(a, b) ≤ l′.

We claim:

Proposition 10.1. A ternary operation µ satisfying the above is a
coarse median on (Λ, ρ).

In fact, we will see that the parameters of (Λ, ρ, µ) depend only on
those arising in the hypotheses.

Before giving the proof, we note how the hypotheses arise in nature.
In Section 11, Λ will be the “marking complex” of a compact surface
Σ. This is quasi-isometric to the mapping class group of Σ. The map
µ will be the “centroid” map defined in [BehM2]. The set X is the set
of homotopy classes of essential subsurfaces of Σ. In this, we include
annuli and Σ itself, but do not allow three-holed spheres. For a non-
annular surface, the space (Θ(X), σX) will be the curve graph of X,
which is hyperbolic by [MasM1], and hence is coarse median of rank
1. If X is an annulus, then (Θ(X), σX) is a certain arc complex, which
is quasi-isometric to the real line. In all cases, the maps θX : Λ −→
Θ(X) arises from the subsurface projection map described in [MasM2].
The property (P1) can be shown using the distance formula used in
[MasM2]. A consequence of Proposition 10.1, is that the mapping class
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group is coarse median. We recover the fact that it is finitely presented
and has a quadratic Dehn function [Mo].

Proof of Proposition 10.1. We need to verify (C1) and (C2).

(C1): Let a, b, c, a′, b′, c′ ∈ Λ, and write e = µ(a, b, c) and f = µ(a′, b′, c′).
Let X ∈ X . Write t = σ(a, a′) + σ(b, b′) + σ(c, c′). Since θX is a quasi-
morphism we have:

σX(θXe, µX(θXa, θXb, θXc)) ≤ h0

σX(θXf, µX(θXa
′, θXb

′, θXc
′)) ≤ h0.

Since µX satisfies (C1) and θX is a k0-lipschitz, we have

σX(µX(θXa, θXb, θXc), µX(θXa
′, θXb

′, θXc
′))

≤ k(σX(θXa, θXa
′) + σX(θXb, θXb

′) + σX(θXc, θXc
′))

≤ kk0(ρ(a, a
′) + ρ(b, b′) + ρ(c, c′)) = kk0t.

Thus, σX(θXe, θXf) is (linearly) bounded above in term of t.
Now since this holds uniformly for all X ∈ X , it follows by (P1) that

ρ(e, f) is bounded above in terms of t. Since (Λ, ρ) is a geodesic space,
this is sufficient to verify (C1) for µ (as observed in Section 8).

(C2): Let A ⊆ Λ, with |A| ≤ p < ∞. Let q = 22p

. Let Π be the free
median algebra on A, and write π : A −→ Π for the inclusion map.
Note that Π = 〈πA〉, and recall from Section 4, that Π = Gi, where
Gi = Gi(πA) is defined by iterating the median operation, µΠ.

We define λ : Π −→ Λ inductively as follows. Given x ∈ G0 =
πA, set λx = a, where x = πa. Given u ∈ Gi+1 \ Gi, choose any
x, y, z ∈ Gi with u = µΠ(x, y, z) and set λu = µ(λx, λy, λz). By
construction, we have λπa = a for all a ∈ A. We want to show that λ
is a quasimorphism.

Let X ∈ X . We have a quasimorphism θX : Λ −→ Θ(X). There is
also a quasimorphism, ωX : Π −→ Θ(X) such that ωXπa = θXa for
all a ∈ A. (Certainly, such a quasimorphism exists from some median
algebra to Θ(X), by (C2) applied to Θ(X). But since we have taken Π
to be free on A, we can precompose this with a homomorphism from
Π to the given median algebra which fixes A. Thus, we can take the
domain to be Π.) By assumption, the additive constants depend only
on the parameters and on p. In particular, they are independent of X.

In what follows, it will be convenient to adopt the following conven-
tion. Given points, x, y in a metric space (namely Λ or Θ(X)), we will
write x ∼ y to mean that, at any particular stage in the argument, the
distance between x and y is bounded above by some explicit constant,
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depending only on the parameters and on p. The bound may increase
as the argument proceeds, though we won’t keep track of it explicitly
here.

We first claim that θXλx ∼ ωXx for all x ∈ Π. We show this by
induction on i, where x ∈ Gi+1 \ Gi. Note first that if x ∈ G0, then
setting x = πa, we have θXλx = θXa = ωXπa = ωXa.

