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Abstract. We describe the geometry coarse convex hulls in coarse median
spaces. The main results apply when the space comes equipped with a family
of projection maps to hyperbolic spaces satisfying certain natural conditions.
We show that coarse hulls in such spaces are quasi-isometric to CAT(0) cube
complexes. From this we deduce a distance formula, and show the existence of
monotone paths connecting pairs of points. In particular, we recover a number
of results about hierarchically hyperbolic spaces. Among the main motivating
examples are the mapping class groups and Teichmüller spaces of compact
surfaces.

1. Introduction

The aim of this paper is to describe the geometry of coarse convex hulls in coarse
median spaces equipped with a family of maps to hyperbolic spaces satisfying
certain hypotheses. From this one can derive a number of consequences, such as
a “distance formula” and the existence of “monotone paths” between two points.
Related statements have been obtained for “hierarchically hyperbolic” spaces in
[BeHS2] and [BeHS3]. The arguments of the present paper are somewhat different.
(In particular, our description of hulls does not rely on the distance formula a-
priori.) We will reduce the results to more combinatorial statements about cube
complexes, which may have some intrinsic interest in that context. In the course of
doing this, we give an account of coarse hulls in general finite-rank coarse median
spaces (Section 6).

It is well known that hyperbolic spaces as originally defined by Gromov can be
characterised as having a certain “treelike structure”. There are several ways in
which this principle can be expressed. Probably the most useful formulation fea-
tures in the original paper [G] where finite subsets are approximated by simplicial
trees. (See Lemma 5.1 here for a statement of this.)

Since then, various authors have observed that many naturally occurring spaces
admit a more general kind of “cubical structure”. In this case, a simplicial tree
is generalised to a CAT(0) cube complex, typically with its dimension bounded
by some finite “rank”. (The hyperbolic case therefore corresponds to “rank 1”.)
Again there are several formulations of this principle. A starting point for the
present discussion is the paper [BeM] where it is shown, using the theory developed
in [MaM], that the mapping class group of a surface admits a natural ternary
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operation, called the “centroid map” defined up to bounded distance. In [Bo1],
we abstracted some its key properties into the notion of a “coarse median space”.
The “median” here corresponds to the centroid in the case of the mapping class
group, or the centre of a geodesic triangle in the case of a hyperbolic space.
More recently the notion of a “hierarchically hyperbolic space” was formulated
in [BeHS1]. (A slightly different formulation of this notion is given in [BeHS2]
which the authors show to be equivalent.) This property implies coarse median
[BeHS2, Bo3]. In addition to the mapping class groups and hyperbolic spaces,
these notions apply to Teichmüller space in either the Teichmüller or the Weil-
Petersson metric, the separating curve graph, right-angled Artin groups, various
classes of relatively hyperbolic groups and a large class of 3-manifold groups, etc.
See [Bo4] for some general exposition about coarse median spaces.

In this paper, we will use a collection of axioms, (B1)–(B10), which are implied
by those of a hierarchically hyperbolic space, and which imply those of a coarse
median space (see Section 7). From these we derive a number of results, most
of which are already known in some form for a hierarchically hyperbolic space.
The results here are, in some ways more general, and their conclusions a little
stronger. The main point however is that the statements are quickly reduced to
combinatorial statements about cube complexes (or equivalently discrete median
algebras). We also deduce from these results some basic facts about such spaces,
such as the existence of monotone paths and the “distance formula”.

We briefly summarise the main results as follows. These are all readily deduced
from the main result (Theorem 1.3) though the first two are easier to state. In
each of these results, it is implicit that the constants of the conclusion depend
only on the constants introduced in the hypotheses.

Let (Λ, ρ) be a geodesic metric space. We assume that we have a collection
of maps, θX : Λ −→ Θ(X), to a family of hyperbolic spaces, ((Θ(X), σX))X∈X ,
indexed by a set X . We suppose that these satisfy the axioms (B1)–(B10) given
in Section 7. In particular, (B10) asserts that there is a “median” operation,
µ : Λ3 −→ Λ. It is a consequence of the other axioms that (Λ, ρ, µ) is a coarse
median space of rank at most ν (the constant featuring in axiom (B1)), as observed
in Lemma 7.1.

Definition. A monotone path is a coarsely lipschitz map ζ : I −→ Λ from
an interval I ⊆ R, such that whenever t, u, v ∈ I with t ≤ u ≤ v, we have
ρ(ζ(u), µ(ζ(t), ζ(u), ζ(v))) ≤ k, for some fixed k ≥ 0.

Recall that “coarsely lipschitz” means that there are constants k1, k2 ≥ 0 such
that for all t, u ∈ I, ρ(ζ(t), ζ(u)) ≤ k1|t−u|+k2. Loosely speaking, the monotone
property means that ζ(u) lies “between” ζ(t) and ζ(v) whenever t ≤ u ≤ v.

We do not necessarily assume ζ to be continuous, though it can always be
approximated by a continuous path, as we will discuss below.

We will show:



CONVEX HULLS IN COARSE MEDIAN SPACES 3

Theorem 1.1. Given any a, b ∈ Λ, there is a monotone path ζ : I −→ Λ from a
to b. Moreover, any monotone path is a quasigeodesic up to reparameterisation of
the domain.

By “reparameterisation” we mean precomposition with an orientation-preserving
homeomorphism of intervals. Here we take a “quasigeodesic” to mean a quasi-
isometric embedding of a real interval into Λ. In a geodesic space, such a map can
always be approximated up to bounded distance by a rectifiable (indeed piece-
wise geodesic) path such that the length of any subpath is bounded above by
a linear function of the distance between its endpoints: in other words it is a
“quasigeodesic” in the more traditional sense.

Next, we formulate the “distance formula”. Given t, r ≥ 0, define {{t}}r to
be equal to t if t ≥ r and to be equal to 0 if t < r. Given x, y ∈ Λ, write
Dk(a, b) =

∑
X∈X{{σX(θXa, θXb}}k. Clearly, Dk′(a, b) ≤ Dk(a, b) if k′ ≥ k.

Theorem 1.2. (∃k0 ≥ 0)(∀k ≥ k0)(∃k1, k2 ≥ 0)(∀a, b ∈ Λ) Dk(x, y) ≤ k1ρ(x, y)+
k2 and ρ(x, y) ≤ k1Dk(x, y) + k2.

Implicit in the conclusion is the fact that Dk(a, b) <∞ for all k ≥ k0.
Given any subset, A ⊆ Λ, one can define a notion of “coarse hull”, H(A), of A.

This can be formulated in a number of ways, and more discussion will be given
in Section 6 for general finite-rank coarse median spaces. Briefly, A ⊆ H(A),
and H(A) is “coarsely convex” in the sense that if x, y ∈ H(A) and z ∈ Λ, then
µ(x, y, z) lies a bounded distance from H(A). Moreover, H(A) is, in some sense,
the “smallest” set with this property. (Of course, one needs to properly quantify
this: see Proposition 6.2.)

We remark that in the case where A = {a, b}, then H(A) is the “coarse interval”
from a to b. This is in turn the union of all monotone paths from a to b (again,
up to bounded distance).

In this paper, cube complexes are given the l1 metric with unit edge-lengths
(though the usual l2 CAT(0) metric is bilipschitz equivalent, and would hence
be equivalent for the following statement). The standard definitions of quasi-
isometry etc. will be summarised in Section 5. Cube complexes are discussed in
Section 2.

Theorem 1.3. Suppose that n ∈ N and A ⊆ Λ with |A| ≤ n. There is a CAT(0)
cube complex, ∆, of dimension at most ν, a subset A0 of vertices of ∆, and a
map f : ∆ −→ Λ such that f |A0 maps A0 bijectively to A, f is a quasi-isometric
embedding, and f(∆) is a bounded Hausdorff distance from H(A). Moreover, we
can assume that ∆ is the combinatorial convex hull (in the median sense) of A0.
The map f preserves the respective median structures on ∆ and Λ up to bounded
distance.

The statement of the last result calls for some elaboration which we supply in
Section 9.
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In each of the above results, the constants involved in the conclusions depend
only on those of the hypotheses; that is to say, axioms (B1)–(B10) together with k
in Theorem 1.2 and n in Theorem 1.3. Moreover, all the arguments of the present
paper are constructive, and so give rise to computable bounds. However, we won’t
generally give explicit formulae.

We note that a monotone path is essentially the same as a “hierarchy path”, in
the sense that the composition θX ◦ ζ is a uniform unparameterised quasigeodesic
in each of the hyperbolic spaces, Θ(X). Such paths were shown to exist for the
mapping class group in [MaM] (as part of their theory of “hierarchies”) and more
generally for hierarchically hyperbolic spaces in [BeHS2].

The result of Theorem 1.2 is the “distance formula”, proven for the mapping
class group, as well as the Weil-Petersson metric, in [MaM], for the Teichmüller
metric in [Ra] (see also [Du]) and more generally for hierarchically hyperbolic
spaces in [BeHS2]. (It was taken as an axiom for a hierarchically hyperbolic space
in [BeHS1].) It was used in [BeHS3] in the proof of their description of convex
hulls. Here the logic is reversed, in that we derive it as a consequence of Theorem
1.3. (For this, we only need to consider coarse intervals, i.e. when |A| = 2, which
means one could simplify the argument somewhat.) The distance formula is key
to many applications of the general theory.

The notion of coarse convex hull is equivalent, in the context of the mapping
class group, to the notion of a “Σ-hull” which was central to the paper [BeKMM].
(This equivalence is a consequence of Lemmas 7.2 and 7.3 here.) For hierarchically
hyperbolic spaces a version of Theorem 1.3 was proven in [BeHS3] and was ap-
parently new to both the mapping class group and to Teichmüller space. (In their
version it is only asserted that ∆ is the convex hull of some finite set of bounded
cardinality.) We also note that various aspects of convexity in hierarchically hy-
perbolic spaces are further explored in [RuST]. A brief account of applications to
the mapping class group and Teichmüller space will be given in Section 10 here.

Another recent application of the cubical nature of coarse hulls (in particular
coarse intervals) is given in [HHP]. There the authors axiomatise this in terms of
a coarse median space with “quasicubical intervals” (which of course, applies in
the situations mentioned above). They show that such a space admits a natural
quasi-isometrically equivalent metric in which metric balls are median convex.
Under the additional assumptions given in [BeHS1], this implies that the space is
coarse Helly, which in turn has various applications. (We suspect this would also
apply under the more general axioms (B1)–(B10) of the present paper, but we
have not checked this.) The (coarse) Helly property is in many ways analogous
to (or an extension of) the median property. It has some interesting applications
in geometric group theory. A recent paper on the subject is [ChalCGHO].

As another consequence of Theorem 1.3, we have the following:

Theorem 1.4. If Λ has bounded geometry, then coarse median intervals in Λ
have at most uniform polynomial growth of degree ν.
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The relevant definitions can be found at the end of Section 9. We note that this
is a key property of the “rapid decay” criterion of [ChatR], as used in [BeM] in
the case of the mapping class group. A similar result is given in [Bo2] under much
more general hypotheses, though with a slightly weaker bound on degree, and by
a non-constructive argument. Further discussion of the growth rate of intervals
in general finite-rank coarse median spaces can be found in [NWZ2].

We remark that some amount of work is required to obtain the dimension
bound of ν in Theorem 1.3, and the consequent bound of the polynomial degree
in Proposition 1.4. If we were to be satisfied with a weaker bound (such as
λ = νκ, where κ is the constant of Axiom (B2)), then one could bypass some of
more technical arguments (including most of Section 3). This would be sufficient
for the proofs of Theorems 1.1 and 1.2.

Much of the discussion is set in a more general context. In particular, in Section
6 we give some general results about coarse hulls in coarse median spaces of finite
rank.

We should make a few comments about our hypotheses.
First, we have assumed that (Λ, ρ) is a geodesic space; that is, any two points

are connected by a geodesic. We could weaken this by demanding only that they
be connected by a uniform quasigeodesic. It can be seen that this would make
no essential difference to our arguments. Indeed any such “quasigeodesic space”
is quasi-isometric to a graph, hence to a genuine geodesic space. Moreover, the
various hypotheses only really require Λ to be defined up to quasi-isometry. For
simplicity of exposition, we will stick with geodesic spaces in this paper. This is
directly applicable to most situations.

Our hypotheses (B1)–(B9) are all standard properties of projection maps (orig-
inating in [MaM]). They can easily be seen to be consequences, either of the
hypotheses of a hierarchically hyperbolic space, or of the Axioms (A1)–(A10)
listed in Section 7 of [Bo3]. In contrast to those accounts, we have taken the
existence of a median as an axiom, namely (B10). This is also a consequence of
either set of axioms referred to above (see [BeHS2] and [Bo3]). Both those formu-
lations included instead a “(partial) realisation” axiom (cf. Axiom 8 of [BeHS2]
or Axiom (A10) of [Bo3]) which we have omitted here. In this respect, the spaces
we consider are more general.

As alluded to above, our aim will be to interpret the above statements in com-
binatorial terms, using cube complexes. We will implicitly describe much of this
in terms of median algebras, though we will not need to get too involved in the
general theory of these structures here. Some standard references to this are
[BaH, I, Ro]. Some further discussion, relevant to present paper, can be found
in [Bo1, Bo3, Bo4]. We will begin with a general discussion of these in the next
section.

I thank Jason Behrstock and Alessandro Sisto for their interest and comments.
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2. Cube complexes

In this section, we prove some general statements about CAT(0) cube com-
plexes, which we mostly view combinatorially.

Let ∆ be a cube complex (a cell complex built out of cubes). Write ∆0 for its set
of vertices, and ∆1 for its 1-skeleton. We will assume that ∆ is (combinatorially)
CAT(0). Here we take this to mean that it is connected and simply connected,
and that the link of every cell is a flag simplicial complex. We give each cell the
structure of a unit cube with the l1 metric, and write d = d∆ for the induced
path metric. In this way, ∆1 is an isometrically embedded graph with all side-
lengths equal to 1. (The more usual CAT(0) metric is obtained by using the l2

or “euclidean” metric instead. If ∆ is finite dimensional then this is bilipschitz
equivalent.)

