
RELATIVELY HYPERBOLIC GROUPS

B. H. BOWDITCH

Abstract. In this paper we develop some of the foundations of
the theory of relatively hyperbolic groups as originally formulated
by Gromov. We prove the equivalence of two definitions of this
notion. One is essentially that of a group admitting a properly dis-
continuous geometrically finite action on a proper hyperbolic space,
that is, such that every limit point is either a conical limit point
or a bounded parabolic point. The other is that of a group which
admits a cofinite action on a connected fine hyperbolic graph. We
define a graph to be “fine” if there are only finitely many circuits
a given length containing any given edge, and we develop some of
the properties of this notion. We show how a relatively hyperbolic
group can be assumed to act on a proper hyperbolic space of a
particular geometric form. We define the boundary of a relatively
hyperbolic group, and show that the limit set of any geometri-
cally finite action of the group is equivariantly homeomorphic to
this boundary. This generalises a result of Tukia for geometri-
cally finite kleinian groups. We also describe when the boundary
is connected.

1. Introduction

The aim of this paper is to give an account of the notion of a “rel-
atively hyperbolic group”, or more precisely, a group which is “hy-
perbolic relative to” a preferred class of “peripheral subgroups”. This
notion was introduced by Gromov in his original paper on hyperbolic
groups, [Grom]. Since then, it has been a major feature of geomet-
ric group theory, with many naturally occurring groups falling into
this class. It simultaneously generalises the idea of a hyperbolic group
(the case where there are no peripheral subgroups) and that of a ge-
ometrically finite kleinian group (where the peripheral subgroups are
the maximal parabolic subgroups). Elaborations on the notion of rel-
ative hyperbolicity were given by Farb [Fa] and Szczepański [Sz]. In
this paper, we describe some alternative viewpoints. Since the first
draft of this paper was written there have been numerous papers mak-
ing use of relative hyperbolicity, and one could compile an extensive
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bibliography. Here, however, we will confine ourselves to discussing
equivalent formulations of the notion. In that regard, we mention
[Y, Da, Bu, DrS, O, GrovM, Gera]. We will say more about these
later in the introduction. Of course, these papers include many other
references to the subject.

We shall give two equivalent definitions of hyperbolicity for a group,
Γ, relative to a set, G, of infinite subgroups.

Definition 1. We say that Γ is hyperbolic relative to G, if Γ admits a
properly discontinous isometric action on a path-metric space, X, with
the following properties.
(1) X is proper (i.e. complete and locally compact) and hyperbolic,
(2) every point of the boundary of X is either a conical limit point or
a bounded parabolic point,
(3) the elements of G are precisely the maximal parabolic subgroups of
Γ, and
(4) every element of G is finitely generated.

Definition 2. We say that Γ is hyperbolic relative to G, if Γ admits an
action on a connected graph, K, with the following properties:
(1) K is hyperbolic, and each edge of K is contained in only finitely
many circuits of length n for any given integer, n,
(2) there are finitely many Γ-orbits of edges, and each edge stabiliser
is finite,
(3) the elements of G are precisely the infinite vertex stabilisers of K,
and
(4) every element of G is finitely generated.

The equivalence of these definitions will be proven in this paper
(see Theorem 7.10). We refer to the elements of G as “peripheral
subgroups”. The insistence that they be finitely generated is rather
artificial, though it seems to be needed for certain results.

The first definition could be viewed as a dynamical characterisation,
except that we need to assume that we are dealing with the bound-
ary of a proper hyperbolic space, and that the action arises from an
isometric action on that space. In fact, it has been shown in [Y] that
these last assumptions can be dispensed with. One therefore obtains
a purely dynamical characterisation of a relatively hyperbolic group as
a convergence group acting on a compact metrisable space, for which
every point is either a conical limit point or a bounded parabolic point.
This generalises the result of [Bo6], where it was assumed that there
are no parabolics. (The argument of [Y] makes use of the fact, proven
in [T3], that there are only finitely many conjugacy classes of maximal
parabolic subgroups.)
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The second definition (which we shall study first in this paper) will
be phrased formally in terms of group actions on sets, which are “cofi-
nite” (i.e. finitely many orbits). We keep much of the discussion fairly
general. In principle, one could take a similar approach to studying
other “geometric” properties of groups relative to a given set of sub-
groups. The standard (non-relative) case corresponds to those actions
where all point stabilisers are finite. In this case, the interesting geo-
metric properties seem to be quasiisometry invariant, though, in the
more general setting, there are natural geometric properties which are
not quasiisometry invariant, such as the property we call “fineness” in
Section 4. This approach is extended to group splittings in [Bo9].

Each of the various formulations of relative hyperbolicity have tech-
nical advantages in specific contexts, and each make apparent certain
features not apparent from the others. We aim to explore such matters
in this paper.

There is also a weaker notion, which we shall refer to here as “weak
relative hyperbolicity”. This is a weakening of Definition 2 above. Let
G be a conjugacy invariant collection of infinite subgroups of a group
Γ.

Definition. We say that Γ is weakly hyperbolic relative to G if it admits
an action on a connected graph, K, with the following properties:
(1) K is hyperbolic,
(2) there are finitely many Γ-orbits of edges, and
(3) each element of G fixes a vertex of K, and
each vertex stabiliser of K contains an element of G as a subgroup of
finite index.

This gives rise to many more examples (see [Fa, Gers, Mas]). How-
ever, there seems to be a greater degree of arbitrariness about this
definition. In this paper, we shall focus on the stronger definition. We
briefly elaborate on these definitions, beginning with the dynamical
formulation. Suppose that a group, Γ, acts by homeomorphism on a
perfect metrisable compactum, M . We say that Γ is a “convergence
group” (in the sense of [GehM]) if the induced action on the space of
distinct triples is properly discontinuous. (For further discussion, see
[GehM, T2, Fr1, Bo7].) We say that a convergence group is “(minimal)
geometrically finite” if every point of M is either a conical limit point
or a bounded parabolic point. (For definitions, see Section 6.) This is a
natural generalisation of the Beardon-Maskit definition [BeM]. It has
also been considered in this generality in [T3] and [Fr2]. It generalises
the classical formulation of geometrical finiteness described by Ahlfors
and Greenberg [A, Gre], see [Bo2, Bo4].
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In this paper, we shall mostly confine ourselves to the case where M is
the boundary, ∂X, of a complete, locally compact, Gromov hyperbolic
space, X. If Γ acts properly discontinuously and isometrically on X,
then the induced action of ∂X is a convergence action. We can thus
define an action on X to be “geometrically finite” if the induced action
on ∂X is geometrically finite in the dynamical sense. If Π ⊆ ∂X is the
set of parabolic points, then one can show that Π/Γ is finite. In fact,
one can construct a strictly invariant system of horoballs, (B(p))p∈Π,
about Π, such that (X \

⋃
p∈Π int B(p))/Γ is compact. In this way, we

recover a generalisation of Marden’s definition of geometrical finiteness
[Mar].

This gives us the first definition of relative hyperbolicity, namely that
a group Γ is hyperbolic relative to a set of infinite finitely generated
subgroups (the “peripheral subgroups”) if it admits a geometrically
finite action on a proper hyperbolic space, where these subgroups are
precisely the maximal parabolic subgroups. We note immediately that
the intersection of any two peripheral subgroups is finite, and that there
are finitely many conjugacy classes of peripheral subgroups. Moreover,
each peripheral subgroup is equal to its normaliser.

Note that, in the case of a hyperbolic group (where G = ∅) the
quasiisometry class of the space X depends only on the group, Γ. This
allows us to define the boundary, denoted ∂Γ, of Γ as ∂X. In the gen-
eral situation, however, this is not the case. Indeed, there seems to be
no particularly natural choice of quasiisometry class of space X. How-
ever, as we shall discuss in a moment, we can associate to a relatively
hyperbolic group, (Γ,G), a space X(Γ), together with a geometrically
finite action of Γ, which is canonical up to Γ-equivariant quasiisometry,
even though the construction is somewhat artificial. This allows us to
give a formal definition of the boundary, ∂(Γ,G) as ∂X(Γ). One can go
on to show that if X is any complete locally compact hyperbolic space
admitting a geometrically finite action of Γ, then the limit set of ∂X
is, in fact, Γ-equivariantly homeomorphic to ∂(Γ,G). We thus see that
∂(Γ,G) is a quite natural object to associate to (Γ,G), even if X(Γ) is
not. We frequently view G as an intrinsic part of the structure of Γ,
and abbreviate ∂(Γ,G) to ∂Γ.

The proofs of the assertions of the last paragraph make use of the
second formulation of relative hyperbolicity. We shall phrase this in
terms of group actions on sets. To relate this to what we have said
earlier, one can take this set to be the peripheral structure, with the
group acting by conjugation.
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Suppose we fix a group, Γ. A “Γ-set” is simply a set, V , on which
Γ acts. We refer to points of V as “vertices”. If x ∈ V , we write
Γ(x) for the vertex stabiliser. A “pair stabiliser” is a subgroup of
the form Γ(x) ∩ Γ(y) for distinct x, y ∈ V . We shall usually assume
that pair stabilisers are finite. A “(Γ, V )-graph”, K, is a connected
Γ-invariant graph with vertex set V , and with finitely many Γ-orbits
of edges. Clearly any graph-theoretical property which is independent
of the choice of K can be viewed as a property of a Γ-set, V . Since
any two (Γ, V )-graphs are clearly quasiisometric, any quasiisometry
invariant property, such as hyperbolicity, can be viewed as a property
of a Γ-set. In view of this, we may define a Γ-set, V , to be “weakly
hyperbolic” if some, and hence any, (Γ, V )-graph is hyperbolic.

This notion of weak hyperbolity is equivalent to the formulation
of relative hyperbolicity formulated in [Fa] (without the assumption
of finite pair stabilisers) and used, for example, in [Mas] and [Gers].
However, it is weaker than that in which we are primarily interested
here. For this we shall need an additional combinatorial hypothesis,
which we shall call “fineness”. This is not a quasiisometry invariant.
However, it turns out to be independent of the choice of (Γ, V )-graph.

In the same way that hyperbolicity can be viewed as a geometric
weakening of certain properties of a simplicial tree (such as 0-thin tri-
angles), the notion of fineness can be viewed as weakening of combina-
torial properties. Thus, for example, a simplicial tree might be defined
as a connected graph which contains no circuits. We say that a graph is
“fine” if there are only finitely many circuits of a given length contain-
ing any given edge. This seems to be a fairly robust notion, and has
several equivalent formulations, as we shall see in Section 2. We can
thus define a Γ-set, V , to be “fine” if some (hence any) (Γ, V )-graph is
fine.

We shall say that a Γ set, V , is “hyperbolic” if it has finite pair
stabilisers, finitely generated point stabilisers, and is fine and weakly
hyperbolic. This reduces to essentially two cases. If every vertex of
V has finite stabiliser, then this is equivalent to saying that Γ is word
hyperbolic in the sense of Gromov. On the other hand, if there exist
vertices of infinite degree, then we can assume that every vertex has
infinite degree. In the latter case, we get an equivalent definition of
relatively hyperbolic group — if G is a peripheral structure on Γ, then
we can view G as a Γ-set, where the action is by conjugation, and we
can define (Γ,G) to be hyperbolic if G is hyperbolic as Γ-set. A more
transparent reformulation of this definition is given by Proposition 4.9.
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To relate this to the previous formulation of relative hyperbolicity,
we use the complex given by Proposition 4.9. This is a Γ-invariant 2-
dimensional simplicial complex, K, with 0-skeleton V , which has finite
quotient under Γ, is locally finite away from V , and is “simplicially
hyperbolic”. The last statement means that any cycle of length n in
the 1-skeleton bounds a simplicial disc in K with the number of 2-
simplices bounded above by a linear function of n. We may realise
K \ V as a complete locally compact path-metric space, X(K), by
giving each 2-simplex the structure of an ideal hyperbolic triangle, in
such a way that the union of two adjacent triangles is isometric to an
ideal hyperbolic square. It turns out that X(K) is Gromov hyperbolic,
and that the action of Γ on X(K) is geometrically finite. This gives us
our space, X(Γ), referred to earlier.

Conversely, suppose we have a geometrically finite action of a group
Γ on a complete locally compact hyperbolic space X. Let G be the
peripheral structure. We can reconstruct a fine hyperbolic graph, K,
with vertex set G, as a kind of “nerve” to an invariant set of horoballs.
More precisely, we take any invariant set of horoballs for Γ, and we
connect two peripheral subgroups by an edge if the distance between
the corresponding horoballs is less than some sufficiently large constant.
(Alternatively, if we choose the horoballs to overlap sufficiently, we can
take it to be a nerve in the usual sense.) One verifies that K is indeed
fine and hyperbolic, and that ∂X(K) is Γ-equivariantly homeomorphic
to ∂X.

There is a slight complicating factor, which we have alluded to. This
concerns whether we should assume that the peripheral subgroups are
all finitely generated. This is not needed in the discussion of geomet-
rically finite groups in Section 6, but seems to be required, or at least
desirable, for the constructions of Sections 3 and 4. We shall therefore
take it as part of the hypotheses of a relatively hyperbolic group, but
not of a geometrically finite group. This necessitates an extra clause
in the statement of certain results (for example Proposition 7.9) which
has no real mathematical content.

We should mention some other, and more recent, formulations of
relative hyperbolicity. To set this in context we recall the case of a
finite volume hyperbolic manifold (that is locally modelled on classical
hyperbolic space). Such a manifold has finitely many (possibly zero)
ends, each an exponentially tapering cusp. The manifold is therefore
quasi-isometric to a finite wedge of rays (semi-infinite real intervals)
connected at their respective endpoints. (One can also allow for con-
vex boundaries — the geometrically finite case, or pinched negative
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curvature.) This motivates Gromov’s original definition [Grom] — es-
sentially a group acting properly on a proper hyperbolic space, whose
quotient is quasi-isometric to a wedge of rays, each ray arising as the
quotient of a horoball. Therefore the fundamental group of a finite vol-
ume (or geometrically finite) manifold is a basic example of a relatively
hyperbolic group.

A different definition was given by Farb [Fa]. There a group is rela-
tively hyperbolic if its “coned-off” Cayley graph is Gromov hyperbolic,
and it satisfies a “bounded coset penetration” property (which plays
the role of fineness in the present paper). This is also discussed in
[Sz]. In this paper we give the two further definitions stated above.
All the definitions mentioned are known to be equivalent, see [Da, Bu].
(In this discussion we are assuming peripheral subgroups to be finitely
generated.)

Since the first draft of this paper was written, many other equivalent
definitions have been formulated. We have already noted the dynamical
description of Yaman [Y] as a geometrically finite convergence group
acting on a compact metrisable space. We also note that Gerasimov
[Gera] has shown that a convergence group is geometrically finite if an
only if its induced action on the space of distinct pairs is cocompact.
Given that a convergence action can be defined as one that is prop-
erly discontinuous on the space of distinct triples, this ties in with the
characterisation of hyperbolic groups given in [Bo6].

In [DrS], Druţu, Sapir and Osin describe relatively hyperbolic groups
in terms of their asymptotic cones — namely every asymptotic cone
of the group should “tree graded” with respect to the peripheral sub-
groups. Osin [O] gives a more combinatorial description — a group is
relatively hyperbolic if it satisfies a linear isoperimetric inequality “rel-
ative to” its peripheral subgroups. (His monograph includes a detailed
discussion of relative hyperbolicity.) Groves and Manning [GrovM] give
another way coning off Cayley graphs, different to that of Farb, to give
yet another characterisation.