Now suppose that u ∈ Gi+1 \Gi. Let x, y, z ∈ Gi be the three points
that were chosen in the definition of λ, so that λu = µ(λx, λy, λz). We
now have:

θXλu = θXµ(λx, λy, λz)

∼ µX(θXλx, θXλy, θXλz)

∼ µX(ωXx, ωXy, ωXz)

∼ ωXu.

(The above follow respectively from the fact that θX : Λ −→ Θ(X)
is a quasimorphism; the inductive hypothesis; and the fact that ωX :
Π −→ Θ(X) is a quasimorphism.) This proves that θXλx ∼ ωXx for
all x ∈ Π = Gq.

Now suppose that x, y, z ∈ Π are any three points. We have:

θXλµΠ(x, y, z) ∼ ωXµΠ(x, y, z)

∼ µX(ωXx, ωXy, ωXz)

∼ µX(θXλx, θXλy, θXλz)

∼ θXµ(λx, λy, λz).

(The above follow respectively from the claim already proven above;
the fact that ωX : Π −→ Θ(X) is a quasimorphism; the above claim
again, together with property (C1) applied to (Θ(X), µX); and finally
the fact that θX : Λ −→ Θ(X) is a quasimorphism.)

In other words, we have shown that

θXλµΠ(x, y, z) ∼ θXµ(λx, λy, λz)

for all X ∈ X , and for all x, y, z ∈ Π. Applying (P1), we get

λµΠ(x, y, z) ∼ µ(λx, λy, λz).

In other words, λ : Π −→ Λ is a quasimorphism. The constants depend
only on p and the parameters inputted.

This verifies (C2). �

We have shown that (Λ, ρ, µ) is a coarse median space With some
additional hypotheses (justified for the mapping class group in Sec-
tion 11), we can control the rank. For this we will assume the spaces
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Θ(X) to be uniformly hyperbolic. In this regard, we introduce the the
following notation.

Suppose that (Θ, σ) is k0-hyperbolic. Given x, y, z, w ∈ Θ, we write:

(x, y : z, w) =
1

2

(

max{σ(x, z)+σ(y, w), σ(x, w)+σ(y, z)}−(σ(x, y)+σ(z, w))
)

.

Up to an additive constant, depending only on k0, this “crossratio”
is equal to the distance between any geodesic from x to y and any
geodesic from z to w. Note that (x, y : z, w) ≤ σ(x, z), and that
(x, x : y, y) = σ(x, y). Also, (x, y : z, z) is the “Gromov product” of x
and y with respect to z. Again, up to an additive constant, this equals
the distance from z to any geodesic from x to y.

We now make the following additional hypotheses. We suppose that
X comes equipped with a symmetric relation, ∧, with not X ∧ X for
all X ∈ X . We suppose:

(P2): There is some k0 ≥ 0 such that each (Θ(X), σX) is k0-hyperbolic.

(P3): There is some ν ∈ N such that if we have a subset Y ⊆ X with
X ∧ Y for all distinct X, Y ∈ Y , then |Y| ≤ ν.

(P4): There is some l0 ≥ 0 such that if X, Y ∈ X and there exist
a, b, c, d ∈ Λ with

(θXa, θXb : θXc, θXd) ≥ l0

(θY a, θY c : θY b, θY d) ≥ l0,

then X ∧ Y .

In relation to the mapping class group, where Λ is the marking com-
plex, these are interptreted as follows. The relation, ∧, refers to dis-
jointness of the subsurfaces in Σ. Thus, (P3) is a purely topological
observation, where ν = ξ(Σ) as defined in Section 2. For (P2), we have
already noted that curve complexes are hyperbolic [MasM1]. Property
(P4) follows from properties of subsurface projection as we discuss in
Section 11.

Proposition 10.2. Suppose that (Λ, ρ, µ) satisfies the above (in par-
ticular, (P1)–(P4)). Then (Λ, ρ, µ) is a coarse median space of rank at
most ν.

Here, ν is the constant featuring in (P3). As usual, the parameters
outputted depend only on those of the hypotheses.

Before giving the proof, we need a general observation regarding
hyperbolic spaces. Let (Θ, σ) be k0-hyperbolic. Let µ be the median
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as defined in Section 3. We know that (Θ, σ, µ) is coarse median of
rank 1. In fact:

Lemma 10.3. Given k0, l ≥ 0 and p ∈ N, there is some h ≥ 0 with the
following property. Suppose that (Θ, σ) is k0-hyperbolic, and that µ is
the median on (Θ, σ). Suppose that A is any set with |A| ≤ p <∞ and
that θ : A −→ Θ is any map. Then there is a rank-1 median algebra,
Π, and maps π : A −→ Π and λ : Π −→ Θ, satisfying:

(L1) σ(θa, λπa) ≤ h for all a ∈ A,

(L2) λ is an h-quasimorphism, and

(L3) If a, b, c, d ∈ A with (πa, πb|πc, πd)Π, then (θa, θb : θc, θd) ≥ l.