Given x, y ∈ ∆0, let [x, y]d = {z ∈ ∆0 | d(x, y) = d(x, z) + d(z, y)}. This is
always finite. Also it turns out that if x, y, z ∈ ∆0, then [x, y]d ∩ [y, z]d ∩ [z, x]d
consists of a single point, denoted µ(x, y, z). Moreover, (∆0, µ) is a discrete median
algebra. Indeed every discrete median algebra arises canonically in this way [Che].
(Here “discrete” means that all intervals are finite.) For our purposes, this can
serve as a definition of the term “discrete median algebra” — the more standard
axioms can be found in [BaH, I, Ro, Bo1]. One can check that µ is symmetric in
x, y, z and that µ(x, x, y) = x. We write [x, y]µ = {z ∈ ∆0 | µ(x, y, z) = z}, for
the median interval from x to y. It turns out that [x, y]d = [x, y]µ, and we will
generally abbreviate this to [x, y]. We also have [x, y] = {µ(x, y, z) | z ∈ ∆0}.

Let Π be a discrete median algebra, and write ∆ = ∆(Π) for the associated cube
complex with Π = ∆0. We write d = dΠ = d∆. A subset, M ⊆ Π, is a subalgebra
if it is closed under µ. It is convex if [x, y] ⊆ M for all x, y ∈ M . Any convex
subset is a subalgebra. Given any A ⊆ Π, we write 〈A〉 ⊆ Π for the subalgebra
generated by A, and hull(A) for the convex hull of A: that is the smallest convex
subset containing A. We note that hull({x, y}) = [x, y]. A useful property is
that d(µ(x, y, z), µ(x, y, w)) ≤ d(z, w) for all x, y, z, w ∈ Π. This implies that the
median map is 1-lipschitz with respect to l1 metric on Π3.

Any two-point set admits a unique median structure. By a cube we mean a
product, Ω(A) =

∏
α∈AE(α), of two-point median algebras, E(α), indexed by a

set A. If |A| = n < ∞, we refer to Ω(A) as an n-cube. A square is a 2-cube.
The rank of Π is the maximal n such that Π contains a subalgebra isomorphic
to an n-cube. (This will be finite in all cases of interest here.) It turns out that
rank(Π) = dim(∆(Π)). One can also show that any discrete median algebra, Π,
can be embedded in a cube, which we can take to be finite if Π is finite.

The following definition is perhaps less standard. Let r ∈ N, and F ⊆ Π. By
an r-path in F , we mean a sequence, x0, x1, . . . , xn in F with dΠ(xi, xi+1) ≤ r
for all i. We say that F is r-connected if given any x, y ∈ F , there is an r-path,
x = x0, . . . , xn = y in F from x to y.

Lemma 2.1. If F is r-connected, then so is 〈F 〉.
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For the proof, we define L(F ) = L0(F ) = {µ(x, y, z) | x, y, z ∈ F} ⊇ F ; and
inductively, Li+1(F ) = L(Li(F )) with L0(F ) = F . Thus 〈F 〉 =

⋃∞
i=0 L

i(F ).

Proof. It suffices to show that L(F ) is r-connected. In fact, if w = µ(x, y, z) ∈
L(F ), we x = x0, . . . , xn = y be a path from x to y in F . Let yi = µ(x, xi, z).
Then x = y0, . . . , yn = w is a path from x to w in L(F ). �

By a similar argument, we see that if M ⊆ Π is an r-connected subalgebra, and
C ⊆ Π is convex, then C ∩M is r-connected.

If M ⊆ Π is a subalgebra, then M is 1-connected if and only if the full subcom-
plex on M in ∆(Π) is connected. In this case, we can naturally identify ∆(M)
with this subcomplex. Moreover, the inclusion of ∆(M) into ∆(Π) is isometric
with respect to the l1 metrics, d∆(M) and d∆(Π).

Before continuing, we make the following general definition.

Definition. If S is any set, and R ⊆ S × S is any relation, we define the width,
width(S, R), of R as the maximal cardinality of a subset B ⊆ S such that for all
distinct a, b ∈ B, either aRb or bRa (or both).

For example, if R is an equivalence relation, then width(S, R) is the maximal
cardinality of an equivalence class. If R is a partial order, then width(S, R) is the
maximal length of a chain in S.

We move on to consider subalgebras of cubes. We have already noted that
every discrete median algebra can be embedded in a cube. In fact, the ones we
meet below will all arise directly in that way.

Let Ω(A) =
∏

α∈AE(α) be a cube. We will write xα = παx for the α-coordinate
of x ∈ Ω(A). Given any E ⊆ A, there is a natural projection map, πE : Ω(A) −→
Ω(E). If α, β ∈ A are distinct, we will write Ωαβ = E(α)×E(β) = Ω({α, β}). We
will abbreviate π{α,β} to πα,β. We similarly write Ωαβγ = E(α) × E(β) × E(γ).
Note that any convex subset of a cube is a subcube. If it is finite, it is the convex
hull of any pair of opposite corners.

Definition. We say that a subset F ⊆ Ω(A) is filling if Ω(A) = hull(F ).

Clearly this implies that πE(F ) ⊆ Ω(E) is filling for all E ⊆ A. Indeed it is
equivalent to saying that πα(F ) = E(α) for all α ∈ A.

Now any subset, G ⊆ E(α)× E(β) = Ωαβ, of a square is a subalgebra. If G is
filling, then there are three possibilities up to isomorphism.

Maybe |G| = 2, in which case, G consists of two opposite corners of the square
Ωαβ. Maybe |G| = 4, that is G = Ωαβ. Otherwise, |G| = 3. In this case,
we write G = Ωαβ \ {(ψCα β, ψCβ α)}, where ψCα β ∈ E(α) and ψCβ α ∈ E(β). We
write ψαβ and ψβα respectively for the other points of E(α) and E(β). So,
G = {(ψαβ, ψCβ α), (ψαβ, ψβα), (ψCα β, ψβα)}. (Thus, intrinsically, G is isomorphic
to {−1, 0, 1} ⊆ R, with (ψαβ, ψβα) corresponding to the midpoint, 0.)

Now suppose that F ⊆ Ω(A) is filling. We define relations ∼ and ≈ on A by
writing α ∼ β if α = β or |παβ(F )| = 2, and writing α ≈ β if |παβ(F )| = 4.
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Clearly these are symmetric, and (since any subset of a square is a subalgebra)
they agree with the relations on F , similarly defined with 〈F 〉 replacing F . In
particular, width(A,∼) and width(A,≈) are both well defined whether we use F
or 〈F 〉 to define these relations.

In fact, ∼ is an equivalence relation. Indeed, if E is finite and its elements are
pairwise ∼-related, then πE(F ) consists of opposite corners of the cube, Ω(E).

The relation ≈ need not be transitive. However, we note that if E is finite and
its elements are pairwise ≈-related, then πE(〈F 〉) = Ω(E). (This can be seen by
induction on |E|, projecting to codimension-1 cubes, similarly as in the proof of
Lemma 2.2 below.)

Note that if F ⊆ Ω(A) is 1-connected, then width(A,∼) = 1. In other words,
each ∼-class is a singleton, or equivalently, |παβ(F )| ≥ 3 whenever α 6= β. For
subalgebras, we have the following converse.

Lemma 2.2. Let M ⊆ Ω(A) be a filling subalgebra, and suppose width(A,∼) = 1.
Then M is 1-connected.

Proof. Let x, y ∈ Ω(A). Passing to the subcube, [x, y] ⊆ Ω(A), we can assume
that A is finite. We proceed by induction on n = |A|. If n = 2, this is clear.
In fact, if Q ⊆ Ω(A) is a square face with opposite corners, a, b in Q ∩M , then
there is a third point, c 6= a, b in Q ∩M . (To see this, let α, β ∈ A be the labels
corresponding to the edges of Q. Since α 66∼ β, |παβ(M)| ≥ 3, so we can find some
z ∈ M with παβz 6= παβa, παβb. This gives a point, c ∈ µ(a, b, z) ∈ Q ∩M , as
required.) Now let α ∈ A be any element, and let E = A \ {α}. Clearly each
∼-class in E corresponding to πE(M) ⊆ E is also a singleton. Therefore, by the
inductive hypothesis, πE(M) is 1-connected in Ω(E). We can therefore connect
πEx to πEy by a 1-path in πE(M). By the above observation about square faces,
we can interpolate points as appropriate to give us a 1-path from x to y in M . �

Now let F ⊆ Ω(A) be any filling subset. Let F = A/∼. There is a natural
projection πF : Ω(A) −→ Ω(F).

Lemma 2.3. πF |F is injective.

In fact, let E be any ∼-transversal in A. We can naturally identify F with E
and Ω(F) with Ω(E).

If x, y ∈ F ⊆ Ω(A) with πEx = πEy, then xα = yα for all α ∈ E , and so by the
definition of ∼, we see that xβ = yβ for all β ∈ A. In other words, x = y. This
proves Lemma 2.3.

We note that if ≈ is the relation on A defined with respect to a 1-connected
median algebra, M , then rank(M) = dim(∆(M)) = width(A,≈).

Returning to the earlier set-up, if F is r-connected, then width(A,∼) ≤ r. (For
if E ⊆ A lies in an equivalence class then πE(F ) consists of a pair, a, b, of opposite
corners of Ω(E). If |E| > r, there is no r-path from π−1

E a to π−1
E b.) The map

πA/∼ : Ω(A) −→ Ω(A/∼) restricted to F reduces distances by a factor of at most
r.
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Now suppose that F ⊆ Ω(A) is filling, and write M = 〈F 〉. Let B be any
∼-transversal. We have embeddings F ⊆ M ⊆ Ω(B), and M is 1-connected in
Ω(B). (So we can identify ∆(M) as a full subcomplex of ∆(Ω(B))). From this
point on, we could forget about A.

3. More cubes

This section is a continuation of the last, though it is specifically geared towards
the applications in Section 7. It will not be needed again until then, but fits more
logically into to the present discussion. Some of the definitions here are rather
formal. The motivation behind them in terms of model spaces can be found in
Section 11. As alluded to in the Introduction, the discussion beyond Lemma
3.1 can be ignored if we were prepared to weaken the dimension bound in the
conclusion of Theorem 1.3. This would be sufficient for proving Theorems 1.1 and
1.2.

Recall that we have a cube, Ω = Ω(B), and a 1-connected filling median sub-
algebra, M ⊆ Ω(B). This gives rise to a relation, ≈, on B. In other words, if
α, β ∈ B, then either α ≈ β and παβM = Ωαβ, or α 6≈ β and |παβM | = 3. In the
latter case, ψαβ and ψβα are defined as in Section 2.

In addition, we suppose there are symmetric relations, t and � on B such
that for all α, β ∈ B exactly one of the relations α = β, α t β or α � β holds.
We suppose that width(B,�) ≤ λ < ∞. (In the case of the mapping class
group, where the indexing set consists of subsurfaces of a given surface, t means
“transverse” and � means “disjoint or nested”, see Sections 10 and 11.)

We note the following particular case of Ramsey’s Theorem:

Lemma 3.1. Suppose that E ⊆ B with width(E ,t) ≤ 2. Then |E| ≤ 3λ.

Proof. Recall that width(E ,t) ≤ 2 means that no three elements of E are pairwise
t-related. We can suppose that there exist α, β ∈ E with α t β (otherwise all
distinct pairs in E are �-related, and so |E| ≤ λ ≤ 3λ). Then E = {α, β}∪Eα∪Eβ,
where Eα = {γ ∈ E | γ � α} and Eβ = {γ ∈ E | γ � β}. Now width(Eα,�) < λ
and width(Eβ,�) < λ. By induction, we can assume that |Eα|, |Eβ| ≤ 3λ (since
the statement clearly holds for λ = 1). Therefore, |E| ≤ 2 + 2.3λ−1 ≤ 3λ. �

We will also assume that α ≈ β implies α � β, and so α t β implies α ≈ β.
(Thus width(B,≈) ≤ λ, and so the rank of Ω(B) is at most λ.)

The remainder of this section will only be relevant to obtaining the dimension
bound of ν in Theorem 1.1.

We assume, in addition, that � is another symmetric relation on B such that
α�β implies α � β. (For the mapping class group, � can be interpreted as a
certain “nesting” property: see Section 11.) We will assume:

(∗): If α� β there is a subset Dαβ ⊆ Ωαβ = E(α)× E(β), consisting of a pair of
opposite corners of Ωαβ such that if γ ∈ B with γ t α and γ t β, then ψγα = ψγβ
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and (ψαγ, ψβγ) ∈ Dαβ.

(A simple illustration of this hypothesis in terms of intersections of real intervals
is given in Section 11.)

Note that ψαγ and ψγα are defined since α t γ implies α 6≈ γ. (That is,
|παγM | = 3.) Similarly for ψβγ and ψγβ. In fact, we see that παβγM ⊆ (Ωαβ ×
{ψγα}) ∪ {(ψαγ, ψβγ, ψγα)} ⊆ Ωαβγ.

Recall that M ⊆ Ω(B) is 1-connected. A 1-path, in x = x0, . . . , xn = y, in
M gives us a sequence of edges, e1, . . . , en, of the 1-skeleton, ∆1(M), where ei
connects xi−1 to xi. Let αi ∈ B be the “label” associated with ei. In other words,
xi−1 and xi differ precisely in the αi coordinate. If this is a shortest 1-path from
x to y (that is, dM(x, y) = n), then the αi are all distinct. (For suppose αi = αj
with i < j and αk 6= αi for i < k < j. We set yk = µ(xi−1, xi, xk), so that yi = xi−1

and yj−1 = xj. Replacing xi−1, . . . , xj by yi, . . . , yj−1 would then give us a shorter
1-path from x to y in M contrary to our assumption.)