The outline of this paper is as follows. In Section 2, we consider a few
combinatorial properties of infinite graphs, in particular, introducing
the notion of a “fine” graph. In Section 3, we construct a proper hyper-
bolic space starting with a fine hyperbolic graph, thereby giving us a
notion of boundary for such a graph. In Section 4, we study actions of
a group, Γ, on a set, allowing us to define the notion of a “hyperbolic Γ-
set” and hence of a relatively hyperbolic group. In Section 5, we briefly
review hyperbolic length spaces. In Section 6, we study geometrically
finite actions on proper hyperbolic spaces, largely from a dynamical
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point of view. In Section 7, we recover fine hyperbolic graphs from ge-
ometrically finite actions, thereby showing that a geometrically finite
group with finitely generated peripheral subgroups is relatively hyper-
bolic by the combinatorial definition of Section 8. In Section 8, we shall
explore properties of fine hyperbolic graphs. In Section 9, we show that
the limit set of a geometrically finite group depends, up to equivariant
homeomorphism, only on the group and the collection of peripheral
subgroups. In Section 10, we describe some basic facts about splittings
of relatively hyperbolic groups over finite subgroups, and how these are
observed in the topoology of the boundary.

I would like to thank Pekka Tukia and David Epstein for their com-
ments on this paper. I am also indebted to Andrzej Szczepański for his
ideas on relatively hyperbolic groups.

2. Graph theory

The main aim of this section will to be to introduce the notion “fine-
ness” of a graph. We develop some basic properties of fine graphs, and
describe some simple graph theoretical operations that preserve fine-
ness. Additional properties of fine hyperbolic graphs will be explored
in Section 8.

Let K be a graph with vertex set V (K) and edge set E(K). We can
think of K as a 1-dimensional simplicial complex. (We are not allowing
loops or multiple edges.) We write V0(K) and V∞(K) respectively for
the sets of vertices of finite and infinite degree. A path of length n con-
necting x, y ∈ V is a sequence, x0x1 . . . xn of vertices, with x0 = x and
xn = y, and with each xi equal to or adjacent to xi+1. It is an arc if the
xi are all distinct. A cycle is a closed path (x0 = xn), and a circuit is a
cycle with all vertices distinct. We regard two cycles as the same if their
vertices are cyclically permuted (i.e. x0x1 . . . xn−1x0 = xkxk+1 . . . xk for
all k). We frequently regard arcs and circuits as subgraphs of K. Two
arcs are independent if they meet only in their initial points. We speak
of two paths or subgraphs as distinct simply to mean that they are not
identical. The length of a subgraph is the cardinality of its edge set.

We put a path metric, dK , on V (K), where dK(x, y) is the length
of the shortest path in K connecting x to y. (We set dK(x, y) = ∞ if
there is no such path.) When we speak of a subset of V (K) as being
bounded we mean with respect to this metric.

If A ⊆ V (K), we write K \A for the full subgraph of K with vertex
set V (K)\A, i.e. the graph obtained by deleting the vertices A together
will all incident edges. If x ∈ K, we abbreviate K \ {x} to K \ x. We
say that K in n-vertex-connected if K \A is connected for any subset,
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A, of V (K), of cardinality strictly less than n. (We are breaking with
tradition slightly in that we are deeming the complete graph on n
vertices to be n-vertex connected.)

Let K be a connected graph. A block of K is a maximal 2-vertex-
connected subgraph. Two blocks meet, if at all, in a single vertex. The
block tree of K is the bipartite graph whose vertex set is defined as the
abstract union of the set, V , of vertices of K and the set, B, of blocks
of K, where a vertex, x, is adjacent to a block, B, in the block tree
if x ∈ B in K. It’s not hard to see that the block tree is indeed a
simplicial tree (i.e. a connected graph with no circuits).

So far, everything we have said is standard elementary graph theory.
We now move on to some less standard definitions.

Definition. A collection, L, of subgraphs of K is edge-finite if {L ∈
L | e ∈ E(L)} is finite for each edge e ∈ E(K).

Definition. A subset A ⊆ V (K) is locally finite in K if every bounded
subset of A is finite.

If x ∈ V (K), we write VK(x) ⊆ V (K) for the set of vertices adjacent
to x.

We are now ready for the main result of this section:

Proposition 2.1. Let K be a graph. The following are equivalent:
(F1): For each n ∈ N, the set of circuits in K of length n is edge-
finite.
(F2): For all x, y ∈ V (K) and n ∈ N, the set of arcs of length n
connecting x to y is finite.
(F3): For any x, y ∈ V (K) and n ∈ N, there does not exist an infinite
collection of pairwise independent arcs of length n connecting x to y.
(F4): Suppose x, y ∈ V (K) are any pair of distinct vertices, and n ∈ N.
If L is any edge-finite collection of connected subgraphs of K of length
n, each containing both x and y, then L is finite.
(F5): For each vertex x ∈ K, the set VK(x) is locally finite in K \ x.

Proof. We prove (F2) ⇒ (F1) ⇒ (F3) ⇒ (F2), (F2) ⇒ (F4) ⇒ (F3)
and (F2) ⇒ (F5) ⇒ (F3).

(F2) ⇒ (F1): Suppose e ∈ E(K) has endpoints x, y ∈ V (K). Each
circuit, γ, of length n containing e gives us an arc, γ \e, of length n−1
connecting x and y. There can only be finitely many such arcs, and
hence only finitely many such circuits.

(F1) ⇒ (F3): Suppose, for contradiction, that there is an infinite
collection, (βi)i∈N, of pairwise independent arcs of length n connecting
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the same pair of distinct points. Let e be any edge of β0. Now, for each
i, β0 ∪ βi is a circuit of length 2n containing e, contradicting (F1).
(F3) ⇒ (F2): Suppose, for contradiction, that (F2) fails. Let n ∈ N be
minimal such that there exist distinct points, x, y ∈ V (K) and an infi-
nite collection, (βi)i∈N, of distinct arcs of length at most n connecting
x to y.

We claim that only finitely many of the βi contain any given point,
z ∈ V (K)\{x, y}. To see this, note that z divides any such arc, βi, into
two subarcs, β−

i and β+
i , each of length at most n− 1, and connecting

x to z and z to y respectively. From the minimality of n, we see that
there are only finitely many possibilities for β−

i and β+
i , and hence for

βi, as claimed. It follows, more generally, that if A ⊆ V (K) \ {x, y} is
any finite set, then {i ∈ N | βi ∩ A 6= ∅} is finite.

We can thus, inductively, pass to a subsequence, (βij)j , such that
βij meets no point of

⋃
k<j V (βik) \ {x, y}. In other words, (βij )j is

an infinite collection of pairwise independent arcs of length at most n,
connecting x to y. This contradicts (F3).

(F2) ⇒ (F4): Suppose, for contradiction, that (Li)i∈N is an edge-
finite collection of connected subgraphs of k, each of length n, and
each containing a pair of distinct points, x, y ∈ V (K). Now, we can
inductively pass to a subsequence, (Lij )j of subgraphs which are pair-
wise edge-disjoint (since only only finitely many graphs, Li, contain
any of the finite set,

⋃
k<j E(Lik), of edges of K). Now, let βj be any

arc in Lij connecting x to y. These arcs are all edge-disjoint, and so,
in particular, are distinct. Moreover, they all have length at most n,
contradicting (F2).

(F4) ⇒ (F3): Clearly, any collection of independent arcs connecting
a pair of points will be edge-disjoint, and hence finite by (F4).

(F2) ⇒ (F5): Suppose, for contradiction, that x ∈ V , and that
VK(x) is not locally finite in K \ x. In other words, we can find some
y ∈ VK(x), and some n ∈ N, such that there is an infinite sequence,
(zi)i∈N, of distinct points in VK(x), each a distance at most n from y.
Let αi be a shortest path in K \ x from y to zi, and let βi be α con-
catenated with the edge zix. We see easily that βi is an arc of length
at most n + 1 connecting y to x. Since zi ∈ V (βi), these arcs are all
distinct, contradicting (F2).
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(F5) ⇒ (F3) Suppose, for contradiction, that there exist points x, y ∈
V , and an infinite sequence, (βi)i∈N of pairwise independent arcs of
length n connecting x to y. Let zi be the first vertex of the arc βi after
x, and let αi be the subarc of βi connecting zi to y. Thus, zi ∈ VK(x),
and αi has length n − 1 and lies in K \ x. We see that any pair of
points, zi and zj are connected by a path of length 2(n − 1) in K \ x.
Thus, {zi | i ∈ N} is an infinite subset of VK(x), which is bounded in
K \ x, contradicting (F5). �

Definition. We say that a graph is fine if it satisfies one, hence all, of
the properties (F1)–(F5) featuring in Proposition 2.1

(We remark that, for the applications we have in mind, one could
equally well deal with “uniformly fine” graphs, where we assume a
bound in terms of n on the number circuits in (F1). This seems to
make little difference to the general theory, so we shall confine ourselves
here to the weaker notion.)

We begin by making some trivial observations about fineness. Firstly:

Lemma 2.2. Any subgraph of a fine graph is fine. Any locally finite
graph is fine. A graph is fine if and only of each of its components is
fine. A connected graph is fine if and only if each of its blocks is fine.

Another point to note is that a 2-vertex-connected fine graph is
countable. This follows, since in this case, every vertex has countable
degree by property (F5).

We want to describe some slightly less trivial operations on graphs
which preserve fineness. To this end, the following lemma will be useful.

Let K be a graph. Given an arc, α, in K, we write e(α) for the
unordered pair of endpoints of α. If A is a set of arcs, we write K[A] for
the graph with vertex set V (K[A]) = V (K), and edge set, E(K[A]) =
E(K) ∪ {e(A) | α ∈ A}. (This union need not be disjoint — if α has
length 1, then e(α) is already in E(K).)

Lemma 2.3. Suppose that K is a fine graph, and A an edge-finite
collection of arcs of bounded length in K. Then, K[A] is fine.

Proof. Let k be the maximal length of any arc in A. Suppose that L
is a connected subgraph of K[A] of length n. We may associate to L,
a connected subgraph, L′, of K, with V (L) ⊆ V (L′), and of length at
most kn, as follows. For each edge, e ∈ E(L), we choose some α ∈ A
with e = e(α), and let L′ be the union of all such arcs. (That is the
subgraph consisting of all vertices and all edges of such arcs. If E(L)
happens to be empty, then we set L′ = L.)

We claim that if L is an edge-finite collection of connected subgraphs
of K[A], then L′ = {L′ | L ∈ L} is edge-finite in K. To see this, fix
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some edge e ∈ K. Now, A(e) = {α ∈ A | e ∈ E(α)} is finite, and so
E(e) = {e(α) ∈ E(K[A]) | α ∈ A(e)} is finite. Now, if e ∈ E(L′) for
some L ∈ L, we see that E(e) ∩ E(L) 6= ∅. Since E(e) is finite, and L
is edge-finite, we see that the set of such L ∈ L is finite. This shows
that L′ is edge-finite as claimed.

Now, suppose that x, y ∈ V (K[A]) = V (K) are distinct, and that L
is an edge-finite collection of connected subgraphs of K[A] of bounded
length containing x and y. We see that L′ is an edge-finite collection
of subgraphs of K of bounded length containing x and y. By (F4), it
follows that L′ is finite. But only finitely many graphs in L can give
rise to a given graph is L′, so it follows that L is finite. This verifies
property (F4) for K[A]. �

More generally, suppose that L is any edge-finite collection of sub-
graphs of bounded length. Let A be the set of arcs which lie inside some
graph in L. Clearly this collection is also edge-finite. Let K[L] = K[A].
In other words, for every L ∈ L, we span V (L) by a complete graph.
By Lemma 2.3, we get:

Lemma 2.4. Suppose that K is fine, and that L is an edge-finite col-
lection of connected subgraphs of bounded length. Then, K[L] is fine.

If L ∈ L, we write F (L) for the full subgraph of K[L] with vertex set
V (L). Thus, F (L) is complete. We also see easily that the collection,
{F (L) | L ∈ L} is edge finite (using property (F4)). Thus, for many
purposes, we take an edge-finite collection of subgraphs of bounded
length to consist entirely of complete subgraphs.

We shall use Lemma 2.4 in a number of constructions, three of which
we describe below.

Let K be any graph, and n ∈ N. We construct a graph Kn, with
vertex set, V (Kn) = V (K), by connecting distinct x, y ∈ V (Kn) by
an edge in Kn if and only if either xy ∈ E(K) or x and y lie in some
circuit in K of length at most n. Clearly, K ⊆ Kn.

If we write L for the set of circuits of length at most n in K, we get
that Kn = K[L]. It thus follows from Lemma 2.4 that:

Lemma 2.5. If K is fine, then Kn is fine for all n ∈ N.

The next operation we consider is that of “binary subdivision”. Sup-
pose that K is a graph. If e ∈ E(K), we can subdivide e into two edges
by inserting an extra vertex at the “midpoint”, m(e), of e. If we do
this for each edge of K, we obtain a graph, L, whose realisation is
identical to that of K. We now form a graph, K ′, containing L, with
vertex set V (K ′) = V (L), by connecting two midpoints, m(e1) and
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m(e2) by a new edge whenever there exists a third edge e3 ∈ E(K)
such that {e1, e2, e3} forms a 3-circuit in K. We refer to K ′ as the
binary subdivision of K.

Another way to express this construction is to define the “flag 2-
complex”, Σ(K), associated to a graph K. This is the 2-dimensional
simplicial complex with 1-skeleton K, and with a set of three vertices of
K spanning a simplex in Σ(K) if and only if they form a 3-circuit in K.
(Note that, if K is fine, then Σ(K) is locally finite on the complement of
the set of vertices.) Now, Σ(K ′) is obtained from Σ(K) by dividing each
edge in two, and dividing each 2-simplex into four smaller simplices
(that is, with one central simplex whose vertices are midpoints of the
edges of the original, and the three others, each containing a vertex of
the original). Note that the realisation of the flag 2-complex remains
unchanged.

Lemma 2.6. If K is fine, then so is the binary subdivision, K ′.

Proof. Let L be the graph obtained by dividing each edge of K in two.
The circuits of L are of even length and correspond precisely to circuits
of half their length in K. It follows that L is fine. Now, K ′ ⊆ L6, and
so, by Lemma 2.5, we see that K ′ is fine. �

Suppose that A ⊆ V (K) and n ∈ N. We define a graph K(A, n),
with vertex set V (K(A, n)) = A, and with x, y ∈ A joined by an edge
in K(A, n) if and only if there exists an arc, α, of length at most n
in K, with α ∩ A = {x, y}. Recall that V∞(K) ⊆ V (K) is the set of
vertices of infinite degree in K.

Lemma 2.7. Suppose that K is fine, V∞(K) ⊆ A ⊆ V (K), and n ∈ N.
Then, K(A, n) is fine.

Proof. Let A be the set of arcs of length at most n in K meeting A
precisely in their endpoints. Since each vertex of V (K) \ A has finite
degree, we see easily that there are only finitely many possibilities for
such arcs passing through any given edge. In other words, A is edge-
finite. Thus, by Lemma 2.4, K([A]) is fine. Now, K(A, n) is obtained
from K[A] by deleting the isolated vertices V (K) \ A. It follows that
K(A, n) is fine. �

In relation to the last construction, we should make a simple obser-
vation for future reference.

Definition. A subset, A ⊆ V (K) is r-dense if every vertex of K is a
distance at most r from some point of A.

The following is easily verified:
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Lemma 2.8. If K a connected graph, and A ⊆ V (K) is r-dense, then
K(A, 2r + 1) is connected.

We finish this section with another construction which preserves fine-
ness. We first make a trivial observation:

Lemma 2.9. Suppose that K is a graph and A ⊆ V (K). Suppose that
every point of A has degree 0 or 1 in K. If K \A is fine, then so is K.