Here, of course, Π is just the vertex set, V (τ), of a simplicial tree, τ .
The statement (x, y | z, w)Π is equivalent to saying that the arcs [x, y]τ
and [z, w]τ are disjoint.

Proof. Let τ0 ⊆ Θ be the embedded tree arising from θ(A) ⊆ Θ, as
given by Lemma 3.2. Thus, if a, b ∈ A, then στ0(θa, θb) ≤ σ(θa, θb)+k1,
where k1 = k0h0(p). Let t = l + 2k1 and let τ be the metric tree
obtained from τ0 by collapsing down each edge of length at most t. Let
Π = V (τ). Given x ∈ Π, let τ(x) ⊆ τ be the preimage of x under the
collapsing map. Thus, τ(x) is a subtree of diameter at most k2 = pt.

Now let π : A −→ Π be the postcomposition of θ with the collapsing
map of τ0 to τ , define λ : Π −→ Θ by setting λx to be any vertex of
τ(x).

If a ∈ A, then θa, λπa ∈ τ(θa), so σ(θa, λπa) ≤ k2. This gives (L1)
provided h ≥ k2.

For (L2), suppose that x, y, z ∈ Π. By definition, λx ∈ τ(x), λy ∈
τ(y) and λz ∈ τ(z). Let w = µΠ(x, y, z). Let w′ = µτ0(λx, λy, λz) ∈
τ0 ⊆ Θ. Now w′, λw ∈ τ(w), and so σ(w′, λw) ≤ k2. Now, as in
the proof of Lemma 3.1, the median µΘ(λx, λy, λz) in Θ is a bounded
distance from the median w′ in τ0, where the bound depends only on
p and k0. This gives a bound on σ(λw, µΘ(λx, λy, λz)) as required.

Finally, suppose that a, b, c, d ∈ A with (πa, πb|πc, πd)Π. It follows
that [πa, πb]τ0 ∩ [πc, πd]τ0 = ∅, and so the crossratio (θa, θb : θc, θd)
defined intrinsicially to τ0 must be at least t. But this agrees with the
crossratio defined in Θ up to an additive constant 2k1. This proves
property (L3). �

Now let l0 be the constant in property (P4). Suppose that A ⊆
Λ with |A| ≤ p < ∞. Let X ∈ X . Property (P2) tells us that
(Θ(X), σX) is k0-hyperbolic, where k0 depends only on ξ(Σ). Let µX

be the median operation on Θ(X). Lemma 10.3 now gives us a rank-1
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median algebra Π(X), and maps πX : A −→ Π(X) as well as a h-
quasimorphism, λX : Π(X) −→ Θ(X), such that if a, b, c, d ∈ A, with
(πXa, πXb|πXc, πXd)Π(X) then (θXa, θXb : θXc, θXd) > l0.

Now let Π0 =
∏

X∈X Π(X), and let ψX : Π0 −→ Π(X) be the pro-
jection map. We define π : A −→ Π0 so that that ψXπa = πXa for all
a ∈ A. Let Π = 〈πA〉 ⊆ Π0, be the subalgebra generated by πA. Note
that Π is finite.

(We note that, a-priori, Π0 might be infinite. In fact, in the appli-
cation to the mapping class group, we will see that Π(X) is trivial for
all but finitely many X, so in fact, Π0, can be taken to be finite. We
do not formally need that here.)

Recall that we can naturally identify the set of walls, W(Π0), with
⊔

X∈X W(Π(X)), via the projection maps, ψX . Also, by Lemma 6.5
any wall, W , in Π arises from a wall in Π0, and hence from a wall in
Π(X) for some X ∈ X . (In fact, Lemma 5.8 will suffice in the case of
the mapping class group, where Π0 is finite.) We write X(W ) for some
such X. (It might not be uniquely determined by W .) Note that the
map [W 7→ X(W )] is injective.

Lemma 10.4. Suppose that W,W ′ ∈ W(Π) cross. Then X(W ) ∧
X(W ′).