We now suppose that C ⊆ B is a subset with the property that for all α ∈ B
there is some β ∈ C with β � α. (The motivation for this can be found in the
proof of Theorem 1.3 in Section 9.)

Let πC : Ω(B) −→ Ω(C) be the quotient map. If p ∈ Ω(C), then π−1
C p is a face

(i.e. convex subcube) of Ω(B), and M ∩ π−1
C p is 1-connected. In fact, we have

a projection, π : ∆(Ω(B)) −→ ∆(Ω(C)), and we can identify ∆(M ∩ π−1
C p) with

∆(M) ∩ π−1p, which is isometrically embedded in ∆(M).
We claim:

Lemma 3.2. If p ∈ Ω(C), then M ∩ π−1
C p has dM -diameter at most 3λ.

Proof. Let x, y ∈ M ∩ π−1
C p. Let x = x0, . . . , xn = y be a shortest 1-path in

M ∩ π−1
C p from x to y. Let e1, . . . , en be its sequence of edges in ∆1(M), and let

α1, . . . , αn be their labels which must lie in B \ C. As observed above, the αi are
all distinct.

Suppose that i < j < k. We claim that either αj � αi or αj � αk (or both).
For suppose, to the contrary, that αj t αi and αj t αk. By the assumption
on C, there is some β ∈ C with β � αj. Write Ψ = Ωβαj

= E(β) × E(αj) and
D = Dβαj

⊆ Ψ, as given by (∗). Thus D is a pair of opposite corners of Ψ. Let
u = (ψβαi, ψαj

αi) ∈ Ψ, and v = (ψβαk, ψαj
αk) ∈ Ψ. By (∗), we have u, v ∈ D.

In fact, πβαj
ei = {u}, and πβαj

ek = {v}. Since the subpath from ei to ek crosses
ej, but no other edge labelled αj, we must have u 6= v. In other words, u, v are
opposite corners of Ψ, and so in order to get from u to v, our subpath must also
cross some edge labelled β. This is a contradiction, since β ∈ C, and we have
observed that all edges in our path have labels in B \ C. This proves the claim.

In particular, we see that no three of the αi are all pairwise t-related. In other
words, the width of the relation, t, restricted to {α1, . . . , αn} is at most 2. It
follows by Lemma 3.1 that n ≤ 3λ. �
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As an immediate corollary, we have:

Corollary 3.3. If x, y ∈M ⊆ Ω(B), then dM(x, y) ≤ 3λdπC(M)(πCx, πCy) + 3λ.

In particular, we see that the projection map, π : ∆(Ω(B)) −→ ∆(Ω(C)) re-
stricted to ∆(M) ⊆ ∆(Ω(B)) gives a quasi-isometry from ∆(M) to π(∆(M)) =
∆(πC(M)).

The eventual point of this discussion will be to reduce dimension in the following
sense. We will show, under certain hypotheses, that width(C,≈) ≤ ν. It will then
follow that the dimension of ∆(πC(M)) is at most ν.

4. Subalgebras

In this section, we prove a general result about discrete median algebras of finite
rank (or equivalently, finite dimensional CAT(0) cube complexes). Essentially this
says that a subset which is a subalgebra up to bounded distance lies a bounded
distance from a genuine subalgebra.

Let Π be a discrete median algebra, and let ∆(Π) be the associated cube com-
plex, with Π = ∆0(Π). We suppose that rank(Π) ≤ ν < ∞. (Recall that this is
the same as the dimension of ∆(Π).)

Definition. We say that a subset F ⊆ Π is r-median if for all x, y, z ∈ F we have
dΠ(µ(x, y, z), F ) ≤ r.

Proposition 4.1. Given r, ν ∈ N, there is some k ∈ N such that if rank(Π) ≤ ν
and if F ⊆ Π is 1-connected and r-median, then F is k-dense in 〈F 〉.

In other words, 〈F 〉 is contained in the r-neighbourhood of F in Π.
In fact, we could weaken “1-connected” to “r-connected”, by a simple adapta-

tion of the argument, but we won’t be needing that.
Recall from Section 2 that L(F ) = {µ(x, y, z) | x, y, z ∈ F}. The r-median

hypothesis tells us that L(F ) ⊆ N(F ; r), where N(.; r) denotes r-neighbourhood.
Since the median map is 1-lipschitz, it follows that L2(F ) = L(L(F )) ⊆ L(N(F ; r)) ⊆
N(L(F ); 3r) ⊆ N(L; 4r). We see inductively, that Ln(F ) ⊆ N(F ; 4nr) for all n.

For the proof of the proposition, we will use the “binary subdivision”, Π̂, of Π.
We first consider the case of cubes.

The binary subdivision of the 1-cube, {−1, 1}, is the set {−1, 0, 1}, with the
obvious median of “betweenness”. The binary subdivision of Q = {−1, 1}n is

then Q̂ = {−1, 0, 1}n. We write o(Q) for the centre, (0, 0, . . . , 0), of Q̂.

Note that we can naturally identify ∆(Q̂) with ∆(Q) with l1 metric scaled by

a factor of 1/2, so that each edge of ∆1(Q̂) has length 1/2. (For the purposes of
the current argument, the real interval [−1, 1] is deemed to have length 1.)

In general, we can subdivide Π in this way to give us Π̂. We can similarly
identify, ∆(Π̂), in ∆(Π). Given any cell, Q, of Π, we write o(Q) ∈ ∆0(Π̂) for its
centre.
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We write C(Π) ⊆ Π̂ for the set of centres (or “midpoints”) of 1-cells of Π. Thus,

the set of vertices of the 1-skeleton of ∆(Π̂) is ∆0(Π) t C(Π).
We begin with a lemma about cubes.

Lemma 4.2. Let Q be a finite-dimensional cube, and suppose that Γ ⊆ ∆1(Q) is
a connected subgraph of the 1-skeleton of ∆(Q). Suppose that Q = 〈Γ∩Q〉. Then

o(Q) ∈ 〈Γ ∩ C(Q)〉 in Q̂.

Proof. Write Q = {−1, 1}n. We proceed by induction on n. If n = 1, then
Γ = ∆(Q), so o(Q) = Γ ∩ C(Q) = {o(Q)}. If n = 2, then Q ⊆ Γ, and Γ omits
at most one edge of ∆(Q). Now o(Q) is the median of the midpoints of any three
edges, and so again we have o(Q) ∈ 〈Γ∩C(Q)〉. We therefore assume that n ≥ 3.

Given i ∈ {1, . . . , n}, write Q̂i ⊆ Q̂ for the set of points with ith coordinate

0. We can identify Q̂i with the binary subdivision of an (n − 1)-cube Qi. Write

π̂i : Q̂ −→ Q̂i for the natural projection, and write πi : Q −→ Qi for its restriction
to Q. (In other words, we can think of Qi and Q̂i as quotients of Q and Q̂
respectively.) We can extend πi to a map πi : ∆(Q) −→ ∆(Qi). Write C = C(Q)
and write Ci = C(Qi) which we can identify as a subset of πiC. Now Γi = πiΓ is a
connected subgraph of the 1-skeleton of ∆(Qi). Also, Γi∩Qi = πi(Γ∩Q) generates
Qi as a median algebra. Therefore, by our inductive assumption, o(Qi) ∈ 〈Γi∩Ci〉
in Q̂i. Now, 〈Γi∩Ci〉 ⊆ π̂i(〈Γ∩C〉). Since π̂i : Q̂ −→ Q̂i is a median epimorphism,
it follows that either o(Q+

i ) or o(Q−i ) lies in 〈Γ ∩ C〉, where Q±i is the subcube
of Q with ith coordinate ±1. Without loss of generality, we can assume that
o(Q+

i ) ∈ 〈Γ∩C〉. Note that o(Q+
i ) has ith coordinate 1, and all other coordinates

0. Thus, o(Q) = µ(o(Q+
1 ), o(Q+

2 ), o(Q+
3 )) ∈ 〈Γ∩C〉, and the statement follows by

induction. �

If Q is any cell of Π there is a nearest-point projection, ω : Π −→ Q. (It is
an instance of the more general notion of a “gate map” of a median algebra to a
convex subset.) This extends to a nearest-point projection, ω̂ : Π̂ −→ Q̂. Both ω
and ω̂ are median epimorphisms. Note that Q is a maximal cell (i.e. not contained
in any strictly larger cell) if and only if ω̂−1(o(Q)) = {o(Q)}.
Proof of Proposition 4.1. Replacing Π by 〈F 〉, we may as well assume that F
generates Π. We want to show that F is cobounded in Π. Let G ⊆ ∆1(Π) be the
full subgraph with vertex set F ⊆ Π. Since F is 1-connected, G is connected. Let
F̂ = G ∩ Π̂. In other words, F̂ = F t C(F ), where F is the set of vertices of G
and C(F ) is the set of midpoints of edges of G. Let Q be any maximal subcube
of Π. Projecting G to ∆(Q), we get a connected graph, Γ, in the 1-skeleton of

∆(Q), with ω(F ) = Γ ∩ Q and with ω̂(C(F )) = Γ ∩ Q̂. Since Π = 〈F 〉 and
ω is an epimorphism, we have have Q = 〈Γ ∩ Q〉. Therefore, by Lemma 4.2,
o(Q) ∈ 〈Γ ∩ C(Q)〉. It follows that o(Q) can be written as a median expression
of bounded complexity involving elements, ω(x), in ω(C(F )), with the bound
just depending on dim(Q) ≤ ν. Since ω is a homomorphism, applying the same
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expression to the elements, x, in C(F ), we arrive at y ∈ Π, with ω(y) = o(Q).
Therefore, since Q is maximal, we have y = o(Q). By definition of C(F ), each
such x is the midpoint of an edge with both vertices in F . Choose one such
vertex x′ ∈ F . We now apply the same expression to these x′ to give us a point
y′ ∈ F . One can check that y′ ∈ Q. (In fact, it would be sufficient for the
proof to show that dΠ(y, y′) is bounded, which is clear given that the median
operation is lipschitz.) This shows that Q∩Ln(F ) 6= ∅, where n just depends on
the dimension of Q, which is at most rank(Π) ≤ ν. In other words, Π lies in a
1-neighbourhood of Ln(F ). Therefore, as observed above, we have Π ⊆ N(F ; k),
where k = 4nr + 1. �

We remark that (an equivalent of) the result could be expressed in terms of
cube complexes as follows.

Let ∆ be a CAT(0) cube complex of dimension ν, and let S ⊆ ∆ be a connected
subset. Suppose that the median in ∆ of any three points of S lies in N(S; r) for
some r ≥ 0. Then there is a subcomplex ∆′ ⊆ ∆ which is a subalgebra of ∆ with
respect to the standard median, and with S ⊆ ∆′ ⊆ N(S; k). In particular, ∆′

is isometrically embedded with respect to the l1 metrics. Moreover, with respect
to the l2 (euclidean) metrics, ∆′ is intrinsically CAT(0) and quasi-isometrically
embedded in ∆.

5. Coarse median spaces

We now move on to coarse geometry. We begin by recalling some general
definitions.

Let (Υ, d) be a metric space. Given a subset, A ⊆ Υ, we write N(A; r) for the
r-neighbourhood of A. We say that A is r-dense in Υ if Υ = N(A; r). We say A
is cobounded if it is r-dense for some r. Given A,B ⊆ Υ, write hd(A,B) for the
Hausdorff distance from A to B.

A geodesic in Υ is a path, α : [a, b] −→ Υ, with length(α) = d(α(a), α(b)). We
say that a path, α, is a (k1, k2)-quasigeodesic if for all t, u ∈ [a, b], length(α|[t, u]) ≤
k1d(α(t), α(u)) + k2. We say that Υ is a geodesic space if every pair of points
are connected by a geodesic. We say that a subset A ⊆ Υ is r-connected if
any two points x, y ∈ A are connected by an r-path in A; that is, a sequence,
x = x0, x1, . . . , xn = y, with xi ∈ A, and with d(xi, xi+1) ≤ r for all i. If Υ is a
geodesic space, this is equivalent to saying that N(A; r/2) is connected.

We say that a map f : (Υ, d) −→ (Υ′, d′) between metric spaces is coarsely
lipschitz if (∃k1, k2 ≥ 0)(∀x, y ∈ Υ)(d′(fx, fy) ≤ k1d(x, y) + k2). It is a quasi-
isometric embedding if, in addition, (∃k3, k4 ≥ 0)(∀x, y ∈ Υ)(d(x, y) ≤ k3d

′(fx, fy)+
k4). We say that f is a quasi-isometry if it is a quasi-isometric embedding and
f(Υ) is k5-dense in Υ′ for some fixed k5 ≥ 0.

A map f : Υ −→ Υ′ is a coarse embedding if it is coarsely lipschitz and there
is some function, F : [0,∞) −→ [0,∞), such that for all x, y ∈ Υ, d(x, y) ≤
F (d′(fx, fy)). (So a quasi-isometric embedding corresponds to the case where F
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is linear.) Note that a coarse embedding with cobounded image is necessarily a
quasi-isometry.

A coarse quasigeodesic is a quasi-isometric embedding of a real interval into Υ.
If Υ is a geodesic space, then a coarse quasigeodesic can always be approximated
up to bounded distance by a quasigeodesic, and we will generally deal with the
latter notion.

Recall that a geodesic space, Θ, is k-hyperbolic if every geodesic triangle has
a k-centre; that is a point a distance at most k from each of its three sides.
Given x, y, z ∈ Θ, we choose a k-centre, µ(x, y, z), for some geodesic triangle with
vertices, x, y, z. It is well defined up to bounded distance.

A key fact about hyperbolic spaces is their treelike structure [G]. This can be
expressed as follows.

Lemma 5.1. There is a function, h : N −→ [0,∞) such that if Θ is k-hyperbolic
and A ⊆ Θ with |A| ≤ n <∞, then there is an embedded tree, T ⊆ Θ, with A ⊆ T
such that for all a, b ∈ A, dT (a, b) ≤ d(a, b) + kh(n), where dT is the induced path
metric on T .

