QUASIFLATS IN COARSE MEDIAN SPACES
BRIAN H. BOWDITCH

ABSTRACT. We describe the geometry of a top-dimensional quasiflat (that is,
a quasi-isometrically embedded copy of euclidean space of maximal possible di-
mension) in a coarse median space of finite rank. We show that such a quasiflat
is a bounded Hausdorff distance from a finite union of subsets, each of which
has a simple structure. In particular, each of these subsets is the image of a di-
rect product of real intervals or rays under a quasi-isometric embedding which
preserves medians up to bounded distance. As one consequence, we recover
the result of Behrstock, Hagen and Sisto, regarding quasiflats in asymphoric
hierarchically hyperbolic spaces. In the case of a median metric space, one
can strengthen the conclusion. In particular, we recover the result of Huang
regarding quasiflats in CAT(0) cube complexes, namely that a top-dimensional
quasiflat is a finite Hausdorff distance from a finite union of orthants. In fact,
we obtain some strengthening of both these results in the form of uniformity
of various parameters involved. Examples of coarse median spaces include the
mapping class groups of surfaces, as well as Teichmiiller space in either the
Teichmiiller or the Weil-Petersson metric.

1. INTRODUCTION

In this paper, we study quasiflats in coarse median spaces. A “quasiflat” is a
quasi-isometrically embedded copy of euclidean space, R”, which we will assume
here to have maximal possible dimension, v. A “quasi-isometric embedding” is a
map which preserves distances to within linear bounds. The notion of a “coarse
median space” was introduced in [Bol], and applies to various naturally occurring
spaces, such as the mapping class groups and Teichmiiller space. Quasiflats have
proven to be a useful tool in understanding the large-scale geometry of such spaces.

The main result here (Theorem 1.1) tells us that a quasiflat in a coarse median
space, A, lies a bounded distance from a bounded finite number of “coarse panels”,
that is, quasi-isometrically embedded rectilinear subsets of R”, which preserve the
median up to bounded distance. Moreover, the panels fit together in a natural way
to give a “panel complex” also quasi-isometrically embedded in A. The constants
of the conclusion are all “uniform” in the sense that they depend only on those of
the hypotheses. In addition, one can also say that the quasiflat is a finite Hausdorff
distance from a bounded number of coarse orthants, though the distance bound
may no longer be uniform.
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If the coarse median space is a connected median metric space, one can strengthen
the conclusion (Theorem 1.3). In particular, this applies to CAT(0) cube com-
plexes (Corollary 1.4), and we recover the result of Huang [H| regarding quasifiats
in such spaces.

All “hierarchically hyperbolic spaces” in the sense of [BeHS1] are coarse median.
Therefore, from Theorem 1.2, we recover the main result of [BeHS3] regarding
quasiflats in asymphoric hierarchically hyperbolic spaces. To make sense of this
statement, one needs to assume in addition that the coarse median space comes
equipped with a family of projection maps to hyperbolic spaces, satisfying certain
conditions which we discuss in Sections 13 and 14.

Related results have been obtained earlier in other contexts. Indeed many of
the ideas have their origins in [KlLe| and [KaKL]. We will also make use of some
ideas from [BeHS3], notably in Section 10 here, though overall, our argument is
rather different. Some analogous recent results about quasiflats in CAT(0) spaces
can be found in [KlLa].

We give more precise statements of these results as follows. Implicit in the
statements are various constants or “parameters”. In general, the parameters of
the conclusion depend on those of the hypotheses, in a manner we will specify.

To begin, we recall the notion of a coarse median space. Briefly, it is a geodesic
metric space, (A, p), equipped with a ternary “median” operation, pu : A3 — A,
satisfying certain conditions. The key point is that on finite subsets, it behaves
up to bounded distance like the standard median operation on the vertex set of
a finite CAT(0) cube complex (or equivalently a finite median algebra). It is said
to have “(coarse median) rank” at most v if we can always take the cube complex
to have dimension at most v. See Section 7 for a formal definition. It is shown in
[Bol] that if R™ quasi-isometrically embeds in A, then n < v.

One can equip R" with a natural median operation, namely the direct product
of the standard median in each of the R-factors: the median in R is the usual
betweenness operation. In this context, it is natural to equip R™ with the [* metric
(so that it is a median metric space, as discussed in Section 2). By a “panel” we
mean a subset of R™ which is a direct product of non-trivial closed connected
subsets of R in each of the factors. (It is generally convenient to assume that
no such factor is all of R.) We equip it with the induced median operation and
[' metric. An orthant is a panel isometric (and median isomorphic) to [0, 00)".
We speak of “n-panels” and “n-orthants” when we want to specify the dimension.
We refer to the lengths of the interval factors as the side-lengths of the panels.
Therefore, all side-lengths of an orthant are co.

Definition. A quasimorphism of a panel, P, is a map ¢ : P — A, which
respects medians up to bounded distance. It is a strong quasimorphism if it is
also a quasi-isometric embedding. (Note that we do not assume such maps to be
continuous.) A coarse panel in A is the image, ¢(P), of a panel under a strong
quasimorphism, ¢.
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One can define a face of a panel in the obvious way: choose a subset of the
factors, and replace each such factor by a point in its boundary in R.

Definition. A panel complex is a complete geodesic space which is a finite
union of subsets, called cells, where each cell is isometric to a panel in the induced
path metric, and where any two cells intersect, if at all, in a common face.

One can think of this as a cell complex, so that distinct cells have disjoint
interiors. After subdividing, there is no loss in supposing that the induced metric
on each cell is already a path metric.

Definition. An orthant complex is a panel complex with exactly one 0-cell.

In other words, all the cells are orthants, and we can think of the complex as a
cone with vertex at the O-cell.

The main result can be stated as follows. (We will give a more detailed discus-
sion in Section 11.)

Theorem 1.1. Let A be a coarse median space of rank v < oo, and let f : R¥ —
A be a quasi-isometric embedding. Then there is a panel complex, 2, which is
a finite union, Q = \J_, P, of v-panels P;, and a quasi-isometric embedding
¢ Q — A with $(Q) a bounded Hausdorff distance from f(R"). Also, for each i,
®|P; is a strong quasimorphism (so that ¢(P;) is a coarse v-panel). The parameters
of the coarse panels (i.e. the quasimorphism and quasi-isometry constants), the
number of panels, and the Hausdorff distance bound, each depend only on the
parameters of A and the quasi-isometry constants of f.

Moreover, if L > 0 then there is a subcollection, say Pi, ..., P, of the v-cells,
P;, of Q, all of whose side-lengths are at least L, such that f(R") is a bounded
Hausdorff distance from \J._, ¢(P;), where the distance bound now depends on L,
as well as the other parameters.

If A is proper (that is, complete and locally compact) then we can arrange that
the parameters of the panels (the quasi-isometry and quasimorphism constants of
the maps ¢|P;) as well as the quasi-isometry constant of ¢ in the first paragraph
depend only on the parameters of A (i.e. independently of f).

In the second paragraph of the theorem, we could take L to be larger than any
of the finite side-lengths in any of the panels, in which case, each P; for ¢ < ¢ is an
orthant. As an immediate consequence (taking L to be big enough) we see that a
quasiflat in A is a finite Hausdorff distance from the union of a bounded number
of coarse v-orthants in A. Of course, we lose control on the Hausdorff distance in
this case: we can only say that it is finite.

In fact, an elaboration of the argument gives the following:

Theorem 1.2. Let A be a coarse median space of rank v < oo, and let f :
RY — A be quasi-isometric embedding. Then there is an orthant complex, €,
bilipschitz equivalent to R”, and consisting of finite union Q = Ji_, P; of orthants,
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P, together with a quasi-isometic embedding, ¢ : Q@ — A, with ¢(2) a finite
Hausdorff distance from f(R"). Also, for each i, ¢|P; is a strong quasimorphism
(so that each ¢(P;) is a coarse v-orthant), where the parameters of the strong
quasimorphism depend only on those of A. The number, q, of orthants depends
only on the parameters of A and the quasi-isometry constants of f. (There is
no uniform control on the quasi-isometry parameters of ¢, nor the Hausdorff
distance. )

The additional information here is the bilipschtitz equivalence of {2 and R”. In
particular, they are homeomorphic. (This follows from Theorem 1.1 using Lemma
6.4.)

In the above results, our arguments will give a computable bound on p and ¢
and on the strong quasimorphism parameters of the panels. However they do not
give a means of computing the Hausdorff distance bound, since this relies on a
limiting argument.

Examples of coarse median spaces are connected median metric spaces. (See
Section 2 for a definition.) In this case, we can strengthen the conclusions so that
each panel is isometrically embedded into A by a median homomorphism. We can
summarise this as follows:

Theorem 1.3. Suppose that A is a connected median metric space of rank v,
and f : R — A is a quasi-isometric embedding. Then in the conclusions of
Theorems 1.1 and 1.2, we could take each ®; = ¢(P;) to be a closed conver subset
intrinsically isometric to a v-panel. (Though we cannot assume ¢ to be continuous

on €2.)

The notion of “convexity” is defined in Section 2. Theorem 1.3 will be proven
in Section 12.

We should note that the “rank” of a median metric space may be greater than
its rank as a coarse median space, so the hypotheses of Theorem 1.3 are stronger
in that regard.

Any CAT(0) cube complex has the structure of a median metric space, on
replacing the usual [? metric on each cube with the /' metric (see Section 3). In
the conclusion of Theorem 1.3 in this case, we can assume that each of the panels,
®;, is a subcomplex. (Just move them a bounded distance so that their corners
are O-cells of the complex.) As an immediate consequence, we deduce:

Corollary 1.4. Let A be a CAT(0) cube complex of dimension v, and let f :
R” — A be a quasi-isometric embedding. Then f(RY) is a bounded Hausdorff
distance from \J_, ®;, where each ®; is a convex subcomplex isometric to a direct
product of v connected subsets of R. It is also a finite Hausdorff distance from

1, ®;, for ¢ < p, where ®; is an orthant (a direct product of rays) for each
i < q. Here, p as well as the Hausdorff distance bound in the first statement are
bounded in terms of v and the parameters of f.
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In this context “convexity” of a subcomplex in the median sense is equivalent
to the usual geometric notion of convexity in the CAT(0) sense. (Though for an
arbitrary subset of A, CAT(0) convexity is weaker.)

Again, in Theorem 1.3 and Corollary 1.4, the orthants fit together to form an
orthant complex, €2, homeomorphic to R”. The inclusions of the ®; into A combine
to give a quasi-isometry of 2 into A. (Though again, we cannot in general assume
this to be continuous.)

The second statement of Corollary 1.4 recovers the result of Huang [H], though
our arguments are quite different. (This result of [H] is used in the proof of the
main result of [BeHS3|, though we derive it here independently.)

Clearly an example of a quasiflat would be a strong quasimorphism of R into
A. Indeed, in some cases, all quasiflats arise in this way up to quasi-isometric
reparameterisation. (For example, in the case where quasiflats are “isolated”, and
indeed in the case of R itself.) However, this is certainly not true in general. A
quasiflat may “fold up”, but only in a way that is strongly controlled.

As a simple example, let T" = v, U 75 U 3 be the tripod consisting of three
rays, v; = [0, 00), joined at the basepoint, 0. This has the structure of a CAT(0)
cube complex (subdividing the rays in each factor into unit intervals). Let F' =
Uizj(vi x7;) €T xT. Then F is a quasiflat, and is the union of the 6 quadrants
Vi X ; for i # j.

Coarse median spaces often come equipped with a family of “projection maps”
to hyperbolic spaces. Under certain assumptions, discussed in Section 13, one
can say more about the structure of coarse panels. In particular, this applies
to hierarchically hyperbolic spaces. In Section 14, we will illustrate this with an
account of what this means for the mapping class groups and Teichmiiller space
in either the Teichmiiller or Weil-Petersson metric (see Theorems 14.1 and 14.2).
At the end of Section 14 we briefly describe how this relates to the main result of
[BeHS3].

We remark that the results of [H] and [BeHS3] as stated allow the constants
of the conclusion to depend on the quasiflat and the ambient space. However, as
noted in [H], a volume-growth argument gives a uniform and computable bound
on the number of orthants in the context of cube complexes. It seems quite
plausible that by an elaboration of the argument there, one could obtain a version
of Corollary 1.4, with computable bounds on the number of panels as well as
Hausdorff distance. However, it would require some work, and I have not checked
this. The proofs in [BeHS3] rely on a number of limiting arguments, so this
does not give effective control of the constants. One can show the number of
orthants is bounded in terms of the quasi-isometry constants of the quasiflat, as
they note in their Corollary 4.16. However as stated, this bound may also depend
on the ambient space. It is unclear whether their arguments could lead to a
uniform bound, in the sense that it should only depend on the parameters of the
hypotheses.
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In the course of the proof, we give some general results which may have some
independent interest.

For example, it is well known that a (finite) CAT(0) complex admits a natural
structure as a median algebra (see Section 3). We show (Proposition 3.6) that we
can recover a canonical structure as a CAT(0) cube complex from its structure
as a median algebra — its vertex set is a finite subalgebra uniquely minimal with
this property.

Lemma 6.1 tells us that a quasi-isometric embedding of R into a finite panel
complex of dimension v is a bounded distance from a quasi-isometry to a sub-
complex. This can retrospectively be viewed as a consequence of Corollary 1.4,
though its proof is more explicit, and does not involve any limiting argument. In
particular, all the constants arising are explicitly computable.

The “coarsification” procedures described in Sections 7 to 9 have some potential
for wider application. The general principle behind this is that many results about
median algebras have analogues for coarse median spaces, where statements are
interpreted as holding up to bounded distance.

In outline, this paper is structured as follows. In Section 2, we describe vari-
ous properties of median algebras and median metric spaces. Many of these are
standard, but we include some new statements. In Section 3, we describe CAT(0)
cube complexes from the point of view of median algebra, and introduce panel
complexes. Section 4 discusses cubulated sets. The main result (Lemma 4.2) tells
us that a uniformly cubulated set is a subcomplex of a panel complex. Section 5
gives some regularity statements about maximal dimensional copies of euclidean
spaces in a median metric space. The main result of Section 6 is Lemma 6.1 men-
tioned above. We introduce coarse median spaces in Section 7, and in Sections
8 and 9, we study coarse intervals and coarse cubes in such spaces. In Section
10, we describe asymptotic cones. The main result is Lemma 10.5 which is a key
ingredient of the proof of Theorem 1.1 in Section 11. Section 12 strengthens these
results in the case of a median metric space, and we deduce Theorem 1.3 and
Corollary 1.4. In Sections 13 and 14, we give some elaboration on Theorem 1.1
for particular classes of coarse median spaces, such as the mapping class groups
and Teichmiiller space, as well as hierarchically hyperbolic spaces. In particular,
we show how these results imply the main result of [BeHS3]. Finally, in Section
15, we give a variant of the Borsuk-Ulam Theorem which is used in the proof of
Lemma 6.1.

I thank Jingyin Huang for his interest and comments on an earlier draft of this

paper.

2. MEDIAN ALGEBRAS

We describe some general facts about median algebras. For more background,
see [BaH, I, Ve, Ro, Bo3, Bo9] and references therein. We begin with some fairly
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standard definitions and constructions. The literature is somewhat dispersed, and
the references we give here are not necessarily the original ones.

A median algebra is a set, M, equipped with a ternary operation, u : M3 —
M, symmetric in the arguments and such that p(a, a,b) = a and u(a, b, pu(c, d, e)) =
p(p(a, b, c), u(a,b,d),e) for all a,b,e,dje € M. (This can be more intuitively
thought of in terms of cube complexes as we discuss in Section 3.) A subalgebra
is a subset closed under p. A (median) homomorphism between two median
algebras is a map which respects the median operation.

Note that a two-point set, {0,1}, admits a unique median algebra structure.
An n-cube is a median algebra isomorphic to {0, 1} with the product structure.
The rank of a median algebra, M, is the maximal v € N such that M contains
(a subalgebra isomorphic to) a v-cube. (For all the median algebras we consider
in this paper, this will be finite.)

Given A C M, write (A) for the median algebra generated by A: that is the
smallest subalgebra containing A. Equivalently, it the set of elements which can
be written as a finite median expression in elements of A. The following is well
known (see Lemma 4.2 of [Bol] for one account).

Lemma 2.1. If |A| < n < oo, then [(A)| < 2%".

In particular, if A is finite, so is (A). Moreover, this places a bound on the
complexity of an expression we need to represent an element of (A).

If ¢ : M — M’ is a median homomorphism between median algebras and
A C M, then ¢((A)) = (pA) (since images and preimages of subalgebras are
subalgebras).

Given a,b € A, let [a,b] = [a,blyy = {p(a,b,x) | v € M} = {z € M |
p(a,b,z) = x}, for the interval from a to b. We say that a subset, C' C M,
is convex if [a,b] C C for all a,b € C. Given A C M, write hull(A) for the
convex hull of A: the smallest convex set containing A. Clearly (A) C hull(A).
If a,b € M, then hull({a,b}) = [a, b].

The following, often referred to as the “Helly property”, is a key fact about
convex sets (see for example Section 22 of [Ro).

Lemma 2.2. Let C4,...,C, be a non-empty finite family of pairwise intersecting
convez subsets of M. Then (._, C; # @.

If C'is convex and x € M, we say that a point y € C is a gate for x if
[z,y] N C = {y}. This is equivalent to saying that y € [z,¢| for all c € C. If a
gate exists, then it is unique. A map w : M — C'is a gate map if w(x) is a
gate for x for all z € M. We say that C' is gated if a gate map exists. We note
the following (see for example, Section 5 of [BaH], or Section 6 of [Bob]).

Lemma 2.3. A gate map w : M — C to a gated convexr set, C, is median
epimorphism.

In particular, it sends cubes to cubes (possibly of lower dimension). It also
sends intervals to intervals. (For suppose x,y € M. Let a = wx, b = wy, and
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suppose that ¢ € [a,b]. Let z = u(x,y,c) € [x,y]. We can check that ¢ = p(a, b, 2).
Therefore ¢ = we = p(wa, wb,wz) = p(a,b,wz) = wz since wz € [wz,wy| = [a,b)].)
If a,b € M, then we have a gate map, wyp : M — [a,b] defined by we,(x) =
p(a, b, z). In other words, intervals are always gated.

Given x,y € [a,b], let x Ay = p(a,z,y) and = Vy = u(b,x,y). With this
structure of meet and join operations, [a,b] is a distributive lattice (see [BaH]).
We write x < y to mean that z = xAy. This is equivalent to saying that y = xVy,
or to saying that [a,x] C [a,y], or that [b,y] C [b,z]. Note that < is a partial
order on [a, b].

Definition. If < is a total order, we will say that a,b (or [a,b]) is straight.

Note that this is equivalent to saying that [a, b] has rank 1 as an intrinsic median
algebra. (This definition is not standard terminology.)

Given a,b,a’, b’ € M, we say that the pairs a,b and d’, b’ are parallel if [a,V] =
[a',b]. (If a,b,a’,l/ are all distinct, this is equivalent to saying that a,b,b’,a’ is
a 2-cube.) In this case, the map wy y|[a,b] is a median isomorphism from [a, b]
to [a/,b'], with inverse wqp|[a’, ¥']. One also checks that parallelism is transitive,
and that the gate maps between parallel intervals commute with each other. In
particular, any intrinsic property (such as straightness) is preserved by parallelism.
(See for example Section 2.4 of [Bo4] for more discussion.)

A wall in M is an unordered partition, M = A U B, of M into two disjoint
non-empty convex sets. Write W(M) for the set of walls. We say that two walls,
W ={A,B} and W' = {A’, B'} cross if each of the sets AN A", AnNB', BNA’
and B N B’ is non-empty. We note (Proposition 6.2 of [Bol]):

Lemma 2.4. rank(M) is the mazimal cardinality of any set of pairwise crossing
walls of M.

We say that W = {A, B} separates a from b if {a,b} meets both A and
B. We write W(a,b) € W(M) for the set of walls separating a from b. Note
that if a,b,c € M, then W(a,b) C W(a,c) UW(c,b). More generally, a wall
W = {A, B} separates two non-empty subsets, C, D, if, up to swapping A, B,
we have C' C A and D C B. The following, sometimes known as the “Kakutani
separation property”, is due to Nieminen [Nie] (see also Section 2.8 of [Ro] for a
proof).

Proposition 2.5. Any two disjoint non-empty convex subsets of M can be sepa-
rated by a wall.

As a special case, it follows that if W(a,b) = &, then a = b.

If M — M’ is an epimorphism, we have a natural injective map W(M') —
W(M) obtained by taking preimages. From the above, we see that rank(M’) <
rank(M). Also, note that if M” C M is a subalgebra, then rank(M") < rank(M).

Let C' C M be a gated convex subset. Given a wall, W = {A, B} € W(C),

there is a unique wall W = {A, B} € W(M) such that A = ANC and B = BNC,
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namely set A = w4 and B = w'B, where w : M —» C'is the gate map. The
map [W — W] : W(C) — W(M) is injective. In this way, we can identify W(C)
with a subset of W(M).