Proof. Write X = X(W ) and Y = X(W ′). Since W and W ′ cross,
there is a natural epimorphism of Π to the square W × W ′. Since
Π = 〈πA〉, the restriction to πA is also surjective (since any subset of
W × W ′ is a subalgebra). In other words, we can find a, b, c, d ∈ A
satisfying (πXa, πXb | πXc, πXd)Π(X) and (πY a, πY c | πY b, πY d)Π(Y ).
Thus, by the construction of Π(X) and Π(Y ), we have:

(θXa, θXb : θXc, θXd) ≥ l0

(θY a, θY c : θY b, θY d) ≥ l0.

By (P4) it now follows that X ∧ Y . �

Corollary 10.5. Π has rank at most ν.

Proof. Suppose that W ⊆ W(Π) is a set of pairwise crossing walls. By
Lemma 10.4, we have X(W ) ∧X(W ′) for all distinct W,W ′ ∈ W0. It
now follows by (P3) that |W0| ≤ ν. �

We can now prove Proposition 10.2 :

Proof. We proceed as in the proof of Proposition 10.1. We already have
(C1).

For (C2), we need that the rank of Π is at most ν. Instead of taking
the free median algebra on A, we take Π as constructed above. In
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the verification of (C2) we only used the fact that Π = 〈πA〉, together
with the existence of uniform quasimorphisms ωX : Π −→ Θ(X) with
θXa ∼ ωXπa for all a ∈ A. (In the proof of Proposition 10.1, we
had θXa = ωXπa, but we only need that these agree up to bounded
distance.)

This time, we have Π = 〈πA〉 by construction. The quasimorphism
ωX can now be defined as the composition ωX = λXψX .

The proof now proceeds as before. �

11. Surfaces

In this section we verify the hypotheses of Proposition 10.2 in the
case where Λ is a connected locally finite graph on which the mapping
class group, Map(Σ), acts properly discontinuously with finite quotient.
This shows that Map(Σ) is a coarse median group of rank at most ξ(Σ).

Of course, we could use a Cayley graph with respect to a finite
generating set, though we will find it more convenient to work with
a “marking complex”, cf. [MasM2].

Let Σ be a compact surface with (possibly empty) boundary ∂Σ. Let
ξ(Σ) = 3g+p−3, where g is the genus, and p the number of boundary
components. We assume that ξ(Σ) > 1. Let ∆ = ∆(Σ) be the set of
homotopy classes of essential non-peripheral simple closed curves in Σ,
referred to here simply as “curves”. Given α, β ∈ ∆, we write ι(α, β)
for their geometric intersection number. The curve graph, Θ = Θ(Σ),
is the graph with vertex set, V (Θ) = ∆, where α, β ∈ ∆ are adjacent
if ι(α, β) = 0. (This is the 1-skeleton of Harvey’s curve complex.) We
write σ for the combinatorial metric on Θ. It was shown in [MasM1]
that Σ is hyperbolic. (A constructive proof can be found in [Bo1].) It
is not hard to see that σ(α, β) is bounded above in terms of ι(α, β) (for
example, σ(α, β) ≤ ι(α, β) + 1). We will write α ⋔ β to mean that
ι(α, β) > 0.

Given a ⊆ ∆, we write ι(a) = max{ι(α, β) | α, β ∈ a} for the self-
intersection of a. If ι(a) < ∞ then a is finite. (In fact,

∑

{ι(α, β) |
α, β ∈ a} is bounded above in terms of ι(a) and ξ(Σ).) We say that a
fills Σ if, for all γ ∈ ∆, there is some α ∈ a with α ⋔ γ. Given p ∈ N, we
write L(p) for the set of subsets a ⊆ ∆ with ι(a) ≤ p and which fill Σ.
Given p, q ∈ N we write Λ(p, q) for the graph with vertex set L(p) where
a, b ∈ L(p) are deemed to be adjacent if ι(a ∪ b) ≤ q. Thus, Λ(p, q)
is locally finite, and Map(Σ) acts on Λ(p, q) with finite quotient. For
a “marking complex”, we could take any connected Map(Σ)-invariant
subgraph of Λ(p, q) for some p, q (which might be allowed to depend on
ξ(Σ)). The notion is quite robust, so it doesn’t much matter exactly
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what construction we use. For definiteness, we can set Λ to be the
marking complex used in [MasM2]. In this case, Λ ⊆ Λ(4, 4). (We
could also use Λ(p, q) itself for sufficiently large p, q.)

We define a map χ : Λ −→ Θ, which chooses some element χ(a) ∈ a
from each a ∈ V (Λ). Note that this is uniformly lipschitz with respect
to the metrics ρ and σ on V (Λ) and V (Θ). (We can extend to a map
Λ −→ Θ, by first collapsing each of Λ to an incident vertex.)