Here, of course, dT denotes the intrinsic path-metric induced on T .
Note that we can assume that each edge of T is a geodesic, and that the extreme

points of T all lie in θXA. We write TA for some such choice of T .
Given a subset, A ⊆ Θ, we write join(A) for the union of all geodesics with

endpoints in A. It is not hard to see that hd(TA, join(A)) is bounded in terms of
k and n.

We can view TA combinatorially as a simplicial tree, and as such, it comes
equipped with a median map, µTA : T 3

A −→ TA. In this way, (TA, µA) is a rank-1
median algebra, with its vertex set as a subalgebra. One can check easily that for
all x, y, z ∈ TA, d(µ(x, y, z), µTA(x, y, z)) is bounded above in terms of k and n.

This leads naturally to the definition of a “coarse median space” as defined in
[Bo1], where a simplicial tree is generalised to (the vertex set of) a CAT(0) cube
complex, or equivalently, a discrete median algebra.

Let (Λ, ρ) be a geodesic space, and suppose that µ : Λ3 −→ Λ is a ternary
operation.

Definition. We say that (Λ, ρ, µ) is a coarse median space (of rank at most ν) if
it satisfies:

(C1): There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ Λ,

ρ(µ(a, b, c), µ(a′, b′, c′)) ≤ k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0).

(C2): There is a function h : N −→ [0,∞) such that if A ⊆ Λ with 1 ≤ |A| ≤
n <∞, then there is a finite median algebra (of median rank at most ν) and an
h(n)-quasimorphism, λ : Π −→ Λ such that for all a ∈ A, ρ(a, λπa) ≤ h(n).

To say that λ is an h-quasimorphism means that ρ(λµΠ(x, y, z), µ(λx, λy, λz)) ≤
h, for all x, y, z ∈ Π. (We will apply this terminology more generally, when
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the domain is any space equipped with a ternary operation. In particular, the
inclusion TA ↪→ Θ referred to earlier is a quasimorphism.)

There is no loss in assuming that µ is symmetric in a, b, c and that µ(a, a, b) = a
for all a, b ∈ Λ (since these conditions necessarily hold up to bounded distance).

One can show that for geodesic spaces, coarse median of rank 1 is equivalent to
hyperbolic (see [Bo1, NWZ1]).

To simplify the exposition, we will suppress mention of the map, λ, and identify
Π with its image in Λ. (There is no essential loss in assuming λ to be injective.)
We will also assume that A ⊆ Π ⊆ Λ. (Again, this can be achieved after some
modification of Π.) This means that the median operation on Π agrees up to
bounded distance (depending on n) with the coarse median operation on Λ.

A simple consequence of the axioms is that any tautological median identity (i.e.
one that holds exactly in any median algebra) holds up to bounded distance in a
coarse median space. The bound depends only on the complexity of the expression
and the parameters of the coarse median space. A more formal expression of this
principle can be found in [Z], [Bo3] and in [NWZ1].

As an illustration, the identity, µ(a, b, µ(a, b, c)) = µ(a, b, c) holds in any median
algebra. Therefore in any coarse median space, Λ, we have that ρ(µ(a, b, µ(a, b, c)), µ(a, b, c))
is bounded.

There is also a generalisation of this principle to conditional identities [Z, Bo3,
NWZ1].

Given a, b ∈ Λ, write [a, b] = {µ(a, b, x) | x ∈ Λ} for the coarse (median)
interval from a to b. Up to bounded Hausdorff distance, it be can described in
a number of equivalent ways. For example, given r ≥ 0, write [a, b]r = {x ∈ Λ |
µ(x, µ(a, b, x)) ≤ r}. For all sufficiently large r, hd([a, b], [a, b]r) is bounded above
in terms of r. (Note that in a median algebra, these two definitions correspond
to two equivalent ways of defining an interval, as in our earlier illustration.) For
more discussion of coarse intervals, see [NWZ2, Bo5].

We remark that any monotone path from a to b lies in (a bounded neighbour-
hood of) [a, b]. If Λ happens to satisfy (B1)–(B10), then one can see from Theorem
1.1 (or Theorem 1.3) that the converse holds, so that up to bounded Hausdorff
distance, [a, b] is the union of all monotone paths. (It seems likely that this should
hold in greater generality, though we won’t explore that issue here.)

We also note that if a, a′, b, b′ ∈ Λ, then hd([a, b], [a′, b′]) is bounded above in
terms of max(ρ(a, a′), ρ(b, b′)).

The notion of a coarse interval can be thought of as a special case of a “coarse
(convex) hull” which we describe in the next section.

6. Coarse hulls

Let Λ be a coarse median space of rank ν <∞. Our aim is to describe the coarse
hull of a subset of Λ. The conclusion of Proposition 6.2 below can be thought of as
characterising what we mean by this. We will say a bit more about the structure
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of hulls under additional assumptions in Section 7. A related construction in the
context of hierarchically hyperbolic spaces, by iterating hierarchy paths, has been
given independently in [RuST].

Definition. We say that a subset C ⊆ Λ is r-convex if for all a, b ∈ C, [a, b] ⊆
N(C; r). We say that C is coarsely convex if it is r-convex for some r.

In other words, if a, b ∈ C and x ∈ Λ, then ρ(µ(a, b, x), C) ≤ r.
It turns out that any interval, [a, b], is uniformly coarsely convex. (Again, this is

a consequence of the general principle discussed above.) Of course, this property
is not closed under intersection, so it does not cleanly give us a notion of convex
hull. However, at least with a bound on the rank, this is possible as we now
describe.

Given A ⊆ Λ, write J(A) =
⋃
a,b∈A[a, b] ⊆ Λ for the coarse median join of A.

We define Jn(A) inductively, by J0(A) = A and Jn+1(A) = J(Jn(A)). We will
write JΛ(A) and JnΛ(A) if we need to specify Λ.

Lemma 6.1. Let Λ be a coarse median space of rank at most ν. Then there is a
constant, k ≥ 0, depending only on the parameters of Λ (including ν) such that if
A ⊆ Λ, then Jν+1(A) ⊆ N(Jν(A); k).

Proof. In fact the corresponding statement holds tautologically for any median
algebra, Π, of rank at most ν, where we define the “median join” similarly in terms
of unions of median intervals. In this case, we necessarily have Jν+1

Π (B) = JνΠ(B)
for any B ⊆ Π (which is therefore the median convex hull of B), see Lemma 6.4
of [Bo1].

For Λ, we want to show that if y ∈ Λ and x1, x2 ∈ JνΛ(A) then z = µ(y, x1, x2)
is a bounded distance from some point of JνΛ(A). Now the fact that xi ∈ JνΛ(A)
can be expressed as a median formula of bounded complexity involving elements
in some subset Bi ⊆ A, with |Bi| ≤ 3ν . Let B = B1 ∪ B2 ∪ {y}. Since |B| is
bounded, we have a finite median algebra, Π ⊆ Λ, with B ⊆ Π such that the
median operation, µΠ, on Π agrees with that on Λ up to bounded distance.

We now apply the same formula in Π to the elements of Bi in Π to give us points,
x′i ∈ Π ⊆ Λ, with ρ(xi, x

′
i) bounded. By definition, x′i lies in the νth iterated join,

JνΠ(Bi) of Bi ⊆ B in Π. Let z′ = µΠ(y, x′1, x
′
2) ∈ Jν+1

Π (B). By the observation of
the first paragraph, z′ ∈ JνΠ(B). This fact can be expressed by another formula
of bounded complexity involving elements of B. Applying the same formula to
these elements in Λ with µ in place of µΠ, we arrive at some z′′ ∈ Λ, with ρ(z′′, z′)
bounded. By the definition of JνΛ(B), we must have z′′ ∈ JνΛ(B) ⊆ JνΛ(A). Now,
ρ(z, z′) is also bounded, so ρ(z, z′′) is bounded as required. �

Note that the conclusion Lemma 6.1 is equivalent to asserting that Jν(A) is
k-convex in Λ. In fact, we get the following.

Proposition 6.2. Let Λ be a coarse median space of rank ν, and let A ⊆ Λ.
There is some r ≥ 0 depending only on the parameters of Λ (including ν) such
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that there is an r-convex subset H(A) ⊆ Λ, with A ⊆ H(A) and with the property
that if H ′ ⊆ Λ is an r′-convex subset containing A, then H(A) ⊆ N(H ′; r′′), where
r′′ depends only on r′ and the parameters of Λ.

Proof. We set H(A) = Jν(A). By hypothesis, J(A) ⊆ N(H ′; r′). We have ob-
served that if a, b, a′, b′ ∈ Λ with ρ(a, a′) ≤ r and ρ(b, b′) ≤ r then hd([a, b], [a′, b′]) ≤
r′′′, where r′′′ depends only on r and the parameters of Λ. Therefore, J2(A) ⊆
N(H ′; r′ + r′′′). The statement follows by induction up to ν. �

Note that the conclusion of Proposition 6.2 determines H(A) up to bounded
Hausdorff distance. For definiteness, in what follows, we will set H(A) = Jν(A).

One can check that if a, b ∈ Λ, then hd([a, b], H({a, b})) is bounded. In other
words, any coarse interval is the coarse hull of its endpoints.

Another immediate consequence is that, up to bounded Hausdorff distance,
H(A) equals

⋃
{H(B) | B ⊆ A, |B| ≤ 3ν}.

Here is another way of describing coarse hulls (cf. [SW, NWZ1, NWZ2]).
First, let (Π, µΠ) be a median algebra (finite, in the cases of interest here).

Given a1, . . . , an, x ∈ Π, with n ≥ 2, we define yi inductively for i ≥ 2 by y2 =
µΠ(a1, a2, x) and yi+1 = µΠ(ai+1, yi, x). We write µΠ(a1, . . . , an;x) = yn. One can
show that this is symmetric under any permutation of the ai (see Lemma 5.2 of
[SW]). Thus, given any A ⊆ Π with 2 ≤ |A| ≤ n < ∞, we can write µΠ(A;x) =
µΠ(a1, . . . , an;x) where A = {a1, . . . , an}. We also set µΠ({a};x) = a. (The ai
need not be distinct. If ai = aj for i 6= j, then the value of the expression does
not change on deleting aj.) One can check that hull(A) = {x ∈ Λ | µΠ(A;x) =
x}, cf. [SW]. In fact, µΠ(A;x) ∈ hull(A) for all x ∈ Λ. In particular, we see
that µΠ(µΠ(A;x);x) = µΠ(A;x). (This also follows directly from the fact that
µΠ(µΠ(a1, a2, x), a1, x) = µΠ(a1, a2, x).)

One can adapt this to a coarse median space, Λ (cf. [NWZ1, NWZ2].) Given
a1, . . . , an, x ∈ Λ, one can define µ(a1, . . . , an;x) inductively in the same way. As
observed in [NWZ2] (Lemma 2.15, thereof), permuting the ai moves this point at
most a bounded distance. We can therefore define µ(A;x) in a similar way. This
is well defined up to bounded distance (depending on n = |A|).

Note that from the definition of H(A) it is clear that for all x ∈ Λ, µΠ(A;x) is
a bounded distance from H(A).

Lemma 6.3. For all x ∈ Λ, ρ(µ(µ(A;x);x), µ(A;x)) is bounded above in terms
of n and the parameters of Λ.

Proof. Given that this corresponds to a tautological identity in a median algebra,
the statement follows from the general principle described above.

More explicitly, we can argue as follows. We have a finite median algebra,
Π ⊆ Λ, with A∪{x} ⊆ Π, such that the median, µ = µΛ, agrees with µΠ, on Π up
to bounded distance. Now µΠ(µΠ(A;x);x) = µΠ(A;x). Thus, the corresponding
statement holds up to bounded distance in Λ. �
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Given a finite nonempty subset A ⊆ Λ and r ≥ 0, define H ′r(A) = {x ∈ Λ |
ρ(x, µ(A;x)) ≤ r}.

Lemma 6.4. There is some r0 ≥ 0 depending only on n, ν and the parameters of
Λ, such that if r ≥ r0 and A ⊆ Λ with |A| ≤ n < ∞, then hd(H(A), H ′r(A)) is
bounded above in terms of r, n, ν and the parameters of Λ.

Proof. If x ∈ H ′r(A), then it follows immediately from Lemma 6.3 that ρ(x,H(A))
is bounded.

Conversely, suppose that x ∈ H(A) = JνΛ(A). This fact can be expressed by a
median expression of bounded complexity with arguments in A, and consequently
in some subset B ⊆ A with |B| bounded. We assume can x ∈ B. Now there is
a finite median algebra Π ⊆ Λ, of rank at most ν and with B ⊆ Π, such that µ
and µΠ agree up to bounded distance. Reinterpreting this expression with µΠ in
place of µ, we get some y ∈ Π, with ρ(x, y) bounded. This expression tells us that

y ∈ JνΠ(B). (One can see, inductively on i that if z ∈ J (
ΠB), then µΠ(B; y) = y.)

Therefore, µΠ(B; y) = y. It follows that ρ(µ(A;x), x) ≤ ρ(µ(B;x), x) is bounded
as required. �

In view of an earlier observation, it follows that, up to a distance bounded in
terms of ν, and for any sufficiently large r, given any A ⊆ Λ, we have that H(A)
is equal to the union of H ′r(B) as B ranges over all subsets of A with |B| ≤ 3ν .

Before concluding this section, we make the general observation that any r-
convex subset, C, of a coarse median space, Λ, is r′-connected, where r′ depends
on r and the parameters of Λ. In fact, if a, b ∈ Λ, we can connect a, b by a geodesic,
to give us a sequence, a = x0, . . . , xn = b, with each ρ(xi, xi+1) as small as we
like. Setting yi = µ(a, b, xi) we get a sequence y0, . . . , yn in [a, b] with ρ(yi, yi+1)
bounded. If a, b ∈ C, then we can find points, zi ∈ C with ρ(yi, zi) ≤ r. We also
have ρ(zi, zi+1) bounded, and the statement now follows easily. Note also that we
can choose the xi so that n is bounded by some linear function of ρ(a, b).