By an oriented wall we mean an ordered pair, W = (W~, W), such that
{W=, W} is an (unoriented) wall. Given X,Y € W(M), we write X th Y to
mean that the unoriented walls cross in M, i.e. X NY< # @, for all choices
e,¢ € {+,—}. If X;,..., X, are pairwise crossing walls, then (), X" # & for
all choices of ¢; € {+, —}. This follows by the Helly property (Lemma 2.2 above).

From this discussion one can deduce the following (see Proposition 5.2 of [Bol]).

Lemma 2.6. If w: M — Q is an epimorphism to an n-cube, @), then there is
an n-cube, Q' C M, such that w|Q" is an isomorphism to Q.

A topological median algebra is a hausdorff topological space, M, equipped
with a median algebra structure such that the map p : M3 — M is continuous.
We say that M is interval-compact if [a,b] is compact for all a,b € M. If M
interval-compact and C' C M is closed and convex, then C' is gated.

Topological median algebras often arise as median metric spaces. We recall the
basic definitions.

Let (M, p) be a metric space. (We will generally use p = pys to denote a metric
on a set, M.) Given a,b € M, let [a,b], = {z € M | p(a,x) + p(z,b) = p(a,b)}.

Definition. We say that M is a median metric space if for all a,b,c € M,
there is some d € M such that [a,b], N [b,c], N [c,al, = {d}.

We write p(a,b,c) = d. The following follows from work of Sholander [S] (see
[Bo3] for some elaboration):

Lemma 2.7. With this ternary operation, (M, i) is a topological median algebra.
Moreover, and that [a,b], = [a,b] is equal to the median interval between a and b.

Also, the map wyp : M — [a, b] is 1-lipschitz. Note that any subalgebra of M
is a median metric space in the induced metric.

The completion of any median metric space is a median metric space of the
same rank (see Corollary 2.16 of [ChaDH], or Lemma 4.3 of [Bo3]). A complete
median metric space of finite rank is interval-compact (see for example, Corollary
5.2 of [Bo6]). As a simple consequence one can deduce:

Lemma 2.8. A closed convex subset of a finite-rank complete median metric space
1S gated.

In fact, if C' C M is non-empty closed and convex, then the gate, w(z) of z in
C' is the unique nearest point to z. (Here it is easy to see that such exists: choose
any ¢ € C' and let w(x) be a nearest point to = in the compact set C'N [z, ¢|. One
checks that this is the unique nearest point in C.) The following is also easily
verified (see for example, Section 2.4 of [Bo4)):
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Lemma 2.9. Let C' be gated with gate map w : M — C'. Suppose D C M is
conver and D N C # &, then w(D) =CN D.

Also if C" C C' is closed and convex, then the gate map to C’ factors through
that to C'. We also note that a connected complete median metric space is a
geodesic space (see for example Lemma 4.6 of [Bo3]).

Lemma 2.10. Let M be a median metric space of rank v < co. If A C M, then
diam(hull(A)) < 3" diam(A).

Proof. 1f a,b € M, the diam([a,b]) = p(a,b). It follows that diam(L(A)) <
3diam(A), where L(A) = {J, jeala,b]. Now hull(A) is the result of iterating L at

most v times (see Lemma 5.5 of [Bol]). O

Of course, one could improve on this bound, though it is not clear what the
optimal statement would be. We will only need here the fact that the convex hull
of a bounded set is bounded. The closure of a convex set is convex, and so we see:

Lemma 2.11. Any median metric space of finite rank admits an exhaustion by
closed bounded convex subsets.

The following discussion will be used in Section 7.

Let ¢ : M — M’ be an epimorphism between two median algebras. It is easily
checked that the image or preimage of any convex set is convex.

If A,B C M are convex, and AN B # &, then ¢(AN B) = pAN ¢pB. (For
if v € AN @B, then the sets A, B, ¢! (z) are all convex and pairwise intersect,
and therefore have non-empty intersection, by Lemma 2.2.)

If rank(M’) = rank(M) = v < o0, and A, B C M are convex with pA = ¢B =
M’, then AN B # @. (For if not, by Proposition 2.5, there is a wall, Wy, of
M separating A and B. Let W{,..., W/ be pairwise crossing walls in M’ and
let Wy, ..., W, be the corresponding walls in M. Now the walls Wy, W7y, ... W,
pairwise cross in M. By Lemma 2.4, this gives contradiction that rank(M) >
v+1.) In particular, from the previous paragraph, it follows that ¢(ANB) = M.

Now suppose that M and M’ are both topological median algebras, and that ¢
is continuous.

Lemma 2.12. If ¢ is proper, there is a minimal closed convex subset C' C M
such that ¢C' = M.

Proof. This follows by Zorn’s Lemma as follows. Let C be a chain of closed
convex subsets C' satisfying ¢C = M’ ordered by inclusion. Let Cy = [C.
This is also closed and convex, and ¢(Cy) = M’'. (For if x € M, the family
{CNn¢(z) | C € C} is a chain of closed non-empty subsets of the compact set
¢~ '(z), and so has non-empty intersection.) O

Note that if rank(M) = rank(M’) = v < oo, then such a minimal C' is unique.
(For if D C M were another such, then by the earlier discussion, ¢(CND) = M’.)
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Definition. A topological median algebra, M, of rank v is thick if whenever we
have M = AU B with A, B C M closed and convex and rank(AN B) < v — 2,
then either A= M or B = M.

Lemma 2.13. Let M, M’ be topological median algebras, and let ¢ : M — M’ be
a continuous proper median epimorphism. Suppose that rank(M) = rank(M’') =
v < 00. Suppose that M is connected and that M’ is thick. Then there is a closed
convex subset, C C M, which is intrinsically thick, and such that ¢C = M’.

Proof. Let C C M be the minimal closed convex subset with ¢C = M’ as
given by Lemma 2.12. Note that rank(C') = v. We claim that C' is thick. For
suppose that C' = AU B, with A, B C C' non-empty closed and convex and with
rank(ANB) < v—2. Since M is connected, so is C, and so AN B # @. Therefore
»(ANB) = pAN ¢B. But rank(¢p(AN B)) < rank(AN B) < v — 2. Since M’ is
thick, we can assume that ¢ A = M’. By minimality of C, it follows that C' = A.
This shows that C' is thick. OJ

In fact, the proof gives a slightly stronger statement:

Lemma 2.14. In the conclusion of Lemma 2.13, we can suppose that whenever
C' = AU B, with A, B closed convex subsets, then rank(¢p(AN B)) > v — 1.

Finally, we note the following, proven in [Bo3].

Theorem 2.15. Let (M, p) be a complete connected median metric space of rank
v. Then M admits a (canonical) CAT(0) metric o with o < p < oy/v.

As an example, if M = R” and p is the [' metric, then o is the [? metric.

3. CUBE COMPLEXES

In this section, we describe the notion of a “CCAT(0) panel complex”. Any
subcomplex of such will be a “panel complex” as defined in Section 2. (Not every
panel complex arises in this way, though all those that we consider in this paper
do so.)

We begin with some more standard notions. For simplicity, we will deal here
mostly with median metric spaces, though it can be seen that many of the ideas
apply to more general median algebras.

A cube complex is a CW complex built out of real (euclidean) cubes attached
along their faces. The cube complexes we consider in this section will be finite (i.e.
have finitely many cells). We view a cube complex primarily as a combinatorial
object. Note that the link of any cell is naturally a (finite) simplicial complex.

Definition. A CCAT(0) cube complex is a simply connected cube complex,
A, such that the link of every cell is a flag simplicial complex.

(Here “flag” means that every complete graph in the 1-skeleton lies in a single
cell.)
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We can equip A with the “standard” euclidean (or [?) metric, where each cell
is given the structure of a unit euclidean cube, and we take the induced path
metric. With this metric, A will be CAT(0) in the usual geometric sense. The
term “CCAT(0)” means “combinatorially CAT(0)”. We adopt this terminology
since we will mostly be dealing with other metrics which are not CAT(0). In
particular, we could instead take the “standard” [!' metric, p. Here each cell is
isometric to the ! direct product of unit real intervals. In this case, (A, p) is a
median metric space, and in particular, a topological median algebra. Moreover,
the vertex set, II will be a subalgebra. In fact, every finite median algebra arises
canonically in this way [Che].

One way of describing this is as follows. Let II be a finite median algebra, and
let W = W(II) be the set of walls of II. To each wall, W € W(II), we associate a
compact real interval, Iy C R, with boundary dIy = {0~ Iy, 0" Iy }. We equip
Iy, with its standard median structure, so that dly is a two-point median algebra,
and Q(IT) := [y ey 0w is a [W|-cube. We write A(Q(II)) := []yc Iw for the
real cube, with “corners” Q(IT) C A(Q(IT)). Now II embeds naturally into Q(IT),
and hence into A(Q(II)), by taking the Iy -coordinate of x to be 0 Iy if x € W=,
We identify I with its image under this embedding, and we let A(IT) be the full
subcomplex with vertex set II. We get:

Lemma 3.1. A(Il) is a CCAT(0) cube complex, and a subalgebra of Q(II).

In particular, A(II) has a natural structure as a median algebra. One can also
check that rank(II) = dim(A(II)) (see Proposition 5.3 of [Bol]). We refer to A(II)
as the realisation of II.

A cell of 11 is a convex subset isomorphic to a cube. Given a cell () C II, write
A(Q) for its convex hull in A(II). These are precisely the cells of A(II) in its
structure as a CW complex.

The following is shown in [Bo9]:

Lemma 3.2. Let C C II be a closed convex subset. Then C' is gated, and median
isomorphic to A(wC), where w : A(II) — C' is the gate map.

We only really require this result for finite CAT(0) complexes. It can seen by
embedding A(II) in A(Q(II)) and taking the convex hull, H, of C'in Q(II). Then
C = H N A(Il) (see for example, Lemma 5.6 of [Bol]). Any convex subset of
A(Q(II)) is a direct product of intervals. Combining the gate map on each factor,
we obtain the gate map w : A(Q(Il)) — H, with H = A(w(Q)). Intersecting
with A(II) this restricts to the gate map to C.

In fact, each cell of C' is the intersection of C with a cell of A(IT).

Lemma 3.3. Any epimorphism II — I1' between finite median algebras extends
to an epimorphism of A(Il) to A(IT').
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Proof. Recall that there is a natural injective map, W(II') — W(II) as described
in Section 2. This gives us an epimorphism A(Q(II)) — A(Q(II')), which col-
lapses those factors which correspond to walls not in the image of W(II). This
restricts to an epimorphism A(II') — A(II). O

The standard euclidean metric on A(II) is the path-metric induced from the
metric on A(Q(II)) as a unit real cube. If instead, we take the I! metric, this is
already a path-metric, and we get the standard ! metric on A(IT). In this latter
structure, A(II) is a median metric space, inducing the median algebra structure.
Note that if a,b € II, then p(a,b) = [W(a,b)|, that is the number of walls of II
separating a from b.

We also note that associated to each wall, W € W, we have a hyperplane,
Ay C A(II). This can be defined by taking the set of points of A(Q(IT)) whose
coordinate in Iy, is the midpoint of that interval, and then intersecting this set
with A(IT). This hyperplane cuts A(II) into two pieces, Af,, with Ay = Ay NALL
and A(T) = A, UAJ,, and with TN A, = W*. All these sets are convex, both
in the median structure, and in the CAT(0) metric structure.

More generally, suppose that (II,p) is a finite median metric space. Given
W € W, choose some 1-cell, {c,d} € E(W), and set w(W) = p(c,d). Since all
1-cells of E(W) are parallel, w(W¥) does not depend on our choice. We refer to
w(W) as the width of W. (In the above combinatorial setting, the widths were
all deemed to be 1.) In fact, of a,b € II, then p(a,b) = 3 yepy(ap w(W).

We can similarly give A(II) the I! metric so that II C A(TI) is an isometric
embedding. One way to describe this is to put the ! product metric on the real
cube A(Q(IT)) so that the side corresponding to Iy has length w(W). We then
take the induced metric on A(IT). This is automatically a geodesic metric, and
A(IT) is again a median metric space.

In summary, we have:

Lemma 3.4. Let I be a finite median algebra. Given any function w : W(II) —
(0,00), there is a natural median metric on the realisation, A(II), inducing the
median structure, and such that the width of any wall W of 11 is precisely w(W).

In particular, if we start with a finite median metric space II, then we can
canonically extend this to a median metric on A(IT).

(We could alternatively take the corresponding euclidean metric, in which case
we get a CAT(0) metric on A(II) after taking the induced path-metric. The
passage from the [' metric to the [ metric on A(II) is another illustration of
Theorem 2.15.)

The following will be used in the proof of Lemma 4.2.

Lemma 3.5. Let Il be a finite median algebra, and let A(I1) be its realisation
as a cube complex, with the induced median algebra structure. If W C A(II) is a
connected subset such that Il = (U NII) in 11, then A(II) = (V).
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Proof. Suppose {a, b} is a 1-cell of II. The gate map [z +— u(a, b, z)] is continuous.
The image of ¥ under this map contains a, b, hence all of [a,b]. It follows that
[a,b] C (V). This shows that (V) contains the 1-skeleton of A(II). Now any real
cube is generated as a median algebra by its 1-skeleton, and it follows easily that
(V) = A(II) as claimed. O

The fact that, as a median algebra, A is median isomorphic to A(II) does not in
itself determine the subalgebra Il uniquely. In view of this, we make the following
definition:

Definition. A subalgebra, II, of A, is a 0-skeleton if there is a median isomor-
phism of A(II) to A, and which is the identity on II.

We first note that if II" < A(II) is any subalgebra with IT C II’ then II’ is also
a 0-skeleton. We can think of A(II') as a subdivision of A(II) as cube complex.
One way to construct the isomorphism more formally is as follows.

Recall that there is a natural surjection f : W(II') — W(II). If W € W,
we can write f~H(W) = {Wy, Ws, ..., W,}, with W C W, C --- C W, . We
subdivide the real interval Iy, into subintervals, Iy = I; U--- U I,,, and map Iy
into D(W) := [['—, Iw;, by a median monomorphism sending I; to a 1-cell, .J;, of
D(W). More specifically, J; is the 1-cell whose Iy, coordinate is equal to prt*[wj
for j < ¢ and equal to prt™ Iy, for j > 1. This gives us a path, Jy, in the 1-skeleton
of D(W) connecting a pair of antipodal points. Now A(Q(I)) = Ty cpyary D(W).
By taking the direct product of the above paths, we get a monomorphism of
A(Q(IT)) into A(Q(IT")) which we can take to be the identity on IT". The image
of A(II) is precisely A(II"). The inverse map gives the required isomorphism of
A(IT") to A(IT).

Note that in the above construction, if i < j, then II N W;" N W, = &, and
that every wall of II' that crosses W; also crosses W;.

There are plenty of such O-skeleta. (Take (A UII) for any finite subset, A C
A(IT).) However, we will show:

Proposition 3.6. There is a unique minimal 0-skeleton, IIa, of A.

That is to say, a subalgebra, II'; of A is a 0-skeleton if and only if IIn C IT'.

In fact, one can describe II5 as the subalgebra generated by the set of “extreme”
points of A. This construction will be used in the proof of Lemma 4.2. We now
set about the proof.

Let II be a finite median algebra, and let W = W(II). Given X,Y € W, we
write X | Y to mean that X # Y and X ff Y. In this case, we can orient X,Y
so that XTNY T = @. We write IIxy = X~ NY ™~ for the convex subset between
X and Y. We can think of X and Y as being oriented away from Ilxy. Note
that ISy = IT\ I[lxy = Xt U YT is a subalgebra, being the union of two convex
subsets.
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W eW,let W), ={X € W| X h W} Note that E(TV) is a finite median
algebra with W(E(W)) = W),. Also, X, Y € WY, cross in II then they also cross
in E(W).

Given X, Y € W, write X || Y to mean that (X =Y or X | Y) and (VZ €
W) (Z h X & Z hY). We say that X, Y are parallel. (Intuitively, this
means that the hyperplanes corresponding to X and Y bound a product region
in A.) One checks easily that || is an equivalence relation on W. Let Iz be
the intersection of all 1Sy for X, Y € W with X || Y (with the convention that
1§ = II). Note that 1 is a subalgebra of II. One can naturally identify W(I1g)
with W/|| (via the natural projection map W — W(Ilg): two walls are parallel
in IT if and only if they are identified in I1g). Note that (Ilg)g = lg.

A wall W € W(II) is a neighbouring wall of an element = € II, if there is
some y € I with W(x,y) = {W} (so that {x,y} is a 1-cell of IT). We say that
x € Il is extreme if all neighbouring walls cross. This is equivalent to saying that
there do not exist X,Y € W with X | Y and « € IIxy. (This is also equivalent to
saying that x does not lie in the interior of any geodesic segment in the CAT(0)
metric on A(IT).) We write ext(II) C II for the set of extreme points. Note that
ext(I) C Ig. In fact we claim:

Proposition 3.7. I = (ext(II)).

For the proof, we will make use of the following general discussion. Let W €
W(II). We fix an orientation on W. Recall that Wi}, = {X € W(I) | X h W}.
Let Wy, be the set of X € W\ {W} for which we can write X = {X~, X}
such that XT™ N W* = @. (This is equivalent to Xt C W™, or to W+ C
X~.) We similarly define W;,. We have W;;; N W;,, = @. Moreover X|W
is equivalent to X € Wy, UW,,,. We therefore have a partition of W(II) as
WD) = {W}UWS UW,, LW,

We write W& = WY, U Wi, Note that (using the gate map to W*), we can
identify ng with W(W=). We also note that if X, Y € W%f[, then X, Y cross as
walls in II if and only if they cross as walls in W*.

Lemma 3.8. Suppose that |I1| > 2 and that 11" C 11 is a subalgebra of 11 satisfying:
(W1):if X1, ..., X, € W(II) pairwise cross then IU'N(":_; X" # @ for all choices
of ¢, € {+,—}, and

(W2): if X | Y, then IU Nlxy # @.

Then IT" = 11.

Proof. The proof is by induction on |II|. Since |II| > 2, W(IT) # &, and we choose
any wall W € W(II). Now WJF = W(W*). We will verify that the subalgebra
I N W#* of W# intrinsically satisfies (W1) and (W2). Since |[W*| < [M], it
then follows that II' N W* = W=*. In other words, W* C II'. We then get
II=W-UWT* =1II as required.

Allowing ourselves to swap + and —, it therefore suffices to prove that W~
satisfies (W1) and (W2). We first note the following.
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Claim: Let X € Wy, , and € € {—,+}. Then [I' "W~ N X* # @.

To see this, note first that if X M W then the statement follows immediately
from (W1) (for IT). So we suppose X|W. In other words X* NW™* = &. There
are two cases. If e = — then 'MW~ NX~ =1I'Nllyx # @ by (W2). If e = +,
then I' N X+ # @& by (W1). But Xt C W, and so II'NW~ N X+t # &. This
proves the Claim.

We can now verify (W1) for I'NW~ in W~. Let Xj,..., X, € WSV_ with X; M
X for all i, j, and let ¢; € {—, +}. We want to show that I'NW N, X" # @.

To see this, we proceed by induction on n. Note that the case n = 1 is the
above Claim, so we suppose that n > 2. Now II'Nn W~ N ﬂ?;ll X' # & (by the
inductive hypothesis), [I' "W~ N X # @& (by the Claim) and II'N,_, X" # @
(by (W1)). Therefore (taking the median of three points respectively in each of
the above sets) we see that I' "W~ N, X{* # &. Property (W1) for W~ now
follows by induction.

We can also deduce (W2) for II' N W~ in W~ as follows.

Let X,Y € WY, with X|Y. (Recall that this statement can be equivalently
interpreted in IT or W~.) In this paragraph, we orient X, Y so that XtNY* = &,
and [Ixy = X~ NY~. Now [I'Nn X~ NY~ # @ (by (W2) in II) and I'nW—NX~ #
gand 'MW~ NY~ # & (both by the Claim). It follows by Lemma 2.2 that
(I'NW-)Nllyy =I'NW-NX"NY~ # @. This proves (W2) for W~.

The lemma now follows by induction on |II| as described in the first paragraph.

O

Corollary 3.9. Suppose that II' C II is a subalgebra satisfying:
(B1): ext(Il) C I, and

(B2): if X, Y e WAT'), with X #Y and X || Y, then II'N1lxy # &.
Then 1" = 1I.

Proof. The statement is trivial for |II] < 1, so we assume that |II| > 2. It is
casily seen that ext(II) N (7, X{* # @ for any set of pairwise crossing walls,
Xy, ..., X, € W(II), and all choices of ¢; € {+,—}. (Note that the walls X; all
cross some n-cell @ C II, so that @ N[, X" consists of a single point x. Now
choose a point of 7, X;" a maximal distance from z in the {* metric on II.)
Thus, II" satisfies (W1) of Lemma 3.8.