Proof. By property (F1), since every circuit of K lies in K \ A. �

Suppose that (Li)i∈I is a collection of subgraphs of a graph K,
indexed by a set I. We say that (Li)i∈I is “edge-finite” if the set
{Li | i ∈ I} is edge-finite, and only finitely many Li are equal to any
given subgraph. In other words, {i ∈ I | e ∈ E(Li)} is finite for every
edge e ∈ E(K).

Lemma 2.10. Suppose that K is a graph, n ∈ N, and A ⊆ V (K).
Suppose that for each x ∈ A, there is a connected subgraph L(x) ⊆
K \ A, of length at most n, and containing every vertex adjacent to x
in K. If K \A is fine, and the collection (L(x))x∈A is edge-finite, then
K is fine.

Proof. We may as well suppose that K is connected. Let M be a
subgraph of K with V (M) = V (K), which contains K \ A, and such
that every element of A has degree 1 in M . Given x ∈ A, let L′(x)
be the subgraph of M consisting of L(x) together with the unique
edge of M incident on x. Thus, L′(x) is connected, and has length
at most n + 1, and vertex set V (L(x)) ∪ {x}. Now, it’s clear that
the collection (L′(x))x∈A is an edge-finite collection of subgraphs of M .
Let L = {L′(x) | x ∈ A}. By Lemma 2.4, M [L] is fine. But now,
K is naturally embedded as a subgraph M [L], and so K is fine as
claimed. �

Fine graphs without finite order vertices have the property that ge-
odesic arcs are extendible. More precisely:

Proposition 2.11. Suppose that K is a fine graph with every vertex
of infinite degree. Any finite geodesic arc in K lies inside an biinfinite
geodesic arc.

Proof. It’s enough to show that if x, y ∈ V (K), then there is some
z ∈ V (K) adjacent to y such that dK(x, z) = dK(x, y) + 1. To see this,
note that if z is adjacent to y, and dK(x, z) ≤ dK(x, y), then the edge
xz together with any geodesic from x to z is an arc of length at most
dK(x, y)+ 1 connecting x to y. There are only finitely many such arcs,
and hence only finitely many such z. �
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As mentioned earlier, there is another way of formulating the notion
of fineness as follows. Suppose K is a graph. Given x ∈ V (K), write
E(x) for the set of edges incident on x. Suppose, to each x ∈ V (K), we
associate a locally finite function L = Lx : E(x)2 −→ [0,∞], which we
can intuitively think of as measuring an “angle” between two adjacent
edges. Here, “locally finite” means that for all e ∈ E(x) and r ≥ 0,
the set {f ∈ E(x) | L(e, f) ≤ r} is finite. Given a path, β = e0, . . . , en

in K, we define the “turning” of β as L(β) =
∑n

i=1 L(ei−1, ei). Clearly
only finitely many paths of a given turning can emanate from any given
edge. We similarly define the turning of any cycle, where we sum over
all the vertices of the cycle. We shall say that L = [x 7→ Lx] is an
“angular structure” on K if there is a bound, in terms of n, on the
turning of any circuit of length n. We see easily that K is fine if and
only if it admits an angular structure. In fact, if e, f ∈ E(x), we can
define L(e, f) to be the distance between the other endpoints of e and
f in K \ x. In particular, we can always take L to be a metric on
E(x) for all x (allowing for infinite angles). Note that if K is 2-vertex
connected, we can assume all angles to be finite.

Most of the arguments of later sections can be rephrased in terms of
angles. For example, we note that in a fine hyperolic graph, as disussed
in Section 8, there is an upper bound on the angle between any two
(quasi)geodesic with the same endpoints (one possibly ideal).

3. Hyperbolic graphs and complexes

In this section, we explore the notion of hyperbolicity of graphs and
related spaces. One of the main objectives will be to associate to a
graph, K, a space, X(K), which will be hyperbolic under suitable
hypotheses on K (see Theorem 3.8).

For the present purposes, we shall define hyperbolicity in terms of
the linear isoperimetric inequality. Our discussion here is essentially
combinatorial, though it will be convenient to phrase certain ideas in
terms of CW-complexes. We shall look at other aspects of hyperbol-
icity in Section 5. Specific properties of fine hyperbolic graphs will be
considered further in Section 8.

Suppose that K is a connected graph, and that n ∈ N. We write
Ωn(K) for the CW-complex obtained by gluing a 2-cell to every circuit
of length at most n in K. (Thus K is fine if and only if, for all n ∈ N,
Ωn(K) is locally finite away from V (K).)

Definition. We say that K is n-simply connected if Ωn(K) is simply
connected. We say that K is coarsely simply connected if it is n-simply
connected for some n.
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Clearly a graph is n-simply connected if and only if each of its blocks
is.

We can define the notion of hyperbolicity in similar terms using
“cellular discs”. By a cellulation of a space, we mean a representation
of the space as a CW-complex. A cellular map between CW-complexes
is one which sends cells into (possibly lower dimensional) cells. (This is
more restrictive than the definition of “cellular map” commonly given
in this context.) We can think of a cycle in K as consisting of a
cellulation of the circle, S1, together with a cellular map of S1 into
K which sends each 1-cell homeomorphically onto an edge of K. We
can define a cellular disc, (D, f), (of coarseness n) as consisting of a
cellulation of the disc, D, together with a map, f , of the 1-skeleton
of D into K such that the boundary of each 2-cell in D has at most
n 1-cells and gets mapped to a cycle (of length at most n) in K. We
measure the area of D (or of (D, f)) as the number of 2-cells in D.
We speak of (D, f) as a (cellular) spanning disc for the cycle f |∂D,
and of the cycle f |∂D as bounding (D, f). Note that we can extend
f to a cellular map f : D −→ Ωn(K), which gives us a more intuitive
way of thinking about such an object. (There are a multitude of other
ways of formulating the notion of “spanning disc” and “area”, and we
shall see slight variations on these later. All we really require of such a
notion is that it should satisfy a “rectangle inequality” similar to the
coarea formula of reimannian geometry — see, for example, [Bo1] for
some discussion.)

There is another technical point we should make, namely that one
can reformulate everything we say using circuits in place of cycles. This
is based on the following simple observation. Suppose β is a cycle in K.
Then, we can find a cellulation of the disc, D, with the number of 2-
cells bounded by a fixed linear function of length(β), and an extension
of β to the 1-skeleton of D, such that the boundary of each 2-cell in D
is either collapsed to an edge or point of K, or mapped onto a circuit.
This can be achieved inductively. If two vertices of β get mapped to
the same vertex of K, then we split β into two subcycles by connecting
these two vertices by an edge which gets collapsed to a point in K.
(Note that this process need not give us a spanning disc, since we have
no control over the lengths of these circuits.)

We now equip our graph K with its path metric, dK , obtained by
assigning each edge a length 1. The following is one expression of the
linear isoperimetric inequality:

Proposition 3.1. A connected graph K is hyperbolic if and only if
there is some n ∈ N, and a fixed linear function, such that every cycle
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in K has a cellular spanning disc of coarseness n, whose area is bounded
by the given linear function of the length of the cycle.

The number n together with the linear function will be referred to
as “hyperbolicity parameters”.

From the earlier observation, we see that we could replace the word
“cycle” by “circuit” in this proposition. An immediate consequence of
this is that a connected graph is hyperbolic if and only its blocks are
uniformly hyperbolic (i.e. with fixed hyperbolicity parameters). We
also note that hyperbolic graph is coarsely simply connected.

For some purposes, it is better to define hyperbolicity in terms of
simplicial complexes, rather than cell complexes.

By a flag 2-complex, we shall mean a 2-dimensional simplicial com-
plex with the property that every 3-circuit in the 1-skeleton bounds a
2-simplex. Prior to the statement of Lemma 2.6, we defined the flag
complex, Σ(K), associated to a graph, K, which we may identify with
Ω3(K). Thus, Σ(K) is simply connected if and only if K is 3-simply
connected. We note:

Lemma 3.2. If K is n-simply connected, then Kn is 3-simply con-
nected.

(Here Kn is the graph defined in Section 2.)
We also get a combinatorial notion of hyperbolicity.

Definition. A simplicial disc, (D, f), in K, consists of a triangulation
of the disc D, together with a simplicial map, f , of D into Σ(K). We
speak of (D, f) as a (simplicial) spanning disc bounding the cycle f |∂D
in K. We measure the area of (D, f) as the number of 2-simplices in
the triangulation of D.

Definition. We say that a connected graph, K, is simplicially hyper-
bolic if there is a fixed linear function such that every cycle in K bounds
a simplicial disc, whose area is bounded by this linear function of the
length of the cycle.

As before, we can replace the word “cycle” by “circuit”, without
changing the definition. A graph is simplicially hyperbolic if and only
if its blocks are uniformly simplicially hyperbolic. A simplicially hy-
perbolic graph is obviously 3-simply connected.

Note that if β is a circuit, then we can assume that a simplicial
spanning disc, (D, f),, maps ∂D homeomorphically to β.

Clearly this notion has combinatorial as well as geometric content
— it is certainly not a quasiisometry invariant. However, we note:
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Lemma 3.3. If K is hyperbolic, then Kn is simplicially hyperbolic for
some n.

The following discussion of links in K is only indirectly relevant to
the main objective of this section (the construction of the space X(K)).
However it will help to clarify certain points arising.

Let K be any graph, and x ∈ V (K). Recall that VK(x) ⊆ V (K) is
the set of vertices adjacent to x. Let LK(x) be the full subgraph of K
with vertex set VK(x). Thus LK(x) is precisely the link of x in Σ(K).
The following is a simple exercise:

Lemma 3.4. If K is 2-vertex-connected and 3-simply connected, then
LK(x) is connected for each x ∈ LK(x).

(It follows that the space Σ(K) \ V (K) is connected.) The proof of
Lemma 3.4 is essentially the same as that of the following result.

If L is a connected subgraph of K, we say that L is linearly distorted
if given any x, y ∈ V (L), dL(x, y) is bounded above by some fixed linear
function (the distortion bound) of dK(x, y).

Lemma 3.5. If K is 2-vertex-connected and simplicially hyperbolic,
then LK(x) is linearly distorted in K \ x for all x ∈ V (K). Moreover,
the distortion bound is independent of x ∈ V (K).

Proof. Suppose y, z ∈ L = LK(x) are distinct. Let β be an arc of
minimal length, say n, connecting y to z. We see that β∪yxz is a circuit
of length n+2 in K. It thus bounds a simplicial disc, f : D −→ Σ(K),
whose area is linearly bounded in terms of n. We identify ∂D with
its image in K. Let S be the star of x. Consider the preimage of the
component of f−1S which contains x. Its boundary lies in f−1L, is
connected, and contains ∂D ∩ f−1y and ∂D ∩ f−1z. It follows that
there is an arc in f−1L connecting ∂D ∩ f−1y to ∂D ∩ f−1z. The
length of this arc is linearly bounded in terms of n, and its image in
K connects y to z in L. This shows that L is linearly distorted in K
(and indeed that L is connected, as claimed by Lemma 3.4. Moreover,
the distorsion bound is uniform. �

Note that if Σ(K) is locally finite away from V (K), then LK(x) is
locally finite for all x ∈ V (K). It is now a simple consequence of
Lemma 3.5 that:

Lemma 3.6. If K is simplicially hyperbolic and Σ(K) is locally finite
away from V (K), then K is fine.

Proof. Note that each block of K is satisfies the same hypotheses, and
so, using Lemma 3.5 satisfies condition (F5) of fineness. By Lemma
2.2 we see that K is fine. �
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We remark that the proofs of Lemmas 3.5 and 3.6 have not really
used the fact that Σ(K) is a flag 2-complex. Both lemmas hold if we
take Σ to be any simplicially hyperbolic 2-complex with 1-skeleton K.

(An indirect proof of Lemma 3.6 can also be given from the con-
struction of the space, X(K), together with the results of Section 7.)

We now assume that K is 2-vertex-connected, and set about the
construction of the space X(K). We can view this as a geometric real-
isation of the space, Σ(K)\V (K), which, as we have already observed,
is connected. To do this, we take, for each 2-simplex in Σ(K), an ideal
hyperbolic triangle. We glue these triangles together by isometry along
their edges, with the same combinatorial pattern as Σ(K). There is a
canonical way of performing these identifications, which may be char-
acterised by saying that the union of two adjacent triangles is isometric
to an ideal hyperbolic square. The following is a simple observation:

Lemma 3.7. If K is fine, then X(K) is complete and locally compact.

This will turn out to be the only case of interest to us, though we
have no need to impose the assumption of fineness in what follows.

Our main result will be:

Theorem 3.8. If K is 2-vertex-connected and simplicially hyperbolic,
then X(K) is hyperbolic.

Here, of course, we use “hyperbolic” in the sense of Gromov [Grom],
which we shall elaborate on shortly. (See also Section 5.)

In fact we will draw further consequences from our construction, no-
tably that there is a canonical embedding of V (K) in the ideal bound-
ary, ∂X(K), of X(K). Moreover, a point of V (K) is isolated in ∂X(K)
if and only if it has finite degree in K.

Let’s focus for the moment on showing that X(K) is hyperbolic. We
shall need another notion of spanning disc, appropriate to the present
context. The idea is to take a riemannian metric on the disc D and
a lipschitz map from D into our space X, where of course, we need
to bound the lipschitz constant. However, we need to make allowance
for the fact that X is not simply connected. We thus make do with
a riemannian metric on a planar surface H ⊆ D, bounded by ∂D and
a finite number of circles S1, . . . , Sk in D. We insist that the lengths
of each of these circles is bounded above by some fixed constant. We
measure the area of D as the riemannian area plus the sum of the
lengths of the curves Si. A “perforated” spanning disc thus consists of
a lipschitz map, f , of H into X. We speak of (D, f) as “spanning” the
loop f |∂D. It is easily checked that this notion satisfies the rectangle
inequality as described in [Bo1]. It follows that X is hyperbolic if every
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loop, β, in X bounds a spanning disc whose area is linearly bounded
by length(β).

The following construction is a special case of a more general proce-
dure of taking “cusps” over metric spaces, described in [Grom].

By a spike in the hyperbolic plane, H
2, we mean a closed region

bounded by two asymptotic geodesic rays and a horocyclic arc of length
1. More precisely, we can define a spike, Y , as the region [0, 1]× [1,∞)
in the upper half-space model. We write Yt ⊆ Y for the region [0, 1] ×
[et,∞) (so that Y = Y0). Note that Yt is the intersection of Y with a
horodisc of hyperbolic height t above the horocyclic boundary of Y .

Suppose now that L is a connected graph. We construct a space by
taking a spike for every edge of L, and gluing them together, by isome-
try along the bounding rays, in the pattern prescribed by L. This gives
us a hyperbolic 2-complex denoted cusp(L), with a copy of L embedded
in the 1-skeleton as the union of all the horocyclic edges. (Here we use
“hyperbolic” in the sense of hyperbolic geometry.) The remainder of
the 1-skeleton consists of a set of geodesic rays, one for each vertex of
L. These rays are asymptotic, in the sense that the distance between
any two of them is bounded. We can thus embed cusp(L) is a haus-
dorff topological space, cusp(L) ∪ {p}, by adjoining an “ideal point”,
p, which compactifies each of these rays. A neighbourhood base of p is
given as the complements of bounded subsets of cusp(L). (In the case
of particular interest, where L is locally finite, cusp(L) will be complete
and locally compact, and we obtain the one-point compactification of
cusp(L).)

We observe that cusp(L) is hyperbolic (in the sense of Gromov).
This is readily seen by spanning a loop, β, in cusp(L) simply by coning
over the ideal point p. The area of the disc thus obtained is at most
length(β). We have the technical detail that our disc is not entirely
contained in our space. However we can easily put this right by making
a small hole in the disc at p, and pushing it into cusp(L). Thus gives us
a perforated spanning disc, in the sense described earlier. This shows
that cusp(L) is hyperbolic.