In particular, if C is r-convex, then N(C; r′) is path-connected, and the induced
path metric is geodesic. Indeed the inclusion of N(C; r′) into Λ is a quasi-isometric
embedding.

Finally, we note that in the hyperbolic case (i.e. where ν = 1) all of the above
becomes much simpler. In particular, the median interval [a, b] is a bounded Haus-
dorff distance from any geodesic from a to b. It follows that hd(H(A), join(A)) is
bounded above in terms of the hyperbolicity constant. Similarly, if |A| ≤ n <∞
then hd(H(A), TA) is bounded, where TA is the tree given by Lemma 5.1, though
this bound will also depend on n.

7. Projection maps

In this section, we introduce projection maps to hyperbolic spaces, as mentioned
in the introduction.
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Let X be a set with binary relations, ⊥, t and ≺, with ⊥ and t both symmetric,
and with ≺ a strict partial order. (The relation t will eventually coincide with
that used in Section 3.) We assume that for all X, Y ∈ X , exactly one of the
relations X = Y , X t Y , X ⊥ Y , X ≺ Y or Y ≺ X holds. Also, if X, Y, Z ∈ X
with Y ≺ X and X ⊥ Z, then Y ⊥ Z.

(As motivation, in the case of the mapping class group or Teichmüller space, X
is a set of subsurfaces of a compact surface. In this case, t denotes transversality,
⊥ denotes disjointness, and ≺ denotes strict inclusion. In this context, ⊥ was
denoted by “∧” in [Bo1, Bo3, Bo5]. See Section 10 for further discussion of this.)

We will assume:

(B1) “disjointness bound”: There is some ν ∈ N, such that if Y ⊆ X with X ⊥ Y
for all X, Y ∈ Y , then |Y| ≤ ν.

(B2) “nesting bound”: There is some κ ∈ N, such that any chain X1 ≺ X2 ≺
· · · ≺ Xm has length, m, at most κ.

In other words, we have width(X ,⊥) ≤ ν and width(X ,≺) ≤ κ.
Now suppose that (Λ, ρ) is a geodesic metric space. Suppose that to each

X ∈ X , we have associated a geodesic metric space (Θ(X), σX) and a map
θX : Λ −→ Θ(X). Also, if Y ∈ X , with Y ≺ X or Y t X, we suppose that
we have associated a point, θXY ∈ Θ(X). In (B8) below, 〈., . : .〉 denotes the Gro-
mov product, as we discuss afterwards. We will make the following assumptions
(motivations for which can be found in [MaM, Bo3, BeHS1] etc.):

(B3) “hyperbolic”: (∃r0 ≥ 0)(∀X ∈ X ) Θ(X) is r0-hyperbolic.

(B4) “disjoint projection”: There is some r1 ≥ 0 such that if X, Y, Z ∈ X with
(Y t X or Y ≺ X) and (Z t X or Z ≺ X) and (Y ⊥ Z or Y ≺ Z), then
σX(θXY, θXZ) ≤ r1.

(B5) “lipschitz projections”: (∃k1, k2 ≥ 0)(∀x, y ∈ Λ) σX(θXx, θXy) ≤ k1ρ(x, y) +
k2.

(B6) “finiteness”: (∃r2 ≥ 0) (∀x, y ∈ Λ) the set of X ∈ X with σX(θXx, θXy) ≥ r2

is finite.

(B7) “distance bound”: (∀r ≥ 0)(∃r′ ≥ 0)(∀x, y ∈ Λ) if σX(θXy, θXy) ≤ r for all
X ∈ X , then ρ(x, y) ≤ r′.

(B8) “bounded image”: (∃r3 ≥ 0)(∀X, Y ∈ X with Y ≺ X) (∀x, y ∈ Λ) if
〈θXx, θXy : θXY 〉 ≥ r3 then σY (θY x, θY y) ≤ r3. Moreover, if Z ∈ X with Z t X
and Z t Y and 〈θXx, θXZ : θXY 〉 ≥ r3, then σY (θY x, θYZ) ≤ r3.

(B9) “transverse projections”: (∃r4 ≥ 0)(∀X, Y ∈ X ) with X t Y if x ∈ Λ, then
min{σX(θXx, θXY ), σY (θY x, θYX)} ≤ r4. Moreover if Z ∈ X with (Z t X or
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Z ≺ X) and (Z t Y or Z ≺ Y ) then min{σX(θXZ, θXY ), σY (θYZ, θYX)} ≤ r4.

(B10) “medians”: There is some r5 ≥ 0 and a ternary operation, µ : Λ3 −→ Λ such
that (∀X ∈ X )(∀x, y, z ∈ Λ), we have σX(θXµ(x, y, z), µX(θXx, θXy, θXz)) ≤ r5.
Here, µX is the standard centroid operation on the hyperbolic space Θ(X) (which
is well defined up to bounded distance depending only on the constant r0 of (B3)).

For (B8) above, we recall the definition of the “Gromov product” in a metric
space, (Θ, σ), as 〈x, y : z〉 = (σ(x, z) +σ(y, z)−σ(x, y))/2. If Θ is hyperbolic, this
can be thought of, up to an additive constant, as the distance between z and any
geodesic from x to y.

Henceforth, we will abbreviate σX(θXx, θXy) to σX(x, y) for x, y ∈ Λ and X ∈
X . (In this way, we can view σX as a pseudometric on Λ.)

Note that (B7) implies that the median operation, µ, described by (B10) is
unique up to bounded distance. In other words, it is characterised by the fact
that the projection maps θX are all uniform quasimorphisms. We also note:

Lemma 7.1. (Λ, ρ, µ) is a coarse median space of rank at most ν.

Proof. We just note that hypotheses (P1)–(P4) of [Bo1] are satisfied: (P1) is (B7),
(P2) is (B3), (P3) is (B1), and (P4) is a simple consequence of (B8) and (B9) (see
the proof of Lemma 11.7 of [Bo1]). The statement now follows from Proposition
10.2 of [Bo1]. �

As noted in the introduction, these hypotheses apply to various naturally oc-
curring spaces. In particular, the axioms (B1)–(B10) are implied by (A1)–(A10)
in Section 7 of [Bo3], as well as by the axioms of a hierarchically hyperbolic space
given in [BeHS1] or [BeHS2].

Remark. The fact that Axiom 8 of [BeHS2] (namely “partial realisation”) is
stronger than property (B10) here can be illustrated as follows. Suppose X =
{1, 2} with 1 ⊥ 2 and Θ(1) = Θ(2) = R. Suppose that Λ is an isometrically
embedded subset of R2 with the l1 metric (for example the diagonal) and let
θ1, θ2 be projection to the respective coordinates. Then Λ satisfies all the axioms
(B1)–(B10), whereas “partial realisation” would require Λ to be cobounded in R2.

We next interpret the notions of coarse intervals and coarse hulls in these terms.
Recall that in a hyperbolic space such as Θ(X), there is only one sensible way of

defining an “interval” up to bounded distance. To be precise, we write [a, b]X for
the median interval in Θ(X), as defined in Section 5. It coarsely agrees with any
geodesic from a to b. Similarly, writing HX(A), for the coarse hull of A ⊆ Θ(X),
we see that this is the same, up to bounded Hausdorff distance, as the geodesic
join, join(A). If |A| ≤ n < ∞, then it also agrees with the tree, TA, except that
the distance bound may then depend on n.

Note that using (B7) and (B10), we see that a set C ⊆ Λ is coarsely convex if
and only if θXC is coarsely convex in Θ(X) for all X.
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GivenA ⊆ Λ, and r ≥ 0, letH ′′r (A) be the set of x ∈ Λ such that σX(θXx,HX(θXA)) ≤
r for all X ∈ X .

The following two lemmas only require the fact that Λ is coarse median of rank
at most ν, together with properties (B3), (B5), (B7) and (B10).

Lemma 7.2. For any A ⊆ Λ, we have H(A) ⊆ H ′′r (A), where r depends only on
and the parameters of the hypotheses.

Proof. Let x ∈ H(A). Then, as observed in Section 6, we have x ∈ H(B) for
some B ⊆ A, with |B| ≤ 3ν . Now, by Lemma 6.3, ρ(x, µ(B;x)) is bounded.
By (B5) and (B10), it follows that σX(θXx, µX(θXB; θXx)) is bounded for all
X ∈ X . Therefore, θXx lies a bounded distance from HX(B) ⊆ HX(A). In
other words, x ∈ H ′′r (A) for some r ≥ 0 depending only on the parameters of the
hypotheses. �

Lemma 7.3. Suppose r ≥ 0 and A ⊆ Λ with |A| ≤ n < ∞. Then H ′′r (A) ⊆
N(H(A); r′), where r′ depends only on r, n and the parameters of the hypotheses.

Proof. Let x ∈ H ′′r (A). So θXx is a bounded distance from HX(θXA) for all
X ∈ X . Therefore, σX(θXx, µX(θXA; θXx)) is bounded. Up to bounded distance,
this is σX(θXx, θXµ(A;x)), which is therefore also bounded. (These facts use the
bound on |A|.) Now (B7) tells us that ρ(x, µ(A;x)) is bounded, and so by Lemma
6.4, x is a bounded distance from H(A) as required. �

In particular, this shows that if |A| ≤ n < ∞ for all sufficiently large r, H(A)
and H ′′r (A) agree up to bounded distance depending on r and n. (It is not clear
whether this holds for arbitrary A, regardless of cardinality.)

This fits in with the discussion in [BeKMM] regarding the mapping class group.
The set H ′′r (A) is a “Σ-hull” for A in their terminology. This is also essentially
the notion of hull that is used in [BeHS3]. In other words, these are equivalent
up to bounded distance for finite sets in finite-rank coarse median spaces.

8. Hulls of finite sets

The aim of this section is to show that coarse hulls of finite sets can be coarsely
embedded into cubes (see Lemma 8.1).

Let Λ satisfy the conditions (B1)–(B10) laid out in Section 7. Suppose A ⊆ Λ
with |A| ≤ n <∞.

We observed in Section 6 that H(A) is coarsely connected, and there is some
r0 ≥ 0, depending only on the parameters, such that H = N(H(A); r0), is intrin-
sically geodesic, with the inclusion into Λ a uniform quasi-isometric embedding.
Moreover, as described in Section 7, θX(H(A)), hence also θX(H), is a bounded
Hausdorff distance in Θ(X), from T (X), where T (X) = TθXA is the tree given by
Lemma 5.1 and subsequent remarks.

Now the properties (B1)–(B10) are all invariant under quasi-isometry. For
most of this section we will simplify notation by assuming that Λ = H, and that
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Θ(X) = T (X) for all X ∈ X . We can restrict the original maps, θX , to H,
and move them a bounded amount, so that their respective images lie in T (X).
We can then also assume that µX (as in (B10)) is precisely the standard median
operation on a tree. (It must be equal to this up to bounded distance anyway.)

We will write V (T (X)) for the vertex set of T (X). By construction, θXA ⊆
V (T (X)), and every extreme point of T (X) lies in A. Note that |V (T (X))| ≤
2n− 2.

The next step is to reduce further to a collection of real intervals, (I(α))α∈A,
indexed by a set A, together with maps, θα : Λ −→ I(α). It is not hard to see that
these again will satisfy properties (B1)–(B10) with appropriate modifications of
constants. We will only make explicit those properties which we use subsequently.

To do this, we choose L ≥ 0 sufficiently large as determined below (see Lemma
8.1). Given X ∈ X , let A(X) be an indexing set, and let (I(α))α∈A(X), be a
family of closed real intervals each of length L, with disjoint interiors, and whose
interiors do not meet V (T (X)). We assume that |A(X)| is maximal subject to
these conditions. (Possibly A(X) = ∅.) Note that the total length of T (X) \⋃
α∈A(X) I(α) is at most (2n− 2)L (since each edge of T (X) contributes at most

L). We write E(α) for the boundary of I(α), thought of as a 2-point median
algebra. We write σα for the metric on I(α).

We write τα : T (X) −→ I(α) for the nearest-point projection. Clearly, this is
1-lipschitz. Moreover, τα(θXA) ⊆ E(α). Note that if x ∈ T (X), then ταx /∈ E(α)
for at most one α ∈ A(X).

Let Ω(X) =
∏

α∈A(X) E(α) be the |A(X)|-cube. Let ∆(X) =
∏

α∈A(X) I(α).

We can think of this as the realisation, ∆(Ω(X)), of Ω(X), rescaled by a factor of
L. We have a map from T (X) to ∆(X) obtained by sending x to (τα(x))α. This
maps to the 1-skeleton, ∆1(X), of ∆(X). In fact, the image of T (X) in ∆(X)
can be described by collapsing each component of T (X)\

⋃
α∈A(X) I(α) to a point,

so as to give another tree. This collapsing map is a median homomorphism. (If
A(X) = ∅, then T (X) has bounded diameter, and Ω(X) is a singleton, so we can
effectively ignore such X.)

Given distinct α, β ∈ A(X), τα(I(β)) consists of a single point of E(α), which
we denote by ψαβ. Note that, if x ∈ T (X), then at least one of ταx = ψαβ or
τβx = ψβα holds.

Now set A =
⊔
X∈X A(X). Given α ∈ A, write X(α) = X, where X ∈ X is

such that α ∈ A(X).
Write Ω(A) =

∏
α∈AE(α) =

∏
X∈X Ω(X), and ∆(A) =

∏
α∈A I(α) =

∏
X∈X ∆(X).

Again, we can think of ∆(A) as the realisation, ∆(Ω(A)), of Ω(A), rescaled by a
factor of L. Given x ∈ Λ and α ∈ A, we have a point, τα(θX(α)x) ∈ I(α), which
we will simply denote by θα(x). This gives a map, θα : Λ −→ E(α). Note that
θα(A) = E(α). We also get a map θ : Λ −→ ∆(A) by setting θ(x) = (θα(x))α.
Note that θ(A) ⊆ Ω(A).
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We will also want a discrete approximation of this. Given any α ∈ A, define
ωα : I(α) −→ E(α) to be the nearest-point projection (defined arbitrarily on the
midpoint of I(α)). We write φα = ωα ◦ θα : Λ −→ E(α), and set φ(x) = (φα(x))α,
so that φ : Λ −→ Ω(A). Note that φ|A = θ|A. Since φαA = E(α) for all α ∈ A,
we see that φ(A) ⊆ Ω(A) is filling (as defined in Section 2).