For (W2), suppose that X,Y € W(II), with X | Y. If X || Y, then II'NIIxy #
@ by (B2). If not, then, up to swapping X,Y, there is some Z € W(II) with
Z|Xand ZMY. Now ZT C X, s0 ZtNY~ C X NY~ = TIlxy. By
the first observation, ext(Il) N ZT NY~ # &, so ext(Il) NIIxy # @. By (B1)
II'NIlxy 2D ext(Il) NIl xy # @. Thus II" also satisfies (W1) of Lemma 3.8, and
so II" =1I. O

Proof of Proposition 3.7. Let II' = (ext(Il)) C Il C II. Note that ext(Ilg) =
ext(II), so (B1) is satisfied for IT" in I1g. Also, since (Ilg)p = g, no two walls
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of Ilg are parallel, and so (B2) is vacuously satisfied for II" in IIg. Therefore, by
Corollary 3.9 we have IT"' = II as required. OJ

Given any median algebra, M, we can define an extreme point to be a point
x € M such that whenever [a,b] is a straight interval in M with = € [a,b] then
z € {a,b}. We write ext(M) for the set of extreme points. It is easily checked
that this agrees with the previous definition when M is finite.

Proof of Proposition 3.6. Let A = A(II) for II finite. Let ext(A) be the set of
extreme points of A, and let IIn = (ext(A)). We claim that IIa is the minimal
0-skeleton.

It is easily seen that ext(A) C I, and that ext(A) = ext(II). Therefore ITx C II,
and by Proposition 3.7 we have I[In = [Ig. Now if we have two parallel walls,
X || 'Y, of II, we can remove the elements of II between them (namely Ilxy)
without changing the isomorphism type of A(II). Doing this a finite number of
times (or simultaneously) we end up with A(Ilg). This shows that [In = Iy is a
0-skeleton of A.

In fact, it is the minimal such, since the initial choice, II, of O-skeleton was
arbritrary. 0

Next, recall the definition of a “thick” topological median algebra given in
Section 2.

Let A = A(II) be the realisation of some finite median algebra, II, of rank
v < 00.

Lemma 3.10. A is thick if and only if whenever we have A = C U D with
C,D C A convex subcomplexes and rank(C' N D) < v — 2, then either C = A or
D = A.

In other words, we can weaken the original formulation of thickness to insist
that C', D are both subcomplexes.

Proof. We only need to check the “if” direction. Let A, B C A be as in the
original definition of thickness. Write I14 = ANII, IIp = BNII, Ay = A(Il,)
and Ap = A(Ilg). Thus, A4, Ap are both subcomplexes of A, containing A, B
respectively. There are two cases.

Suppose IN AN B = @. Then W := {Il4,1Ip} is a wall of IIgz. Let F be
the closure of A\ (A4 U Ag). Then F is a subcomplex of A, isomorphic to
A(E(W)) x[0,1], and so rank(FNA4) = rank(F NAp) = rank(A(E(WV))). Now
ANB C F separates A4 and Ap, so the projection of ANB to FNA 4 is surjective.
It follows that rank(F(W)) < rank(ANB) < v —2. Now A = Ay UAgUF.
Applying the hypothesis on A to Ay, AgUF, weget A C Ay C Aor A = AgUF.
In the latter case, applying the hypothesis to Ag, F', we get A = Agp C B, or
A = F, the last giving the contradiction that rank(A) < v — 1.

Suppose 1IN AN B # @. We claim that A = Ay U Apg. To see this, let @
be a cell of II. We claim that () C II4 or @ C IIg. If not, by Helly property
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(Lemma 2.2) applied to @, 114,115, we have Q NII4 N1l # @. Now @ N1I4 and
@ NIl are faces of the cube ), and it follows that either @) C II4 or @ C Ilp
(formally a contradiction). Thus, A(Q) € AsUApg, proving the claim. Moreover,
AsNAp C AN B, and so we get either A = Ay or A = Agp. O

Definition. We say that a finite median algebra, II, of rank v < oo is fat if A(II)
is thick.

Of course, this can be viewed as a purely combinatorial property of II. Note
that it imples that rank(E(W)) = v — 1 for all W € W(II).

Suppose that ¢ : [ — II' is an epimorphism of median algebras. This extends
to an epimorphsim ¢ : A(II) — A(II') (by Lemma 3.3). In the proof of Lemma
2.1 we can restrict to subcomplexes, and so there is a minimal convex complex
C C A(Il) with ¢(C) = A(Il'). If rank(Il) = rank(Il') = v < oo, then C is
unique. In view of Lemma 3.10, we can apply the argument of Lemma 2.13, again
restricted to subcomplexes. Writing C' = A(I1”) where I1” is a convex subset of
I1, this shows:

Lemma 3.11. Let ¢ : Il — II' be an epimorphism of finite median algebras of
rank v < oo. Suppose that 11" is fat. Then there is a convex subset 11" C II with
is intrinsically fat and with ¢I1” = 1T,

In fact, we can say a bit more. Let W € W(II”). Then by Lemma 2.14,
rank(4(ANAY,)) > v—1. This means that we can find walls, Wy, Wa, ..., W,_; €
W(II") such that the corresponding walls W{, W5, ... W/ _, € W(II") all pair-
wise cross, and all cross W. In particular, we can find a v-cube, Q C II”, with
W(Q) = {W{, Wy, ...,W.,_,,W}. Note that ¢|Q is either injective, or collapses
the wall .

(Of course, one could also give a combinatorial proof of the above statements.)

CCAT(0) complexes arise as subalgebras of median metric spaces in the follow-
ing way. Let M be a median metric space and let I C M be a finite subalgebra.
We say that a wall, W € W(II), is straight in M if ¢,d (or [c,d]y) is straight
in M for some, hence every, 1-cell, {c,d} € E(W). We say that II is straight if
each wall is straight. If Q C M is a straight n-cube, then hull(Q) is an {! direct
product of compact real intervals. In fact, if a,b € @) are opposite corners, then
hull(Q) = [a,b]ar. If ey, ..., e, are the adjacent corners of @) to a, then the map
[T [a, eilsr — [a, b]ar which sends (21, . .., zy,) to 1 V- - -V, is an isomorphism
to [a,b]ar. (Recall, from Section 2, that [a,b] has the structure of a distributive
lattice with initial point a.) Its inverse is given by sending = € [a, b])s to the point
whose ith coordinate is u(a, e;, x). (A coarse version of this construction will be
used in Section 9.)

More generally, if [1 C M is straight, we write Y(II) = T (II, M) for the union
of the sets hull(Q) as @ ranges of all cells of II. The following is Lemma 6.1 of
[Bo3|:

Lemma 3.12. Y(II, M) is a subalgebra of M.
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Suppose now that M is connected. Then any straight interval in M is isometric
to a compact real interval.

It follows that Y(II, M) is intrinsically isometric to A(II) as defined above,
where the width of each wall is determined by the induced metric on II. (A more
general construction, where II is not assumed to be straight, is given in [Bo3].
This will only be used here in the proof of Lemma 5.1, where we elaborate on an
argument in that paper.) Note that if II is fat, then it is straight in M (since
every 1l-cell lies in a v-cube).

This leads on to a more general notion.

Definition. An open CCAT(0) complex is a median algebra isomorphic to
an open convex subset, 2 C A = A(II), where II is a finite median algebra.

We generally view €2 as coming equipped with a decomposition into cells, namely
the intersection of 2 with the cells of A.

The closure, 2 C A, is a CCAT(0) complex, and it is not hard to see that it is
determined up to isomorphism by the median structure on A. In fact, if Ay C Q
is a compact convex subset containing all the 0-cells of €2, then 4, is isomorphic
to Q. Indeed, the gate map from Q) to Ag sends the 0-cells of isomorphically to
the O-cells of Ay. Note that €2 has a compact exhaustion by such convex sets.

We refer to the elements of W(II) as walls of €2, and denote the set of such
walls by W(€Q2).

Let Q be an open CCAT(0) complex. We can equip it with a complete median
metric, inducing the median on €2, as follows. Note that the walls of 2 fall into
three classes, depending on whether the sides of {2 which cross it are compact
intervals, half-open intervals or open intervals. If the last class is non-empty, then
Q2 is a product. For simplicity of exposition we will assume it to be empty. (This
can be achieved by subdividing any such interval into two half-open intervals, so as
to give rise to two parallel walls.) We then write W(Q) = Wy (Q) UW(£2), where
Wh(Q2) is the set of walls crossed by compact sides. If w : Wy(2) — (0, 00)
is any map, then we can equip € with a complete median metric so that each
side crossing W € W;y(Q?) is isometric to the real interval [0,w(W)] and each
side crossing W € W, (Q) is isometric to the ray [0,00). This can be achieved,
similarly as in the compact case: we can view () as a subcomplex of the product
[T emwo(@[0, w(W)] x [0, 00)Y<() € RV with the induced I' metric.

Definition. A CCAT(0) panel complex is an open CCAT(0) complex (as
defined above) equipped with a compatible complete median metric.

By “compatible” we mean that it induces the given median on the CCAT(0)
complex. We will refer to its cells as “panels” — a more general definition of this
term will given in Section 4.

We can replace the /! metric on each panel with the [? metric with the same
side-lengths, and take the induced path metric, o. If 2 has dimension at most
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v, then 0 < p < oy/v. The metric o is CAT(0). This is another illustration of
Theorem 2.15 (though it is directly verifiable in this case).

4. CUBULATED SETS

Cubulated sets provide a means of formulating some regularity results discussed
in Section 5.
We begin by recalling a general definition from Section 1.

Definition. An n-panel, P, is (a metric space isometric to) an ' product, P =
[T:-, I;, where each I; C R is a non-trivial closed connected subset.

In other words, each I; is an interval, a ray, or all of R. After subdividing, it is
generally convenient to rule out the last case. If each I; is a ray, we refer to P as
an n-orthant.

We write corner(P) = [[\_, 01;, where 01; denotes the boundary of I; C R. We
refer to elements of corner(P) as corners of P. Note that they are determined
by the median structure of P. An orthant has exactly one corner.

If P is a compact panel, and ) = corner(P), then @ is an n-cube, and P =
hull(@). Conversely, if @ C M is a straight n-cube, then P = hull(Q) is a compact
panel. Note the P is median isomorphic to [0, 1]".

Let M be a complete connected median metric space of rank v.

Definition. As subset of M is cubulated if it is a locally finite union of compact
panels.

(This is slightly more general than the definition given in [Bo5] in that we are
not assuming that the panels have dimension v. This distinction will not matter
in any essential way.) Clearly a cubulated set is locally compact, and closed in
M.

A cubulated set can be identified with a subcomplex of a CCAT(0) complex in
M as we now describe.

Recall that if IT C M is a finite straight subalgebra, then Y(II) is a subalgebra
isometric to A(II) with the appropriate edge-lengths. Clearly this is a compact
cubulated set.

Note that a cubulated set is closed and locally compact. If it is compact, then
it is a union of a finite number of panels. Conversely, we have:

Lemma 4.1. Let ¥ be a connected finite union of compact panels in M. Then
there is a finite straight subalgebra, 11 C M, such that Y (II) = (V). Moreover, ¥
is a subcomplex of Y(IT) C M. Also, |I1| is bounded above in terms of v and the
number of panels of V.

Note that we can assume that II = (¥ N II). After subdivision, we can also
assume that U is a full subcomplex of Y (II) with vertex set W N1II.
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Proof. Let A C WU be the set of corners of all the panels of W, and let IT = (A).
We first note that II is straight.

To see this, suppose that W € W(II). There is some panel P of ¥ which is
crossed by W. If {¢,d} € E(W) in II, then [c, d]s, is parallel to a subset of a side
of P, hence has rank 1. This shows that II is straight as claimed.

Now each panel of ¥ lies in Y(II), where it is subdivided into a collection of
subpanels. See Lemma 3.3 of [Bo5] for more details. By construction, A C TNV,
so IT = (IIN¥). Now Y(II) is isomorphic to the realisation, A(II), of I1, so applying
Lemma 3.5 of the present paper intrinsically to Y (II), we see that Y(II) = (V).

Note that |A| < 2Yk, and so |II] < 22" where k is the number of panels of
V. O

In view of Lemma 4.1, we will refer to a connected finite union of panels as a
panel complex.

We also note that if & C M is a simply connected cubulated set that is also a
subalgebra then it is necessarily a CCAT(0) complex — it is easily verified that
it satisfies the link condition.

Definition. A subset, ¥ C M is uniformly cubulated if there is some k£ € N
such that if A C ¥ is any bounded subset, there is subset W' C W, which is the
union of at most & compact panels of M, and with A C ¥’

Note that there is no loss in assuming that the union of these panels is connected
(since we can take the subset to be connected, and apply Lemma 4.1).
The following is used in the proof of Lemma 5.2.

Lemma 4.2. Suppose that W C M is connected and uniformly cubulated. Let Y =
() C M. Then Y C M is a CCAT(0) panel complex, with V as a subcomplez.

(Note that we cannot assume a-priori that T is closed or locally compact, though
this will retrospectively be a consequence of the conclusion.)

Proof. By definition, can write ¥ as an increasing union, ¥ =  J;°, ¥;, where each
U, is a connected union of a bounded number of compact panels. By Lemma 4.1
and subsequent observations, U; is a subcomplex of T; = T(II;) = (¥;), where
II, € M is a finite straight subalgebra of M, with |II;| bounded. (Recall that
T(I1;) can be identified with the realisation, A(II;), of II; as a cube complex.)

In fact, we can assume that there is a fixed element p € II; for all 7. (Take
any p € Uy and replace II; by (II; U {p}). This has the effect of subdividing Y.
Moreover, (II; U {p}) remains bounded.)

Note that, after passing to a subsequence, we can suppose that each II; is
isomorphic to a fixed median algebra Ily. Let f; : IIp — II; be an isomorphism.
Again, after passing to a subsequence, we can suppose that for each x € Il,
fi(z) is either bounded or else eventually leaves every bounded subset of M. Let
P C 11 be the set of x € Il for which f;(z) is bounded. (This is a convex subset
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of Ilp.) Let B C M be a bounded set with f;(P) C B for all i. By construction,
if B" C M is any other bounded set, then B’ NII; C B for all sufficiently large i.

We claim that if C' C M is any closed bounded convex set with B C C, then
TNC = (¥NC). The inclusion (¥ NC) C T NC is clear (since TNC is a
subalgebra of M). We want to show that TN C C (¥ N C).

By Lemma 2.8, C' is gated in M. Let w : M — C be the gate map. This
is an epimorphism by Lemma 2.3. Let z € T N C. Then z € (A) for some
finite subset A C W. Let a € A, and let r = p(p,a). (Here p is the metric on
M, and so restricts to an intrinsic median metric on the subalgebra T.) Now
I, " N(p;r) € B C C for all sufficiently large 7. Choose some such i with
a € V;. Now V¥, is a subcomplex of T; = T(II;). By construction of Y(II,),
a € T(Q) for some cell @ C II;, with T(Q) C ¥,. Note that T(Q) is convex
in M. Let b be the nearest point of T(Q) to p. This is the image of p under
the gate map Y(II;) — Y(Q). Since p € 1I; and Y(II;) = A(IL;) it follows that
b€ Q. Now p(p,b) < p(p,a) < r,s0b € I; N N(p;r) € C. In particular,
this shows that T(Q) N C # @. Since T(Q) is convex, by Lemma 2.9, we have
w(T(Q)) = T(Q)NC. In particular, wa € T(Q)NC C ¥,NnC C ¥yNnC.
This holds for all @ € A, and so w((A4)) = (wA) C (¥ NC). Now z € C, so
r=wzr € w((A)) C (¥ NC). We have shown that T N C = (¥ N ) as claimed.

Now ¥ N C' is compact, so we have W N C' C U; for some (indeed all sufficiently
large) i. Therefore YNC =(NC) C(¥;) =T, =7T(1L). Now T NC="T,NC
is an intrinsically closed subset of T;. Therefore, T N C is itself a panel complex,
TNC = YT(WI;), where w' : T, — YT N C is the gate map. (This follows
by Lemma 3.2, on identifying Y; with the compact CCAT(0) complex, A(II;).)
Let IIyne be the unique minimal subalgebra of A(Ilyne) = Y (IIyne) such that
TNC = YT(IIyne) as given by Proposition 3.6. Note that yne C W'Tl;. In
particular, it follows that |IIyneo| is bounded.

Now let (C;)2, be an exhaustion of M by finite-diameter closed convex sets all
containing B. (Such exists, by Lemma 2.11.) Let T; =T N C; and II; = Ily/, so
that Y, = T(II;) and |II}| is bounded. Note that T = [J;°, Y} is an exhaustion
of T by compact subsets. We have gate maps w; : ¥ — Y.. Note that if i > j,
then T’ = T(w;II;) and so I} C w;(II}). (Again this follows by Lemma 3.2, on
identifying T} with A(TI}).) In particular, |[IT}| < [I[]. Since [IT{| is bounded,
this number must eventually stabilise so that for all j and ¢ > j, w;|II} is an
isomorphism from IT} to H;-. Moreover, w; = w; o w;. Therefore, we have a fixed
finite median algebra, II, and an isomorphism ¢; : II — II} for all (sufficiently
large) i. Moreover, if ¢ > j, then w; o ¢; = ¢;.

In summary, we have monomorphisms ¢; : I — M with T N C; = Y(¢,11).
Moreover, if i > j, then ¢; o ¢; ' is the gate map to Y(¢;II) restricted to ¢,IL.
Also, U N Y (1) is a subcomplex of Y(¢;11).

Let IIg be the set of x € II such that ¢;(z) is bounded, hence eventually
constant, equal to ¢(x) say. Then Ilg is a convex subset of II, and ¢ : [l —
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T C M is a monomorphism. After subdivision, we can assume for simplicity that
Il # @. We can identify Ap = A(Ilg) as a subcomplex of A = A(II).

Let Ay C A be the union of all closed cells of A which meet Ag. This is a
convex subcomplex of A (possibly all of A). Let I1; = IINA/, so that A; = A(I1;).
For any i, let Y/ = ¢;(II;) C II}, and let Y7 = Y(II) = ¢;(A;). If ¢ > j, then
1) = wi(Y]) €YY Also T = [JZ, Y7 (For suppose @ is any cell of II with
Q@ NIlp = @. Fix any p € IIg. We have p(p, $:(A(Q))) = p(p, ¢:i(Q)) — oo. In
other words, the corresponding cells of T’ eventually leave every bounded set.)

Now let A, € A be the union of all open cells of A whose closures meet Ag.
This is an open convex subset of A whose closure is A;. As described at the end
of Section 2, we can equip it with a complete median metric inducing the original
metric on Ag. We can now find an exhaustion of A, by compact convex subsets
A, all containing A, such that A; is isometric to T//. Moreover, these isometries
commute with the respective gate maps to A; and 17 in A and T respectively.
Taking the union of these isometries, we get an isometry from A, to Y. This
shows that T is a CCAT(0) panel complex as claimed. O

5. CUBULATION OF TOP-DIMENSIONAL SUBMANIFOLDS

The results of this section are analogues of regularity statements in [KlLe,
KaKL].

Let M be a complete connected median metric space of rank v. It is shown in
[Bob] that any closed subset of M homeomorphic to R” is cubulated. If we add
the stronger condition that the homeomorphism is bilipschitz, then we can achieve
uniformity by a slight elaboration of the argument. For the statement below, it
does not matter whether we equip R” with the euclidean or the {! metric, as these
are bilipschitz equivalent. For convenience, we use the euclidean metric for the
proof.

Lemma 5.1. Let f : RY — M be an embedding of R¥ into M which is k-
bilipschitz to its range. If K C R is compact, there is a compact panel complex,
U C M with f(K) C W C f(RY), where the number of cells of ¥ is bounded above
in terms of k and v.

Proof. The argument follows that of Proposition 4.3 of [Bo5]. We can assume
that K C By C By C By, where each B; is a topological ball. In fact, we can
take By = N(p;r), By = N(p;2r) and By = N(p;3r) for some r > 0. Since the
statement is invariant under rescaling the domain and range, we may as well take
r=1.

We now triangulate 0By, = S*~!, and let A C 9By be the 0O-skeleton. Let
IT = (f(A)) € M. As shown in [Bo3] (see also [Bob]) there is a compact subset,
T = Y(II) € M containing II, which in the induced metric is a CAT(0) cube
complex, though the cells need not be straight. (This is a more general version of
the construction described by Lemma 3.12 here.) If we take the triangulation to
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be sufficiently fine, then it was shown that there is a straight subcomplex, ¥ of
Y, with By C W C By. This suffices to show that f(R”) is cubulated.

For the present statement we need in addition to bound |A|. This will in turn
bound |II] and hence the number of cells of T as required.