It is now a simple matter to show that the ideal boundary of cusp(L)
consists of a single point which we may identify with our point p.
Moreover, L is a horocycle about p. It is also worth observing that
the closed subset, Bt ⊆ cusp(L) obtained as the union of the sets Yt in
the construction of cusp(L), is a horoball about p.

Suppose we subdivide an ideal triangle into four pieces using three
horocyclic arcs which touch pairwise at points on the edges of the tri-
angle. (This is combinarially equivalent to the subdivison of a simplex
into four smaller simplices, as descibed in Section 2 in getting from the
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compex Σ(K) to Σ(K ′).) We have the happy coincidence that each
horocylic arc has length 1, so that each of the three unbounded pieces
is isometric to a spike, as described earlier. (This saves us the bother
of rescaling.) Now, subdividing each triangle of X(K) in this way, we
obtain a realisation of Σ(K ′) \ V (K) as a complex with 2-cells locally
modelled on the hyperbolic plane. Here K ′ is the binary subdivision of
K. Now, if x ∈ V (K), we write S(x) for the star of x in Σ(K ′). Thus,
L(x) = LK ′(x) is the boundary of S(x) in Σ(K ′). Clearly S(x) \ {x} is
isometric to cusp(L(x)). Note that the interiors of these stars are all
disjoint.

Given A ⊆ V (K), recall that K ′ \ A is defined as the full subgraph
of K with vertex set V (K ′) \ A. We see that Σ(K ′ \ A) = Σ(K ′) \⋃

x∈A int S(x). Let P = Σ(K ′ \ V (K)). Thus, V (P ) = V (K ′) \ V (K).
We can now give the proof of Theorem 3.8.

Proof. Let β be a loop (i.e. a closed rectifiable path) in X(K). We sup-
pose that β consists of an alternating sequence of paths, α1, γ1, α2, γ2, . . . , αk, γk,
where each αi consists of a sequence of edges in the 1-skeleton of P ,
and each γi is a path of length at least 2 in lying in S(xi) for some
xi ∈ V (K). (More precisely, we can homotop β to such a path, only in-
creasing its length by an amount which depends linearly on the original
length, and such that the area of the homotopy is similarly bounded.)
Let yi, zi ∈ V (P ) be the endpoints of the path γi. Let γ′

i be the path
yixizi in K ′. Let β ′ be the path in K ′ obtained from β by replacing each
path γi by γ′

i. Thus length(β ′) ≤ length(β). Now, by hypothesis, K
and hence K ′ is simplicially hyperbolic, and hence bounds a simplicial
disc, D0, whose area (as measured by the number of 2-cells) is linearly
bounded in terms of length(β ′). Note that the riemannian area of its
image in X(K) (punctured at the vertices V (K)) is certainly less than
π times this combinatorial area.

Now, consider the closed path γi ∪ γ′
i in S(xi) = cusp(L(xi)) ∪ {xi}.

As in our earlier discussion, we see that this spans a disc, Di, of area at
most length(γi), obtained by coning over the point xi. We perform this
construction for each i = 1, . . . , k. In this way, we obtain a spanning
disc, D, for β, by joining each Di to D0 along the arc γ′

i. Note that
∑k

i=1 area(Di) ≤
∑k

i=1 length(γi) ≤ length(β). We conclude that the
total hyperbolic area of D is linearly bounded in terms of length(β).

As before, we are left with the technical point that our disc may
pass (finitely often) through points of V (K). However, we can simply
puncture the disc at these points and push it slightly into X(K). Since
everything is locally just a cone, we can control the length of the new
boundary curves arising. In this way we get a perforated spanning
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disc in X(K), of the type described earlier. It follows that X(K) is
hyperbolic as claimed. �

In fact, we see that the hyperbolicity parameters of X(K), depend
only on those of K.

Let ∂X(K) be the ideal boundary of X(K). This is a metrisable
topological space. In the case of real interest to us, where is X(K) is
locally compact, ∂X(K) will be compact, though we have no reason to
assume this at present.

Suppose x ∈ V (K). Write S ′(x) = S(x) \ {x}, so that S ′(x) is
isometric to cusp(L(x)). Suppose y ∈ VK ′(x). The edge yx (minus
the point x) is gives us a ray, β, in S ′(x) ⊆ X(K). We parameterise
β by arc-length such that β(0) = y. From the intrinsic geometry of
S ′(x) = cusp(L(x)), we see easily that β is a geodesic in cusp(L(x)),
and that the distance of β(t) from L(x) is equal to t. Now, L(x) is
the boundary of S ′(x) in X(K), and so it follows easily that β is, in
fact, a geodesic ray in X(K). Now, any two such rays in S ′(x) are
asymptotic and so define an ideal point, p(x) ∈ ∂X(K). Moreover,
we see that S ′(x) is a horoball about p(x) in X(K). In particular it
follows (see Section 5) that S ′(x) is quasiconvex in X(K). Moreover
the constant of quasiconvexity is independent of x. (Another proof of
this can be given via Lemma 3.5) Note that if x 6= y, then it’s easily
seen that p(x) 6= p(y), and so p gives us a canonical embedding of V (K)
in ∂X(K).

Let B(x, t) ⊆ S(x) be the subset corresponding to Bt in cusp(L(x)).
We see that B(x, t) is also a horoball about x. Moreover, from the
quasiconvexity of S(x), it’s not hard to see that B(x, t) is actually
convex for all sufficiently large t (independently of x).

For future reference, it’s worth noting that, given the space X(K)
and the collection of horoballs, B = {B(x, t) | x ∈ V (K)} for a fixed t,
we can recover the graph K geometrically as a graph with vertex set
B, and with two vertices connected by an edge if the distance between
them in X(K) is at most (or in this case equal to) 2t. This construction
makes sense for any hyperbolic space with a collection of horoballs —
indeed in any metric space with a collection of preferred subsets. We
shall make use of this construction in Section 7.

We finish this section with another result which may be proven along
similar lines to Theorem 3.8

Lemma 3.9. Suppose K is simplicially hyperbolic and A ⊆ V (K).
Suppose that the links LK(x) are uniformly hyperbolic for x ∈ A. Then,
K ′ \ A is hyperbolic.
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Proof. Suppose β is a cycle in K ′ \A. Now β bounds a simplicial disc,
f : D −→ Σ(K)′, whose area is linearly bounded in terms of length(β).
Suppose that U is a component of f−1(int S(x)) for some x ∈ A. The
closure of U in D is a subcomplex which is a planar surface. The outer
boundary of U is a closed curve whose length is at most the area of U .
Now f maps this boundary component to a cycle in L(x). Since L(x)
is hyperbolic, this cycle bounds a cellular disc in L(x), whose area is,
in turn, linearly bounded by area of U . Repacing f |U by this cellular
disc, and performing this construction for each such U , we get a cellular
disc in K ′ \ A spanning β. We have increased the area by an amount
linearly bounded in terms of the area of D. Thus its total area is still
linearly bounded in terms of length(β). We have thus verified a form
of the linear isoperimetric inequality for K ′ \ A. �

4. Groups acting on sets

In this section, we extend the notions of fineness and hyperbolicity
to group actions on sets. This will lead to the first definition of relative
hyperbolicity, given at the end of this section.

As mentioned in the introduction, the approach of this section could
be used to study other “relative” geometric properties of groups. It
is based on the construction of graphs which play the role of Cayley
graphs in the non-relative case (where all point stabilisers are finite).

Certain kinds of relative splittings of groups can be phrased naturally
in these terms. This gives a convenient formal setting in which te
explore splittings of relatively hyperbolic groups. For some applications
of this, see [Bo9].

Suppose Γ is a group. By a Γ-set, we mean a set, V , on which Γ
acts. We shall refer to the points of V as vertices. Thus, if x ∈ V , we
refer to the group, Γ(x) = {g ∈ Γ | gx = x} as a vertex stabiliser. A
pair stabiliser is a subgroup of the form Γ(x) ∩ Γ(y), where x, y ∈ V
are distinct. We write V = V0⊔V∞, where V0 and V∞ are, respectively,
the sets of vertices with finite and infinite stabilisers. Clearly these are
Γ-invariant. We say that V is cofinite if V/Γ is finite.

Definition. Given a Γ-set, V , a (Γ, V )-graph is a connected Γ-invariant
graph with vertex set V and with finite quotient under Γ.

By having “finite quotient” we mean that there are finitely many Γ-
orbits of vertices and edges. (We do not take this to imply that there
are no edge-inversions — so there might be no well-defined quotient
graph.)

We shall say that V is connected if it admits a (Γ, V )-graph. Clearly,
a connected Γ-set is cofinite.
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(Note that Γ is itself a Γ-set under left multiplication. In this case,
a (Γ, Γ)-graph is precisely a Cayley graph. Clearly, Γ is connected as
a Γ-set if and only if it is finitely generated as a group.)

Lemma 4.1. Suppose V is a Γ-set and W ⊆ V is Γ-invariant. If V
is cofinite, and W is connected and non-empty, then V is connected.
Conversely, if V is connected and V∞ ⊆ W , then W is connected.

Proof. For the first statement, let K be a (Γ, W )-graph, and let V ′ ⊆
V \ W be a (finite) Γ-orbit transversal of V \ W . For each x ∈ V ′,
connect x to any point of W by an edge, e(x). Let L be the graph
with vertex set V and edge set E(K)∪

⋃
x∈V ′ Γe(x), where Γe(x) is the

Γ-orbit of e(x). We see easily that L is a (Γ, V )-graph.
The second statement follows by a similar argument to Proposition

4.10. �

Definition. We shall say that a Γ-set is of finite type if it is connected
and has all pair stabilisers finite, and all vertex stabilisers finitely gen-
erated.

Although we are ultimately only interested in Γ-sets of finite type,
we shall only introduce these hypotheses as we need them.

We continue our study of Γ-sets with a simple observation.

Lemma 4.2. Suppose V is a connected Γ-set. Any two (Γ, V )-graphs
are quasiisometric via a Γ-equivariant quasiisometry which restricts to
the identity on V .

Thus any quasiisometry invariant property of graphs gives rise to a
property of connected Γ-sets. An obvious example of this is hyperbol-
icity, and we shall return to this later. We shall also see that certain
combinatorial properties, notably fineness, are also independent of the
choice of graph, despite not being quasiisometry invariant. We begin
with some general observations.

Lemma 4.3. Suppose that V is a connected Γ-set, and K is a fine
(Γ, V )-graph. Then all edge stabilisers of K are finite if and only if all
pair stabilisers of V are finite.

Proof. The “only if” bit is trivial. Conversely, suppose that each edge
stabiliser of K is finite. Clearly the stabiliser of any non-trivial arc is
finite. Now, suppose x, y ∈ V are distinct. We connect x and y by an
arc, α, in K. By property (F2) of fineness, the set of (Γ(x) ∩ Γ(y))-
images of α is finite. It follows that Γ(x)∩Γ(y) is finite, as required. �

Lemma 4.4. Suppose that V is a connected Γ-set with finite pair sta-
bilisers, and K is a (Γ, V )-graph. If L is a Γ-invariant collection of
finite subgraphs of K with L/Γ finite, then L is edge-finite.
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Proof. If L ∈ L and e ∈ E(K), then {g ∈ Γ | ge = e} is finite. Thus,
only finitely many Γ-images of L contain the edge e. The result follows
since L/Γ is finite. �

Lemma 4.5. Suppose that V is a connected Γ-set with finite pair sta-
bilisers, and K and L are (Γ, V )-graphs. If K is fine, then so is L.

Proof. Suppose e ∈ E(L). Since K is connected, we can find an arc, α,
in K whose endpoints coincide with those of e, i.e. e = e(α) in the nota-
tion of Lemma 2.3. We can perform this construction Γ-equivariantly,
giving us a Γ-invariant set, A, of arcs in K with L ⊆ K[A]. Since
E(L)/Γ is finite, we see that A/Γ is finite, so A is edge-finite by Lemma
4.4. By Lemma 2.3, we see that K[A] and hence also L is fine. �

Definition. We say that a Γ-set is fine if it is connected, has finite
pair stabilisers, and if some (and hence every) (Γ, V )-graph is fine.

An alternative way of formulating this is given by the following
lemma:

Lemma 4.6. A connected Γ-set, V is fine if and only if a (Γ, V )-graph
has finite edge stabilisers and finitely many Γ-orbits of n-circuits for
any n.

(Here, “a” could be interpreted either as “some” or “every”.)

Proof. Let K be a (Γ, V )-graph. The “if” statement follows from Lem-
mas 4.3 and 4.4. Conversely, suppose K is fine. Let E0 be a finite set of
edges containing an edge from each Γ-orbit. Now, any n-circuit must
have some Γ-image meeting E0. By fineness, there are only finitely
many possibilities for such images. �

For many purposes it is convenient (if not essential) to restrict to
(Γ, V )-graphs which are 2-vertex-connected. There are several ways,
according to context, one can reduce to this case. In general, note that
if K is a (Γ, V )-graph, then Γ acts on the block tree, T , of K. We thus
get a splitting of Γ whose vertex groups are either vertex stabilisers of
K, or setwise block stabilisers. We also note that if B is a block of
K, and Γ(B) is the setwise stabiliser of B, then V (B) is a connected
Γ(B)-set, and B is a (Γ(B), V (B))-graph. Thus, for many purposes,
we don’t lose much by restricting to a 2-vertex-connected graph.

Another observation which helps to justify this liberty is the follow-
ing:

Lemma 4.7. Suppose that V is a Γ-set of finite type. Then V admits
a 2-vertex-connected (Γ, V )-graph.
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Proof. Let K be any (Γ, V )-graph. Suppose x ∈ V . Recall that VK(x)
is the set of adjacent vertices. Now Γ(x) acts on VK(x) with finite vertex
stabilisers and finite quotient. Since Γ(x) is finitely generated, we can
find a connected Γ(x)-invariant graph, H(x), with vertex set VK(x),
and with E(H(x))/Γ(x) finite. We can perform this construction Γ-
equivariantly for each x ∈ V . Let L be the graph with vertex set V , and
with edge set E(L) = E(K) ∪

⋃
x∈V E(H(x)). Thus, E(L)/Γ is finite.

We see that L is a 2-vertex-connected (Γ, V )-graph as required. �

We also have a converse to Lemma 4.7, though it requires addi-
tional hypotheses. Note that since coarse simple connectedness is a
quasiisometry invariant, we can speak of a connected Γ-set as being
“coarsely simply connected”.

Lemma 4.8. Suppose a Γ-set, V , is fine and coarsely simply connected.
If V admits a 2-vertex-connected (Γ, V )-graph, then it is of finite type.

Proof. In other words, we want to show that all vertex stabilisers are
finitely generated.

Let K be a 2-vertex-connected (Γ, V )-graph. Since K is coarsely
simply connected, there is some n such that Σ(Kn) is simply connected
(Lemma 3.2). Suppose x ∈ V . By Lemma 3.4, the link, LKn(x), of x
in Σ(Kn) is connected. Since Kn is fine (Lemma 2.5), LKn(x) is locally
finite. Now, Γ(x) acts on LKn(x) with finite edge stabilisers and finite
quotient. It follows that Γ(x) is finitely generated. �

We are now ready for the main definition of this section.

Definition. We say that a connected Γ-set, V , is weakly hyperbolic if
some (hence every) (Γ, V )-graph is hyperbolic (in the sense of Gromov,
as described in the Section 3).

Definition. A Γ-set is hyperbolic if it has finite type, and is fine and
weakly hyperbolic.

In other words, it admits some fine weakly hyperbolic (Γ, V )-graph
with all edge stabilisers finite and all vertex stabilisers finitely gener-
ated.