Given any distinct a, b ∈ A, the set {α ∈ A | φαa 6= φαb} is finite, provided L
is chosen bigger than the constant, r2, of (B6). Since φα(A) = E(α) for all α, it
follows that A must be finite. (In particular, for all but finitely many X ∈ X , we
have A(X) = ∅, which implies that T (X) has bounded diameter.)

So far, we have defined φ : Λ −→ Ω(A). We set F = φΛ ⊆ Ω(A). We have
already observed that F is filling. We therefore have relations, ∼ and ≈ on A, as
defined in Section 2. We will forget about ∼ for the moment. Recall that α ≈ β
means that παβF = Ωαβ = E(α)×E(β). Therefore α 6≈ β means that |παβF | ≤ 3.

We next set about defining the relations, t, ⊥, and ≺ on A.
Given α, β ∈ A, let X = X(α) and Y = X(β), so that X, Y ∈ X . We split into

four cases. We will make some assumptions about L as we go along. (These will
retrospectively be used in defining L.)

(S1): X = Y .
Write α t β whenever α 6= β.
We have already defined ψαβ, ψβα and noted that if x ∈ Λ, then either θαx = ψαβ
or θβx = ψβα. In particular, |παβF | ≤ 3, so α 6≈ β.

(S2): X ⊥ Y .
We set α ⊥ β. (In this case, ψαβ and ψβα are undefined.)

(S3): X t Y .
We set α t β.

We assume that L > 12r4, where r4 is the constant of (B9). We write θαβ =
τα(θXY ) ∈ I(α). We write ψαβ = ωα(θαβ) ∈ E(α) for the nearest point in E(α)
to θαβ. In other words, σα(θαβ, ψαβ) ≤ L/2.

In fact, we claim that σα(θαβ, ψαβ) ≤ r4 < L/12. For if not, let any a ∈ A be
any point of A. By definition, θαa = τα(θXa) ∈ E(α), and θαβ = τα(θXY ). Since
τα is 1-lipschitz, we have σX(θXa, θXY ) ≥ σα(θαa, θαβ) ≥ r4, and so by (B9), we
have σβ(θβa, θβα) ≤ σY (θY a, θYX) ≤ r4. Since this holds for all a ∈ A, this gives
the contradiction that the diameter of E(β) = θβA in I(β) is at most 2r4 < L.

Swapping α and β, we similarly have elements θβα and ψβα in I(β), which
satisfy σβ(θβα, ψβα) ≤ r4 < L/12.

If x ∈ Λ, then min{σα(θαx, ψαβ), σβ(θβx, ψβα)} ≤ min{σα(θαx, θαβ), σβ(θβx, θβα)}+
r4 ≤ 2r4 < L/6, again, by (B9).

In particular, we must have φαx = ψαβ or φβx = ψβα. As in (S1), we get α 6≈ β.
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(S4): Y ≺ X.
We set β ≺ α.

Here we assume that L > 6(2r1 + r3 + r4), where r1, r3, r4 are respectively the
constants of (B4), (B8) and (B9).

First, write θαβ = θα(θXY ), and let pα = ωα(θαβ) ∈ E(α), so that σα(θαβ, pα) ≤
L/2. Let qα be the other point of E(α). Thus σα(θαβ, qα) ≥ (L/2) > r3.
Suppose a, b ∈ A with θαa = θαb = qα. Since θβa, θβb ∈ E(β), it follows by
(B8) that θβa = θβb. In other words, there is a unique qβ ∈ E(β) such that
A ∩ θ−1

α qα ⊆ A ∩ θ−1
β qβ.

This holds whenever β ≺ α. We now consider a number of specific cases.
Suppose first that σα(θαβ, pα) ≥ L/4 > r3 + r4 > r3, then the same argument

as above gives us some pβ ∈ E(β) with A ∩ θ−1
α pα ⊆ A ∩ θ−1

β pβ. Therefore,

A ∩ θ−1
α pα = A ∩ θ−1

β pβ and A ∩ θ−1
α qα = A ∩ θ−1

β qβ. Clearly, pβ 6= qβ. In other
words, we can write E(α) = {pα, qα}, E(β) = {pβ, qβ}, and A = Ap t Aq with
θαAp = {pα}, θβAp = {pβ}, θαAq = {qα} and θβAq = {qβ}. We set Dαβ =
{(pα, pβ), (qα, qβ)} ⊆ Ωαβ = E(α)×E(β). (In other words, Dαβ is the image of A
under the map (θα, θβ) to Ωαβ.)

Continuing under the assumption that σα(θαβ, pα) ≥ L/4, suppose that γ ∈ A
with γ t α and γ t β. Let Z = X(γ). We cannot have Z = X (otherwise
Y ≺ Z so β ≺ γ) nor Z = Y (otherwise Z ≺ X so γ ≺ α). So we must have
Z t X and Z t Y . Applying case (S3) above, we see that σα(θαγ, ψαγ) ≤ r4 and
σβ(θβγ, ψβγ) ≤ r4. We claim that if ψαγ = pα, then ψβγ = pβ. To see this, choose
any a ∈ Ap, so that θαa = pα. Now σα(pα, θαγ) = σα(ψαγ, θαγ) ≤ r4 (by (S3)).
In other words, θαa = pα, σα(pα, θαγ) ≤ r4, and by assumption σα(pα, θαβ) >
r3 + r4. Therefore 〈θαa, θαγ : θαβ〉 > r3, and so σβ(θβa, θβγ) ≤ r3 (by (B8)). Since
θβa = pβ, and r3 < L/2, we get ψβγ = pβ as claimed. Similarly, if ψαγ = qα, then
ψβγ = qβ. In other words, we have shown that (ψαγ, ψβγ) ∈ Dαβ.

Now suppose that σα(θαβ, pα) ≤ L/3. (Of course, this overlaps with the case
of the previous two paragraphs.) We claim that if x ∈ Λ, then φαx = pα or
φβx = qβ. For if φαx = qα, then σα(θαx, θαβ) ≥ (L/2) − (L/3) ≥ r3. If a ∈ A
is any point with θαa = qα, then 〈θαa, θαx : θαβ〉 ≥ r3, so by (B8), we see that
σβ(θβx, θβa) ≤ r3, so φβx = θβa = qβ. This proves the claim. In particular (as in
(S1) or (S3)), this shows that α 6≈ β in this case.

(The following will be applied in Section 9 withA replaced by the ∼-transversal,
B, but that makes no difference to the present discussion, so we retain the same
notation.)

Given β ≺ α, we write β � α if σα(θαβ,E(α)) ≥ L/4 and β ≪ α if
σα(θαβ,E(α)) ≥ L/3. Clearly, β≪ α implies β � α. (If we think of β ≺ α to
mean that β is “nested in” in α, then β � α means that it is “deeply nested”,
and β≪ α means that it is “very deeply nested”. This has an interpretation in
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terms of model spaces, as we discuss in Section 11.) Also note that if β ≺ α and
β ≈ α, then β≪ α.

Now these relations need not be transitive. However, β ≺ γ ≪ α implies
β � α. (Since, by (B4), we have σα(θαβ, θαγ) ≤ r1 ≤ L/12 = (L/3)− (L/4).)

Note that if β � α, then we have defined a pair of opposite corners, Dαβ, of
the square Ωαβ with the property that if γ t α and γ t β, then (ψαγ, ψβγ) ∈ Dαβ

(cf. Property (∗) of Section 3).

In summary, we have the following pentachotomy: given any α, β ∈ A, exactly
one of the relations α = β, α ⊥ β, α t β, α ≺ β or β ≺ α holds. The first three
relations are symmetric, and ≺ is transitive. Moreover, α ≺ β and β ⊥ γ implies
α ⊥ γ. We also have relations � and≪ with α≪ β ⇒ α� β ⇒ α ≺ β. Also,
α ≺ β≪ γ ⇒ α� γ.

We set α� β to mean α� β or β � α. From the above, we see that Property
(∗) of Section 3 is satisfied.

Write C for the set of α ∈ A such that there is no β ∈ A with β≪ α. Given
any α ∈ A \ C, there is some β ∈ C with β � α. (To see this, choose γ ∈ A with
γ≪ α. If γ ∈ C, set β = γ. If not, since A is finite, we can find some β ∈ C with
β ≺ γ. By the earlier observation, β � α.)

We now relate this to the discussion in Section 3. To this end, we set α� β to
mean that α 6= β and not α t β. In other words, α� β, means that one of α ⊥ β
or α ≺ β or β ≺ α holds. Setting λ = νκ (the constants from (B1) and (B2)), we
see that width(A,�) ≤ λ (as was assumed in Section 3).

Suppose α, β ∈ C with α ≈ β. We claim that α ⊥ β. To see this, note first
we cannot have α t β (by (S3)). Therefore, if not α ⊥ β, then we must have
either β ≺ α or α ≺ β. We suppose β ≺ α. In other words, we are in case
(S4) above. As noted there, β ≺ α and β ≈ α together imply β≪ α. But this
contradicts the definition of C, and so proves the claim. In particular, we see that
width(C,≈) ≤ width(C,⊥) ≤ ν, by (B1).

Next, we investigate properties of the map, φ : Λ −→ Ω(A).
To this end, we set A(x) = {α ∈ A | σα(θαx, φαx) ≥ L/6} for x ∈ Λ. In other

words, θαx is at least L/6 away from E(α) = ∂I(α). If α, β ∈ A(x) are distinct,
then we must have α � β. (Otherwise α t β, so by (S3) above, after swapping
α and β, we can assume that σα(θαx, ψαβ) < L/6 so φαx = ψαβ, contradicting
α ∈ A(x).) Since width(A,�) ≤ λ, it follows that |A(x)| ≤ λ.

If x, y ∈ Λ, set A(x, y) = {α ∈ A | φαx 6= φαy}. From the definition of the l1

metric, dΩ(A), on Ω(A), we see that dΩ(A)(φx, φy) = |A(x, y)|.
We claim that φ is uniformly coarsely lipschitz. Since Λ is a geodesic space, it’s

enough to bound dΩ(A)(φx, φy) in terms of ρ(x, y). Suppose that ρ(x, y) is less
than some fixed constant. Since θα is coarsely lipschitz, this bounds σα(θαx, θαy).
We assume that L is at least 6 times this bound. If α ∈ A(x, y), then φαx 6=
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φβx, so at least one of σα(φαx, θαx) or σα(φαy, θαy) is at least L/3. In other
words, A(x, y) ⊆ A(x) ∪ A(y), so |A(x, y)| ≤ |A(x) ∪ A(y)| ≤ 2λ. We see that
dΩ(A)(φx, φy) = |A(x, y)| ≤ 2λ is bounded as required.

We next claim that φ is a “coarse embedding” (or “uniform embedding”). That
is, for any x, y ∈ Λ, ρ(x, y) is bounded above as a function of dΩ(A)(φx, φy). Now
for any X ∈ X , σX(x, y) is bounded above in terms of the number of α ∈ A(X)
for which φαx 6= φαy, that is to say, |A(X) ∩ A(x, y)|. This in turn is at most
dΩ(A)(φx, φy) hence bounded. By (B7), this bounds ρ(x, y) as required.

Again provided that L is large enough, we claim that φ is a quasimorphism. In
other words, there is a bound on dΩ(A)(φµ(x, y, z), µΩ(A)(φx, φy, φz)) for x, y, z ∈
Λ. We write m = µ(x, y, z). Write µα for the median on I(α). By (B10),
σX(θXm,µX(θXx, θXy, θXz)) is bounded for all X ∈ X , and so in particular,
for X = X(α). Therefore, σα(θαm,µα(θαx, θαy, θαz)) ≤ L0, where L0 is some
fixed constant. We assume that L > 6L0. Write A(x, y, z) = {α ∈ A | φαm 6=
µα(φαx, φαy, φαz)}, so that dΩ(A)(θαm,µΩ(A)(φx, φy, φz)) = |A(x, y, z)|. If α ∈
A(x, y, z), then at least one of θαx, θαy, θαz lies at least L0 from E(α). (To see
this, note that without loss of generality φαx = φαy = µα(φαx, φαy, φαz), and so
if σα(φαx, θαx), σα(θαy, φαy) ≤ L0, then σα(θαm,φαm) ≤ 2L0, so φαm = φαx =
φαy.) In other words, A(x, y, z) ⊆ A(x)∪A(y)∪A(z) and so |A(x, y, z)| ≤ 3λ as
required.

In summary we have shown the following lemma.
Let Λ be a geodesic space satisfying (B1)–(B10). Let A ⊆ Λ with |A| ≤ n <∞.

Let H = H(A) be its coarse hull. Let L be the constant used to define the sets,
A, Ω(A) etc. earlier in this section.

Lemma 8.1. Provided L is chosen large enough in relation to the parameters of
the hypotheses, the map φ : H −→ Ω(A) is coarsely lipschitz, a coarse embedding,
and a median quasimorphism, where all the constants of the conclusion depend
only on the parameters of the hypotheses.

Of course, we could also take H = N(H(A); k) for any fixed k ≥ 0. In fact, we
can choose k so that H is intrinsically geodesic, and quasi-isometrically embedded
in Λ, as discussed that the end of Section 8.

This will be the starting point of the proof of Theorem 1.3 in the next section.

9. Proofs of the main results

In this section we assemble the earlier constructions to give a proof of Theorem
1.3. We will see that Theorems 1.1 and 1.2 follow easily from this.

Let (Λ, ρ) satisfy (B1)–(B10) of Section 7. Implicit in what follows is the as-
sumption that all constants involved depend ultimately only on those introduced
in the hypotheses.