To this end, let o be the CAT(0) metric on M arising from Theorem 2.15 here,
so that f is also o+/v-bilipschitz to (M, o). To apply the argument of [Bob]|, we
need to construct a homotopy from f|0B, into T which does not meet f(Bj).
This can be achieved by coning along geodesic segments in (M, o), while keeping
A fixed. Provided the triangulation is fine enough, depending only on v and &, the
images of all the cells will have diameter less than 1/k+/v. Since By = N(By, 1),
the image does not meet f(Bj).

The other requirement of the construction of [Bo5| is that any cell of T which
meets f(Bs) should lie inside f(By). It is enough that each cell has diameter less
than 1, which can again be achieved by taking the triangulation sufficiently fine,
depending only on v and k. 0

In other words, we have shown that f(R") is uniformly cubulated.

Lemma 5.2. Suppose that f : RY — M s a k-bilipschitz embedding. Let T =
(f(R¥)). Then Yis a thick CCAT(0) panel complex with f(R") as a subcomplex.

Moreover, the number of cells of T is bounded above in terms of v and k.

Proof. Let ¥ = f(R”). By Lemma 5.1, ¥ is uniformly cubulated, so by Lemma
4.2, Y is an CCAT(0) panel complex, and ¥ is a subcomplex. To see that T
is thick, suppose that T = AU B, and A, B C T is closed and convex in T.
If dim(A N B) < v — 2, then either f(RY) C A or f(R¥) C B, since otherwise
/Y (AN B) would separate R”, giving a contradiction. Since T = (f(R")), it
follows that T = A or T = B. In other words, T is thick. OJ

We will also need the following in Section 11.

Lemma 5.3. Let Y C M be a CCAT(0) panel complex, and suppose that F C M
is closed subset homeomorphic to R, and with F C N(Y;t) for somet > 0. Then
FCT.

Proof. Given that F' is cubulated, this can be proven by a similar argument to
that of Lemma 3.3 of [BeHS3].

Alternatively, we can again adapt the proof of Proposition 4.3 of [Bo5| as we
now describe. For this we again use the CAT(0) metric, o, on M, as given by
Theorem 2.15 here. This induces the CAT(0) metric on Y.

Let f : R — F be a homeomorphism. Let a € R” and let o > r; > 0 be
sufficiently large as described below. Let B; = N(a;r;). Thus a € By C By C R,
(We will not need the set “By” of [Bob] for the current argument.)

We triangulate 0B, so that the f-image of each simplex has diameter bounded
(by 1, say). For each vertex, x, of the triangulation, we choose some ¢z € F,
with o(¢x, ¢y) bounded. We now extend this to a map 0By — T using the
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fact that T is CAT(0), to cone off using geodesic segments. In this way, the ¢-
image of each simplex is again bounded. Since T is contractible, this extends to a
continuous map, ¢ : By — Y. Now construct a homotopy from f|0By to ¢|0By
in M by linear interpolation along geodesics segments. The trajectories of this
homotopy all have bounded length. Provided that r; — rg is chosen big enough,
this homotopy will not meet f(Bj). By the same homology argument as in [Bob],
we see that f(B1) C ¢(By) C Y. In particular, f(a) € T. Since a was arbitrary,
it follows that F' = f(R”) C T as required. O

6. QUASIFLATS IN FINITE PANEL COMPLEXES

Let ¥ be a CCAT(0) panel complex of dimension v, as defined in Section 4.
By hypothesis, this has finitely many cells. The main aim of this section is to
show that a quasiflat in ¥ is a bounded Hausdorff distance from a union of v-
cells of W. This will be used in the proof of Theorem 1.1 in Section 11. (It
could retrospectively be deduced from Corollary 1.4, though that would not give
us computable constants.) The statement is easily seen to be equivalent for the
median (/') metric, and for the CAT(0) ({?) metric. For convenience in the proof,
we will use the euclidean metric on R” and the CAT(0) metric on V.

We begin with some definitions. By a subcomplex of a CCAT(0) panel com-
plex, we mean a connected finite union of cells of €2, with the induced ' path
metric. (Note that each cell is an isometrically embedded panel.) If each cell is
contained in a v-cell, we refer to it as a v-subcomplex. In particular, a subcom-
plex is a panel complex as defined in Section 2.

Lemma 6.1. Let (¥, p) be a finite CCAT(0) panel complex of dimension v. Let
f:RY — U be a quasi-isometric embedding. Then there is a subcomplex, 2 C W,
which is a union of v-cells of ¥, and a quasi-isometry ' : RY — Q, which is
a bounded distance from f in V. Here the distance bound and the parameters of
quasi-isometry of f' depend only on those of f and the number of cells of V.

We first observe that we can assume f to be continuous — after moving it a
bounded distance. (This is standard construction. Take any triangulation of R”
with all simplices of bounded diameter. Map the O-skeleton via f, then extend
inductively over the i-skeleta by coning over vertices, using the fact that ¥ with
the ? metric is CAT(0).)

The proof will make use of the fact that a zero-degree map from the n-sphere to
itself identifies some pair of antipodal points. (See Theorem 15.1 for an account
of this.)

The idea behind the proof is as follows.

We want to push f into a subcomplex of W, where its image will be cobounded.
We can focus on v-cells of W. This is because if a cell is not contained in any
v-cell, then f can only penetrate it a bounded distance — otherwise it would have
to “fold over” and identify a pair of distant points. We can therefore push f off
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any such cell. If P is a v-cell of ¥, there is a dichotomy. Either P lies in the image
of f, or else again f can only penetrate a bounded distance. This is because if f is
not surjective, it must map with degree 0 to P, and so fold over as before. (This
is where we use Theorem 15.1.) In the latter case, we again push f off P. We end
up with a map which is surjective to subcomplex. The pushing operations move
f a bounded distance, so it remains a quasi-isometric embedding.

However, for the above argument to work, we would need that the side-lengths
of all the panels (equivalently, the widths of all the walls) are large in relation
to the quasi-isometry constants of f. We cannot assume this a-priori. However,
if we consider the set of widths of all walls as a subset of [0, 0], it must have
a large gap somewhere within a bounded distance of 0. We now collapse down
all the “narrow” walls, whose widths lie below this threshold. We then apply
the above argument. We finally need to reinstate the narrow walls. At this last
step, f might not remain surjective to a subcomplex, but its image will remain
cobounded there.

The proof will begin by describing various constants which will determine which
of the walls are deemed to be narrow.

Proof. We begin with a simple observation. Let P be a panel. Given t > 0, let
P, = N(OP;t) (in the euclidean metric, o). If each side of P has length at least 3t,
then we can find a continuous retraction, g : P, — OP, such that o(x, gz) < 7t
for all z € P,, where 7 depends only on the dimension. (We could take 7 = \/v.)

Next we define a series of constants, whose significance will become apparent
later. We first let A, x be the constants of quasi-isometry of f (which we assume
to be already continuous). In other words, o(fx, fy) < Ao(z,y)+k and o(z,y) <
Ao(fx, fy)+k forall z,y € R”. Let W be the set of walls of ¥, and write w = |W].

Given any t > 0, set ko = k+2wt, tg = (A+2)ko, k1 = ko + 27to, t1 = (A +2)k,
k’g = k?l + 27’t1, ty = ()\ + 2)]{32, e, ky—l = k?u—Q + 27—ty_27 t,_1 = (/\ -+ 2)]{3”_1.
Let G(t) = 3t,_;. Clearly the k; and t; are both increasing in i. Write G* for the
ith iterate of G. (Note that this all depends on the initial choice of t.) Now let
To = G¥(0). Note that Ty only depends on v,w, \, k.

There is some T' € (0,75) and a subset Wy C W such that w(W) < T for all
W e Wy, and w(W) > G(T') for all W € W\ Wy. (To see this, arrange the
values of w(W) for W € W, in order as w; < wy < -+ < w,. Note that w, = 00
(since ¥ unbounded). Set wy = 0, and let ¢ be maximal such that w; < G¥(0).
Let T = G'(0), so that w;y; > G**1(0) = G(T). Let Wy be the set of walls
corresponding to wy, . .., w;.)

In the above definition of constants, we now set t = T', so that ko = k + 2wT,
etc. Note that all of the constants t; and k; are bounded in terms of v, w, A, k.

We now collapse the walls W, to give us a new complex, ¥o, with CAT(0)
metric g, and a retraction, ¢ : W — W, satisfying oo(vz,vy) < o(x,y) <
oo(Vz,vy) + 2wT, for all x,y € W. The walls of ¥y are naturally identified
with W\ W,. In particular, they all have width at least G(T') = 3t,_;. Let
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fo=1vof:R” — W,. This is a continuous (A, kg)-quasi-isometric embedding,
where kg = k 4 2wT.

Our main goal now is to move fy a bounded distance so that it maps surjectively
onto a connected subcomplex of Wy. We will proceed by backward induction on
dimension, starting with v-cells. We will finally go back to ¥ and use this to
modify f.

In what follows, we will use the notation F' ~,. F’ to mean that oo(F(z), F'(x)) <
r for all z € X, where F, F’ are functions from some set X into W,.

Let P be a v-cell of ¥y. Since fy : R — Uq is proper, it has a well defined
degree, dp, to P. One way to describe this is as follows. Let S = R” U {oo}
and Sp = int(P) U {oo} be the one-point compactifications of R” and int(P)
respectively. These are both topological v-spheres. We have a continuous map,
fp S — Sp, which agrees with fo on f; '(int(P)) and sends everything else
to 0o. Let dp € Z be the degree of this map. Note that if dp # 0, then fp is
surjective, so P C fo(RY).

Suppose that p € int(P) and 0 < r < o(p,0P). Then B = N(p;r) is an
embedded euclidean ball in int(P). Let Sp = B/0B and co = 0B/0B € Sp.
(In other words, this is the one-point compactification of int(B).) There is a
deformation retraction of P onto B. This induces a homotopy equivalence from
Sp to Sg. Postcomposing fp by this homotopy equivalence, we get a map fp :
S — Sp, which agrees with f on f~!(int(B)) and sends everything else to oo.
Note that its degree is equal to dp.

Suppose that dp = 0. We claim that fo(R”) C P,,. In other words, if a € R”,
then o(fy(a),0P) < t5. To see this, let p = fo(a) and suppose that o(p, 0P) >
to = (A + 1)ko. Let By = N(a; ko) C R”, and let B = N(p;ty) C int P. Since fy
is (A, ko)-quasi-isometric, we see that fo(By) C int(B).

We now use stereographic projection from R” to the round v-sphere to put a
spherical metric on S so that By is identified with a hemisphere of S centred on a.
Note that any two antipodal points of .S are greater than kg apart in the euclidean
metric, oy.

Now fg has degree 0. So by Theorem 15.1, there are antipodal points, x,y € S,
with fp(x) = fp(y). We can assume that x € By, so fo(z) € int(B), so =,y #
00, so fo(z) = foly) = fe(x) = fe(y). This now gives the contradiction that
oo(z,y) < ko. This proves the claim that fo(R") C P,,.

It now follows that if P is any v-cell of ¥, then either P C fy(R") or fo(R") C
P,,. Note that t, <t,_1 = %G(T). Therefore, in the latter case, we can postcom-
pose fy with the retraction g : P,, — 0P, which moves every point a distance at
most 7.

We now perform this retraction simultaneously for each v-cell, P, which is not
contained in fo(R"), and remove the interior of P. This gives us a subcomplex,
U, C Uy, and a continuous map, f; : R — Uy, with f; ~,, fo. Note that each
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v-cell of ¥ is contained in f;(R”). Also f; is a (A, k1)-quasi-isometric embedding,
where ki = ko + 27t.

Now let P be a (v — 1)-cell of ¥y, not contained in any v-cell of ¥;. We claim
that f1(R") C P,,, where t; = (A + 1)k;. We argue similarly as before. Suppose
a € R” with o(fi(a),0P) > t;. Let p = fi(a), B = N(p;t;) C int(P), and
By = N(a; k1) C RY. Since fi is (), kp)-quasi-isometric, we have f;(By) C int(B).
Let Sp = B/0B. This is a topological (v — 1)-sphere. We have a map fg: S —
Sp. We put a round metric on S as before, so that By gets identified with a
hemisphere centred at a. Now S is a v-sphere, so by the (standard) Borsuk-Ulam
Theorem, there are antipodal points, z,y € S, with fg(x) = fp(y), and we derive
a contradiction ky < og(x,y) < ki as before. This proves the claim.

Now t; < t, 1 < %G(T), so we can again retract P, onto JP moving points
a distance at most 7¢;. We perform this for all such (v — 1)-cells, P, and then
remove their interiors to arrive at a subcomplex, W9 C ¥y, and a map fo : RV —
Uy, with fo ~., fi. Note that fy is a (A, k2)-quasi-isometric embedding, where
ko = ki +27t;. Moreover W, has the property that each (v — 1)-cell lies in a v-cell
and hence in fo(RY).

We now proceed to (v — 2)-cells, to give us U3 C Uy, and f3 : RV — W3 with
f3 ~r1, f2. BEach (v — 2)-lies in a (v — 1)-cell hence in a v-cell hence in f3(R").

We eventually arrive at ¥, ; C ¥, and f,_; : R¥ — V¥, with ¥, ;| =
fu—1(R¥). Note that f,_1 ~., fo, where ro = 7(tog +t1 + -+ +t,_1).

We now let = C ¥ be the union of all v-cells of ¥ which map to v-cells of
U,y under the map ¢ : ¥ — Wq defined earlier. (Thus =,_; = ¥(¥).) Let
f'+ R — = be any map such that ¥ o f' = f,_;. Now [ ~, 1or f, and
ro + 21 < rg 4+ 2Ty, which depends only on v,w, A\, k. Since f,_; is surjective,
== N(f'(R"),2wT"), where 2wT < 2wTj is again bounded in terms of v, w, A, k.

Of course, = need not be connected. To rectify this, we set Q = ¢~1¥,_;. Then
Q2 is a (connected) subcomplex of ¥ containing =, and with Q C N(Z,2wT). O

Note that if, initially, f(R") already lies in some subcomplex of ¥, then by
construction, = will be a subset of this subcomplex.

One can also elaborate on the proof as follows. Suppose that L > 0 is some
constant. In the proof on Lemma 6.1, we could take Ty = G“(L) (instead of
G*(0)). We then set w; to be the maximal ¢ such that w; < G*(L). Then set
T = G'(L) so that w;;; > G (L) = G(T). We then proceed as before. In this
case, we have ensured that w(W) > L for each wall W of ¥,. In the penultimate
paragraph, all the panels of = will have all side-lengths greater than L. Of course
now, the quasi-isometry constants and distance bound will depend also on L.

The argument above does not directly relate = and 2. But by running the
argument twice, we arrive at the following addendum to Lemma 6.1:

Lemma 6.2. Let L > 0. In the conclusion to Lemma 6.1, there is a subset, =, of
Q such that Q2 lies in an s-neighbourhood of = in W, and such that all side-lengths
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of all panels of = are greater than L. Here s depends on L, the parameters of f
and the number of panels of U.

Proof. First apply Lemma 6.1 to give us f/ : R¥ — Q C W. Now run the
argument again with f’ replacing f, and modified as above. We now take Z as in
the penultimate paragraph of the proof. 0

By choosing L bigger than any of the finite side-lengths of €2, we get the fol-
lowing immediate corollary to Lemma 6.2:

Corollary 6.3. In the conclusion to Lemma 6.1, there is a subset, = of U consist-
ing of a union of v-cells which are all orthants such that V lies in a finite metric
neighbourhood of =.

Let ¥ be the quotient complex of ¥ obtained by collapsing all walls of finite
width. This is a CCAT(0) orthant complex. Let = C W be the image of the
set = as given by Corollary 6.3. Postcomposing f" with projection to ¥, we get a

quasi-isometry of R” to the orthant complex =. We claim that = is homeomorphic
to R”:

Lemma 6.4. An orthant complex quasi-isometric to R is bilipschitz equivalent
to R”.

Proof. This is a simple application of asymptotic cones, which we discuss in Sec-
tion 10. We refer to that section for definitions.

Let 6 : R¥ —  be a quasi-isometry to an orthant complex, ). Passing to
asymptotic cones with a fixed basepoint, we get a bilipschitz homeomorphism,
0= : (R”)>® — Q. Note that the isometry classes of R” and € are both
invariant under rescaling, and so they are both are isometric to their respective
asymptotic cones. We therefore get a bilipschitz homeomorphism from R” to (2
as required. O

The above raises the following question:

Question. Is any self-quasi-isometry of R” a bounded distance from a bilipschitz
map”?

In the above one could in addition ask for the constants of the conclusion to
depend only on those of the quasi-isometry. (One could also weaken it to ask only
for a homeomorphism.) One can show that this holds if v < 2, though I know of
no result that would imply this for any v > 3.

One consequence of an affirmative answer would be that we could strengthen
the conclusion Theorem 1.1 to say that f factors up to bounded distance though
a bilipschitz embedding of R” into 2.
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7. COARSE MEDIAN SPACES

We first introduce some general conventions regarding coarse geometry.

Let (A, p) be a metric space. Given subsets, A, B C A and r > 0, we write
A C, Btomean A C N(B;r). We write A ~, B to mean A C, Band B C, A,
in other words, hd(A, B) < r, where “hd” denotes Hausdorff distance. If x € A,
we write © €, A to mean x € N(A;r). If x,y € A, we write x ~, y to mean
p(x,y) < r,in other words, {z} ~, {y}. If f,g : X — A are functions from
some set X, we write f ~, g to mean that f(x) ~, g(z) for all x € X.

Note that A C,. B C, C' implies A Co, C etc. We will sometimes omit reference
to a particular constant, and just write C,, ~, or €,. The interpretation is that
“x” substitutes for some constant whose value depends only on the constants
introduced into the discussion. We can then behave as though the relations C,
and ~, were transitive. One can get explicit bounds for the value of * at any
particular point in the argument, by counting the number of times we have applied
transitivity etc., but we won’t usually keep track of this.

Next we recall the notion of a coarse median space.

Let (A, p) be a geodesic space, and let p: A> — A be a ternary operation. If
(T1, pyy) is a median algebra (or indeed, any set equipped with a ternary operation)
we say that a map, A : I — A is an h-quasimorphism if for all x,y, z € 1, we
have Aun (2, y, ) ~n 1(Az, Ay, Az).

We say that A is a coarse median space (of (coarse median) rank at
most v) if the following hold:

(C1): There is some k > 0 and hy > 0 such that for all x,y,z, 2"y, 2" € A, we
have p(u(z,y, 2), (2", y', 2')) < k(p(z,2') + p(y,y') + p(2, 7)) + ho.

(C2): There is a function h : N — [0,00) such that if n € N and A C A
with |A| < n then there is a finite median algebra II (of rank at most v), a map
7 : A — II, and an h(n)-quasimorphism, A : I — A, such that p(a, A7a) < h(n)
for all a € A.

After modifying p up to bounded distance, we can also assume that u is sym-
metric in the arguments, and that u(z,x,y) = x for all z,y € A.

We will usually use a variant of (C2) in this paper. We can assume in (C2),
that Ama = a for all @ € A. (For this, one can take IT and adjoining A as a disjoint
set of vertices, attaching each a € A by an edge to 7(a) € II. One then replaces
IT by this new complex, and replace w by the inclusion map of A.) We can also
assume that A is injective (moving points a small distance), and then take IT C A,
replacing A by the inclusion map. In this way, we end up with A C II C A. While
this construction is a bit artificial and not strictly necessary, it will allow us to
simplify notation, suppressing mention of the maps 7 and .
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Definition. An h-quasisubalgebra of A is a finite subset, II C A, equipped
with the structure of a median algebra, such that the inclusion of II into A is an
h-quasimorphism.

Therefore, in the previous paragraph, II C A is an h(n)-quasisubalgebra.

One consequence is that any tautological identity in a median algebra holds up
to bounded distance in a coarse median space. More precisely, suppose we have
a formula equating two expressions involving the ternary relation u, which holds
for any values of the arguments in any median algebra. (In fact, it is sufficient to
check it for the two-point median algebra, {0, 1}.) Then if we substitute arguments
in A instead, the two sides of the formula give points in A which are a bounded
distance apart. Here the bound depends only on the complexity of the expressions
and the parameters of A (that is k, hg and h). A similar statement holds for
conditional identities. In other words, suppose some finite set of median relations
tautologically imply another relation in any median algebra. If the initial relations
hold up to bounded distance for some assignment of arguments in A, then the
resulting relation also holds up to bounded distance in A with these arguments.
For more formal statements of these principles, see [Z1, Bo5, NibWZ1].

Suppose that IT C A is a (by definition, finite) h-quasisubalgebra. Given a
wall, W € W(II), write w(W,A) = min{p(c,d)} as ¢, d ranges over all edges of
IT which cross W. Since any two such ¢, d are parallel, it follows from Property
(C1), that p(c,d’") agrees with w(W,A) up to linear bounds, for any such edge
d,d. (See Section 9 for further discussion of this.) It is convenient to assume
that w(W, A) > 0 (which is possible since we are really only interested in its value
up to linear bounds). As discussed in Section 3 can now put a median metric on
IT so that the width of each wall W is exactly w(W,A). It now follows (again
using Property (C1)), that the inclusion of IT into A is quasi-isometric, where the
constants only depend on A and the parameters of A.