Since this last definition is a bit cryptic, we give a reformulation in
the form of the following proposition:

Proposition 4.9. A Γ-set, V , is hyperbolic if and only if we can rep-
resent V as the vertex set, V = V (Σ), of a Γ-invariant simplicial
complex, Σ, such that Γ acts on Σ with finite edge stabilisers and fi-
nite quotient, and such that Σ is simplicially hyperbolic and has no cut
vertex.
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From the fact that Σ has finite quotient and finite edge stabilisers,
we see immediately that it is locally finite away from V (Σ). In the
definition, we can replace “simplicially hyperbolic” by “hyperbolic” (in
the usual geometric sense of Gromov), together with the additional
assumption that there are finitely many Γ-orbits of n-circuits in the
1-skeleton of Σ for any n ∈ N. (In fact, for all n sufficiently large in
relation to the hyperbolicity parameters will do.) This latter assump-
tion is, in turn, equivalent to saying that, for any n, we can place some
bound on the area of a simplicial disc spanning any circuit (or cycle)
of length n in the 1-skeleton of Σ. It turns out that there is no loss
in assuming that Σ is a flag 2-complex, i.e. every 3-circuit in the 1-
skeleton of Σ bounds a 2-simplex. The assumption that Σ has no cut
vertex corresponds to assuming that all vertex stabilisers are finitely
generated. It is questionable how natural this assumption is, though
without it, we would be lead into a number of complications. This
point was also discussed in the introduction.

We can now prove Proposition 4.9:

Proof. Suppose V is hyperbolic. By Lemma 3.6, V admits a 2-vertex-
connected (Γ, V )-graph, K. Now, K is hyperbolic, so by Lemma 3.3,
Kn is simplicially hyperbolic for some n. Let Σ = Σ(Kn). Since Kn

is fine and has finite quotient, we see that that Σ has finite quotient.
Since, V had finite pair stabilisers, Σ has finite edge stabilisers.

Conversely, suppose V is the vertex set of a 2-complex, Σ, with the
properties stated. Let K be the 1-skeleton of Σ. We have already
observed that Σ is locally finite away from V . Thus, by Lemma 3.6,
and the subsequent remark, we see that K is fine. By Lemma 4.6,
V has finite pair stabilisers. By Lemma 4.8, V has finitely generated
vertex stabilisers. We see that V is of finite type, fine and weakly
hyperbolic, as required. �

We remark that, from the construction, it is easily seen that the
complex, K, given by Propositon 4.9 can be assumed to contain any
given Γ-invariant 2-complex with finite quotient.

We refer to a vertex x ∈ V as having “finite” or “infinite degree”
according to whether Γ(x) is finite or infinite. Recall that V0 and V∞

are, respectively, the sets of vertices of finite and infinite degree.

Proposition 4.10. Suppose that V is a hyperbolic Γ-set, and that W ⊆
V is a Γ-invariant subset with V∞ ⊆ W . Then, W is a hyperbolic Γ-set.

Proof. Let K be a fine hyperbolic (Γ, V )-graph. We can assume that
W 6= ∅, so that W is r-dense in K. Let L = K(W, 2r + 1). By
Lemma 2.8, L is connected, and by Lemma 2.7, it is fine. Also, from
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its description as K[A] for an edge-finite arc system, A, (after deleting
the vertices of V \ W ), we see that is has finite quotient. Thus, L is a
(Γ, W )-graph. We see that W is fine. Since K and L are quasiisometric,
we see that L is hyperbolic. It follows that W is hyperbolic. �

Note that the argument shows that Proposition 4.10 in fact holds for
the properties of fineness and weak hyperbolicity individually. We saw
in Lemma 4.1 that it also holds for the property of connectedness.

We can go on to give a stronger result:

Proposition 4.11. Suppose that V is a hyperbolic Γ-set, and W ⊆ V
is Γ-invariant, and that Γ(x) is hyperbolic for each x ∈ V \ W . Then
W is a hyperbolic Γ-set.

Proof. Let K be a 2-vertex-connected (Γ, V )-graph, and K ′ be its bi-
nary subdivision. Let A = V \W . Now, for each x ∈ A, Γ(x) acts with
finite quotient on the link LK(x). Thus LK(x) is hyperbolic. Since V/Γ
is finite, the hyperbolicity parameters are uniform over A. By Lemma
2.6, K ′ and hence K ′ \ A is fine. By Lemma 3.9 K ′ \ A is hyperbolic.
Now K ′ \A is a (Γ, V (K ′)\A)-graph for the the Γ-set V (K ′)\A. Thus
V (K ′) \ A is hyperbolic. Now, W ⊆ V (K ′) \ A and every point of
(V (K ′) \ A) \ W = V (K ′) \ V has finite degree. Thus, by Proposition
4.10, W is hyperbolic. �

We also have the following converse of Proposition 4.10

Lemma 4.12. Suppose that V is a cofinite Γ-set and that W ⊆ V is a
non-empty Γ-invariant subset with V∞ ⊆ W . If W is hyperbolic, then
V is hyperbolic.

Proof. Clearly V is of finite type. Let K be a (Γ, V )-graph such that
K \ W is connected. Thus K \ W is a (Γ, W ) graph, and hence fine
and hyperbolic. We can clearly construct K so that no two vertices
of W are adjacent. Given x ∈ V \ W , since Γ(x) is finite and K \ W
is connected, we can find a finite connected Γ(x)-invariant subgraph,
L(x) of K \ W . We perform this construction Γ-equivariantly, as x
ranges over V \ W . By Lemma 4.4, the set {L(x) | x ∈ V \ W} is
edge-finite. In fact, the argument of Lemma 4.4, tells us (L(x))x∈V \W

is edge-finite as an indexed collection. By Lemma 2.10, K is fine. Now,
K and K \V are quasiisometric, and so K is also hyperbolic. It follows
that V is hyperbolic. �

Suppose, now, that V is a hyperbolic Γ-set. Let Σ = Σ(K) be a
flag 2-complex of the type described by Proposition 4.9. Let X(Σ)
be the space obtained by realising each 2-simplex of Σ \ V as an ideal
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hyperbolic triangle, as described in Section 3. Thus, Γ acts by isometry
on Σ. In this case, X(Σ) is complete and locally compact. By Theorem
3.8, it is (Gromov) hyperbolic. Its boundary, ∂X(Σ), is a compact
metrisable topological space. We can construct a Γ-invariant system of
horoballs about points of V , such that the closure of the complement is
compact. In the terminology of Section 6, we shall say that the action
of Γ on X(Σ) is “geometrically finite”.

Clearly, this construction depends on the choice of flag 2-complex,
Σ. It turns out, however, that its quasiisometry class does not.

To see this, consider two 2-vertex-connected 3-simply connected (Γ, V )-
graphs K1 and K2, so that the 2-complexes Σ(K1) and Σ(K2) are sim-
plicially hyperbolic. Let K1 ∪ K2 be the graph with vertex set V , and
edge set E(K1∪K2) = E(K1)∪E(K2). Clearly K1∪K2 is also a (Γ, V )-
graph. Since K1 ∪ K2 is hyperbolic, (K1 ∪ K2)

n is 3-vertex-connected
for some n. Let L = (K1 ∪K2)

n, so that L is (Γ, V )-graph. Thus Σ(L)
has the property described by Proposition 4.9. Now, Σ(K1) and Σ(K2)
are both subcomplexes of Σ(L), and so X(K1) and X(K2) are both
subspaces of X(L). It’s easily seen that each X(Ki) is quasidense in
X(L), and that the inclusion is a quasiisometry. Moreover, it clearly
respects geodesic rays tending to any point of V . We thus get a quasi-
isometry of X(K1) to X(K2). This extends to a homeomorphism of
the boundaries which respects the canonical inclusion of V . Clearly
everything can be taken to be Γ-equivariant.

In summary, we have shown:

Proposition 4.13. Suppose V is a hyperbolic Γ-set, and K1 and K2

are 2-vertex-connected 3-simply connected (Γ, V )-sets. Then, there is a
Γ-equivariant quasiisometry from X(K1) to X(K2). Moreover, the in-
duced Γ-equivariant homeomorphism from ∂X(K1) to ∂X(K2) respects
the natural inclusion of V into these spaces.

We may write X(V ) and ∂V = ∂X(V ) for the spaces constructed in
this manner. They are well defined up to Γ-equivariant quasiisometry,
and Γ-equivariant homeomorphism, respectively. We may identify V
as a subset of ∂V . A point of V is isolated in ∂V if and only if it has
finite degree (unless V consists of a single point). In fact it’s not hard
to see that every isolated point of ∂V lies in V .

It is natural to definite the restricted boundary, ∂0V , of V to be equal
to ∂V \ V0. (Recall that V0 and V∞ are, respectively, the subsets of V
with finite and infinite stablisers.) Thus, ∂0V is a closed Γ-invariant
subset of ∂V . Intrinsically it is a metrisable continuum, and is either
perfect, or else consists of at most two points. This is probably best
seen by splitting into different cases.
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Firstly, if V∞ = ∅, then Γ is word hyperbolic, and ∂0V is naturally
homeomorphic to ∂Γ. In this case, ∂0V is the set of accumulation
point of ∂V . If V∞ is finite, then it must consist of a single point, and
∂0V consist precisely of this point. The interesting case for us is when
V∞ is infinite. In this case, V∞ is itself hyperbolic (Propostion 4.10),
and we may identify ∂0V with ∂0V∞ = ∂V∞. Again, ∂0V is the set of
accumulation points of ∂V .

It finally remains to define a “relatively hyperbolic group” in these
terms. Briefly, if Γ admits a hyperbolic Γ-set V , we say that Γ is
“hyperbolic relative to” the collection of infinite vertex stabilisers,
{Γ(x) | x ∈ V∞}. If V∞ = ∅, we clearly get the standard notion of
a (Gromov) hyperbolic group. (In this case the hypothesis of fineness
is superfluous.) We can thus assume that V∞ 6= ∅, and rephrase the
definition in terms of a “peripheral structure”.

Definition. A peripheral structure on a group Γ, consists of a set, G,
of infinite subgroups of Γ, that each G ∈ G is equal to its normaliser
in Γ, and each Γ-conjugate of G lies in G.

We refer to an element of G as a peripheral subgroup.
We can think of G as a Γ-set, where Γ acts by conjugation. Note that

the stabiliser of a peripheral subgroup under this action is precisely the
peripheral subgroup itself. We can formally rephrase Definition 2 of the
introduction in these terms.

Definition. We say that Γ is hyperbolic relative to G if either G = ∅
and Γ is hyperbolic, or if G 6= ∅ and G is a hyperbolic Γ-set.

We speak of (Γ,G) as a relatively hyperbolic group.

We note that in such a case, each peripheral subgroup is finitely
generated, and any two intersect in a finite group.

The results of this section translate into results about relatively hy-
perbolic groups. For example, we can associate to such a group, (Γ,G),
a canonical boundary, ∂(Γ,G), which is a compact metrisable space on
which Γ acts by homeomorphism. From the description of the canoni-
cal inclusion of the Γ-set in the boundary, we see that each peripheral
subgroup is the stabiliser of a point of ∂(Γ,G). We shall see that the
action is, in fact, a “geometrically finite” convergence action, and the
peripheral groups are precisely the maximal parabolic subgroups. We
shall elaborate on this is Section 6.

We remark that we could take a more unified approach to the above
definitions, for example, by taking V to be the Γ-set Γ⊔G, where Γ acts
by left multiplication on Γ and by conjugation on G. We could then
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define (Γ,G) to be hyperbolic if V is hyperbolic, and define ∂(Γ,G) =
∂0V .

5. Hyperbolic path-metric spaces

So far, our treatment of (Gromov) hyperbolic spaces has been pri-
marily in terms of isoperimetric inequalities. In this section, we sum-
marise other basic geometric facts which will be needed in the remain-
der of this paper. For simplicity, we shall deal mainly with length
spaces, though the discussion will be seen to generalise easily to path-
metric spaces, with minor modifications. It also extends to path-
pseudometric spaces. We shall finish with a brief discussion of the spe-
cial case of proper (i.e. complete locally compact) path-metric spaces.
Such spaces are necessarily length spaces.

The notion of a hyperbolic space was defined by Gromov in [Grom].
Further expositions can be found in [Bo1, CDP, GhH, Sh].

Let (X, ρ) be a metric space. Given x ∈ X and r ≥ 0, we write
N(x, r) = {y ∈ X | ρ(x, y) ≤ r}. Given Q ⊆ X, write N(Q, r) =⋃

x∈Q N(x, r). Suppose that β is a path connecting x to y in X.

We say that β is a geodesic if length β = ρ(x, y). (We won’t worry
about parameterisations in this paper.) We say that X is a length
space if every pair of points are connected by a geodesic. A triangle,
(α, β, γ), consists of three geodesic segments cyclically connecting three
points of X. We say that a point, x ∈ X is a k-centre of (α, β, γ) if
max{ρ(x, α), ρ(x, β), ρ(x, γ)} ≤ k. We say that (X, ρ) is hyperbolic if
there is some k such that every triangle has a k-centre. We refer to k
as the hyperbolicity constant.

As in [Bo1], we adopt the following convention regarding “approxi-
mate” inequalities. Suppose ζ, ξ ∈ R. We write ζ � ξ + c, where c is
some multiple of the hyperbolicity constant. We behave as though the
relation � were transitive, so the constant, c, may change during the
course of an argument. However, at any given stage, it is completely
determined. Its value can, in principle, be ascertained by retracing the
steps of a given proof back to the definitions, though we won’t bother
to keep track of this. We write ζ � ξ to mean ξ � ζ , and ξ ≃ ζ to mean
ξ � ζ and ζ � ξ. We write ζ ≪ ξ to mean that ζ + C ≤ ξ, where C
is some sufficiently large multiple of the hyperbolicity constant, (which
can be ascertained, generally by anticipating the remaining steps of an
argument). We view the relations α ≪ ξ and ξ � ζ as mutually exclu-
sive. If x ∈ X and Q ⊆ X, we say that x is close to Q if ρ(x, Q) ≃ 0.

Given x, y ∈ X, we write [x, y] for a geodesic from x to y. Any two
geodesics are close (in the sense that every point of one is close to the
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other), so this choice will not matter to us (except where we need to
ensure that a construction is canonical). We can also define a centre of
a triple (x, y, z) as a point close to each of [x, y], [y, z] and [z, x]. Such
centres always exist, and any two centres are close to each other.

We say that a subset, Q, is λ-quasiconvex if [x, y] ⊆ N(Q, λ) for all
x, y ∈ Q. We shall here always take λ to be some fixed multiple of
the hyperbolicity constant, and refer to Q as simply being quasiconvex.
Note that in such a case, N(Q, λ) is intrinsically a path-metric space,
and is intrinsically hyperbolic in the induced path-metric. Note also
that every uniform neighbourhood of a quasiconvex set is quasiconvex.

Suppose that Q ⊆ X is quasiconvex. Given x ∈ X, we may associate
a subset PQ(x) ⊆ Q by PQ(x) = {y ∈ Q | ρ(x, y) ≃ ρ(x, Q)}. Thus,
PQ(x) is always nonempty and diam PQ(x) ≃ 0. It will be notationally
convenient to single out an arbitrary point projQ(x) ∈ PQ(x). This
gives us a “projection map” projQ : X −→ Q, which we may as well
take to be the identity on Q. Other choices will not matter to us. Now,
projQ need not be continuous. However, it is approximately distance
decreasing:

Lemma 5.1. If Q ⊆ X is quasiconvex, and x, y ∈ X, then ρ(projQ x, projQ y) �
ρ(x, y).

Another point to note is:

Lemma 5.2. Suppose Q, Q′ ⊆ X are both quasiconvex, and ρ(Q, Q′) ≫
0. Then, diam(projQ Q′) ≃ 0.