Proof of Theorem 1.3. Suppose that A ⊆ Λ with |A| ≤ n < ∞, and let H(A)
be its coarse hull as defined in Section 6. We want to construct a CAT(0) cube
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complex, ∆, and a map f : ∆ −→ Λ satisfying the conclusion of Theorem 1.3. In
particular, f will be a quasi-isometric embedding with hd(f(∆), H(A)) bounded.

We have already noted in Section 6 that, for some fixed k0 ≥ 0, the set H =
N(H(A); k0) is intrinsically geodesic, and the inclusion of H into Λ is a quasi-
isometric embedding. We can therefore equivalently define a map in the opposite
direction, namely a quasi-isometry from H to a cube complex, ∆.

We will do this in a series of steps. We will start with a map from H to a cube
Ω(A). We then postcompose with projection to smaller cubes, first to Ω(B) and
then to Ω(C). We finally take a certain subcomplex, ∆, of ∆(Ω(C)) containing
the image of H.

To begin this procedure, let A, Ω(A) and φ : H −→ Ω(A) be as constructed
in Section 8. Then φA ⊆ Ω(A) is filling. Moreover, by Lemma 8.1, φ is a coarse
embedding and a median quasimorphism. In particular, φH is k1-connected for
some fixed k1 ≥ 0. Let ∼ be the equivalence relation on A defined in Section
2, and let B ⊆ A be a ∼-transversal. Let φ1 : H −→ Ω(B) be the composition
of φ with the projection Ω(A) −→ Ω(B). Since the latter map is a median
homomorphism, φ1 is also a median quasimorphism. Moreover, φ1H ⊆ Ω(B) is
filling. Since width(φ1H,∼) ≤ k1, the projection from Ω(A) to Ω(B) contracts
distances by at most some fixed factor. Therefore, φ1 is also a coarse embedding.

Now write M = 〈φ1H〉 ⊆ Ω(B) for the median algebra generated by φ1H.
By Lemma 2.2, M is 1-connected. Therefore, we can identify ∆(M) as the full
subcomplex of ∆(Ω(B)) with vertex set M . The inclusion of ∆(M) into ∆(Ω(B))
isometric with respect to the respective l1 metrics.

We now have relations on B ⊆ A as defined in Section 3. Let C ⊆ B be as
described there (with B replacing A).

We need to check hypothesis (∗) of Section 3. For this, note that α � β was
defined in Section 8 to mean that α � β or β � α (so that X(α) ≺ X(β) or
X(β) ≺ X(α)). In this case, we constructed Dαβ ⊆ Ωαβ and showed there that
(∗) is satisfied.

Let φ2 : H −→ Ω(C) be the map φ1 postcomposed with the projection map
from Ω(B) to Ω(C). Let Π = 〈φ2H〉 ⊆ Ω(C). This is also the image of M under the
projection to Ω(C). By the construction of C, for any β ∈ B, there is some γ ∈ C
with γ � β, hence γ � β. Therefore the hypotheses of Lemma 3.2 and Corollary
3.3 are satisfied. By Corollary 3.3 and the subsequent remark, the quotient map
from ∆(M) to ∆(Π) is a quasi-isometry. Therefore, φ2 is also a coarse embedding.
We observed in Section 8 that width(C,≈) ≤ width(C,⊥) ≤ ν, where ≈ is the
relation on C defined by M . Therefore, the dimension of ∆(Π) is at most ν.
(Obtaining this dimension bound is the whole point of projecting everything to
Ω(C). The current paragraph can be ignored if we don’t require this. Instead, we
just recall from Section 3 that dim(∆(M)) ≤ width(B,≈) ≤ λ = νκ is bounded.)
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Now since φ2 is a quasimorphism, we see that the hypotheses of Proposition
4.1 are satisfied with F = φ2H. Therefore, φ2H is cobounded in ∆ = ∆(Π). It
follows that φ2 : H −→ ∆ is a quasi-isometry.

We now set f to be a quasi-inverse of φ2. This satisfies the conclusion of
Theorem 1.3, except that φ2|A might not be injective. Nevertheless ρ(a, f(φ2(a)))
is bounded for all a ∈ A. One can fix this in a number of simple (if artificial)
ways. For example, let A0 be a copy of A, and adjoin to ∆ a free edge from each
b ∈ A0 to φ2(b) in ∆. We then adjust f so that it maps each such edge to b. �

Proof of Theorem 1.1. First, we show the existence of monotone paths. Let a, b ∈
Λ, and let [a, b] ⊆ Λ be the coarse interval. Up to bounded Hausdorff distance,
this agrees with H({a, b}), and so Theorem 1.3 gives a quasi-isometric embedding
f : ∆ −→ Λ with hd(f(∆), [a, b]) bounded in terms of the parameters of (B1)–
(B10). Let a0, b0 ∈ ∆ be points with f(a0) = a and f(b0) = b.

Set t0 = d∆(a0, b0), and let ξ : [0, t0] −→ ∆ be any l1 geodesic with ξ(0) = a0

and ξ(t0) = b0. (For example, take any geodesic from a0 to b0 in the 1-skeleton of
∆.) This is a median homomorphism with respect to the standard median on the
real interval [0, t0]. Let ζ = f ◦ ξ : [0, t0] −→ [a, b] ⊆ Λ. This is a uniform median
quasimorphism, as required by the first statement of Theorem 1.1.

It remains to show that monotone paths can be reparameterised as quasi-
geodesics. Let ζ : I −→ Λ be any monotone path from a to b, where I ⊆ R
is an interval. Up to bounded distance, we can assume that ζ(I) ⊆ [a, b]. After
postcomposing with the inverse of the quasi-isometry given by Theorem 1.3, we
get a map ξ : I −→ ∆ which is also monotone. We are therefore reduced to
considering monotone paths in cube complexes. In this case, such a path will be
a bounded distance from a geodesic in the 1-skeleton of ∆. �

Proof of Theorem 1.2. Although this can be viewed as a direct consequence of
Theorem 1.3, we can simplify the argument by assuming that, in the construction
of Section 7, each tree T (X) is a geodesic from θXa to θXb. Therefore, in the
notation used at the end of Section 7, we have |A(X) ∩ A(a, b)| = bσX(a, b)/Lc.
Provided we assume that r ≥ L, then {{σX(a, b)}}r agrees with this up to linear
bounds. Now d∆(a0, b0) = |A(a, b)| =

∑
X∈X |A(X)∩A(a, b)|. Moreover, since f is

a quasi-isometric embedding, d∆(a0, b0) agrees with ρ(a, b) to within linear bounds.
In other other words, we have shown that ρ(a, b) and

∑
X∈X{{σX(a, b)}}r agree

to within linear bounds depending on r and the parameters of (B1)–(B10). �

It remains to prove Theorem 1.4. First we need to give a more formal statement
of the result.

There are several equivalent ways of formulating the notion of “coarse bounded
geometry”. Here we will take it to mean that Λ is quasi-isometric to a connected
graph of bounded valence and with unit edge-lengths. Since our constructions
are quasi-isometry invariant, we may as well assume that Λ is such a graph. We
write V for its vertex set. Up to bounded distance, we need only consider subsets
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which are subgraphs of Λ. We say that a collection, G, of subgraphs of Λ has
“at most uniform polynomial growth of degree ν”, if there is a polynomial, p,
of degree at most ν such that for all G ∈ G, all x ∈ V and all n ∈ N we have
|G ∩ V ∩N(x;n)| ≤ p(n).

Here will show that, for the collection of intervals in Λ, we can choose such a
polynomial to depend only on the parameters of the hypotheses.

Proof of Theorem 1.4. Let a, b ∈ Λ. Let ∆ be as given by Theorem 1.3. Since
it is intrinsically the interval between a and b, it follows via Dilworth’s Lemma
[Di] that ∆ isometrically embeds into Rν in the l1 metric. (This arises from the
fact that “walls” of ∆ admit a “ν-colouring” — see for example, [Bo1, Bo2].)
The statement now follows easily from the fact that Rν has polynomial growth of
degree ν. �

We remark polynomial growth of intervals is a key condition in the criterion for
rapid decay given in [ChatR]. See [BeM], [Bo2] and [NWZ2] for further discussion
in the present context.

10. Mapping class groups and Teichmüller space

We briefly describe how these results apply to the mapping class group and
Teichmüller space.

We begin with the mapping class group. Here the key definitions, and many of
the results, can be found in [MaM]. Some further discussion of this case can be
found in [BeM, BeKMM, Bo3].

Let Σ be a compact orientable surface of complexity ξ = ξ(Σ) ≥ 2. (That is, the
number of boundary components plus 3 times the genus minus 3.) Let Λ = M(Σ)
be the marking graph. (There are several ways of formulating this, but they are
all equivalent up to equivariant quasi-isometry. Alternatively, we could take it
to be the Cayley graph of the mapping class group with respect to any finite
generating set.) Let X be the set of subsurface π1-injective subsurfaces defined
up to homotopy, disallowing discs, 3-holed spheres and peripheral annuli. In this
context, the relations ≺ and ⊥ refer respectively to inclusion and disjointness up
to homotopy. (For clarification, see [Bo1, Bo4] or Section 11 here).

Given X ∈ X , let Θ(X) = G(X) be the curve graph of X. (This needs to
appropriately defined when X is an annulus, and in such a case, it is quasi-
isometric to R.) Let θX : M(Σ) −→ G(X) be subsurface projection (well defined
up to bounded distance). In this case, all of the properties (B1)–(B10) of Section
7 are satisfied. In (B1) and (B2) we can take ν = κ = ξ.

In this context, the existence of median was established in [BeM], and the fact
that M(Σ) is a coarse median space of rank ξ follows from [Bo1]. Theorem 1.1
follows from the resolution of “hierarchies”, and Theorem 1.2 is the “distance for-
mula”, both established in [MaM]. A version of Proposition 1.4 appears in [BeM].
A version of the coarse hull construction in this context is given in [BeKMM] —
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in fact, their “Σ-hulls” are essentially the same as the sets H ′′r (A) described in
Section 7 here. In this case, Theorem 1.3 follows from the account in [BeHS3].

Remark. It should be pointed out that the indexing set corresponding to X used
in [BeHS2, BeHS3] (there denoted S) is larger than ours in that it includes dis-
connected subsurfaces. This is necessary in order to satisfy their “orthogonality”
axiom. However, if X is disconnected, then Θ(X) has bounded diameter. In
particular, the corresponding terms do not feature in the distance formula.

The case of Weil-Petersson space, W(Σ), that is Teichmüller space equipped
with the Weil-Petersson metric, is similar. In this case, we simply omit all annular
subsurfaces from X . We take ν = b(ξ+1)/2c. The distance formula for W(Σ) was
also described in [MaM]. (In the account in [Bo5] we included annular subsurfaces
in X , but defined G(X) to be a singleton in that case. This amounts to the same
thing.)

If Λ = T(Σ) is Teichmüller space in the Teichmüller metric, then X is the same
as for M(Σ) and ν = ξ. However, we now need to modify Θ(X) when X is an
annulus. In this case, it is quasi-isometric to a horodisc in the hyperbolic plane,
and we can think of G(X) as being identified with the bounding horocircle. A
distance formula in this case was proven in [Ra], and another proof can be found
in [Du]. In particular, if a, b ∈ T(Σ) lie in the thick part of Teichmüller space, then
the distance formula is the same as that for M(Σ) except that we replace each
summand σG(X)(a, b) by log(σG(X)(a, b)) when X is an annulus. (Here of course,
σG(X) denotes distance in G(X).) This stems from the fact that a horocircle is
exponentially distorted in the hyperbolic plane: therefore to measure distances in
the modified curve graph of X we need to introduce a logarithm.

Remark. We remark that the relevant description of T(Σ) makes use of the
combinatorial model described in [Du], which in turn makes use of the distance
formula to show that it is quasi-isometric. Therefore the result given here cannot
really be considered an independent proof of this formula. It is natural to ask
if one can show that the combinatorial model is quasi-isometric to T(Σ) without
explicit use of this formula.

11. The relation to model spaces

In this section, we motivate various constructions of the paper in terms of
“model spaces” which were introduced in [Mi] as a key step in proof the End-
ing Lamination Conjecture by Brock, Canary and Minsky. These ideas can be
formulated in a number of essentially equivalent ways.

For simplicity we will focus on the case where Λ = P(Σ) is the pants graph of a
compact surface, Σ. (This is quasi-isometric to Weil-Petersson space, W(Σ), [Br].
A very similar discussion would apply to the mapping class group of Σ, though
this is complicated by having to deal also with projection to annular subsurfaces.)
More about model spaces can be found in [MaM, Mi, Bo7]. Our main focus here
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will be to give an informal description of an interval in P(Σ), and explain why it is
quasi-isometric to a CAT(0) cube complex. This section is logically independent
of previous sections. We will use similar notation, though the interpretations are
a little different. One can retrospectively see that they are compatible with the
earlier definitions.

11.1. A construction of cube complexes.

Before introducing surfaces and model spaces, we give an abstract construction
of cube complexes. This will serve to motivate the relations � and � which have
been used throughout this paper.

Let A be a finite set. To each α ∈ A, we associate a two-point median algebra,
E(α) = {e−(α), e+(α)}. Let Ω =

∏
α∈AE(α). This is a cube with opposite

corners, c− = (e−(α))α and c+ = (e+(α))α. Suppose we have relations, � and
<, on A, with the property that for all α, β ∈ A, exactly one of the relations
α = β, α� β, α < β or β < α holds. Moreover, we assume that the relation < is
transitive. Note that � is symmetric. We write α t β to mean α < β or β < α.
(Note that < has a different interpretation from ≺, as we shall see.)