Given amap f: C' — A from any set, C', to A, we say that f is t-separating
if p(fa, fb) > t for all distinct a,b € C. A subset of A is t-separated if its
inclusion into A is t-separating.

Suppose again that IT C A is an h-quasisubalgebra. Let w(Il, A) = min{w (W, A) |
W e W(II)}. Clearly, if II is t-separated, then w(II, A) > ¢. Conversely, there is
a linear function [t — w(t)], such that if w(II, A) > w(t), then II is t-separated.

Definition. An h-quasicube of dimension n is an h-quasimorphism, ¢ : ) —
A, from an n-cube, @), into A.

We will also refer to @ C A as an h-quasicube, where Q C A is an h-
quasisubalgebra isomorphic to an n-cube.

If A is coarse median of rank at most v, then for any h > 0 there is some
t > 0 such that any t-separated h-quasicube has dimension at most v. (Although
we won’t be needing it here, there is also a converse to this statement which
characterises the rank of a coarse median space, see [Bo5, NibWZ1].)
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We will need the following slightly technical statement, which will allow us to
improve on a quasimorphism constant at the cost of enlarging the domain. For
this statement, A could be any metric space with a ternary operation, p = jiy.

Lemma 7.1. There are functions, t,r : N — [0, 00) with the following property.
Suppose that I1; C 11y C A are both finite median algebras with respective medians
w1 and ps. (We do not assume the inclusion of 11y into Iy to be a homomorphism.)
Suppose that |II1| < n and that 11y = (II;). Suppose that for some k > 0, the
inclusions of 11 and Ily into A are both k-quasimorphisms (to (A, ua)), and that
1y is (kt(n))-separated. Then there is a median epimorphism, w : Iy — 1Iy,
such that w|Ily is the identity and p(x,wx) < kr(n) for all x € Il,.

Proof. Write p; for the median on II;. Since Il = (II;), every element of I,
can be written as an expression involving the median, s, with arguments in II;.
Moreover, we can take the expression to have bounded complexity, in terms of n.
(This follows from Lemma 2.1 as observed there.)

Let = € II,. Write z as such an expression. Now replace ps by py. This gives
us a median expression in II;. Evaluate this in II; to give us some 2’ € II;.

Since the inclusions of II; and II, are both k-quasimorphisms, and the expres-
sion has bounded complexity, it follows that p(x,z’) is bounded by some fixed
multiple of k. (For example, at the first step, suppose that x = us(a,b,c) with
a,b,c € II;. The construction gives us 2’ = py(a, b, ¢). Note that z = us(a, b, c) ~p
pala, b, c) ~ pa(a,b,c) = ', so that p(x,z’) < 2k. The general case follows by a
similar principle, effectively iterating this procedure.)

Suppose we chose a different expression for = (again of bounded complexity) so
as to give us instead x” € II;. Then p(z',2") < p(z,2") + p(x,2") is also bounded
by some multiple of k. Therefore, provided ¢(n) is chosen large enough, we will
necessarily have p(z’,2") < kt(n). Since II; is (kt(n))-separated we get 2’ = 2”.
In other words, 2’ is uniquely determined, and we set wx = 2/

Suppose that a € Il,. In this case, the expression = a (vacuously involving
p2) gives us wr = 2’ = a. In other words, wa = a, so that w : II; — II; is the
identity on II; as required.

To see that w is a homomorphism, let z,y,z € Iy, and set m = us(x,y, 2).
Write each of x,y, 2z as an expression involving s with arguments in II;. Sub-
stituting into py(z,y,z) we get a similar expression for m, again of bounded
complexity. Now apply the same procedure as before: replace ps by 1, and
evaluate in IIy. This gives us m’ € II;. In fact, we see that m’ = (2, ¢/, 2'),
where by construction, 2’ = wx, ¥ = wy and 2z’ = wz. This time the complexity
of the expression for m’ might be larger than considered before, but only by a
controlled amount. We therefore get that p(m’, wm) is bounded by some multiple
of k. Again, if t(n) is large enough, we get p(m’,wm) < kt(n), so m’ = wm. In
other words, wpus(z,y, 2) = 1 (wx,wy,wz), so w is a homomorphism as claimed.
Since wl|II; is the identity, it is an epimorphism. O
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We now suppose again that A is a coarse median space of rank at most v.

Lemma 7.2. There are functions, h,t,7 : N — [0, 00) with the following prop-
erty. Suppose that I1; C A is a median algebra with |I1;| < n, and whose inclusion
into A is a (kt(n))-separating k-quasimorphism for some k > h(n). Then there
is an h(n)-quasisubalgebra, Ty C A, of rank v, with |Ily| < 22", together with an
epimorphism: w : 1l — I1y, such that p(x,wx) < kr(n) for all x € ;.

Proof. We take h to be the function given by Property (C2), and ¢, r as given by
Lemma 7.1. Applying (C2) with A = II; we get an h(n)-quasisubalgebra, ITs C A,
with II; C Il (not necessarily a subalgebra). Moreover, we can suppose that
I, = (I1;), so |TIy| < 22". Lemma 7.1 then gives us an epimorphism w : Ily — II;
with p(z,wx) < kr(n) for all x € 11, as required. O

Recall the notion of “fatness” introduced in Section 3.
Lemma 7.3. In Lemma 7.2, if 111 s fat, we can take 115 to be fat.

Proof. Lemma 7.2 gives us an epimorphism w : Il — II;. By Lemma 3.11, there
is a convex subset, II” C Ily, with II” intrinsically fat, and with wIl” = II;. We
now replace Iy by I1” and denote it again by Il;. O

For future reference (in the proof of Lemma 12.2) we remark that if A is a
connected median metric space, then we can just set h = 0 in Lemma 7.2.
Further refinements of Lemmas 7.2 and 7.3 are given in Section 9.

8. COARSE INTERVALS

In the next two sections, we discuss coarse intervals and cubes in coarse median
spaces. Much of what we do can be viewed as taking facts about median algebras
and observing that the corresponding statements hold up to bounded distance in
a coarse median space, via the general principle discussed in Section 7. We will
refer to this process as “coarsifying”. Further discussion of these notions can be
found in [NibWZ1, NibWZ2].

Let A be a coarse median space. Given a,b € A, let [a,b] = [a,b]an = {u(a, b, z) |
xr € A}

Definition. [a,b] is the coarse interval from a to b.

The map w = wyyp : A — [a,b] defined by w(z) = u(a,b,z) is a median
quasimorphism. Since A is connected, it follows that any two points, x,y € [a, ]
are connected an ro-path in [a, b]; that is, a sequence of points = = xg, 1, ..., z, =
y, with z; € [a,b] and z; ~,, x;1;1 for all i. Indeed we can arrange for n to be
linearly bounded above in terms of p(x,y).

Up to bounded distance, [a, b] is closed under p. In other words, given x,y, z €
[a,b], there is some w € [a,b] with w ~, p(z,y,z). When dealing with a sin-
gle interval, in order to simplify notation, we will assume that we always have
p(x,y, 2) € [a,b]. Up to bounded distance, this makes no difference.
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Here is another way of describing coarse intervals. Given r > 0, let [a,b], =

{z e Al pla,b,x) ~ x}.

Lemma 8.1.

(1) Given r >0, [a,b], C. [a,b], where ' depends only on r and the parameters
of A.

(2) There are some 1q, 7, depending only on the parameters of A such that [a, b] C,,
[@, blry.

In particular, for all sufficiently large r, we have [a, b] ~, |a, b],.

Proof. This follows by coarsifying the fact that in a median algebra, these corre-
spond to equivalent ways of defining an interval: namely, {u(a,b,z) | x € A} =
{z € A| p(a,b,x) = x}. Note that this equivalence can be expressed in terms of
median expressions of bounded complexity. O

One can also check similarly that if a ~, @’ and b ~, V', then [a,b] ~, [/, V].

Given z,y € [a,b], write x Ay = p(a,x,y) € [a,b] and x Vy = u(b,z,y) € [a,b].
Coarsifying the corresponding statements in a median algebra discussed in Section
2, we see that with these operations, [a,b] satisfies the axioms of a distributive
lattice up to bounded distance. In other words, (x A y) Az ~. o A (y A 2),
A (xVy) ~, z etc. We write x <, y to mean that x ~, = Ay. Thus, <,
is a partial order on [a,b] up to bounded distance. In particular, z <, y <, z
implies x <, z. Also x <, y and y <, x together imply z ~, y. In fact, the
following statements are all equivalent up to bounded distance: = <, y, y ~, xVy,
x €, [a,yl, [a, 2] C, [a,y], y € [b,x], [b,y] Ci [b, z]. Of course, the constants may
change as we move between these statements. Note that if z <, y <, z, then
(,y, 2) ~ y.

Definition. We say that [a, ] (or a,b) is s-straight if given any x,y € [a, b] we
have x <;y or y <, x.

In other words, <, is a total order up to bounded distance.

Lemma 8.2. Suppose that [a,b] C A is s-straight. Let J = [0, p(a,b)] CR. There
is a quasimorphism, § : J — [a,b], with image cobounded in |a,b], and with
B(0) = a and B(p(a,b)) = b. Moreover, 5 is a quasi-isometric embedding. All the
constants of the conclusion depend only on s and the parameters of A.

Proof. Recall that any two points of [a, b] are connected by an rg-path for some
ro depending only on the parameters of A. In particular, we can find an ro-path,
a="Yo,Y1,---,Ym = b from a to b.

Let t > 0 be chosen sufficiently large, depending on s and the parameters of A,
as described below. We can suppose that p(a,b) > t. Let A C [a, b] be a maximal
t-separated subset with a,b € A. For x,y € A write x < y to mean that z # y
and r <g; y. We claim that < is a total order on A. To see this, note that by
straightness, we have x < y, y < x for all x # y. Moreover, if x < y < z < x, then
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we must have x ~, y ~, 2z ~, x, which is a contradiction if ¢ is chosen sufficiently
large. We similarly get a contradiction to z < y < z. It now also follows that
r <y < zimplies x < z. This proves the claim.

Now suppose that we have points z; € A witha =20 < 21 < --- <z, = b.
We claim that for all 7, y; <, x;. This follows by induction. For suppose y; <s ;.
Since [a, b] is s-straight, if y;11 <s x;11 does not hold, then z; ;1 <, y;+1 and so
Vi <s i <s Tit1 <s Yit1 ~ro Yis SO T; ~, i1, Which again is a contradiction if
t is large enough. In particular, y; # b for ¢ < n. Since y,, = b, we must have
n < m. Since m is fixed, this places a bound on the length of such a sequence
(x;);. Since < is a total order on A, it follows that A is finite. We can therefore
retrospectively assume that {zg,z1,...,2,} = A. In particular, if y € [a,b], we
have y ~; x; for some i.

We next claim that p(z;, x;11) is bounded. Note that there must be some j
such that y; ~; z;, for k < ¢ and y;41 ~; 2y for some | > i+ 1. Now x ~y y; ~
Yit1 ~t Ti, SO Ty ~y T <y Ty <y Tig1 <4 27, and S0 x; ~, i1 as claimed.

Next, we claim that |i — j| is linearly bounded above in terms of p(x;, z;). We
can suppose that j = ¢ + ¢ for ¢ > 0. We can connect z; to ;44 by an ro-path
Ti = 20,21, ,- .-, %p = Titq, Where p is linearly bounded in terms of p(z;, z;4,). By
a similar argument as before, we see that z; <; x;4; for all [. In particular, we get
q < p as claimed.

We have now shown that (z;); is a quasigeodesic sequence in A with cobounded
image in [a,b]. Moreover, if i < j < k, then u(z;, z;,x) ~, x;. We can now
divide J into n equal intervals, and interpolate to give the required quasi-isometric
quasimorphism of J into [a, b]. O

9. COARSE CUBES

In this section, we describe the geometry of coarse hulls of quasicubes in a
coarse median space. (See also, [NiIbWZ1, Bo8|.) Let @ C A be an h-quasicube
of dimension n. Recall the definition w(Q,A) = min{w(W,A) | W e W(Q)}. If
a,b € Q is an (ith) face of @, we refer to [a,b] C A as an (ith) side of Q.

Definition. We say that an h-quasicube, Q C A, is s-straight if all its sides are
s-straight.

We claim that any sufficiently separated h-quasicube of dimension v is coarsely
straight. More precisely:

Lemma 9.1. There are functions, to, s : N — [0, 00), with the following property.
Let A be a coarse median space of rank v. There is some hy > 0 depending only
on the parameters of A, such that the following holds. Suppose h > hqg. If Q C A
is an h-quasicube of dimension v with w(Q,\) > hto(v), then Q is hs(v)-straight.

Proof. Let ¢,d be face of Q. Let x,y € [¢,d] C A. Let IT C A be a quasisubalgebra
with Q U {z,y} C A (the parameters of which depend only on those of A). Let
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II" C II be the subalgebra of II generated by ). Using Lemma 7.1 applied to
Q C II" C A, if t is large enough (in relation to |Q| = 2¥), then there is an
epimorphism, w : II' — @ such that w(z) ~, x for all z € . By Lemma 2.6,
there is a v-cube @' C II' with w|®" an isomorphism to Q. Let ¢,d" € Q" be
such that w(¢’) = ¢ and w(d’) = d. Thus, ¢,d is a face of @', and ¢ ~, ¢ and
d ~, d. Note that [¢/,d'];; is straight in II (since @' is also a v-cube in II and
rank(IT) = v). Let o' = un(d,d,z) and ¢ = pup(d,d',y). Then 2’ ~, x and
Yy ~, y. Up to swapping = and y, we have ' < ¢/ in [¢,d']. In other words,
= pun(d,2',y’). It follows that x ~, 2’ ~, pa(cd, 2, y') ~. pa(c,z,y). In other
words, = <, y in [¢,d] € A, where s depends only on the parameters of A. Since
x,y € lc,d] were arbitrary, [c,d] is s-straight, where s is some fixed multiple,
hs(v), of h, as required. O

Definition. A subset, C' C A, is r-convez if [a,b] C, C for all a,b € C. We say
that C' is coarsely convex if it is r-convex for some r > 0.

Note that any interval, [a,b] C A is coarsely convex. (This follows by coarsifying
the statement that any interval in a median algebra is convex.)

Let @ C A be an h-quasicube of dimension n < v. Let a,b be opposite corners
of Q. Then Q) = [a,b]g, and so @ C, [a,b] = [a,b]5. Since intervals are coarsely
convex, we see that if a’,0 € @, then [a’, V] C, [a,b]. In particular, if o', is
another pair of opposite corners of @, then [a/, 0] ~, [a,b]. Thus, up to bounded
distance, we have a well defined subset, H(Q) C A, with H(Q) ~. [a,b]. We can
assume that @) C H(Q). Thus H(Q) can be thought of as the “coarse hull” of @
in the following sense.

Lemma 9.2. Q C H(Q), and H(Q) is r-convez, where r depends only on h and
the parameters of A. If H C A is r'-convex and Q C H’', then H(Q) C,.» H’,
where " depends only on h, ' and the parameters of A.

The conclusion of Lemma 9.2 characterises H () up to bounded distance. (It
is an instance of a more general construction of coarse hulls in a coarse median
space of finite rank [Bo8§].)

In fact, H(Q) is a direct product of its sides, in the following sense.

Let W(Q) = {W,...,W,}, and let a, ¢; be the face of ) containing a and cross-
ing W;. In this way, @ is a direct product, [ {a, ¢}, of the two-point median
algebras {a,¢;}. Let [; = w(W};), as defined in Section 7. Up to linear bounds, I;
agrees with p(a,c;). Let I; = [a,¢;] € A. We can suppose for convenience that
I; is closed under p. (This is necessarily true up to bounded distance.) We write
Py =11, L for the direct product equipped with the product ternary relation.

Let f; = wae, : A — I, that is, f;(x) = u(a,c;,x). Combining these maps,
we get a quasimorphism, f: A — P,. Conversely, given x = (z1,...,2,) € Py,
let g(x) =21 VagV---Va, €[a,b] = H(Q). (Recall from Section 8 that [a, b]
is a distributive lattice up to bounded distance.) This gives a map g : Py —
H(Q) which is also a quasimorphism. In fact, go f ~, wep : A — H(Q).
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In particular, g o f|H(Q) is the identity up to bounded distance. Both maps are
coarsely lipschitz, and so ¢ is a quasi-isometric embedding. The above observations
all follow by coarsifying the corresponding statements in a median algebra as
discussed in Section 2.

Now if @ is straight, by Lemma 8.2, there is a median quasimorphism, (; :
J; — I;, where J; = [0,;] € R. Note that §;(J;) is cobounded in I;. Let
P =], J; € R" with the {* metric. Thus P is a compact panel. Combining the
maps J;, we get quasimorphism, g : P — P, C A. Postcomposing with g above,
we get a map, ¥ = go 5 : P — H(Q). All the above maps are coarsely lipschitz
quasimorphisms. In summary, we have shown:

Lemma 9.3. Let A be a coarse median space. Suppose that QQ C A is an r-straight
h-quasicube of dimension n. Let P = [[_,[0,w(W;)] € R", where W(Q) =
{Wi,...,Wy,}. Then there is a quasimorphism ¢ : P — H(Q), sending the
corners of P to the corresponding elements of Q, with ¥ (P) cobounded in H(Q),
and with 1 a quasi-isometric embedding to A. All the constants of the conclusion
depend only on h, r, n, and the parameters of A.

In fact, our argument shows that if ¢ : P — H(Q) is any coarsely lipschitz
quasimporphism sending the corners of P to the corresponding elements of @),
then ¢(P) ~, H(Q).

Note that by Lemma 9.1, if A has rank v, then this result applies to any
sufficiently separated quasicube of dimension v in A. In summary, we have shown
that the coarse hull of a sufficiently separated v-cube in A is a coarse panel as
defined in Section 2.

Given a,b,d’, b’ € A, we say that a, b is k-parallel to o,V if they form opposite
faces of a k-quasicube of dimension 2. In this case, the gate maps, wq y|[a, b)) —
[a, V] and wgp|[a’,b'] — [a, b] are quasi-inverse quasimorphisms. From this one
sees easily that if [a,b] is r-straight, then [d/, ] is r’-straight, where " depends
only on r, k and the parameters of A. Also, if a”, 0" is k-parallel to o', ¥/, then it is
k'-parallel to a, b, where k' depends only on k& and the parameters of A. Moreover
the gate maps between them commute up to bounded distance.

Suppose that IT C A is an h-quasisubalgebra. If W € W(II) and ¢, d and ¢, d’
are 1-cells of II crossing W, then if ¢, d is s-straight, then ¢, d’ is s'-straight. We
will say that W is s-straight if all 1-cells crossing it are s-straight.

Definition. We say that Il is s-straight if all walls are s-straight.

If A has rank v, and rank(Il) = v and rank(W) = v — 1, then by Lemma 9.1
and the above discussion, we see that if w(W, A) is sufficiently large, then W is
straight. Recalling the definition of “fat” from Section 3, we see that a sufficiently
separated fat quasisubalgebra is straight. We have the following variant.

Lemma 9.4. In the conclusion of Lemma 7.2, we can suppose in addition that
I, is s(n)-straight where s(n) depends only on n and the parameters of A.
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Proof. We suppose that t(n) sufficiently large in relation to the constant ty(n) of
Lemma 9.1 as described below. Let W € W(Il,). By Lemma 2.6, and subsequent
discussion, we can find a v-cell Q C II, with W(Q) = {W7, ..., W/_;, W}, where

W corresponds to a wall W; € W(Il,). By choosing t(n) sufficiently large, we
can assume that w(W/, A) > hto(n) foreach i =1,...,v — 1.
If w(W,A) < to(n), then it is certainly uniformly straight. Otherwise, we apply

Lemma 9.1. O

Suppose that IT C A is an h-quasisubalgebra. As described in Section 3 we can
put a median metric on A(II) such that the width of a wall W € W(II) is equal to
w(W, A). With this structure, A(II) is a compact CCAT(0) panel complex. We
denote it by A(IL, A).

Let T(II, A) be the union of the sets H(Q) as @ ranges over all cells of IT (cf.
the construction in Section 3).

Lemma 9.5. Suppose that I1 C A is an r-straight h-quasisubalgebra. Then there
is a strong quasimorphism, ¢ : A(II;A) — A, with ¢(A(IL,A)) C T(IL,A)
cobounded in Y(II,A). The constants of the conclusion only depend on r, h,
IIT| and the parameters of A.