The proofs of these results are elementary (cf. [Bo1]).
Suppose Q, Q′ ⊆ X are quasiconvex and ρ(Q, Q′) ≫ 0. Let β be a

path in X connecting Q to Q′ with length β ≃ ρ(Q, Q′). Any two such
paths will remain close to β. We shall write [Q, Q′] for some choice of
such path. Similarly, given x ∈ X and Q ⊆ X quasiconvex, we shall
write [x, Q] for some choice of path from x to Q with length[x, Q] ≃
ρ(x, Q).

As usual, we define the ideal boundary, ∂X, of X as the set of parallel
classes of geodesic rays in X. (Two rays are “parallel” if they remain
a bounded distance apart.) Given x ∈ X ∪ ∂X and y ∈ ∂X \ {x},
we can connect x to y by a geodesic, and we denote by [x, y] one
choice of such. We refer to it as a geodesic ray or biinfinite geodesic
depending on whether x ∈ X or x ∈ ∂X. We define a topology on
∂X as follows. Given p ∈ ∂X, x ∈ X and r ≥ 0, we let D(p, x, r) =
{y ∈ X | ρ(x, [p, y]) ≥ r}. We fix some x ∈ X and let {D(p, x, r) |
r ≥ 0} be a neighbourhood base of p. Changing x gives and equivalent
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neighbourhood base. We deem the subspace topology on X to be the
metric topology. It turns out that X ∪ ∂X is metrisable.

We may extend the notion of a centre to define the centre of a triple,
x, y, z, of points of X ∪ ∂X, provided no two of x, y, z are equal to the
same ideal point.

Given a subset A ⊆ ∂X, we may define joinA to be the set of points
x ∈ X such that ρ(x, β) ≃ 0 for some biinfinite geodesic, β, with both
endpoints in A. For any A, joinA is quasiconvex.

Definition. We say that X is taut if X = join ∂X.

(Of course, there is an additive constant ≃ 0 implicit in this defini-
tion.)

Lemma 5.3. Suppose X is taut, and p ∈ ∂X. Given any x ∈ X, there
is some q ∈ ∂X such that ρ(x, [p, q]) ≃ 0.

(Note that the implied additive constant be greater than that fea-
turing in the definition of tautness.) The proof is elementary.

We next want to define horofunctions and horoballs.

Definition. Suppose p ∈ ∂X. A horofunction about p is a function
h : X −→ R such that if x, a ∈ X and ρ(a, [x, p]) ≃ 0, then h(a) ≃
h(x) + ρ(x, a).

(Note that we not assuming horofunctions to be continuous.) It’s
easily seen that if x, y ∈ X and a is a centre of x, y, p, then h(x) +
ρ(x, a) ≃ h(y)+ ρ(y, a). (This might serve as an alternative equivalent
definition of a horofunction.) By standard arguments, we can always
construct a horofunction about any ideal point. Moreover, any two
horofunctions about the same point differ approximately by an additive
constant. More precisely, if h and h′ are horofunctions about the same
point, then there is some t ∈ R, such that h′(x) ≃ h(x) + t for all
x ∈ X.

Lemma 5.4. Suppose p, q ∈ ∂X with p 6= q. Suppose hp and hq are
horofunctions about p and q respectively. Then, there is some t ∈ R

such that hp(x) + hq(x) + 2ρ(x, [p, q]) ≃ t for all x ∈ X.

Proof. Suppose x, y ∈ [p, q]. Without loss of generality, we have ρ(y, [x, p]) ≃
0 and ρ(x, [y, q]) ≃ 0. Thus, hp(y) ≃ hp(x) + ρ(x, y). Similarly,
hq(x) ≃ hq(y) + ρ(x, y). Thus, hp(x) + hq(x) ≃ hp(y) + hq(y). In
other words, hp + hq is approximately constant, equal to t, say, along
[p, q].

Now, suppose x ∈ X. Let z ∈ [p, q] be a centre of (p, q, x). Then
ρ(z, [x, p]) ≃ 0, so hp(z) ≃ hp(x) + ρ(x, z). Similarly, hq(z) ≃ hq(x) +
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ρ(x, z). Now ρ(x, z) ≃ ρ(x, [p, q]). Thus, we get that hp(x) + hq(x) +
2ρ(x, [p, q]) ≃ hp(z) + hq(z) ≃ t as required. �

Definition. A horoball about p is a closed subset B ⊆ X such that
there is a horofunction about p such that h(x) � 0 for all x ∈ B, and
h(x) � 0 for all x ∈ X \ B.

(In fact, we could choose the horofunction, h, so that B = h−1[0,∞).)
Note that p is uniquely determined by B, and we refer to it as the

centre of the horoball. Note also that a horoball is quasiconvex. More-
over, if B is a horoball about p, then so is N(B, r) for all r ≥ 0.

We next want to consider quasigeodesics. Suppose that f : [0,∞) −→
[0,∞) is a non-decreasing function. Suppose β is a path in X. (As
with geodesics, we are unconcerned about parameterisations.) We
say that β is an O(f)-path if, given any subpath, α, of β, we have
length α � f(ρ(x, y)) where x and y are the endpoints of α. If f is
linear, we refer to β as a quasigeodesic. In this case, we refer to f as
the linear bound on β. The following is well-known:

Lemma 5.5. Suppose β is a quasigeodesic connecting points x, y ∈
X ∪ ∂X. Then there is some r ≥ 0 such that β ⊆ N([x, y], r) and
[x, y] ⊆ N(β, r). Moreover, r depends only the on the hyperbolicity
constant and the linear bound of β.

We shall more or less prove this in the course of proving the next
lemma, which appears to be folklore, but less standard:

Lemma 5.6. Suppose f is a subexponential function. Then any O(f)-
path is quasigeodesic. Moreover the linear bound depends only on f and
the hyperbolicity constant.

In fact, it’s enough to assume that f(t) = o(λt), where λ is small
enough in relation to the hyperbolicity constant. Since I don’t have
an explicit reference for Lemma 5.6, we outline a proof below. This
essentially just amounts to one of the standard arguments for proving
Lemma 5.5 (cf. [GhH]).

We can now prove Lemma 5.6 :

Proof. Let β be an O(f)-path connecting x1 to x2 in X. Choose a ∈
[x1, x2] so as to maximise ρ(a, β). Let t = ρ(a, β). Thus ρ(a, xi) ≥ t for
i = 1, 2. Let yi, zi ∈ [xi, a] be points with ρ(a, yi) = t and ρ(a, zi) = 2t.
If ρ(a, xi) < 2t, we take zi = xi. Let wi be a point of β with ρ(zi, wi) ≤
t. If z = xi, we take wi = xi. Let α be the subpath of β connecting w1

to w2. Note that ρ(w1, w2) ≤ 6t, so length α ≃ f(6t). Let γ be the path
[y1, z1]∪[z1, w1]∪α∪[w2, z2]∪[z2, y2]. Thus, length γ � 4t+f(6t). Also,
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ρ(a, γ) ≥ t, and ρ(y1, y2) = 2t. In other words, γ connects two points
(namely y1 and y2) in the boundary of N(x, t), while not entering the
interior of N(x, t). Now, a standard result about hyperbolic spaces tells
us that the length of such a path is bounded below (up to an additive
constant) by an exponential function, say [u 7→ ωu], of the distance
between its endpoints. Here, ω, depends only on the hyperbolicity
constant. Thus, ωt � 4t+f(6t). Since f(6t) = o(ω6t), we get an upper
bound, say s, on possible values of t. (Here s depends only on f and
the hyperbolicity constant.) We have thus shown that [x, y] ⊆ N(β, s).

We now apply the standard argument (subdividing x, y into O(ρ(x, y))
subpaths of bounded length) to show that β lies inside a uniform neigh-
bourhood of [x, y]. With just a little more work, we conclude that
length β is bounded by a linear function of ρ(x, y).

Since we can apply exactly the same argument to any subpath of β,
we conclude that β is quasigeodesic. �

A result of a similar but more combinatorial flavour was proven in
[Bo1]. This concerns “broken geodesics” i.e. piecewise geodesic paths
(where the “break points” are regarded as part of the structure). This
time we put upper bounds on the number of geodesic segments and on
the pairwise “backtracking” between distinct segments. First we give
some definitions.

We shall consider “directed” geodesic segments, i.e. with an order-
ing on their endpoints (though a weaker statement for non-directed seg-
ments would suffice for this paper). We say that two directed geodesics,
[x, y] and [z, w], backtrack a distance l ≫ 0 if ρ(x, y) + ρ(w, z) ≃
ρ(x, w) + ρ(y, z) + 2l. Less formally, this means that they remain close
but directed in opposite directions for a distance approximately l. We
say that a broken geodesic backtracks at most l if any pair of distinct
directed geodesic segments thereof backtrack at most l.

The following is given as Proposition 7.3.4 of [Bo1]. (It is really a
statement about a finite sequence of points, viewed as the break points
of a broken geodesic.)

Proposition 5.7. Let β be a broken geodesic path consisting with n
geodesic segments with backtracking at most l ≥ 0. Let x, y be the
endpoints of β. Then, length β ≤ ρ(x, y) + h(n), where h is a function
depending on l and on the hyperbolicity constant, k, and which is linear
in n.

(In fact, h has the form h(n) = (f(k) + g(l))j(n) where f , g and j
are fixed linear functions.)
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Note, in particular, that a closed broken geodesic with n-segments
(i.e. an “n-gon”) which has bounded backtracking has total length
bounded by linear function of n.

One can give a fairly elementary argument to obtain a quadratic
bound in n (along the lines of Corollary 7.2 of this paper). The linear
bound appears to be more subtle. All we require in this paper is a
subexponential bound.

Proposition 5.7 is used in the proof of Theorem 7.11, but is not
required elsewhere in this paper.

This more or less concludes our general discussion of hyperbolic
length spaces. We note that our arguments through with only slight
modification to path-metric spaces. In this case, we should rede-
fine a geodesic connecting x to y to be a path, β, with length β ≃
ρ(x, y). In fact, we can generalise still further to path-pseudometric
spaces. A path-pseudometric space is hyperbolic if and only if its
hausdorffification (as a path-metric space) is hyperbolic. Also, the
fact that hyperbolicity is a quasiisometry invariant remains true for
path-pseudometrics.

In the other direction, one might want to specialise to proper (i.e.
complete locally compact) hyperbolic path-metric spaces, X. Such
spaces are necessarily length spaces, and all closed bounded subsets are
compact. Moreover, the ideal boundary, ∂X, is compact. If A ⊆ ∂X
is compact, then Q = join(A) is closed, quasiconvex and intrinsically
hyperbolic in the induced path-metric. We may identify ∂Q with A.
Moreover Q ∪ A is precisely the closure of Q in X ∪ ∂X.

6. Geometrically finite groups

In this section, we discuss the notion of “geometrical finiteness” for
groups acting on proper (i.e. complete locally compact) Gromov hyper-
bolic spaces. This notion has its roots in work of Ahlfors, Greenberg
and others in the context of 3-dimensional kleinian groups [A, Gre].
Since then, other formulations have been given in increasingly general
contexts. The cases of constant and variable negative curvature are
discussed respectively in [Bo2] and [Bo4]. A purely dynamical study of
this notion has recently been made by Tukia [T3] (see also [Fr2, Y]).
Of course, at each stage of the generalisation process, certain features
are lost. However, even in the purely dynamical set-up there remain
many interesting results and questions, and it seems to be the most
natural context in which to express many aspects of the subject. Our
account in this section, can be thought of falling somewhere between
that in [Bo4] and that in [T3] in generality.
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For a proper Gromov hyperbolic space, X, we shall see essentially
two ways of formulating geometrical finiteness, based on the those of
Beardon and Maskit [BeM] and Marden [Mar] respectively (“GF2”
and “GF1” in [Bo2]). The Beardon-Marden definition is intrinsic to
∂X, and is one of the definitions considered in [T3]. Here, we shall
interpret the Marden definition in terms of systems of horoballs, which
is appropriate to the discussion of Section 7. The second dynamical
definition given by [T3] can also be viewed as a further generalisation
of the Marden definition to case of a convergence action on a perfect
compact metrisable space M . Tukia [T3] shows the equivalence of
these definitions in the dynamical setting. In the special case where
M is the boundary of a Gromov hyperbolic space, it can probably also
be deduced from the results of this section, though we shall not pursue
this matter here. In fact, the dynamical description of geometrical
finiteness gives an alternative formulation of a relatively hyperbolic
group [Y]. This generalises the result of [Bo6] in the case when the
peripheral structure is empty.

We shall begin by recalling briefly some basic facts about convergence
groups. These were introduced by Gehring and Martin [GehM]. For
further discussion, see for example, [Fr1, T2, Bo7].

Suppose that M is a compact metrisable topological space. Suppose
that a group, Γ, acts by homeomorphism on M . We say that Γ is a
convergence group if the induced action on the space of distinct triples
of M is properly discontinuous. In such a case, we write ΛΓ ⊆ M for the
limit set of Γ, which (unless Γ is virtually cyclic) is the unique minimal
closed non-empty Γ-invariant subset. We say that the action is minimal
if ΛΓ = M . We say that a subgroup G ≤ Γ is parabolic if it is infinite,
fixes some point of M , and contains no loxodromics. (Here we shall
allow for the possibility of an infinite torsion parabolic group). In this
case, the fixed point of G is unique. We refer to it as a parabolic point.
(Tukia has suggested that one should reserve the term “parabolic fixed
point” for one which is fixed by a parabolic element, which need not be
the case here. In [T3], Tukia shows that any point fixed by infinitely
many non-loxodromic elements is a parabolic point.) The stabiliser,
stabΓ(p) of a parabolic point is necessarily a parabolic group. There
is thus a natural bijective correspondence between parabolic points in
M and maximal parabolic subgroups of Γ. We say that a parabolic
group, G, with fixed point p, is bounded if the quotient (M \ {p})/G
is compact. (It is necessarily hausdorff.) We say that p is a bounded
parabolic point if stabΓ(p) is bounded. A conical limit point is a point
y ∈ M such that there exists a sequence (γi)i∈N in Γ, and distinct
points a, b ∈ M , such that γiy → a and γix → b for all x ∈ M \ {y}.
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There are a number of alternative formulations of conical limit point,
see [Bo7] and [T3]. It is shown in [T3] that:

Proposition 6.1. A conical limit point cannot be a parabolic point.

The notion of a conical limit point has quite a long history in the
theory of fuchsian and kleinian groups (see [He]). They have also been
called “radial limit points” or “points of approximation”.

If Γ is a non-elementary group (i.e. not finite, virtually cyclic or
parabolic), then ΛΓ is perfect (i.e. has no isolated points). Moreover,
y ∈ ΛΓ is a (bounded) parabolic point with respect to the action of
Γ on ΛΓ if and only if it is a (bounded) parabolic point with respect
to the action on M . The same goes for conical limit points. This this
reason, it is convenient to restrict to minimal actions of Γ (so that M is
perfect). In the context of (boundaries of) Gromov hyperbolic spaces,
there is no essential loss of generality in doing this. (Since we can
replace X by joinΛΓ, which is intrinscally taut and hyperbolic with
ideal boundary ΛΓ — see Section 5.) However, as observed by Tukia
[T3], in the (possibly) more general setting of convergence actions, the
issue appears to be more subtle. We shall not pursue this general
question here.

We are now ready for the definition of geometrical finiteness based
on that of Beardon and Maskit [BeM]:

Definition. Let M be a compact metrisable space, and suppose that
Γ is a convergence group acting on M . We say that (the action of) Γ
is geometrically finite if every point of M is either a conical limit point
or a bounded parabolic point.