Suppose v = (vα)α ∈ Ω. We can think of v as determining a direction on each
α ∈ A, which is “positive” if vα = e+(α) and “negative” if vβ = e−(α). Let
M ⊆ Ω be the set of v ∈ Ω with the property that if α < β ∈ A, then either
vα = e+(α) or vβ = e−(β) (or both). One readily checks that M is a median
subalgebra of Ω. Moreover, M is 1-connected. (To see this, let v, w ∈ M . Let
A(v, w) = {α ∈ A | vα 6= wα}. We proceed by induction on |A(v, w)|. Let
α ∈ A(v, w) be minimal with respect to <. We can suppose that vα = e−(α).
We reverse the direction on vα to give v′ ∈ M adjacent to v. Replacing v by
v′, this reduces |A(v, w)| and we continue inductively.) It follows that the full
subcomplex of Ω with vertex set M is intrinsically CAT(0), and we can identify
it with ∆(M). Note that if two walls of M corresponding to α and β cross
(that is there is a square in ∆(M) with these labels) then α � β. It follows that
dim(∆(M)) = rank(M) ≤ width(A,�).

One situation in which such a set-up arises occurs when we have associated
a real interval to each index α in A as we now describe. Suppose J ⊆ R is a
non-empty open interval. We write J = (∂−J, ∂+J) where ∂−J < ∂+J . Write
∂J = {∂−J, ∂+J}. If J, J ′ are intervals we write J < J ′ to mean ∂+J ≤ ∂−J

′.
Clearly this implies that J ∩ J ′ = ∅. Now suppose that (J(α))α is a family of
open intervals indexed by A. We set E(α) = ∂J(α) and define Ω as above. We set
e±(α) = ∂±J(α). Suppose that α < β implies J(α) < J(β). In this case, we write
ψαβ = e+(β) and ψβα = e−(α). We can think of a vertex v ∈ Ω as determining a
direction on each interval J(α) in the sense defined above. By definition, v lies in
M if, whenever α t β, the directions on J(α) and J(β) do not both point away
from each other. If α t β, then J(α)∩J(β) 6= ∅. Note that in this setting, α�β
means that J(α) and J(β) are distinct and intersect.
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We write Dαβ = {(e−(α), e−(β)), (e+(α), e+(β))} ⊆ Ωαβ ⊆ E(α) × E(β). It
is easily checked that if γ ∈ A with γ t α and γ t β, then ψγα = ψγβ and
(ψαγ, ψβγ) ∈ Dαβ. If we have any symmetric relation, �, on A with the property
that α� β implies α� β, then this gives us property (∗) of Section 3.

We can realise ∆(Ω) as
∏

α∈A J̄(α). Given t ∈ R, let ζα(t) be the nearest point
of J̄(α) to t, and let ζ(t) = (ζα(t))α ∈ ∆(Ω). If J̄ ⊆ R is any compact interval
containing

⋃
α∈A J̄(α), then we get a continuous monotone path, ζ : J̄ −→ ∆(Ω),

connecting the opposite corners, c− and c+, of ∆(Ω). Note that the image of ζ
lies in the subcomplex, ∆(M) ⊆ ∆(Ω), described above.

11.2. Subsurfaces and bands.

Let S be a finite type orientable surface. By this we mean that it is the interior
of a compact surface, S̄, with (possibly empty) boundary, ∂S̄. (We should note
that most accounts elsewhere refer directly to compact surfaces. Here we will deal
with open surfaces and subsurfaces. This will simplify notation and terminology
for the purposes of our discussion. To be compatible with other accounts, one
may need to take closures or metric completions of these surfaces. In particular
S̄ corresponds to the compact surface, Σ, of Section 10.) We will assume that the
complexity, ξ = ξ(S), of S is at least 2. Let G(S) = G(S̄) be the curve graph of
S. Its vertex set, G0(S), consists of curves which we can realise simultaneously
so that any pair have minimal intersection. (For example, take closed geodesics
in any complete finite-area hyperbolic structure on S.) A multicurve, a ⊆ S, is a
non-empty disjoint union of such curves. It is complete (or a pants decomposition)
if each component of S \ a is a 3-holed sphere. (This is equivalent to saying that
a has exactly ξ components.)

By a subsurface of S, we mean an open connected subset, X ⊆ S, whose
topological boundary, ∂X ⊆ S, is either empty (if X = S) or a multicurve. Note
that X is intrinsically a finite-type surface, and there is a natural map from X̄
to S̄. Each component of ∂X̄ maps either to a component of ∂S̄ or to a curve
in ∂X ⊆ S. It is possible that two components of ∂X̄ might get identified to a
single curve in ∂X. Note that a subsurface of X is also a subsurface of S.

We write X for the set of subsurfaces of S which are not 3-holed spheres.
(Here we are not including annuli in X , contrary to the notation used in Section
10 here or in [Bo3, Bo5]. Moreover, we have chosen preferred realisations of
these subsurfaces. As we have noted, the subsurfaces here are open sets.) Given
X, Y ∈ X , we write X ≺ Y to mean X ⊆ Y and X 6= Y . We write X ⊥ Y to
mean X ∩ Y = ∅. We write X t Y to mean none of X = Y , X ≺ Y , Y ≺ X or
X ⊥ Y . This gives the usual pentachotomy on X .

We fix an open interval, J(S) ⊆ R, and write Ψ = S × J(S). We think of the
first and last factors as being “horizontal” and “vertical” respectively. A band in
Ψ is an (open) subset, B ⊆ Ψ, of the form X×J , where X ∈ X and J ⊆ J(S) is an
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open interval. We write ∂±B = X×∂±J , ∂HB = ∂−B∪∂+B and ∂VB = ∂X×J .
Note that Ψ is itself a band (with ∂V Ψ = ∅).

Let A be a finite indexing set, and let [α 7→ X(α)] : A −→ X be a map. Given
X ∈ X , let A(X) = {α ∈ A | X(α) = X}. Thus A =

⊔
X∈X A(X) is a partition

of A into subsets A(X) ⊆ A, all but finitely many of which are empty. Let
α, β ∈ A. If X(α) = X(β), we write α t β to mean that α 6= β. Otherwise, we
write α t β, α ⊥ β and α ≺ β to mean respectively, X(α) t X(β), X(α) ⊥ X(β)
and X(α) ≺ X(β). (This accords with the definitions in Section 8.)

We suppose that to each α ∈ A, we have associated an open interval J(α) ⊆
J(S). Given X ∈ X , we suppose that the intervals J(α) for α ∈ A(X) are disjoint,
and that the union of their closures,

⋃
α∈X(α) J̄(α), is a closed interval J̄(X), with

interior, J(X) ⊆ J(S). We write B(α) = X × J(α) and B(X) = X × J(X).
These are bands in Ψ. We say that the family of bands, {B(α)}α∈A is nested if
for all α, β ∈ A, one of B(α) ⊆ B(β), B(β) ⊆ B(α) or B(α) ∩B(β) = ∅ holds.

We write α� β to mean α 6= β and not α t β. In this case we write α� β to
mean B(α) ⊆ B(β) (so that J(α) ⊆ J(β)). This implies α ≺ β. We write α � β
to mean α 6= β and either α� β or β � α. Note that α� β implies α� β. This
is all consistent with the assumptions we made in Subsection 11.1.

If α t β, we define ψαβ and ψβα as in Subsection 11.1. Note that, exactly as
before, Property (∗) of Section 3 now holds.

We now write α < β to mean that α t β and J(α) < J(β). Thus, α t β is
equivalent to (α < β or β < α). In general < might not be transitive. However,
in the cases of interest to us later, it will be. (Note that for transitivity, it is
sufficient that α < β < γ should imply that α t γ.) If < is indeed transitive,
then we can construct the complex, ∆(M) ⊆ ∆(Ω) as above.

11.3. The pants graph.

We now relate this to the pants graph. Let P(S) be the pants graph of S.
Its vertex set P0(S) is the set of complete multicurves in S. Two multicurves,
a, b ∈ P0(S) are deemed adjacent if they can be written in the form a = c t d
and b = c t e where d, e are components of a, b respectively, and moreover that
d, e have minimal possible intersection number (1 or 2) in the component of S \ c
containing c∪d (namely a 1-holed torus or a 4-holed sphere). We write c = c(a, b).
Note that if X ∈ X , we can define the pants graph P(X) intrinsically to X. (If
X is complexity-1, then in the above, c will be empty.)

Let a0, a1, . . . , an be the vertex set of a path, a in P(S). Let ci = c(ai−1, ai).
This gives us a sequence of multicurves, a0, c1, a1, c2, a2, . . . , an−1, cn, an, adding or
deleting a component at each step. Let t0 < u0 < t1 < u1 < · · · < un−1 < tn <
un ∈ R. Let J(S) = (t0, un) and Ψ = S × J(S). Let W =

⋃n
i=0(ai × [ti, ui]) ∪⋃n

i=1(ci × [ui−1, ti]) ⊆ S̄ × J̄(S). Thus, W is a disjoint union of “vertical” annuli.
It is well defined up to vertical reparameterisation (that is, a map of the form
[(x, t) 7→ (x, f(t))], where f is an orientation preserving self-homeomorphism of
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J(S)). Note that W also determines the path a in P(S). We can view a as being
parameterised by J(S). More precisely, we set a(t) = ai if t ∈ [ti, ti+1), where
tn+1 = un.

We say that a band B = X × J is compatible with a (or with W ) if ∂VB ⊆ W
and if W ∩ ∂±B is a complete multicurve in ∂±B, which we can identify with an
element a± ∈ P(X), on identifying ∂±B with X. We say that a family of bands,
(B(α))α∈A, is compatible with W if it is nested, and B(α) is compatible with W
for all α ∈ A. Note that we get multicurves, a±(α), in X(α). Moreover, W ∩B(α)
determines a path, a(α), from a−(α) to a+(α) in P(X(α)).

So far, the discussion has been combinatorial. We now start on coarse geometry.
Suppose now that a is a (coarsely) monotone path in P(S). By definition, this

means that if i < j < k, then µ(ai, aj, ak) is a bounded distance from aj. Here µ
is the median on P(S). By the characterising property of µ (given as (B10) here),
if X ∈ X , then θXa = (θXai)i is a monotone path in the curve graph, G(X),
where θX : P(S) −→ G(X) is subsurface projection. Since G(X) is hyperbolic,
θXa fellow travels a geodesic, I(X), from θXa− to θXa+. In other words, up to
reparametisation, the paths remain a bounded distance apart.

Suppose that (B(α))α∈A is a compatible band system in Ψ. Given α ∈ A(X),
we have noted that this defines a path, a(α) in P(X), which projects to a path in
G(X) (defined up to bounded distance). By the definition of subsurface projec-
tion, θXa(α) agrees with a subpath of θXa, and therefore fellow travels a subpath,
I(α) ⊆ I(X). We can think of I(α) as being parameterised by the interval J(α).
Up to bounded distance, we can take this parameterisation to be a homeomor-
phism. In particular, we can identify ∂I(α) with E(α) = ∂J(α).

We now introduce the model space [Mi]. An account using the present termi-
nology can be found in [Bo6]. By the general construction of model spaces, we can
find a band system, (B(X))X∈X with the following property. Suppose X ∈ X . If
σX(θXa−, θXa+) is at most some fixed bound, then B(X) = ∅. Otherwise, B(X)
is a band with a±(X) = θXa±, so that I(X) is a geodesic from θXa− to θXa+.
(This corresponds to the tree, T (X), described in Section 8 with A = {a−, a+}.)
We can subdivide I(X) into intervals I(α) indexed by some set A(X), so that each
I(X) has length approximately equal to some sufficiently large constant, L ≥ 0.
Writing A =

⊔
X∈X A(X), we get a band system (B(α))α∈A compatible with a.

A feature of the construction of the band system for a monotone path is that the
relation, <, (defined via the intervals J(α) as in Subsection 11.2) is transitive.

Let ∆ =
∏

α∈A J̄(α). We can identify ∆ with ∆(Ω) =
∏

α∈A I(α), via the pa-
rameterisations, J̄(α) −→ I(α). As we discussed in Subsection 11.1, a monotone
path, ζ : J̄(S) −→ ∆ between opposite corners of ∆. Up to bounded distance,
this can be described as follows. Given x ∈ P(S) and X ∈ X , we can suppose,
up to bounded distance, that θXx ∈ I(X). If α ∈ A(X), let ζ ′α(x) be the nearest
point in the interval I(α) ⊆ I(X). Let ζ ′(x) = (ζ ′α(x))α ∈ ∆. Note that our
monotone path is parameterised by a map, J(S) −→ P(S). Postcomposing with
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ζ gives us a map J(S) −→ ∆. One can check from the various definitions that ζ
and ζ ′ agree up to bounded distance.

We would like to understand the coarse interval, [a−, a+] ⊆ P(S). We have
seen that, up to bounded distance, this is the union of all monotone paths from
a− to a+. Note that the family of surfaces (X(α))α is determined (from a− and
a+) by subsurface projection. Therefore, changing the monotone path does not
affect this. However, the family of intervals, (J(α))α may change. We can think
of this as sliding the bands B(α) in the vertical direction in Ψ. In general, the
bands may move past or through each other (if the base surfaces are disjoint
or nested, respectively). However, the underlying topological structure does not
change insofar as the relation < on A remains constant. (If α t β, then we
cannot push B(α) past B(β).) Therefore all the monotone paths, ζ, lie in the
same subcomplex, ∆(M) ⊆ ∆, constructed above. Note that this has bounded
dimension. In fact, on projecting to ∆(C), it has dimension bounded by ν =
b(ξ + 1)/2c. This loosely explains why [a−, a+] is quasi-isometric to a CAT(0)
cube complex of at most this dimension.

To make this more precise, we needed proper bookkeeping of constants. In
particular, we used to relations, α � β and α≪ β which might be interpreted
to mean respectively that B(α) is “deeply nested” in B(β) and that B(α) is “very
deeply nested” in B(β). In this way, α≪ β ⇒ α � β ⇒ α ≺ β. Of course,
our proofs made no reference to models or bands. Instead, these properties were
described entirely in terms of subsurface projections.

In this section, we have restricted attention to the case where A = {a−, a+} is a
2-point set. The formal description using subsurface projections generalises fairly
readily to any finite set A, though the interpretation in terms of models does not
generalise as cleanly.
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