Proof. Given any W € W(II) choose any 1-cell, ¢,d, of II crossing W. Let (3 :
[0,w(W,A)] — [c,d]a be the quasimorphism given by Lemma 8.1. We now
postcompose by the gate maps to the other 1-cells crossing W. We do this for
each wall W. This gives a quasimorphism on each 1-cell of A(II; A). As with
Lemma 9.3, we can now extend this to a quasimorphism from each cell A(Q) of
A(II, A) to H(Q) € A. Assembling these gives us the required map from A(II, A)
to Y(IL, A).

Now ¢ is coarsely lipschitz, since its restriction to each cell is. We want to show
that it is a quasi-isometry.

One way to see this is to embed A(II, A) into the [* product = = [Twewqn0, w(W, A)].
By the construction of A(II, A), the inclusion is isometric. We can define a coarsely
lipschitz map A — =, where the W-coordinate is obtained by postcomposing the
gate map [z — u(c,d, z)] with a quasi-isometry from [c, d| to [0, w (W, A)], where
{c,d} is any side of II crossing W. Restricting to YT(II,A) gives us a coarsely
lipschitz quasi-inverse to ¢.

It remains to show that ¢ is a quasimorphism. In principle, one could do this
by coarsifying the proof of Lemma 3.12 of the present paper, as it was laid out in
Section 6 of [Bo3]. However, we will give a somewhat different argument below.

To simplify notation, we will write 2’ = ¢z for x € A. We will use p and ' for
the medians in A and A respectively.

Given z,y,z € A, let m = pu(z,y,z). We claim that m' ~, p/(2',y/,2"). We
will say that the “claim holds” for x,y,z € A if m' ~, p/(2',y/,2'), for some
fixed r > 0, which will depend on the parameters of II and A and on the stage
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of the argument. We won’t bother to explicitly estimate this. Since ¢|II is a
quasimorphism by hypothesis, the claim certainly holds for z,y, z € II.

We begin by supposing that x,y lie in a 1-cell, [¢,d] C A, where ¢,d € 11, and
that z € A.

If u(e,d, z) # ¢,d, then it follows directly from the construction that the claim
holds for x,y, 2.

Suppose instead that z € II. Then without loss of generality, u(c,d,z) = d.
In this case, u(z,y, 2) = p(p(z, ¢, d), uy, ¢,d), z) = p(x,y, plc, d, 2)) = p(z,y,d).
On coarsifying, p/(2', ', 2") ~. p/ (2, ¢/, d") = (u(x,y, 2))". In particular, the claim
again holds for x,y, z.

Now suppose z € A is arbitrary. Let P C A be a cell containing z. We
write P = [a,blan, where a,b € II are opposite corners of the cell, P N II,
of II.  First note that if u(x,y,z) # c¢,d, then the claim holds, as already
noted. If not, we can assume, without loss of generality that P maps to d
under the gate map to [c,d]. In particular, u(c,d,a) = d and by the earlier
discussion, pu(z,y,a) = p(z,y,d) and p'(2',y',a') ~, p/(2',y,d"). Similarly,
p(x,y,b) = p(z,y,d) and p' (o', 4/, b)) ~, (2, y,d). Tt follows that u(x,y,z) =
w(z,y, pla, b, z)) = p(p(z,y, a), p(z,y,b), 2) = p(p(@, y, d), w(z,y,d), z) = p(z,y,d).
Coarsifying, we similarly get p/(2/,y/, 2") ~. p/(2’,y/,d’"). Using the previous case,
we now get (u(z,y,2)) = (u(x,y,d)) ~. @' (@, y,d) ~. @' (2'y, 2"). This shows
that the claim holds whenever x,y lie in a 1-cell of A, and z is any point of A.

Now suppose that z,y both lie in some cell Py of A, and z € A. Then
p(x,y,z) € Py and since P} = ¢(Py) is coarsely convex p/(z’,y’,2") lies in (or
a bounded distance from) Py. To check that (u(x,y,z)) ~. f/(2',y,2') it is
therefore enough to check that u(zx,y, z) projects to /(¢ (¢, d', "), /' (¢, d',y'), 2")
for any 1-face, ¢, d of Fy. But this follows easily from the previous case. Therefore
the claim holds when z,y both lie in some cell, and for any z € A.

Next, suppose that z,y € IT and z € A. Again, let z € P = [a, ] with a,b € II
as above. Let m = ,u(.il?, Y, Z) Som = ,LL(ZL’, Y, N(a7 b, Z)) = u(,u(a:, Y, a)7 H('Tv Y, b)a Z)
Now u(x,y,a) and p(z,y,b) lie in the same cell of A, and so by the previous
case, we get m' ~, u'((u(z,y,a)), (u(z,y,b)),2"). Since z,y,a,b € I, we get
W (@, y,a)), (w(@,y,0))', ")~ i (@', y' s a), )l (2 ' 0), 21) s il (@, il (a1, 21)) s
ple' y, (u(a, b, 2)) ~. p@'(2,y, '), using the fact that a,b lie in a cell of P for
the penultimate step. This shows that the statement holds for x,y € II and any
z € A.

Now suppose x € Il and y,z € A. We repeat the above argument. The only
difference is the step involving z,y, a,b, where this time z,a,b € II and y € A.
For this, we use the claim for the previous case. The claim now follows also for
such z,y, z.

Finally, suppose z,y,z € A are arbitrary. We repeat the argument a third
time. On this occasion, a,b € I, and z,y € I, so again, we can use what we have
already shown. We deduce that the claim holds for all z,y, z € A. 0
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10. AsymprTOTIC CONES

In this section we give some general results about asymptotic cones we will
need in Section 11. Though expressed a bit differently, the idea behind many of
the arguments here come from Section 3 of [BeHS3|. For simplicity of exposition,
we will first prove the results for a given space, so that a-priori the resulting
constants might depend on that space. We explain at the end what is needed to
ensure uniformity of these constants.

We begin by recalling the general construction of an asymptotic cone [G, VaW].

Let Z be a countable indexing set, and let ((X¢,d¢))cez be a family of metric
spaces indexed by Z. A Z-sequence is a family of points, z = (2()¢ez, indexed
by Z, such that z, € X, for all (. Let X = Hcez X¢ be the set of Z-sequences.

Fix a non-principal ultrafilter on Z. A predicate in ¢ holds almost always
(or for almost all () if the set of ( € Z for which the predicate is true lies in
the ultrafilter. Given z,y € X, write x ~ y if ¢(7¢,y¢c) — 0 (in the sense that,
for all real € > 0, we have d;(z¢,y:) < € for almost all (). One can check that
this is an equivalence relation on X. Write X* = X /~. Given z € X, we write
xr¢ — x € X* to mean that x is the equivalence class of z in X™.

Suppose that p € X. Let X(p) be the set of x € X such that d¢(z¢,pc) is
essentially bounded (in the sense that there is some K > 0 such that d. (¢, pc) <
K for almost all ¢). Clearly, if y ~ x € X(p), then y € X(p). We can therefore
write X = X*°(p) = X(p)/~ C X*. Given z,y € X*°, choose z,y € X(p) with
z¢ — x and y — y. Then there is some d € R such that d;(x¢,yc) — d (in the
sense that for all € > 0, |6¢(z¢, yc) — d| < e for almost all ¢). This d is well defined
independently of z,y, and we set p>°(x,y) = d. One can check that (X, p>) is
a complete metric space. If each X¢ is a geodesic space, then so is X .

Suppose now that (X, p) is a fixed metric space, and (7¢)¢ is a Z-sequence in
[0,00) C R with 7 — oo (in the sense that for all K > 0, 7, > K for almost all
(). Let X, = X and §; = p/7¢. In this case, we refer to X as the asymptotic
cone of X with observation points p;, and scaling factors ..

Suppose we have a Z-sequence, (A¢)¢, of subsets of X. Let A% C X be the
set of a € X such that for almost all ¢, there is some a¢ € A¢ such that a; — a.
Then A* is a closed subset of X*°. We write A. — A C X to mean that
A> = A. Note that if B, —+ B, then A U B, - AUB.

Suppose that ¢, : X — Y is a Z-sequence of uniformly coarsely lipschitz maps
between fixed metric spaces X,Y. Given some scaling factors and some p, € X,
let X*>° and Y* be the asymptotic cones with observation points p, and ¢¢(p¢)
respectively. We get a limiting lipschitz map, ¢> : X — Y*°. If the ¢, are
uniformly quasi-isometric embeddings, then ¢> is bilipschitz onto its range. If
the ¢ are uniform quasi-isometries, then ¢> is a bilipschitz homeomorphism from
X to Y.

We now assume that X is a geodesic space. Let A be a collection of subsets
of X, and let X* be an asymptotic cone. (We fix once and for all the ultrafilter



QUASIFLATS IN COARSE MEDIAN SPACES 41

on Z.) In what follows, all “sequences” are Z-sequences, and “limits” are in the
sense of ultrafilters.

Definition. We say that a subset, A C X is a strong limit of A if there are
elements A, € A with A — A.

We say that A is a weak limit of A if given any bounded (i.e. finite-diameter)
subset, C C A, there is a sequence of elements, A, € A, with A. — B, where
C CB.

An equivalent way to say that A is a weak limit is to assert that for all A > 0,
there is a sequence A, € A with Ac N N(pe; Are) — D where AN N(p;A\) € D
(where p; are the observation points, and 7, the scaling factors).

Let £, F be two collections of subsets of X. Given any asymptotic cone, X,
of X we assume we have three subsets, £*°(X*), F5°(X*) and F°(X*°), of the
power set of X, with F§°(X ) C Fo(X>).

(In our eventual application in Section 11, we can think of £ as a set of quasi-
flats in a coarse median space, A, and F as a set of coarse panels in A. In the
asymptotic cone, A>°, £ will be a family of bilipschitz embedded copies of R",
and F§° and F7° will be families of be CCAT(0) panel complexes. Here we make
the assumption that these arise limits of £ and F in an appropriate sense. We will
eventually need to verify these hypotheses in our context (see Lemma 11.4). The
conclusion of Lemma 10.5 tells us that elements of £ lie close to elements of F
over an arbitrary large distance. It is simplest just to think of a fixed coarse me-
dian space, A, though to achieve uniformity of parameters, one needs to consider
simultaneously the family of all coarse median spaces with fixed parameters.)

We now introduce the hypotheses we will be using. Suppose:

(E1): For any asymptotic cone X*°, the following hold.
(Ela): Every strong limit of & lies in £>°(X ).

(E1b): Every strong limit of F lies in F7°(X ).

(Elc): Every element of F§°(X ) is a weak limit of F.

(E2): For any asymptotic cone, X and any E € £%(X>) there is some
F ¢ F{°(X>) with E CF.

The above are assumed to hold in any asymptotic cone of X, i.e. with any

observation points or scaling factors (though we will work with a fixed ultrafilter
on Z).

Lemma 10.1. Suppose &, F satisfy (E1) and (E2). Then for all A > 0, there is
some Ry > 0, such that for all R > Ry, F € £ and a € E, there is some F € F
such that E N N(a; A\R) C N(F; R).

Proof. Suppose not. There is some A > 0, and sequences R; — oo, E. € £, and
ac € X such that for all F' € F there is some point of E; N N(a¢; AR;) a distance
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more than R from F. We can suppose that A > 2. Let X be the asymptotic
cone with observation points a; and scaling factors R.. Let B, — E € £%°(X ™).
By (E2), there is some F € F§°(X>°) with E C F. By (Elc), there exist F, € F
with F:NN(ac; AR;) = G with FNN(a, A) € G. We can find z, € E.NN (a¢; AR¢)
with p(x¢; Fr) > Re, and so 6¢(ac; z¢) < A and 6¢(z¢; Fr) > 1 (where §¢ = p/Re).

Let o = x € X*. Then z € E and p>®(a,z) < \. Now E C F, so z €
F N N(a;\) C G. In particular, there are y, € Fr with yo — x, so d¢(x¢, F¢) <
d¢(xe,ye) — 0, giving a contradiction. O

Suppose now:

(E3): Suppose X is any asymptotic cone and suppose that E € £%°(X>),
F € F°(X®), and that there is some ¢ > 0 such that E C N(F;t). Then E C F.

(There is no particular significance in the constant ¢. In fact, we could fix ¢ once
and for all to be any positive constant. It makes no difference to the statement.)

Henceforth, for a given asymptotic cone, X*°, we will generally abbreviate
EX = EX(X™>) etc.

The idea behind the following lemma is that if £ € & lies close to an element
F € F in a certain neighbourhood of a point a € E, then a itself must lie even
closer to F'.

Lemma 10.2. Suppose that €, F satisfy (Ela), (E1b) and(E3). Then there exist
some X\ >0 and k > 0 such that if E € £, FF € F and a € F, then

(0, F) < S max({(K} U {p(z, F) | = € B0 N(@ Apla, F)))).

(For the factor of “%” here we could substitute our favourite number strictly
between 0 and 1. The same proof will work, and the result would apply equally
well.)

Proof. Suppose not. This means that there are sequences A\ — oo and k¢ — o0,
such that there exist E; € €, Fy € F and a¢ € E; with p(a¢, Fr) > k¢/2 and with
plac, Fe) > sp(, Fy) for all v € Ec NN (ac; Aeplac, Fr)). Let ue = p(ac, Fr). Then
uc — 0o. (We can now forget k¢.) Thus, for each x € E; N N(ac¢; Acuc) we have

Let X be the asymptotic cone with observation points a¢ and with scaling
factors u¢. Let B, — E € €% and F, — F € F° and a¢ — a € E. Suppose
r € E. Let z; — x with z € E;. Now d¢(ac,x¢) = ul—qp(ac,xg) is essentially
bounded. Since A\¢ — oo, it follows that p(ac,z¢) < Acuc for almost all (. As
noted above, for such ¢ and z¢, we have p(z¢, Fr) < 2u¢, and so o¢(x¢, Fr) < 2. We
therefore see that p>°(x, F) < 2. In other words, we have shown that E C N(F;2).
By (E3), we now have E C F. But dc(ac, F¢) = uc/uc = 1 for all ¢, and so
p>=(a,F) =1. But a € E giving a contradiction. O
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The following applies Lemma 10.2 to give us a uniform bound on the distance
of a to F, assuming again that F lies “close to” F' over a certain range.

Lemma 10.3. Suppose E,F satisfy (Ela), (E1b) and (E3). There are some
k > 0 and k > 0 such that if E € £, F € F, a € E and R > 0 satisfy
ENN(a;kR) C N(F; R), then we have p(a, F') < k.

Proof. Let k and X\ be as given by Lemma 10.2, and set x = 2\. Let n =
|logy(R/k)|, so that 2" 'k < R < 2"k. Given i = 0,1,...,n, let R; = R/2%, so
that Ry = R, R, < k and R; > k for all i <n. Let 6; = 5i5 + 55 + -+ + 5
Thus, 0, 1 < 0, o < - < 0y <2, and 6, — 0,11 = % Let r; = A0;R, so
T, — i1 = )\(61 — 6i+1)R = )\R/QZ = )\Rz Write N,L = N(CL;T’Z'), so that NO =
N(a;r9) € N(a;2AR) = N(a;kR). Also N; = N(N;y1; AR;), since r; = 11+ AR;.

Since Ny € N(a; kR), our hypothesis on E tells us that E N Ny C N(F;R) =
N(F; Ry). We claim inductively that for all ¢ = 0,...,n, we have E N N; C
N(F; R;). We have noted that this holds for n = 0. Assume that it holds for
a given i < n. Note that R;y; = R;/2. We want to show that £ N N;;; C
N(F;R;/2). Let b € EN Nyy1. By Lemma 10.2, we have p(b, F) < 3 (max({k} U
{p(z,F) | © € EN N(b; p(b,F))}). Now b € EN N1y € ENN;, so by
the inductive hypothesis, p(b, F')) < R;. Suppose z € E N N(b;\p(b, F)) C
N(b;AR;) € N(N;;11;AR;) = N;. Then by the inductive hypothesis, p(z, F') <
R;. In other words, max{p(xz,F) | x € EN N(b;Ap(b,F))} < R;. Therefore
p(b, F) < %max{k, R;} = R;/2 since k < R;, since i < n. In other words,
b€ N(F;R;/2) = N(F;Ri+1). We have shown that £ N N;1; C N(F; Ri1)
proving the inductive statement.

In particular, it follows that ENN,, C N(F; R,) C N(F;k) since R,, < k. But
a € ENN,, and so p(a, F) < k as required. O

Corollary 10.4. Suppose €, F satisfy (Ela), (E1b) and (E3). There exist ko, k >
0 such thatif E€ &, F € F,a € E and R > 0 satisfy EN N(a;koR) C N(F; R),
then EN N(a; R) C N(F; k).

Proof. Let k be the constant of Lemma 10.3 and set kg = k+1. If b € ENN(a; R),
then £ N N(b;kR) C N(a;koR) C N(F;R), so by Lemma 10.3, p(b, F) < R as
required. O

[y

The following is the main result we are aiming for: any element of £ € &£ lies
uniformly close to some element of F over an arbitrarily large range.

Lemma 10.5. Suppose &€, F satisfy (E1), (E2) and (E3). Then there is some
k > 0 such that for all E € £, a € E and R > 0, there is some F € F with
ENN(a;R) C N(F;k).

Proof. Let kg be the constant given by Corollary 10.4. In Lemma 10.1, set A = kg
and Ry be the constant given by its conclusion. Let F € £ and a € E. We can
suppose that R > Ry. By Lemma 10.1, there is some F' € F with ENN(a; koR) C
N(F;R). By Corollary 10.4 we have E N N(a; R) C N(F; k) as required. O
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In the above results, the constants of the conclusion will depend on the par-
ticular space X, and the subsets F. This would be sufficient if, for example, we
were dealing with just one coarse median space. However, we can obtain stronger
statements to the effect that the constants should depend only on the parameters
of the hypotheses. For this we need to consider families of spaces (such as coarse
median spaces of fixed parameters) simultaneously. This can be justified by the
following general principle.

Suppose that § is a family of spaces, and that for each X in S, we have families
of subspaces, £(X) and F(X) of X. Suppose that (X, pc) is a Z-sequence of
spaces in S, that p, € X, is a Z-sequence of observation points, and that 7, is a
Z-sequence of scaling factors. We let 6. = p;/7¢ be the rescaled metric on X, and
pass to the asymptotic cone, X, as defined at the beginning. (For example, in
the proof of Lemma 10.1, if the conclusion fails with uniform constants, we would
have a sequence (X¢)¢, of spaces and E; € £(X,) with N(a¢; AR;) interpreted in
X etc.) Interpreting hypotheses (E1)-(E3) above to apply to all such asymptotic
cones, the results go through as stated.

(We should note that the “family” S does not need to be a set. It can be
determined by a predicate: for example, which asserts that any X in S is a coarse
median space with fixed parameters. A Z-sequence with values in S will still be a
set by the Axiom of Replacement. In any any plausible application however, the
elements of & would have cardinality at most some fixed cardinal, in which case,
we could indeed take S to be a set.)

In fact, a simple trick to formally deal with this in terms of what we have
already done (at least when S is a set) would be to let Y be the disjoint union
of the spaces X € S. We can then set £ = | | E(X) and F = | |y F(X).
We set p(x,y) = oo if z,y lie in different components. Note that Y is “geodesic”
in the sense that if p(z,y) < oo, then z,y are connected by a geodesic. This is
sufficient for the above statements to go through.

In our application, we will take S to be the family of all coarse median spaces
with fixed parameters, £(X) to be the space of all bounded-parameter quasiflats
in X € S, and F(X) will be the class of all coarsely embedded cube complexes
of fixed parameters. This will be explained in the next section: see Lemmas 11.4
and 11.5.

11. PROOF OF THEOREMS 1.1 AND 1.3

We give a proof of Theorem 1.1. To this end, we describe some properties of
an asymptotic cone of a coarse median space. In particular such is bilipschitz
equivalent to a complete connected median metric space. We show that a limit of
quasiflats lies inside CCAT(0) panel complex (Lemma 11.1). Conversely such a
complex is a weak limit of coarse panels (Lemma 11.3). This enables us to verify
the hypotheses of Lemma 10.5 (Lemma 11.4). As consequence, any quasiflat lies
a bounded distance from a coarse panel over an arbitrarily large distance (Lemma
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11.5). Taking larger and larger distances, using a diagonal sequence argument,
and applying Lemma 6.1, we then arrive at our main result.

Let (A, p, i) be a coarse median space of rank v. Let 7, be a Z-sequence of
scaling factors and let p; € A be a Z-sequence of observation points. Let 6, = p/7¢,
and let (A* p>°) be the asymptotic cone. This is a geodesic metric space. We
also get a limiting map, u™ : (A®)?> — A>. With this operation, (A>, u™) is
a topological median algebra of rank v. The metric p*> is uniformly bilipschitz
equivalent to a median metric, here denoted py, which induces the same median,
p> (see [Bo2, Bob, Z2]).

Various observations follow easily from the general principle that additive con-
stants disappear in the limit. For example, if a¢, b; are Z-sequences in A limiting
on a,b € A, then [a¢, b] — [a,b]. Moreover, if the intervals [ac, b¢] are uniformly
(coarsely) straight, then [a, b] is straight.