It follows that M is perfect, and that the action of Γ on M is minimal.
Let G be the set of maximal parabolic subgroups of Γ. It’s easy

to see that G is a peripheral structure on G as defined at the end of
Section 4. Moreover, the intersection of any two peripheral subgroups is
finite. Tukia [T3] shows that there are finitely many conjugacy classes
of peripheral subgroups. (We give a proof below, in the case of Gromov
hyperbolic spaces.)

In general a maximal parabolic subgroup of a convergence group need
not be finitely generated. It’s unclear what additional hypotheses, geo-
metric or dynamical, are needed to force maxiaml parabolic subgroups
to be finitely generated. (For example, it is true in a riemannian man-
ifold of pinched negative curvature [Bo3].) We shall have no reason to
assume this in this section.

We now explore what this means in the case where M is the boundary
of a proper hyperbolic length space, X. Most of the arguments are
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variations of those that can be found in [Bo2] and [Bo4]. We shall need
to find substitutes for certain results and constructions. For example,
in the context of pinched Hadamard manifolds, the Margulis Lemma
ensures that horoballs can be chosen to be disjoint. Here, this follows
from Lemma 6.8, which rests ultimately on the dynamical result of
Proposition 6.1.

Suppose then that X is a proper hyperbolic length space with bound-
ary, ∂X. Thus, ∂X is a compact metrisable topological space. It will be
convenient to assume that X is taut, i.e. every point of X is a bounded
distance from a biinfinite geodesic, though for most purposes, this will
not be necessary.

If Γ acts properly discontinuously and isometrically on X, then we
get an induced action of Γ on ∂X, which is a convergence action (see, for
example, [Fr1, T2, Bo7]). In this context, a point y ∈ ∂X is a conical
limit point if and only if for some (hence every) point x ∈ X, there is a
sequence of Γ-images of x which converges to y while remaining within
bounded distance of some geodesic ray with endpoint at y.

Suppose that G is a discrete parabolic group acting on X with fixed
point p ∈ ∂X. If h : X −→ R is a horofunction about p, then so is [x 7→
inf{h(gx) | g ∈ G}]. (Recall that we are not assuming horofunctions
to be continuous.) We see that:

Lemma 6.2. If G is a parabolic group with fixed point p, then there is
a G-invariant horofunction about p.

Similarly, if B ⊆ X is a horoball about p, then so is the closure, B′,
of

⋃
g∈G gB. Note that B ⊆ B′, and that B′ lies in a bounded neigh-

bourhood of B. We see that there is no loss in assuming horofunctions
and horoballs are G-invariant if necessary.

We need to consider the geometric meaning of a “bounded parabolic
point”. Given a horoball B, we write frB for the frontier of B in X.

Lemma 6.3. Suppose that G is a parabolic group with fixed point p.
Suppose that B is a G-invariant horoball about p. Then G is a bounded
parabolic group if and only if (fr B)/G is compact.

Proof. Let F be the subset of (frB)×(∂X\{p}) consisting of pairs (x, q)
such that x lies within a some fixed distance, r ≫ 0, of some biinfinite
geodesic connecting p to q. Thus, F is closed and G-invariant, and the
projection to ∂X \ {p} is surjective and proper. The same is true of
the projection to frB, provided we choose r large enough so that every
point of X is within a distance r of some biinfinite geodesic with one
endpoint at p. (This is possible by Lemma 5.3, since we are assuming
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that X is taut.) It follows that G acts cocompactly on ∂X \ {p} if and
only if it does so on F and hence, in turn, on frB. �

Lemma 6.4. Suppose that G is a bounded parabolic group with fixed
point p. If B, B′ are G-invariant horoballs about p, then (B′ \ int B)/G
is compact.

Proof. This is equivalent to showing that if h is a horofunction about
p, and a, b ∈ R, then the closure of h−1[a, b] in X has compact quotient
under G. The argument is the same as that of Lemma 6.3, replacing
frB by the closure of h−1[a, b]. �

(In this case, we don’t know that the projection of F to the first
coordinate is necessarily surjective, unless b−a ≫ 0, in which case, we
can deduce a converse to Lemma 6.4.)

Although we shall not formally be using the fact, it is worth noting
that:

Proposition 6.5. If G is a bounded parabolic group with fixed point p,
then the space ((X ∪ ∂X) \ {p})/G has precisely one topological end.

In fact, a neighbourhood base of the end is given by the collection of
sets of the form B/G as B ranges over the set of G-invariant horoballs
about p. The proof is along similar lines to the previous two lemmas.

Definition. If G as a bounded parabolic group, then a cusp region for
G is a set of the form B/G where B is a G-invariant horoball.

We note that every point of B is a bounded distance from some G-
image of a fixed geodesic ray tending to p. This bound can be assumed
to be uniform (i.e. depending only on the hyperbolicity parameters)
provided we take B sufficiently small. We also note that B/G is quasi-
isometric to a ray.

Now let us return to our group Γ acting properly discontinuously
isometrically on X. We suppose that the action is minimal and that
X is taut.

Lemma 6.6. Suppose that p is a bounded parabolic fixed point, and that
h : X −→ R is a stabΓ(p)-invariant horofunction about p. If x ∈ X,
then {h(γx) | γ ∈ Γ} is bounded away from ∞.

Proof. Suppose, to the contrary, that we can find a sequence γi in Γ,
with h(γix) → ∞. Since p is bounded, we can suppose that each point
γix is a bounded distance from a geodesic ray tending to p. We see
that p is a conical limit point, contradicting Proposition 6.1. �
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We can thus find a G-invariant horoball about p, which misses the
orbit Γx.

Now, suppose that Π ⊆ ∂X is a Γ-invariant set of parabolic points.

Definition. An invariant system of horofunctions for Π consists of a
collection, (hp)p∈Π, of horofunctions indexed by p, such that hp is a
horofunction about p, and such that hγp(x) = hp(γ

−1x) for all x ∈ X
and p ∈ Π.

Lemma 6.7. Suppose that Π ⊆ ∂X is a Γ-invariant set of bounded
parabolic points with Π/Γ finite. Suppose x ∈ X. Then, hp(x) → −∞
as p varies over Π (i.e. {p ∈ Π | hp(x) ≥ t} is finite for all t ∈ R).

Proof. Since Π/Γ is finite, it’s enough to prove the result in the case
where Π is the orbit of a single point. By Lemma 6.6, there is some
a ≥ 0 such that hp(x) ≤ a for all p ∈ Π. Also, by Lemma 6.4, and the
fact that Γx is discrete, we see that {p ∈ Π | hp(x) ∈ [b, c]} is finite for
all b, c ∈ R. �

Given p, q ∈ Π, with p 6= q, and x ∈ X, we write Hpq(x) = hp(x) +
hq(x). Also we write [p, q] for some choice of geodesic connecting p
and q. Thus, Lemma 5.4 tells us that Hpq(x) + 2ρ(x, [p, q]) is bounded
above and below (by constants whose difference depends only on the
hyperbolicity parameters). Under the same hypotheses as Lemma 6.7,
we see that these functions are uniformly bounded away from ∞.

Lemma 6.8. If Π is a Γ-invariant set of bounded parabolic points with
Π/Γ finite, then there is some t ∈ R such that hp(x)+hq(x) ≤ t for all
distinct p, q ∈ Π and for all x ∈ X.

Proof. Suppose not. Then we can find sequences, (xi)i in X and se-
quences (pi)i and (qi)i in Π such that Hpiqi

(x) → ∞. Since Π/Γ is finite,
we can suppose that pi = p is constant. Lemma 5.4 tells us that, up to
an additive constant, the maximum values of Hpqi

are attained along
the geodesic [p, qi]. Thus, we can choose the points xi so that hp(xi)
is bounded above and below. Now, by Lemma 6.4, and the stabΓ(p)-
invariance of hp, we can assume that the xi all lie in compact set. In
fact, we can assume that they converge on some x ∈ X. Now, for all
q ∈ Π, |hq(xi)−hq(x)| � ρ(x, xi) is bounded, and so Hpqi

(xi) ≃ Hpqi
(x).

We see that Hpqi
(x) → ∞ and so hqi

(x) → ∞ contradicting Lemma
6.7. �

We can assume that, in Lemma 6.8, t ≥ 0. Thus, replacing each
horofunction hp by the horofunction hp − t, we have shown that, under
the hypotheses of Lemma 6.8, we can construct an invariant system,
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(hp)p∈Π, of horofunctions, such that hp(x) + hq(x) ≤ 0 for all x ∈ X
and distinct p, q ∈ Π. In fact, we can eliminate the hypothesis that
Π/Γ is finite from this statement. To do this, we first note:

Lemma 6.9. The set of all bounded parabolic points is countable.

Proof. This is shown in [T3] for convergence groups. It is based on the
observation that if p is a bounded parabolic fixed point, then there is a
finite subset, S(p) ⊆ stabΓ(p), such that p is the unique common fixed
point of the elements of S(p). Since Γ is countable, there are countably
many such subsets. �

Lemma 6.10. Suppose Π ⊆ ∂X is a Γ-invariant set of bounded para-
bolic fixed points. Then we can find an invariant system of horofunc-
tions, (hp)p∈Π, such that hp(x) + hq(x) ≤ 0 for all x ∈ X and distinct
p, q ∈ Π.

Proof. By Lemma 6.9, we can write Π as an increasing union, Π =⋃
n Πn, where Π0 = ∅, Πn ⊆ Πn+1 and Πn+1 \ Πn is a Γ-orbit for each

n. (Thus, Πn/Γ has cardinality n.) Suppose, inductively that we have
constructed hp for each p ∈ Πn. Let (h′

p)p∈Πn+1
be an invariant system

of horofunctions for Πn+1 such that h′
p = hp for all p ∈ Πn. By Lemma

6.8, there is some t ≥ 0 such that h′
p+h′

q ≤ t for all distinct p, q ∈ Πn+1.
Given p ∈ Πn+1, let hp be the horofunction h′

p − t. This extends our
system of horofunctions (hp) to Πn+1 in such a way that hp + hq ≤ 0
for all distinct p, q. We now continue inductively. �

In particular, the sets h−1
p (0,∞) are pairwise disjoint. We can rephrase

this in terms of horoballs.
Let Π be a Γ-invariant set of parabolic points.

Definition. An invariant system of horobolls is a collection, (B(p))p∈Π,
indexed by Π, such that B(p) is a horoball about p and such that
B(γp) = γB(p) for all γ ∈ Γ and all p ∈ Π.

Such a system is r-separated if ρ(B(p), B(q)) ≥ r for all distinct
p, q ∈ Π.

It is strictly invariant if it is r-separated for some r > 0.

Proposition 6.11. If Π is a Γ-invariant set of bounded parabolic points
and r ≥ 0, then there exists an r-separated invariant system of horoballs
for Π.

Proof. Let (hp)p∈Π be the system of horofunctions given by Lemma
6.10. Let s ≫ r. Choose horoballs (B(p))p∈Π equivariantly so that
B(p) ⊆ h−1

p [s,∞) for all p ∈ Π. �
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We now set about describing a geometric formulation of geometrical
finiteness, based on that of Marden [Mar].

Given an invariant system, B = (B(p))p∈Π of horoballs, we write
Y (B) = X \

⋃
p∈Π int B(p). Thus, Y (B) is a closed Γ-invariant subset

of X.

Proposition 6.12. Suppose that Π ⊆ ∂X is a Γ-invariant set of par-
abolic points. Suppose we can find a strictly invariant system, B, of
horoballs for Π such that Y (B)/Γ is compact. Then Π/Γ is finite, each
point of Π is a bounded parabolic point, and each point of ∂X \ Π is a
conical limit point.

Proof. We first note that if p ∈ Π, then (frB(p))/ stabΓ(p) can be iden-
tified as a closed subset, F (p), of Y (B)/Γ. Since Y (B)/Γ is compact, it
follows that F (p) is compact, and so p is bounded by Lemma 6.3. From
the strict invariance of the horoball system, we see that the sets F (p)
cannot accumulate in Y (B)/Γ, as p ranges over an orbit transversal of
Π. It follows that Π/Γ is finite.

Now choose any x ∈ Y (B). There is some r > 0 such that Y (B) ⊆
N(Γx, r). Suppose y ∈ ∂X \ Π. Let α be a geodesic ray tending to
y. Now α cannot eventually remain within any one horoball, and thus
meets Y (B) is an unbounded set. It follows that we can find an infinite
sequence γi ∈ Γ with γix → y and with ρ(γix, α) ≤ r. Thus, y is a
conical limit point. �

By Lemma 6.1, it follows that Π is, in fact, the set of all parabolic
points.

Proposition 6.13. Let Π be the set of all bounded parabolic points.
Suppose that every point of ∂X \Π is a conical limit point. Then Π/Γ
is finite. Moreover, for any r ≥ 0, we can find an r-separated collection,
B, of horoballs such that Y (B)/Γ is compact.

Proof. By Proposition 6.11, we can find an r-separated collection B =
(B(p))p∈Π of horoballs for Π.

We claim Y (B)/Γ is compact. Since Y (B) is closed, it is enough to
show that Y (B) ⊆ N(Γx, r) for some x ∈ Y (B) and r ≥ 0. Suppose not.
Fix x ∈ Y (B), and let (xi)i∈N be a sequence in Y (B) with ρ(xi, Γx) →
∞. After translation by a suitable element of Γ we can suppose that
ρ(xi, x) = ρ(xi, Γx) for all i. After passing to a subsequence, we can
suppose that xi tends to some y ∈ ∂X.

If y /∈ Π, then y is a conical limit point. We can thus find a
sequence, (γj)j∈N, in Γ with γjx → y and γjx remaining within a
bounded distance of a geodesic ray. Now, a simple geometric argu-
ment shows that we can find some j ∈ N such that for all z ∈ X,
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sufficiently close to y, we have ρ(z, γjx) < ρ(z, x). In particular,
ρ(xi, Γx) ≤ ρ(xi, γjx) < ρ(xi, x) = ρ(xi, Γx), thereby contradicting
the choice of xi.

We can thus suppose that y ∈ Π. Now, (fr B)/ stabΓ(p) is compact,
so there exists t ≥ 0 such that frB lies inside the t-neighbourhood of
the stabΓ(p)-orbit of x. In particular, frB ⊆ N(Γx, t). Now, since
xi → y, and xi /∈ int B(y), a simple geometric argument shows that
we can find zi ∈ [x, yi] ∩ frB with zi → y, and ρ(x, zi) → ∞. Now,
we can find γi ∈ Γ, with ρ(zi, γix) ≤ t. Since zi ∈ [x, yi], we see that
ρ(xi, x) − ρ(xi, γix) ≥ ρ(zi, x) − t → ∞. In particular, ρ(xi, γix) <
ρ(xi, x) for all sufficiently large i, contradicting the choice of xi as
before.

We have thus proven the claim that Y (B)/Γ is compact. Choosing
any r > 0, we see finally, by Proposition 6.12, that Π/Γ is finite. �

Proposition 6.14. Suppose Π ⊆ ∂X is a Γ-invariant set of bounded
parabolic points with Π/Γ finite and B and invariant system of horoballs
for Π with Y (B)/Γ compact. Then, every point of ∂X \ Π is a conical
limit point.

Proof. Let B = (B(p))p∈Π. Given r > 0, we can find an r-separated
collection, B′ = (B′(p))p∈Π of horoballs for Π. Without loss of gen-
erality, we can suppose that B′(p) ⊆ B(p). By Lemma 6.4, (B(p) \
int B′(p))/ stabΓ(p) is compact for each p ∈ Π. Now Y (B′)/Γ is a
union of Y (B)/Γ and the projection to X/Γ of a finite number of sets
of this form. It follows that Y (B′)/Γ is compact. The result follows by
Proposition 6.12. �

Propositions 6.12, 6.13 and 6.14, together give us a number of equiv-
alent ways of describing geometrical finiteness.