We now move on to consider subsurfaces.

Definition. By a subsurface realised in Σ we mean a compact con-
nected subsurface X ⊆ Σ such that each boundary component of X
is either a component of ∂Σ, or else an essential non-peripheral simple
closed curve in Σ \ ∂Σ, and such that X is not homeomorphic to a
three-holed sphere.

Note that we are allowing Σ itself as a subsurface, as well as non-
peripheral annuli.

Definition. A subsurface is a free homotopy class of realised subsur-
faces.

We will sometimes abuse notation and use the same symbol for a
subsurface and some realisation of it in Σ.

We write X = X (Σ) for the set of subsurfaces of Σ. We write
X = XA ⊔ XN where XA and XN are respectively the sets of annular
and non-annular subsurfaces. Note that there is a natural bijective cor-
respondence between XA and the set of curves, ∆. (We will, however,
treat then as distinct from the point of view of the notation introduced
below.)

Suppose X ∈ XN . We have 0 < ξ(X) ≤ ξ(Σ), and write ∆(X),
Θ(X), Λ(X) respectively for ∆, Θ, Λ defined intrinsically to X. (In
the exceptional cases where ξ(X) = 1, Θ(X) is defined by deeming two
curves to be adjacent if they have minimal possible intersection for that
surface, i.e. 1 for a one-holed torus, and 2 for a four-holed sphere. In
both cases this gives us a Farey graph.) Note that we can identify ∆(X)
as a subset of ∆. We write σX and ρX for the combinatorial metrics
on Θ(X) and Λ(X). Let ∆(Σ, X) and ∆(Σ, ∂X) be the subsets of ∆
consisting of curves of Σ homotopic into X or ∂X repectively. In this
way, ∆(Σ, X) = ∆(X) ⊔ ∆(Σ, ∂X).

If X ∈ XA, the set Θ(X) is defined as an arc complex in the cover
of Σ corresponding to X, as in [MasM1]. This is quasi-isometric to the
real line. We set Λ(X) = Θ(X).

Given X, Y ∈ X , we distinguish five mutually exclusive possibilities
denoted as follows:
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(1) X = Y .

(2) X ≺ Y : X 6= Y , X ∈ XN and X can be homotoped into Y .

(3) Y ≺ X: X 6= Y , Y ∈ XN and Y can be homotoped into X.

(4) X ∧ Y : X 6= Y and X, Y can be homotoped to be disjoint.

(5) X ⋔ Y : none of the above.

In (2)–(4) one can find realisations of X, Y in Σ such that X ⊆ Y ,
Y ⊆ X, X ∩ Y = ∅, respectively. We can think of (5) as saying that
the surfaces “overlap”.

Lemma 11.1. Suppose Y ⊆ X satisisfies X∧Y for all distinct X, Y ∈
Y. Then |Y| ≤ ξ(Σ).

Proof. For each Y ∈ Y , choose an essential curve, αY in Y which is
non-peripheral if Y ∈ XN and the core curve if Y ∈ XA. The curves,
αY are all disjoint in Σ, so there can be at most ξ(Σ) of them. �

Next we consider subsurface projections. These were defined in
[MasM2].

Let X ∈ X . If α ∈ ∆, write α ⋔ X to mean that either α ∈ ∆(X)
or α ⋔ γ for some γ ⊆ ∂X. In other words, α connot be homotoped to
be disjoint from X. In this case, we write θXα for a projection of α in
Θ(X), as defined in [MasM1]. There is some ambiguity in the defnition,
but it is well defined up to bounded distance. In fact, if X ∈ XN , we
can take θXα ∈ ∆(X) = V (Θ(X)), and this case, it is well defined up
to bounded intersection. Moreover, if α, β ⋔ X, then ι(θXα, θXβ) is
bounded above in terms of ι(α, β). Note that if a fills Σ, then at least
one α ∈ a must satisfy a ⋔ X. The resulting curve, θXα ∈ ∆(X), is
well defined up to bounded intersection number in X, where the bound
depends only on ι(a). This gives rise to a map θX : Λ −→ Θ(X), well
defined up to bounded distance. Moreover, θX is uniformly lipschitz
with respect to the metrics ρ and σX .