Suppose that (Il;, d¢) is a Z-sequence of finite median metric spaces. Suppose
that |IL;| is (essentlally) bounded. Then for almost all ¢, there is a median iso-
morphism, — II;, from a fixed finite median algebra I1. If we fix observation
points, p¢ € Il¢, then the ultralimit, I1°°, is also a finite median algebra.

If dlam(Hg) is bounded, then the isomorphisms, IT — I¢ limit on an epimor-
phism, IT — II°°. This can be described as follows We can identify W(II) with
each W(II;) via these isomorphisms. If W € W(II), then the widths, we(W), of
W in Tl converge to some w™(W) € [0,00). Let Wy(IT) = (w>)~1(0). Then I
is the result of collapsing the walls in Wy(II). In this way, we can identify W(II*)
with W(II) \ Wy(II). The width of W € W(II*) is then just w™(W). It is also
easily checked that A(Il;) converges to A(II*).

In general, TI* will be a convex subset of the quotient of II. We write Ac =
A(Il;) and let Ay — A*>. We claim that A> is a CCAT(0) panel complex. In
fact, if B C A is any bounded subset, we can find compact convex subsets,
Be C A¢, with Be — B> 2 B. Now B¢ has the form B, = A(II}) for a finite
subalgebra, II; C A¢, with [II;| bounded. Therefore B> = A((II')*), where
I — (I). We see that A* has an exhaustion by convex subsets which are
compact CCAT(0) panel complexes with a bounded number of cells. From this,
it is easily seen that A> is a CCAT(0) panel complex. (Alternatively, one can
invoke Lemma 4.2 since A* is uniformly cubulated — as a subset of itself.)

Returning to the coarse median space, (A, p, u), let (A, p™, 1) be the as-
ymptotic cone, and let pg be a uniformly bilipschitz equivalent median metric on
A

Let (I1¢)¢ be a Z-sequence of finite median algebras, II C A, with |II;| bounded,
whose inclusions into A are uniform quasimorphisms and which are uniformly
straight. Let T, = YT(II;) C A be the subset defined in Section 9. Let T, —
T° C A*. Note that, since the T are uniform quasisubalgebras, T* is a subal-
gebra of A, In fact:
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Lemma 11.1. Y is CCAT(0) a panel complez.
(This allows for the possibility that T> = &.)

Proof. Let A = A(Il,A) as defined in Section 9. By Lemma 9.5, there is a
uniformly strong quasimorphism, ¢, : Ay — A, with ¢c(A¢) ~. T¢. (In other
words, ¢, is a quasimorphism and a quasi-isometric embedding with the Hausdorft
distance from ¢¢(A¢) to YT¢ bounded — all constants being independent of ¢.)
We get a limiting map ¢ : A*® — A* which is bilipschitz onto its range and
a median homomorphism. By the above discussion, we know that A* is a panel
complex. It follows that T°° is a panel complex in the induced metric, py. O

Note in particular, that if II. C N(p;t7:) for some fixed ¢ > 0 (i.e. the I, are
uniformly bounded in the rescaled metric, A, = p/7¢), then Il — II® C A>,
where II%° is a finite subalgebra of A*°. Moreover, T = YT (I1*°, A*>°) is naturally
isomorphic to A*.

We will also require a certain converse to these statements. We begin with:

Lemma 11.2. Given n € N, there is some h(n) > 0 and s(n) > 0 with the follow-
ing property. Suppose that 11 C A is a subalgebra with |II] <n < oo. Then there
are median algebras, I1. C A, whose inclusions into A are h(n)-quasimorphisms,
with |I¢| < 2%, and with 1y — II. Moreover, if 11 is fat, we can take all the
II; to be fat and s(n)-straight in A. The functions h and s depend only on the
parameters of A.

Proof. Let k be the separation constant of II. Let Hg C A be subsets with a
natural bijection to II, such that Hg — II. Let p¢ be the median induced on
Hg via the median g on II. Now g — pp, and so the inclusion of Hg into
A is an he-quasimorphism, where he /7. — 0. Also Hg is tc-separated, where
te/7c — k > 0. Let t(n) be the constant given by Lemma 7.2. Now t. > h¢t(n)
for almost all ¢. Therefore, by Lemma 7.2 (with IT; = IT} and x = h¢) there is
an h(n)-quasisubalgebra IT; C A, with |II;| < 2%", together with an epimorphism
we : e — 112, such that p(z,wex) < her(n) for all o € T (namely IT¢ =TI, and
we = w as given by Lemma 7.2). Now h¢r(n)/7c — 0. Also Il is almost always
isomorphic to a fixed median algebra ﬂ, and so we converges on an epimorphism
w™ : I — II. Tt follows that IT; — II, respecting the median operations.
Applying Lemma 7.3, we see that if II is fat, we can take all of the II; to be fat.
Moreover, by the addendum to Lemma 7.2 given by Lemma 9.4, we also see
that the Il can be assumed uniformly straight. U

Let IT € A* be a fat subalgebra, and let II; be as given by Lemma 11.2. If IT is
fat, then so is II¢. It follows that II¢ is uniformly straight in A, and we can define
T, =TI, A) C A as above. Since II; — II, we see that Y. — YT(II, A>) C A>.

Lemma 11.3. Given n € N, there are constants, h(n),s(n) > 0, and p(n) € N,
with the following property. Let T C A* be a fat CCAT(0) panel complex with at
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most n panels. Then Y is a weak limit of sets of the form Y (I, A), where I C A
is a fat s(n)-straight h(n)-quasisubalgebra with |II| < p(n).

Proof. Let B C T be any compact subset. Then there is some finite subalgebra,
IIp € T, with B C YT (IIp, A*) C Y. Moreover, we can take Iy to be fat. (In fact,
we can take Ily so that A(Ily) is isomorphic to the compact panel complex T as
defined in Section 3.)

Let (II¢)¢ be a sequence of finite median algebras, II; C A, as given by Lemma
11.2 (with II = IIy). From the observation above, it follows that Y(II;, A) —
T (I1y, A>). Since B C Y(Ily, A*), the statement follows. O

We are now in a position to apply the results of Section 10.

To this end, we fix constants \g, hg, so > 0 and K, K5 € N, depending only on
v and the parameters of A and of the quasiflat, as determined below. (They will
be chosen in the order \g, Ko, K1, hy, So.)

Let € be the set of all quasiflats in A with the given quasi-isometry constants.
Let F be the set of subsets of A of the form Y(II,A), where II C A is a fat
ho-quasisubalgebra, so-straight in A, with |[II| < K.

Let A* be any asymptotic cone of A. Let £ be the set of images of R” in A*>
under \g-bilipschitz maps. Let F{° be the set of all CCAT(0) panel complexes in
A>. Let Fg° C Fy° consist of those CCAT(0) panel complexes which are fat and
which have at most K, panels.

Lemma 11.4. For suitable choice of constants, Ao, ho, So, K1, Ko, the collections
E,F,EX, F°, Fi° defined above satisfy properties (E1)-(E3) of Section 10.

Proof.

(Ela): If fr : R — A is a sequence of uniform quasi-isometric embeddings, then
the limiting map, f* : R¥ — A®, is a uniformly bilipschitz to its range (with
respect to the metric, p™°, hence also with respect to pg). Choosing A\g accordingly
gives the condition on £%.

(E1b): Lemma 11.1 tells us that any strong limit of elements of F lies in F7°.
(E2): By Lemma 5.2, any element of £ is contained in a CCAT(0) panel complex,
where the number of cells is bounded in terms of the bilipschitz constant \y chosen
above. We choose K3 in the definition of F3° accordingly.

(Elc): Lemma 11.3 tells us that any element of F§° is a weak limit of elements
of F, where K7 and hyg, so are chosen according to the conclusion of Lemma 11.3
given the bound K.

(E3): This follows immediately from Lemma 5.3. O

Lemma 11.5. Suppose that f : R — A is a quasi-isometric embedding. There
is somen € N, s, h,k >0, such that for all a € A and all r > 0, there is a finite
fat s-straight median algebra, 11 C A, with |II| < n, whose inclusion into A is
an h-quasimorphism, and with f(R*) N N(a;r) € N(Y(II,A); k). Here n,h,s,k
depend only on the parameters of A and f. (In particular, they are independent

of r.)
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Proof. Let £, F, &>, F5°, F1°, be as described above. By Lemma 11.4, these sat-
isfy (E1)—-(E3). Therefore, by Lemma 10.5, there is some F' € F with f(R") N
N(a;R) € N(F;k) for some k > 0. By the definition of F, F' has the form
F =7Y(II, A), where II is an s-straight h-quasisubalgebra with |II| < n. The uni-
formity of the constants, n, h, k, follows by considering simultaneously all spaces
and families of subsets of fixed parameters, as described by the discussion following
Lemma 10.5. OJ

Let f : R¥ — A be a quasi-isometric embedding. Given ¢ € N, Lemma
11.5 gives us a quasisubalgebra, II;, with f(R”) N N(a;i) € N(Y;; k), where
T, = Y(II;,A), and with |II;| bounded. By Lemma 9.5, we have uniform strong
quasimorphisms, ¢; : A; — A, with T; ~, ¢;(4;), where A; = A(II;,A). In
particular, f(R”) N N(a;i) € N(¢;A;; ko) for some fixed constant, ky. (Note also
that the strong quasimorphism constants of ¢; depend only on the parameters of
A. The constant ko depends also on the quasi-isometry parameters of f.)

We can therefore find an exhaustion, (N;);, of R” by compact convex subsets,
and maps 6; : N; — A; such that ¢; o 6; ~, f|N; for all i. Note that these
are all uniform quasi-isometric embeddings. Note that all the A; have a bounded
number of cells.

Up to bounded distance, and after passing to a subsequence, we can assume
that (A;); is an increasing sequence of convex subsets exhausting a fixed CCAT(0)
panel complex, ¥, and moreover if ¢ < j, then 6;|N; ~, 6,. (For example, up
to bounded distance, we can assume that each A, is, after subdivision, a finite
CAT(0) cube complex with all side-lengths equal to some fixed positive constant.
By a diagonal sequence argument, we can pass to a subsequence so that A; is
identified with a subset of A; whenever 7 < j, and with the maps 6; agreeing up
to bounded distance, whenever they are defined. We now take ¥ to be the union
of the A;.) Again up to bounded distance, there is a map 6 : R¥ — ¥ such that
0; ~. 0| N; for all 1.

Now 6 is a quasi-isometric embedding (since all the 6; are). Therefore, by
Lemma 6.1, there is a subcomplex, 2 C W, consisting of a union of v-panels, with
O(R") ~, Q. Up to bounded distance, we can assume that #(R”) C €, and so
0 : R — ) is a quasi-isometry. Let v :  — R” be a quasi-inverse of this
map, and let ¢ = f o : Q — A. This is a quasi-isometric embedding, and by
construction, ¢(€2) ~, f(R").

It remains to check that ¢ is a uniform quasimorphsim on each v-panel, P, of
2. But on any compact subset of P, ¢ agrees up to bounded distance with ¢;
for some (indeed all sufficiently large) i (since ¢; ~, ¢p; 00 01 ~, fo1h = ¢ by
construction). The claim follows since each ¢; is a uniform quasimorphism.

In summary, we have shown:

Lemma 11.6. Let f : RY — A be a quasi-isometric embedding. There is a
panel complex, 2 and quasi-isometric embedding ¢ : Q0 — A, which is a strong
quasimorphism restricted to each panel, and such that hd(f(R"), #(2)) is bounded.
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The constants of the conclusion (namely the number of cells of €, the strong
quasimorphism constants of ¢, and the Hausdorff distance bound) depend only on
v and the parameters of A and f.

This is the first part of Theorem 1.1.

For the second part, let Py,..., P, be those panels which of side-lengths at
least L. By Lemma 6.2, there is some (non-uniform) » > 0, such that 2 C
N(UL, P;r). It follows that the Hausdorfl distance from f(R”) to ¢(£2) hence
also to [J7_, ¢:(P;) is finite.

For the final part of Theorem 1.1, suppose that A is proper (i.e. complete and
locally compact). We use a slightly different argument. By a diagonal sequence
argument, we can assume that on any given compact set the maps ¢; : A; — A
agree up to bounded distance, where the bound depends only on the parameters
of A. Therefore, after passing to a subsequence, these converge up to bounded
distance on a map ¢ : @ — A. By construction, ¢(A) is again a bounded
Hausdorff distance from f(R”). This latter bound will depend on the parameters
of f. However, by this argument, the quasi-isometry constant of ¢, as well as the
coarse quasimorphism constants of the panels, depend only on the parameters of
A.

This concludes the proof of Theorem 1.1.

Theorem 1.2 now follows using Corollary 6.3 and Lemma 6.4.

12. QUASIFLATS IN MEDIAN METRIC SPACES

In this section, we explain how the conclusion of Theorem 1.1 can be strength-
ened in the case of a connected median metric space. In particular, this will prove
Theorem 1.3. One immediate application of this is to quasiflats in CAT(0) cube
complexes.

Let (M, p) be a connected complete median metric space of rank v. (There is
no loss in assuming completeness, since the completion of a median metric space
is again a median metric space of the same rank.) Then M is a geodesic space.
Indeed, it is a coarse median space: we can take the function, h, in (C2) to be
identically 0. (Given A C M, we can just take II = (A) with the induced median.)

Recall that a “panel” is a space isometric to a direct product of non-trivial real
intervals with the ['-metric. After subdividing, we can assume each factor to be
either a non-trivial compact real interval, or a ray, [0,00). If all factors are rays,
we refer to a panel as an “orthant”. We use the terms “n-panel” and “n-orthant”
to mean that there are n factors. By a “panel” or “orthant in M”, we mean a
convex subset of M, which is intrinsically a panel.

Here is a restatement of Theorem 1.3.

Proposition 12.1. Let M be a complete connected median metric space of rank
v. Let f : RY — M be a quasi-isometric embedding. Then there are v-panels,
Py, ..., D,, in M such that hd(f(R”),Ur_, ®:;) < s, where k and s depend only

) Dy
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on the parameters of the hypotheses. If ®1,...,®, are those panels which are
orthants, then hd(f(R"), UL, ®;) < .

Note that “rank” here refers to the rank of M as a median algebra, as defined
in Section 2. (See the Remark after Lemma 12.2.)

We remark that the bound on the number of panels (or orthants) is a com-
putable function of v and the quasi-isometry parameters. However, our argument
does not give any explicit means of computing s.

Deducing Proposition 12.1 from the coarse version of the last section is essen-
tially a matter of approximating quasicubes by genuine cubes.

Lemma 12.2. Given n € N and k > 0, there exist r,t > 0 with the following
property. Suppose R C M is a t-separated k-quasicube of dimension n. Then there
is an n-cube, Q@ C M, with hd(Q, R) < r. Indeed, there is a median isomorphism,
0:Q — R with p(x,0x) <r for all xz € Q.

Proof. Let t = kt(n) as in Lemma 7.2, and set IIy = R. In this case, we can
take the function h to be identically 0. (In the proof it arose from the function of
property (C2) which can be taken to be 0 for a median metric space.) Lemma 7.2
therefore gives us a finite median subalgebra, [ C M, and a median epimorphism,
w : II — R. By Lemma 2.6, there is a cube ¢ C II such that w|@ is an
isomorphism to R. We set 0 = w|Q. O

Remark. This shows that if rank(M) < v, then any (v + 1)-cube is “degenerate”,
in the sense that there is an upper bound on the width of at least one of its
walls. It follows that the coarse median rank of M is at most v. (See [Bo5| or
[NibWZ1].) It could be strictly less. For example, taking a direct product with
an interval [0, 1] increases the median-algebra rank by 1, but does not change the
coarse median rank.)

Lemma 12.3. Let P be a v-panel, and let ¢ : P — M be a quasimorphism
which is also a quasi-isometric embedding. We assume that all the side lengths of
P are at least L, where L is a constant which depends only on the quasimorphism
and quasi-isometry parameters. Then there is a v-panel, ® C M, such that the
Hausdorff distance between ¢P and ® is finite and bounded above by another
constant depending only on the quasimorphism and quasi-isometry parameters.

We first deal with the case where P is compact. Let L be a sufficiently large
constant as determined below, and let ¢ : P — M be an h-quasimorphism and a
quasi-isometry. Let Q C P be the set of corners, and let R = ng C M. Then R is
an h-quasicube. Provided L is large enough, we can suppose that R is t-separated
for sufficiently large ¢ so that Lemma 12.2 gives us a v-cube, ) C M with Q) ~, R.
Let H(R) be the coarse hull of R, as discussed in Section 9. Then ¢(P) ~. H(R).
(See Lemma 9.3 and subsequent discussion.) We also have ® = hull(Q)) ~. H(R).
(Moving a quasicube a bounded distance moves its coarse hull a bounded distance.
This can be seen from the fact that its coarse hull is the coarse interval between
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two opposite vertices.) We therefore get ® ~, ¢(P). This proves Lemma 12.3 for
compact panels.

We now deal with the general case. For this, we begin with the following
observation.

Given a panel, P, and r > 0, let C(P,r) C P be the set of points a distance
at least r from its boundary, 0P. If the side-lengths of P are all greater than 2r,
then this is also a panel.

Suppose Py = hull(@Q)g) and P; = hull(Q;) are n-panels. Let 7 : M — P; be
the gate map (nearest point projection) to P;. This is a median epimorphism. If
7|Qo is injective, then 7(Q)p) is also an n-cube, and hull(7(Qg)) = w(hull(Qy)) =
Py N P;. Clearly this applies if, for some » > 0, we have Qg C, P, and all the
side-lengths of Py are greater than 2r. In this case, C(FPy,r) C P;.

Now suppose that, for sufficiently large L as determined below, P is a panel
with all side-lengths at least L, and that ¢ : P — M is an h-quasimorphism.
Write P = U;’io P; as an increasing union of compact panels, P; = hull(Qj), again
with all side-lengths at least L. Let R; = gb(Qj) C M. This is an h-quasicube.
As before, if L is large enough, we have have a cube Q); C M, with Q; ~, R;. Let
®; = hull(Q;). Then ®; ~, H(R;) ~. ¢(F;).

Now if j < k, then Q; C, &, for some uniform r» > 0. We can suppose that all
side-lengths of ®; are greater than 2r. Setting C; = C(®;,7), we see C; C Py.

In summary, for all k, we have U?:o C; C ¢,. Now Hj = hull(Uf:0 Cj) is a
v-panel. Let ® be the closure of (J;Z, Hy = hull(U;Z, C;). This is also a panel,
and we have ® ~, ¢(P).

This proves Lemma 12.3 in the general case.

Proof of Proposition 12.1. By Theorem 1.1, f(R") is a bounded distance from

P ¢i(P;), where each P; is a panel, and each ¢; is a strong quasimorphism, in
particular, an hA-quasimorphism for some h depending only on the parameters of
A and f. We choose L > 0, depending on h as above. By the second paragraph
of Theorem 1.1, the same statement holds if we restrict to those panels P; which
have all side-lengths at least L. (This may increase the Hausdorff distance, but
by an amount depending only on the original parameters.) From the choice of L,
we see that each ¢(F;) is a bounded distance from a panel, ®;, in M.

The statement about orthants follows similarly. 0

This proves Theorem 1.3.

In particular, this applies when M is a CAT(0) cube complex of dimension v. In
this case, we can say a bit more. In the conclusion of Lemma 12.3 we can assume
that ® is a subcomplex of M. This is achieved by insisting that the corners of all
the panels involved in the proof are all 0-cells of M.

Corollary 1.4 is now follows directly from Theorem 1.3.

We remark that any median convex subset, C', of M is also convex in the
CAT(0) (I%) metric in the usual sense (that is, the geodesic connecting any two
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points of C' is contained in C'). One way to see this is to note that the gate map
to C is 1-lipschitz in the [? metric. For finite complexes, this can be seen from
the description following Lemma 3.2. One can reduce to the finite case, since we
only really need to consider projections to intervals.

In fact, the converse also holds for subcomplexes. A subcomplex of M is convex
(in either sense) if and only if it is connected, and locally convex. The latter is
equivalent to saying that it intersects the link, L, of any cell in a full subcomplex
K (i.e. any simplex of L with vertices in K lies entirely in K).

Further discussion of these matters can be found in [Bo9].

13. PROJECTION MAPS

There is another context in which the conclusion of Theorem 1.1 can be strength-
ened. One can say more about the structure of coarse panels and orthants in the
case where the coarse median space, A, comes equipped with a family of coarsely
lipschitz maps to uniformly hyperbolic spaces. Indeed many coarse median spaces
arise in this way. The original context was that of the mapping class groups pio-
neered in [MM]. Similar principles apply to Teichmiiller space [MM, Ra, D]. More
general contexts are discussed in [BeHS1] and in [Bob], where various axioms for
projection maps are listed. All the properties discussed in this section hold for
spaces satisfying either of these sets of axioms, namely axioms (1)-(10) of Section
13 of [BeHS1], or axioms (A1)-(A10) of Section 7 of [Bob5|. In particular, we
recover the result about quasiflats in asymphoric hierarchically hyperbolic spaces
given in [BeHS3], as described at the end of Section 14.