Suppose that a ∈ L(p), for p ≥ 4. Let aX ⊆ a be the set of curves,
α ∈ a, with α ⋔ X. This must be non-empty. Note that {θXα | α ∈
aX} has bounded self-intersection. Moreover, if p is large enough it’s
not hard to see that this set must fill X. Given these observations,
we see that we have also a map φX : Λ −→ Λ(X), well defined up to
bounded distance, and uniformly lipschitz with respect to the metrics
ρ and ρX . (Namely, set φX(α) = θXα for some α ∈ aX .) Moreover,
writing χX : Λ(X) −→ Θ(X), for the map χ defined intrinsically to
X, we see that we the map θX agrees up to bounded distance with the
composition χXφX .
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Suppose that X, Y ∈ X with X ⋔ Y or Y ≺ X. We define a point
θXY ∈ Θ(X) as follows. If Y ∈ XA, we set θXY = θXα, where α ∈ ∆
is the curve homotopic to Y . If Y ∈ XN , we choose any α ∈ ∆(Σ, ∂X)
with α ⋔ Y and set θXY = θXα. Note that this is well defined up to
bounded distance.

We list a few properties of subsurface projections.
First note that if X ≺ Y , we have an subsurface, θXY defined intrin-

sically to Y .

Lemma 11.2. If α ∈ ∆(Σ) with α ⋔ X, then α ⋔ Y , and σX(θXα, θXY θY α)
is bounded in terms of ξ(Σ).

Proof. This is an easy consequence of the construction in [MasM2]. �

Lemma 11.3. There is some constant l1, depending only on ξ(Σ), with
the following property. Suppose that X, Y ∈ X with X ⋔ Y , and that
a ∈ V (Λ). Then min{σX(θXa, θXY ), σY (θY a, θYX)} ≤ l1.

Proof. This is an immediate consequence of the result in [Beh], see also
[Man]. This was stated for curves, namely that if α ∈ ∆ with α ⋔ X
and α ⋔ Y , then min{σX(θXα, θXY ), σY (θY α, θYX)} is bounded above
in terms on ξ(Σ). To relate this to our statement, it is a simple exercise
to find such a curve, α ∈ ∆, with ι(a∪{α}) bounded in terms of ξ(Σ).
Thus, σX(θXα, θXa) and σY (θY α, θY a) are bounded. �

Lemma 11.4. There is some l2, depending only on ξ(Σ) with the fol-
lowing property. Suppose X, Y ∈ X with Y ≺ X, and suppose that
a, b ∈ Λ with (θXa, θXb : θXY, θXY ) ≤ l2. Then σY (θY a, θY b) ≥ l2.

Proof. Choosing α ∈ a and β ∈ b with α ⋔ Y and β ⋔ Y , we will also
have α ⋔ X and β ⋔ X. We can therefore interpret the lemma as a
statement about curves rather than markings (perhaps with a different
constant). Also, in view of Lemma 11.2, we may as well assume that
X = Σ, so that α = θΣα and β = θΣβ, and we set γ = θΣY ∈ ∆(Σ, Y ).
Now ∆(Σ, Y ) has diameter at most 2 in Θ. Thus, if the Gromov
product (α, β | γ, γ) is sufficiently large in relation to the hyperbolicity
constant of Θ, then any geodesic from α to β in Θ will miss ∆(Σ, Y ).
By the bounded geodesic image theorem of [MasM2], it then follows
that σY (θY α, θY β) and hence σY (θY a, θY b) is bounded as required. �

The following two lemmas are both consequences of the distance
formula in [MasM2] (though can also be seen more directly).

Lemma 11.5. Given any l ≥ 0, there is some l′ ≥ 0, depending only
on l and ξ(Σ) with the following property. Suppose that a, b ∈ Λ and
that σX(θXa, θXb) ≤ l for all X ∈ X , then ρ(a, b) ≤ l′.
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Lemma 11.6. There is some l3 depending only on ξ(Σ) such that if
a, b ∈ Λ, then {X ∈ X | σX(θXa, θXb) ≥ l3} is finite.

We can now verify property (P4) of Proposition 10.1.

Lemma 11.7. There is some l0 ≥ 0, depending only on ξ(Σ) such that
if X, Y ∈ X and there exist a, b, c, d ∈ Λ with

(θXa, θXb : θXc, θXd) ≥ l0

(θY a, θY c : θY b, θY d) ≥ l0

then X ∧ Y .

Proof. Since Θ(X) and Θ(Y ) are hyperbolic, we must have X 6= Y ,
provided that l0 is large enough in relation to the hyperbolicity con-
stant. We will also assume that l0 ≥ 2 max{l1, l2} (the constants of
Lemmas 11.3 and 11.4). If not X ∧ Y , then either X ⋔ Y or, without
loss of generality, Y ≺ X.