First, suppose that X is an indexing set, and that to each X € X we have
associated a space (©(X), ox) which is k-hyperbolic for some fixed k£ > 0. Suppose
also that we have a map, 0y : A — O(X), which is uniformly coarsely lipschitz.
That is, there are constants, ki, ks > 0 such that for all X € X and all z,y € A,
we have ox(Oxz,0xy) < kip(z,y) + k. We will often abbreviate ox(z,y) =
ox(0xx,0xy). (In this way, ox can be viewed as a pseudometric on A.)

As noted earlier, a hyperbolic space is coarse median of rank 1, where the me-
dian, px(z,vy, ), is a centre of a geodesic triangle with vertices x,y, z. We assume
that each fx is a uniform quasimorphism. That is, there is some fixed rq such that
for all X € X and all z,y, z € A, we have p(Oxu(x,y, 2), ux(Oxz,0xy,0x2)) < 19.

Definition. A monotone path, is a coarsely lipschitz quasimorphism from a
connected subset, I C R, to A.

Remark. In the cases of interest to us, one can always reparameterise a monotone
path so that it becomes a quasi-isometric embedding (see, for example, Theorem
1.1 of [Bob]). Moreover, after moving it a bounded distance, we can take it to
be quasigeodesic in the traditional sense (that is, a rectifiable path, o : [ — A,
such that if ¢,u € I, then length(c([¢,u])) is bounded above by a fixed linear
function of p(5(t), B(u))). The constants involved depend only on those of A and
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the original monotone path. If the coarse median space is hyperbolic, then the
converse is also true: any (unparameterised) quasigeodesic is monotone.

Note that the coordinate maps in any coarse panel in A will be monotone
paths. More precisely, suppose that P = H;;l I; € R" is a panel. Suppose that
a; : I; — P is a map of the form «;(t) = (z1,,...,%i—1,t, Tit1, ..., xy,) for some
ie{l,...,n} and zy,...,2;_1,%is1,..., 2, fixed. Then it follows directly from
the definitions that if ¢ : P — A is a coarsely lipschitz quasimorphism, then
B; = ¢oa; : I — A is a monotone path. (Note also that if ¢ is a quasi-isometric
embedding, then so is f3;.)

In fact, we can take the 3; to be independent of the x;, for j # ¢. This is based
on the following discussion.

By an h-quasisquare in A, we mean a cyclically ordered sequence of points,
ay,as,as,ay € A with a; €, [a;—1,a;11] for all . In other words, the inclusion of
{a1, as,a3,a4} into A is a quasicube of dimension 2, where the pairs of opposite
corners are ai,az and asg, a4.

If a1, as, as, ay is a quasisquare in a hyperbolic space ©, then either (a; ~, a4 and
ag ~y az) or (a3 ~, as and az ~, a4), (or both). In other words, a quasisquare in
a hyperbolic space is degenerate: it collapses onto one of its 1-faces up to bounded
distance (or both, in the case where the quasisquare has bounded diameter). This
is a simple exercise in hyperbolic spaces.

Clearly, this generalises directly to cubes of any dimension. In summary:

Lemma 13.1. Suppose © is hyperbolic, and Q C © be a quasicube. Then the
inclusion of Q) into © factors, up to bounded distance, through projection to one
of its 1-faces. The bound depends only on the constants of hyperbolicity and quasi-
morphism.

As an immediate consequence we get:

Lemma 13.2. Let P = H?Zl I; be an n-panel, and ¢ : P — A be a coarsely
lipschitz quasimorphism. Then for each X € X, there is some j(X) € {1,...,n}
and a monotone path vx : Ijxy — O(X) such that Ox o ¢ agrees up to bounded
distance with yx o mj(x), where m; : P — I, is projection to the ith coordinate.

Of course, it is possible that vx may have bounded image, in which case, the
image of fx o ¢ is also bounded. In this case, we could just leave j(X) undefined.

We will choose a constant, K, sufficiently large as determined below, and let
Xy be the set of X € X for which the diameter of Ox(4(P)) is at most K. In
particular, we can suppose that K is large enough so that j(X) is defined for all
X eX\ Xy Forie{l,...,n}, we write X; = {X € X\ & | j(X) = j}. Thus,
X - Ll?:o X]

To proceed we will assume the following “distance bound” hypothesis:
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(P1): Given any r > 0, there is some 7’ > 0 such that if z,y € A and ox(z,y) <7
for all X € X, then p(z,y) <r'.

In this case if v : I — A then 7 is monotone if and only if each of the maps
Ox o7 : 1 — ©(X) is uniformly monotone for all X € X.

The latter condition (or some slight variation of it) is frequently used to define
a “hierarchy path” in the situation where we have a family of maps to hyperbolic
spaces. For example, in the case of the mapping class groups, a path arising from
the resolution of a “hierarchy” in the sense of [MM] is easily seen to be a hierarchy
path in this sense.

(Under certain other assumptions, one can show that there is always a mono-
tone, or hierarchy, path between any two points of A. This is true in any hierar-
chically hyperbolic space [BeHS2]. See also [Bo8|, where this is shown under more
general assumptions. This is not directly relevant here, since as we have observed,
our coarse panels automatically give rise to monotone paths.)

Under another condition one can say more. Let us suppose that there is a re-
lation, L, on X which is antireflexive and symmetric. We suppose:

(P2): Given h there is some ry > 0 such that if aj, as, ag, ay € A is an h-quasisquare
and XY € X with ox(ay,as) > 1o and oy (a1, az) > rg, then X L Y.

The above is a consequence of other axioms of projection maps, in particular
it follows from Axiom (P4) of [Bol|. It therefore also follows from Properties
(A1)—(A10) of [Bob], or from the axioms of a hierarchically hyperbolic space.

We can take the constant K (used in defining the partition of X') greater than
0. It then follows that if X € X; and Y € &}, with j # k, then X 1L Y. Note also
that, in view of the assumption (P1) above, if we take the constant L of Theorem
1.1 sufficiently large, then X; # @ for all j.

Under some further assumptions of “orthogonality” and “nesting”, one can
show that there are pairwise L-related elements, Uy, ..., U, € X, such that all of
the elements of X; are “nested” in U; for each j € {1,...,n}. The projection of
¢(P) to any X € & will have bounded diameter, so we can disregard these. For
example, the above holds under the axioms of “orthogonality” given in [BeHS1],
or with the family of subsurfaces of a compact surface as we discuss in the next
section.

14. MAPPING CLASS GROUPS, TEICHMULLER SPACE AND HIERARCHICALLY
HYPERBOLIC SPACES

Before discussing hierarchically hyperbolic spaces, we first illustrate how the
statements of Section 13 apply to the mapping class groups and Teichmiiller space.
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13

In these cases, the indexing set X’ consists of subsurfaces of a fixed surface, “or-
thogonal” means “disjoint” and “nested in” means “included in”.

To be more precise, let ¥ be a compact orientable surface of complexity, & =

£(X) (i.e. 3 times the genus plus the number of boundary components minus 3).
Let A = M(X) be the marking graph. (There are a number of different but related
formulations of this, see [MM] or [Bo5]. One could also take it to be the Cayley
graph of the mapping class group with respect to any finite generating set. Since
these are all quasi-isometric, any one would serve for our purposes here.) Let X
be the collection of subsurfaces of X3, in the sense of [MM]. (These are assumed to
be connected, m-injective, neither discs nor three-holed spheres, not homotopic
into the boundary of ¥, and to be defined up to homotopy.) If X,Y € X, we
write X 1 Y to mean that X,Y can be homotoped to be disjoint. (This was
denoted A in [Bol, Bo4, Bo5].) We will write Y < X to mean that Y can be
homotoped into X but not into the boundary of X. (In the latter case, ¥ must
be an annulus, and we would have X 1 Y.) If none of the conditions, X =Y,
X 1Y, X <YorY < X hold, we say that X, Y are transverse. Given X € X,
let ©(X) be the intrinsic curve graph of X (appropriately defined for annuli) and
let Ox : M(X) — O(X) be the usual subsurface projection map. We also have
maps, ¥x : M(X) — M(X), to the intrinsic marking graph of X. These maps
satisfy axioms (A1)-(A10) of [Bo5]. In particular, M((¥) is coarse median of rank
€.
Remark. Note that we are only considering connected subsurfaces of ¥, as in
[MM]. However, it [BeHS2, BeHS3] it is necessary to include disconnected sub-
surfaces in the indexing set in order to satisfy their “orthogonality axiom”. This
introduces some complications into the proceedings, but it does not directly affect
the discussion here.

Now suppose ¢ : P — M(X) is a coarse &-panel. Let X = |_|§=0Xj be
the partition of X described in Section 13, where the constant, K, is chosen
sufficiently large as described below. Thus, if X € &} for j > 0, we have a path
vx : I; — O(X) such that vy o 7; agrees up to bounded distance with 6x o ¢.
Moreover, if Z ¢ X;, then 07 o ¢(P) has bounded diameter. In particular, this
applies to all Z € Aj.

The elements of distinct X; are disjoint. It follows that there are disjoint sub-
surfaces, U; C X, such that X < U; for all X € &;. In fact, we can take U;
minimal containing all elements of &X;. We note that each U; must be an annulus,
a one-holed torus, or a four-holed sphere. (One way to see this is to take a curve
0; in each Uj, so that ¢; is a core curve if U; is an annulus, or else an essential
non-peripheral curve in U; otherwise. The resulting curves are disjoint and non-
homotopic in . There can be at most £ such curves, and this bound is attained
precisely when each complementary region is a three-holed sphere. In particu-
lar, if U; is non-annular, then U; \ 0, consists of either one, or two, three-holed
spheres.)
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Suppose that Z € X does not lie in any U;. Then it must be transverse to,
or strictly contain, at least one U;. We write az € ©(Z) for the projection of U;
to ©(Z). Since all the U, is disjoint, ay is well defined up to bounded distance,
regardless of which such U; we choose. We claim that 67(¢(P)) lies in a bounded
neighbourhood of az. To see this, first note that by the minimality of U;, there
must be some X € X; with Z transverse to, or containing, X. The projection of
X to ©(Z) lies a bounded distance from az. Now suppose, for contradiction, that
07(¢(P)) is a long way from this projection. Suppose first that Z is transverse to
X. Let a € ¢(P). Then by Behrstock’s Lemma [Be|, fxa is a bounded distance
from the projection of Z to ©(X). (This is stated as (A9) in [Bo5].) Since
this holds for all such a, we deduce that 0x(¢(P)) has bounded diameter. This
contravenes the definition of X;, assuming that we have chosen K large enough
in relation to the constant of Behrstock’s Lemma. Suppose on the other hand
that X is contained in Z. Let a,b € ¢(P). This time, we can use the Bounded
Geodesic Image theorem of Masur and Minsky [MM]. (This is stated as (A8) in
[Bo5].) to show that fxa is a bounded distance from 6xb. Since this holds for all
a,b € ¢(P), we again get a contradiction. This proves the claim.

Now let j > 0, and let a; : I; — P be a coordinate map. Let 8 = ¢ o q; :
I; — M(X), and let v; = vy, o B; : I; — M(Uj). These are both monotone
paths. Then if t € (t1,...,t) € P, and X < Uj;, then 0x(¢(t)) is a bounded
distance from 0x(;(t;)). If Z does not lie in any Uj, then 6,(¢(t)) is a bounded
distance from az. Note that, by the distance bound (P1) of Section 13, these
projections determine ¢(¢) up to bounded distance.

In all cases above, M(Uj) is hyperbolic. Therefore, saying that a path in M(U;)
is “monotone” is equivalent to saying that it is an unparameterised quasigeodesic.
We can therefore take it to be a uniform quasigeodesic. Indeed, given that M(Uj;)
is a locally finite graph, we can take it be geodesic.

Conversely, given such a family of geodesics, 71, .. .,7¢, we can reconstruct ¢ as
we now describe.

To describe this, first note that there is a coarsely lipschitz embedding of
M(Uy) x -+ x M(U,), into M(X) such that postcomposition with vy, is just pro-
jection to the M(U;) coordinate, and such that if Z does not lie in any Uj, then
the image of the embedding projects under 65 into a bounded neighbourhood of
ay € ©(Z) as defined above. Moreover, the embedding is a strong quasimorphism.
For more detail, see the discussion of product regions in [Bo5].

Now given geodesics v, : I; — M(U;), we can combine them to give a quasi-
morphism, ¢ =y X - -+ X Ye : P — M(X) via this embedding. Suppose the v;
arise from a map ¢ as described above. Then by construction, we see that 0x (¢(t))
lies a bounded distance from Ox(4(t)) for all X € X. Therefore, by (P1) again,
we see that ngﬁ agrees with ¢ up to bounded distance. In other words, any coarse
panel ¢ : P — M(X) (for L sufficiently large) arises from this construction.

In summary, we have shown:
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Theorem 14.1. Let X be a compact orientable surface of complexity &, and let
M(X) be the marking graph of . Let f : R& — M(X) be a quasi-isometric
embedding. Then there is some p € N, depending only on & and the quasi-
isometry parameters of f, such that for each i € {1,...,p}, we have a collec-
tion of disjoint subsurfaces, Ui, ..., Uiy, of 3, together with a family of geodesics,
vij + Lij — M(U;;), with the following properties. Let P; = H§:1 I;j. Then the
product map ¢; = vy X -+ Vie : P —> M(X), obtained by combining the paths ~;;
as described above, is a quasi-isometric embedding, with constants depending only
on €. Moreover, the Hausdorff distance between f(R®) and | Ji_, ¢:(P;) is bounded
in terms of & and the quasi-isometry parameters of f.

If we allow the Hausdorff distance between f(RY) and \Ji_, ¢:(P;) to be finite,
but not necessarily uniformly bounded, then we can take each I;; to be [0,00) (so
that each ;; is a geodesic ray, and each P; is a £-orthant). The orthants, P,
can be assembled into an orthant complex, ), bilipschitz equivalent to RE; and the
maps, ¢;, combine to give us a quasi-isometric embedding, ¢ : Q@ — M(X).

Essentially the same discussion applies to Teichmiiller space with the Teichmiiller
metric, where ©(X) is appropriately modified when X is an annulus. This is again
coarse median of rank £&. However in this case, quasiflats only exist when X has
genus at most 1, or is a closed surface of genus 2 [Bo4]. (Indeed, this result might
be used to give another proof of this fact. A quasiflat gives rise an orthant complex
bilipschitz equivalent to R®. This is the cone over an embedded homology (£ —1)-
sphere in the curve complex of ¥. Such can only arise in the above cases. We will
not give details here since the logic is similar to that of the original argument.)

Similarly, the Weil-Petersson metric (or equivalently the pants graph) is coarse
median of rank | (£ +1)/2]. In this case, X’ consists only of non-annular surfaces.
(Alternatively, we could instead take ©(X) to be a singleton whenever X is an
annulus. )

Here the maps ¥ x can be defined in a number of equivalent ways, for example,
via the respective combinatorial model spaces (see [Ra, D, Bro]) as used in [Bo4,
Bo7].

In summary, we have:

Theorem 14.2. The statement of Theorem 1/4.1 holds on replacing M(X) with
Teichmiiller space in either the Teichmuller or Weil-Petersson metric, together in
the latter case, on replacing the dimension & by | (£ +1)/2].

More generally, Theorems 14.1 and 14.2 hold for any space, with projection
maps satisfying the axioms (A1)—(A10) as laid out in Section 7 of [Bo5|. (Though
we may need to take the paths 7;; to be uniform quasigeodesics, rather than
geodesics.) We just replace the space, M(X), by the space M(X) defined there,
and replace £ by the rank, v, of M(X). Everything we need, such as a version of
Behrstock’s Lemma and the Bounded Geodesic Image Theorem, is incorporated
into the axioms.
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Finally, we make a few comments to relate the above to the main theorem
formulated in [BeHS3] for an asymphoric hierarchically hyperbolic space, M.
There the indexing set X (which the authors denote by “&”) is assumed to come
equipped with relations corresponding to < (there denoted “C”) and L. To each
X € X they associate a uniformly hyperbolic space, C X, together with a coarsely
lipschitz map from M to CX. If X <Y, there is assumed to be a map pY% from
CY to the power set of CX. (It is not made explicit when sets in the image of this
map are assumed to be non-empty, but that does not directly affect the present
discussion.) These, together with certain other maps, are required to satisfy a list
of axioms; so that the space, M, equipped with this structure is “(asymphorically)
hierarchically hyperbolic”. Given U € X, the authors define a space of “consistent
tuples”, denoted Fy;. A consistent tuple is an element of the direct product of the
spaces C'X as X varies over those X € X for which X < U, and which satisfies
certain “consistency” conditions as laid out in [BeHS2]. A path in Fy is said to
be a “hierarchy path” if the projection to each factor, C' X, is an unparameterised
quasigeodesic.

One can interpret this in terms of the axioms (A1)—(A10) of [Bob]. (There the
indexing set was taken to consist of subsurfaces of >, rather than an abstract
set with relations satisfying “orthogonality” axioms, but either is sufficient for
the earlier discussion to apply.) In this context, the role of C'X is played by
O(X) (denoted G(X) in [Bo5|), and the role of Fy; is played by M(U). The
projection of M to ©(X) corresponds to the projection of Fy; to the factor C'X.
From the axioms of [Bo5], the median on M(U) is characterised by the fact that
the projection maps are uniform quasimorphisms. In particular, it follows that
a monotone path in M(U) corresponds to a hierarchy path in Fy. Therefore
coarse orthants, as we have defined them, will be orthants in the sense defined
in [BeHS3]. Any asymphoric hierarchically hyperbolic space of “rank v” in their
sense is coarse median of rank v in our sense. From this, one sees that Theorem
A of [BeHS3] follows from Theorem 1.2 here.

15. A VARIANT OF THE BORSUK-ULAM THEOREM

The following strengthening of the Borsuk-Ulam Theorem is a straightforward
consequence of the fact that a self-map of a sphere which commutes with the an-
tipodal map has odd degree. The latter statement can be found in [Bre] (Theorem
IV.20.6 thereof) though by a somewhat more involved argument. For convenience,
we give a self-contained proof, based on an argument for a related result given in
[W]. We reproduce this, with some simplification for this particular case, below.
This result is used in the proof of Lemma 6.1.

Let S™ = {z € R™"! | ||z|| = 1} be the n-sphere. Let 7 : S™ — S™ be the
antipodal map: 7(z) = —z. Let H; be the ith reduced singular homology group
of S™ with Zs coefficients. So H, = Z, and H; = 0 for i # n. We say that a
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continuous map f : S™ — S™ has even degree if it maps H,, to 0. (This accords
with the standard notion of “degree” in this context.)

Theorem 15.1. If f : S — S™ has even degree then there is some x € S™ with
flrz) = f(x).

Proof. Suppose not. Define F': S" x [0,1] — S™ by F(x,t) = % Then
F(z,0) = f(z) and F(—xz,1) = —F(x,1). Define g : S" — S™ by g(x) = F(x,1).
Then F'is a homotopy from f to g, so g also has even degree. Note that gor = Tog.

Let C; be the ith reduced singular chain complex (so C_; = Zs). Let f = g, :
Cl' — Ci, and 6 = 1.+ 7 Cz — Cl (1e 9(6) = C+T*(C)). Let 0 : CZ — Cifl
be the boundary map. Then 3,6,0 all commute. Also, §> = 0. Note that if
c € C, for i < n, and dc = 0, then there is some b € C;; ;1 with ¢ = 0b.

By taking hemispheres, we can find elements h; € C; for ¢ = 0,...,n such that
Oh; = 6h;_1, such that Ohy = 1 € Zs, and such that 0h,, generates H,,. (Note that
00h; = 6%h;_1 = 0.)

Let k; = Bh;. So 0kg = 1 and 0k; = 0k;_,. We claim that for all i < n, there
exists a; € C; such that d(h; + k; + 6a;) = 0. We show this by induction on .
Set ag = 0. Suppose we have found a; for i@ < n. There is some a;11 € Cjiq
with hl —+ kl + QCLZ‘ = 8(1@-“. Now 8(h7;+1 -+ k¢+1 + GCLZ'+1) = th + 0]{?1 + Qaaiﬂ =
20h; + 20k; + 6%a; = 0. The claim follows.

In particular, d(h, + k,, + 0a,) = 0. Since H, is generated by the class of 6h,,,
there is some b € C),;1 such that either h,,+k, +60a,, = 0b, or h,+k,+6a,+0h, =
0b. Either way, 0h,, + 0k, = 00b = 00b. Therefore, 0k, represents the generator,
Oh,, of H,. But since g has even degree, 0k, = [$60h, must be trivial, giving a
contradiction. O
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