Note that the hypotheses on a, b, c, d remain unchanged if we simulta-
neously swap a with b and c with d. Since (θXa, θXb : θXc, θXd) ≥ l0 >
2 max{l1, l2}, we can assume that (θXa, θXb : θXY, θXY ) ≥ max{l1, l2}.
In particular, this implies that σX(θXa, θXY ) > l1 and σX(θXb, θXY ) >
l1. Now, if X ⋔ Y , then Lemma 11.3 tells us that σY (θY a, θYX) ≤ l1
and σY (θY b, θYX) ≤ l1, so that σY (θY a, θY b) ≤ 2l1, giving the contra-
diction that (θY a, θY c : θY b, θY d) ≤ l1. If Y ≺ X, then by Lemma 11.4,
we have σY (θY a, θY b) ≤ l2 again giving a contradiction. �

We have now verified each of the hypotheses of Proposition 10.2 for
the mapping class group, where ν = ξ(Σ). This proves Theorem 2.5.

12. Colourability

In this section we briefly describe the notion of colourability for me-
dian algebras and coarse median spaces. In general, this is a strength-
ening of the rank condition. This property is used in [Bo2] to give
embeddings of median algebras into products of trees.

Let M be a median algebra.

Definition. We say that M is ν-colourable if there is a map, χ :
W(M) −→ {1, 2, . . . , ν}, such that χ(W ) 6= χ(W ′) whenever W ⋔ W ′.

Clearly this implies that the rank of M is at most ν. The converse
does not hold in general, but it does for intervals (see Lemma 12.4).

Proposition 12.1. A median algebra is ν-colourable if and only if
every finite subalgebra is.
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(In fact, it is the latter condition that is applied in practice, so in
principle one could bypass this discussion by defining colourablity in
that way.)

Lemma 12.2. Any subalgebra of a ν-colourable median algebra in ν-
colourable.

Proof. Let N be a subalgebra of a ν-colourable median algebra, M .
Let ν : M −→ {1, . . . , ν} be a ν-colouring. If W ∈ W(N), then by
Proposition 6.1, there is a wall in M separating H−(W ) ⊆ N from
H+(W ) ⊆ N . Let WM be any such wall. We write χ(W ) = χ(WM).
Now if W,W ′ ∈ W(N) cross in N , then certainly WM and W ′

M cross
in M , and so χ(W ) 6= χ(W ′). Thus, χ : W(N) −→ {1, . . . , ν} is a
ν-colouring of N . �

Lemma 12.3. If every finite subalgebra of a median algebra M is ν-
colourable median algebra M is ν-colourable.

Proof. We first note that it’s enough to show that for any finite subset,
W0 ⊆ W(M), we can find a map χ : W0 −→ {1, . . . , ν} such that
χ(W ) 6= χ(W ′) whenever W,W ′ ∈ W0 with W ⋔ W ′. To deduce
Proposition 12.3 from this, we recall the standard compactness result
from graph theory, namely that a graph is vertex ν-colourable if and
only if every finite subgraph is. Here we construct a graph, G, with
vertex set W(M), where W,W ′ ∈ W(M) are deemed adjacent if and
only if W ⋔ W ′. Thus, colouring M is equivalent to vertex-colouring
the graph G. Our claim therefore says that every full subgraph of G is
ν-colourable.

Let W0 ⊆ W(M) be finite. Given any pair, W,W ′ ∈ W0 with
W ⋔ W ′, choose any a ∈ H−(W ) ∩ H−(W ′), b ∈ H+(W ) ∩ H−(W ′),
c ∈ H−(W )∩H+(W ′) and d ∈ H+(W )∩H+(W ′). Let A be the union
of all such {a, b, c, d} as (W,W ′) ranges over all such pairs. Let Π be
a finite median algebra of M containing A. By hypothesis, there is a
ν-colouring, χ : W(Π) −→ {1, . . . , ν}. Now each W ∈ W0 determines

a wall, Ŵ = {H−(W ) ∩ Π, H+(W ) ∩ Π} in W(Π). Clearly, if W,W ′

cross in M , then Ŵ , Ŵ ′ cross in Π, and so we can set χ(W ) = χ(Ŵ )
for any such W to prove the claim. �

Lemmas 12.2 and 12.3 now give Proposition 12.1
Suppose ∆ is a metric median algebra with points a, b ∈ ∆ such

that ∆ = [a, b]. We can orient any wall, W ∈ W(∆), so that a ∈
H−(W ) and b ∈ H+(W ). Given W,W ′ ∈ W(∆), we write W ≤ W ′

to mean that H−(W ) ⊆ H−(W ′), or equivalently, H+(W ′) ⊆ H+(W ).
This is a partial order on W(∆). In fact, given any W,W ′ ∈ W(∆),
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exactly one of W = W ′, W < W ′, W ′ < W or W ⋔ W ′ holds. It
follows that the rank of ∆ is exactly the maximal cardinality of any
antichain in (W(∆), <). Dilworth’s lemma [D] now tells us that we can
partition W(∆) into ν disjoint chains (cf. [BroCGNW]). This defines
a ν-colouring of ∆. We deduce:

Lemma 12.4. Let M be a median algebra of rank a most ν. If a, b ∈
M , then the interval [a, b] is intrinsically ν-colourable as a median al-
gebra.

The definition for coarse median spaces is now a simple variation on
that for rank:

Definition. A coarse median space is ν-colourable, if in (C2), we can
always take the finite median algebra Π to be ν-colourable.

Suppose now that (Λi, ρi, µi) is a directed set of coarse median space
as in Theorem 2.3 (where the additive constants tend to 0, and the
multiplicative constants are bounded with respect to the ultrafilter).
Let (Λ∞, ρ∞, µ∞) be the ultralimit constructed as in Proposition 9.1

Proposition 12.5. If each of the (Λi, ρi, µi) is ν-colourable (for the
given parameters) then (Λ∞, ρ∞, µ∞) is ν-colourable (as a median al-
gebra).

Proof. Substituting colourability for rank in the proof of Theorem 2.3 in
Section 9, exactly the same argument shows that every finite subalgebra
of Λ∞ is ν-colourable. We now apply Lemma 12.3. �

Again the notion is quasi-isometry invariant, so we can apply it to
finitely generated groups via their Cayley graphs. We note:

Theorem 12.6. The mapping class group Map(Σ) is ν-colourable for
some ν = ν(Σ).

In fact, we can get an explicit bound on ν(Σ) from the statement in
[BesBF] which gives us a map: χ : X −→ {1, . . . , ν(Σ)} such that if
χ(X) = χ(Y ), then X ⋔ Y .

The proof of Proposition 11.2 now follows as with Theorem 2.5. In
Section 10, we replace (P3) by the statement:

(P3′): If X, Y ∈ X with X ∧ Y , then χ(X) 6= χ(Y ).

For the median algebra Π defined before Lemma 10.4 we can define
χ : W(Π) −→ {1, . . . , ν(Σ)} by setting χ(W ) = χ(X(W )). Lemma
10.4 tells us that if W,W ′ ∈ W(Π) cross, then X(W ) ∧X(W ′) and so
χ(W ) 6= χ(W ′), i.e. χ is a ν(Σ)-colouring of Π. This proves Theorem
12.6.
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As a consequence, from [Bo2] we recover the result of [BehDS] that
any asymptotic cone of Map(Σ) admits a bilipschitz embedding in a
finite product of R-trees. Moreover, using Lemma 12.3, any interval in
the asymptotic cone is compact, and admits a bilipschitz embedding in
R

ξ(Σ). From this one can recover the fact that Map(Σ) has rapid decay
[BehM2].
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[ChaDH] I.Chatterji, C.Druţu, F.Haglund, Kazhdan and Haagerup properties from
the median viewpoint : Adv. Math. 225 (2010) 882–921.

[Che] V.Chepoi, Graphs of some CAT(0) complexes : Adv. in Appl. Math. 24

(2000) 125–179.
[D] R.P.Dilworth, A decomposition theorem for partially ordered sets : Ann.

of Math. 51 (1950) 161–166.
[Er] P.Erdös, The dimension of the rational points in Hilbert space : Ann. of

Math. 41 (1940) 734–736.
[En] R.Engelking, Theory of dimensions finite and infinite : Sigma Series in

Pure Math. No. 10, Heldermann Verlag, Lemgo, (1995).



42 BRIAN H. BOWDITCH

[FLN] B.Farb, A.Lubotsky, Y.Minsky, Rank-1 phenomena for mapping class
groups : Duke Math. J. 106 (2001) 581–597.

[G1] M.Gromov, Hyperbolic groups : in “Essays in group theory” Math. Sci.
Res. Inst. Publ. No. 8, Springer (1987) 75–263.

[G2] M.Gromov, Asymptotic invariants of infinite groups : “Geometric group
theory, Vol. 2” London Math. Soc. Lecture Note Ser. No. 182, Cambridge
Univ. Press (1993)
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