To relate this to Marden’s definition [Mar], recall that a cusp region
is a set of the form B(p)/ stabΓ(p), where p is a bounded parabolic point
in ∂X. We thus see that Γ is geometrically finite if and only if X/Γ
can be written a union of a compact set together with a finite number
of pairwise disjoint cusp regions. In particular, X/Γ has finitely many
ends, and is quasiisometric to a wedge of rays.

Note also, that we have shown:

Proposition 6.15. If Γ is geometrically finite, then there are finitely
many orbits of parabolic points, and each parabolic point is bounded.

This is also shown in [T3] for general geometrically finite convergence
groups.

Suppose that Γ is geometrically finite. Let G be the set of maximal
parabolic subgroups. We have already observed that G is peripheral
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structure. We shall see in Section 9 that (Γ,G) is a relatively hyperbolic
group, and that ∂X is Γ-equivariantly homeomorphic to ∂(Γ,G), as
defined in Section 4.

7. Systems of quasiconvex sets

In this section, we describe a construction which, in some sense, is
an inverse to that described in Section 4. There, we constructed a
hyperbolic space with a preferred set of horoballs, starting with a fine
hyperbolic graph. In this section, we start with a hyperbolic space,
with a preferred system of quasiconvex sets (for example horoballs)
and construct a graph as a kind of “nerve” of this system. More pre-
cisely, we construct a graph whose vertex set is the set of quasiconvex
sets, and regard two such sets as adjacent in the graph if they are a
bounded distance apart in X. Under appropriate hypotheses (that the
system is “sufficiently separated”, “quasidense” and “locally finite”) we
verify that this graph is fine and hyperbolic (Proposition 7.8). These
conditions are automatic for a standard system of horoballs for a mini-
mal geometrically finite action of a group on a proper hyperbolic space.
As a corollary, we deduce that such a group is hyperbolic relative to
the set of maximal parabolic subgroups (by the definitions of Section
4). In Section 9, we shall carry this analysis further to the study of the
boundaries of such spaces.

In fact, with a more careful analysis, we can drop the assumption
of sufficient separability (Proposition 7.12). This has an application to
proving that a hyperbolic group is hyperbolic relative to quasiconvex
subgroups (Theorem 7.11), though it will not be needed elsewhere.

As an intermediate step towards proving Proposition 7.8, we shall
see that if we take any sufficiently separated collection of quasiconvex
sets in a hyperbolic length space, and collapse each quasiconvex set to a
point, then the resulting space is also hyperbolic. This is the geometric
interpretation of Proposition 7.4.

We begin by giving the main definitions of this section. Let (X, ρ)
be a hyperbolic length space. Let (Q(p))p∈Π be a collection of subsets
of X, indexed by a set Π.

Definition. We say that (Q(p))p∈Π is r-separated if ρ(Q(p), Q(q)) ≥ r
for all distinct p, q ∈ Π.
We say that (Q(p))p∈Π is t-dense if X = N(

⋃
p∈Π Q(p), t).

We say that (Q(p))p∈Π is locally finite if {p ∈ Π | ρ(x, Q(p)) ≤ u} is
finite for all x ∈ X and u ≥ 0.
We say that (Q(p))p∈Π is sufficiently separated if it is r-separated for
some r ≫ 0 (sufficiently large in relation to the hyperbolicity constant).
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We say that (Q(p))p∈Π is quasidense if it is t-dense for some t ≥ 0.

For the moment, we shall just assume that (Q(p))p∈Π is a sufficiently
separated system of closed (uniformly) quasiconvex sets. In particular,
we require that diam(projQ(p) Q(q)) ≃ 0 whenever p 6= q (see Lemma
5.2). Given p 6= q, we shall write [Q(p), Q(q)] for some choice of path
connecting Q(p) to Q(q) with length[Q(p), Q(q)] ≃ ρ(Q(p), Q(q)). As
discussed in Section 5, any two such paths are close, so this choice will
not matter to us.

We may define a path-pseudometric, σ, on X, by modifying ρ so
that it is identically zero on each of the sets Q(p). The hausdorffifi-
cation of (X, σ) can be thought of as the path-metric space obtained
by collapsing each of the sets Q(p) to a point. Our first objective will
be to show that (X, σ) is hyperbolic. We begin by making some more
precise definitions.

In what follows, we shall abuse notation slightly be regarding a path
in X as a subset of X, and denoting concatenation of paths as unions
etc. Given a path, β, we shall write ∂β ⊆ X for the unordered pair of
endpoints of β.

By a relative path, (γ, α), we mean a path γ, with a subset α ⊆ γ con-
isting of a disjoint union of a finite number of subpaths, α1, α2, . . . , αn,
of γ, occurring in this order along γ, such that for each i ∈ {1, . . . , n},
there is some pi ∈ Π such that ∂αi ⊆ Q(pi). Moreover, we assume
that pi+1 6= pi for each i. (Note that ∂γ may or may not meet α.)
We write n(γ, α) = n and L(γ, α) = length(γ \ α). We can write
γ = β0 ∪ α1 ∪ β1 ∪ · · · ∪ αn ∪ βn, where β0, . . . , βn are the complemen-
tary paths of α in γ. Note that one or both of β0 and βn may be empty.
For each i ∈ {1, . . . , n − 1}, the path βi connects Q(pi) to Q(pi+1). In
particular, we have length βi ≥ ρ(Q(pi), Q(pi+1)) ≥ r, where r ≫ 0 is
the constant featuring in the hypothesis that (Q(p))p∈Π is sufficiently
separated. We thus have L(γ, α) =

∑n
i=0 length βi ≥ (n − 1)r. In par-

ticular, we see that L(γ, α) is bounded below by a fixed linear function
of n(γ, α).

We say that a relative path (γ, α) is efficient if pi 6= pj whenever
i 6= j. We say that (γ, α) is semipolygonal if each arc αi is a geodesic
segment. We say that it is polygonal if it is semipolygonal and βi =
[Q(pi), Q(pi+1)] for all i ∈ {1, . . . , n − 1} and β0 = [x, Q(p1)] and βn =
[y, Q(pn)] where x, y are the endpoints of γ, if either β0 or βn is non-
empty.

We can also speak about a closed relative path, (γ, α), where γ is a
closed path in X, and α is finite disjoint union of subpaths. Thus the
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components, α1, . . . , αn, are cyclically ordered and γ = α1 ∪ β1 ∪ α2 ∪
· · ·αn ∪ βn. We similarly define n(γ, α), L(γ, α), efficient closed paths,
etc.

Given x, y ∈ X, we let σ(x, y) = inf{L(γ, α)}, where (γ, α) ranges
over all relative paths from x to y. Of course, we could restrict to
efficient polygonal paths. It’s easily seen that σ is a path-pseudometric.
(A σ-continuous path consists essentially of a sequence of ρ-continuous
paths connecting different sets Q(p). We can fill in the gaps with ρ-
geodesics to give us a relative path, say (γ, α). The σ-length of the
original path equals L(γ, α).)

We aim to prove that (X, σ) is hyperbolic. To this end, we need
some lemmas about relative paths.

Lemma 7.1. There is a fixed linear function, H, such that if (γ, α) is
an efficient closed semipolygonal path, then length αi ≤ H(L(γ, α)) for
each component, αi, of α.

Proof. Let γ = α1 ∪ β1 ∪ α2 ∪ · · · ∪ αn ∪ βn, so that ∂αi ⊆ Q(pi). To
simplify notation, we shall verify the statement for α1.

Given i ∈ {1, . . . , n}, let xi and yi, be the endpoints of βi. Thus,
xi ∈ Q(pi) and yi ∈ Q(pi+1). Let x′

i = projQ(p1) xi and y′
i = projQ(p1) yi.

Thus, x′
1 = x1 ∈ Q(p1) and y′

n = yn ∈ Q(p1). By Lemma 5.1, we have
ρ(x′

i, y
′
i) � ρ(xi, yi) ≤ length βi. Let β ′

i = [x′
i, y

′
i]. Then length β ′

i �
length βi. Given each i ∈ {2, . . . , n} we similarly define α′

i to be
[yi−1, xi]. Since yi−1, xi ∈ Q(pi) and pi 6= p1 (since (γ, α) is efficient), we
have length α′

i ≃ 0, by Lemma 5.2. Now let δ = β ′
1∪α′

2∪β ′
2∪· · ·∪α′

n∪β ′
n.

Thus length δ −L(γ, α) =
∑n

i=2 length α′
i +

∑n
i=1(length β ′

i − length βi)
is bounded above by a linear function of n(γ, α) and hence by a linear
function of L(γ, α). We deduce that length δ ≤ H(L(γ, α)) for some
fixed linear function, H . Now, α1 and δ both connect x0 to yn and α1

is geodesic. Thus, length α1 ≤ length δ ≤ H(L(γ, α)) as required. �

In particular, it follows that length γ ≤ L(γ, α)+n(γ, α)H(L(γ, α)).
Now, n(γ, α) is bounded above by a linear function of L(γ, α). This
gives us a quadratic bound on length γ. In other words, we have shown:

Corollary 7.2. There is a fixed quadratic function, S, such that if
(γ, α) is an efficient closed semipolygonal path, then length γ ≤ S(L(γ, α)).

(In fact, one could obtain a linear bound using Proposition 5.7. All
we shall need here is a subexponential bound.)

Note that, if (γ, α) is relative path, and δ ⊆ γ, then (δ, δ∩α) is also a
relative path. If (γ, α) is efficient, semipolygonal or polygonal, then so
is (δ, δ∩α). The appropriate way of defining quasigeodesics with respect
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to the path-pseudometric, σ, is as follows. We say that a relative path,
(γ, α), is a σ-quasigeodesic if there is a linear function, say J , such that
if δ ⊆ γ is a subpath, then L(δ, δ ∩ α) � J(σ(x, y)), where x, y are the
endpoints of δ. Note that σ(x, y) ≤ ρ(x, y). For our purposes, it will,
in fact, be enough to assume that L(δ, δ ∩ α) � J(ρ(x, y)).

Lemma 7.3. Suppose that (γ, α) is an efficient semipolygonal path in
X. If (γ, α) is a σ-quasigeodesic, then γ is a quasigeodesic in X with
respect to the path-metric ρ. Moreover, the linear bound of the latter
depends only on the hyperbolicity constant and the linear bound of the
former.

Proof. It’s enough to verify that length γ is bounded by a linear func-
tion of ρ(x, y), where x, y are the enpoints of γ (since we can apply the
same argument to any subpath of γ). By Lemma 5.6, it’s enough, in
fact, to find a subexponential bound. Here, we shall give a quadratic
bound.

To this end, we connect x to y by a geodesic [x, y], and let δ be
the closed path γ ∪ [x, y]. Now, (δ, α) is a closed efficient semipolyg-
onal path. Also, L(δ, α) = L(γ, α) + ρ(x, y), which is bounded by
a linear function of ρ(x, y) (since (γ, α) is a σ-quasigeodesic). Now,
length γ ≤ length δ ≤ S(L(δ, α)), where is the quadratic function given
by Corollary ??. Thus, length γ is quadratically bounded in terms of
L(γ, α) and hence in terms of ρ(x, y) as claimed. �

We can use this to verify that (X, σ) is hyperbolic. We should first
convince ourselves that every geodesic in (X, σ) can indeed be viewed
as a σ-quasigeodesic, as we have defined it. Since we don’t know that
(X, σ) is a length space, we should view a geodesic in (X, σ) as a
σ-continuous path whose σ-length is equal to the σ-distance between
its endpoints up to a small additive constant. As discussed earlier,
we can, in turn, view this as a sequence of paths, βi, with each βi

connecting distinct sets Q(pi) and Q(pi+1). The fact that is almost
distance minimising means that it is necessarily the case that the pi

are all distinct (since we could simply omit any subpath with returns to
the same set Q(pi), significantly reducing the σ-length). Now, filling in
the gaps by ρ-geodesics, αi, we obtain a relative path, (γ, α), with the
same endpoints, and with L(γ, α) equal to the σ-length of the original
σ-geodesic. (In fact, if an endpoint of the path lies in a set Q(p), we
are free to attach a ρ-geodesic arc to any other point of Q(p), so we can
take any point Q(p) as an endpoint of the path γ.) We see that (γ, α)
is an efficient semipolygonal σ-quasigeodesic, by the earlier definitions.
By Lemma 7.3, we see that γ is a ρ-quasigeodesic. We can now prove:
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Proposition 7.4. Let (X, ρ) be hyperbolic, and let (Q(p))p∈Π be a suf-
ficienly separated system of uniformly quasiconvex sets, and let σ be the
path pseudometric on X obtained by modifying the metric on each set
Q(p) to be zero. Then, the path-pseudometric space, (X, σ), is hyper-
bolic.

Proof. Suppose that (γ1, γ2, γ3) is a σ-geodesic triangle. From the pre-
ceding discussion, we can assume that each γi is a ρ-quasigeodesic, and
so, by Lemma 5.5 remains within a ρ-bounded distance of a ρ-geodesic,
δi, with the same endpoints (with the extra freedom to determine an
endpoint lying in one of the sets Q(p) as noted above). In this way, we
obtain ρ-geodesic triangle, (δ1, δ2, δ3). Now, any ρ-centre for (δ1, δ2, δ3)
will be a σ-centre for (γ1, γ2, γ3). This proves that (X, σ) is hyper-
bolic. �

Suppose now that (Q(p))p∈Π is quasidense, i.e. it is t-dense for some
t > 0. It’s easily seen that t ≥ r/2, where r ≫ 0 is the constant
featuring in the hypothesis that (Q(p))p∈Π is sufficiently separated.
Let u be a constant greater than 2t. We can construct a graph, K,
with vertex set Π, by deeming two points p, q ∈ Π to be adjacent if
ρ(Q(p), Q(q)) ≤ u.

Definition. We refer to K as the u-nerve of (Q(p))p∈Π.

In fact, for the purposes of Section 9, we shall need a slightly more
general notion. For this, we allow ourselves two constants, u2 ≥ u1 >
2t, and say that K is a nerve for (Q(p))p∈Π if it contains the u1-nerve
and is contained in the u2-nerve. When we speak about nerves, it
will always be understood that the constant u1 is sufficiently large (i.e.
greater than 2t ≫ 0).

Now, it’s easily seen that a nerve, K, is connected, and so has a
combinatorial path metric, dK . Moreover, by standard elementary ar-
guments, we see that (K, dK) is quasiisometric to (X, σ). We observed
in Section 5 that hyperbolicity is a quasiisometry invariant for path-
pseudometric spaces. We can thus conclude immediately that:

Lemma 7.5. Suppose (Q(p))p∈Π is a quasidense sufficiently separated
system of quasiconvex sets. Then, any nerve for (Q(p))p∈Π is hyper-
bolic.

(One could give a direct proof of this, without explicitly introducing
the pseudometric, σ, though the argument becomes more complicated.
A more general argument is given for Propostion 7.12.)

Suppose that π is a path in a nerve, K, of (Q(p))p∈Π. For the mo-
ment, let’s assume that π = p0p1 . . . pn is finite, where pi ∈ Π. For
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each i ∈ {1, . . . , n − 1}, we let βi be the path [Q(pi), Q(pi+1)] from
Q(pi) to Q(pi+1). Thus, length βi ≃ ρ(Q(pi), Q(pi+1)) ≤ u2. As usual,
we connect the paths, βi, together by geodesics segments to give us
a path γ = γ(π) = β0 ∪ α1 ∪ β1 ∪ · · · ∪ αn−1 ∪ βn−1. Let α ⊆ γ
be the union of the αi. Thus, (γ, α) is a polygonal path. Note that
L(γ, α) =

∑n−1
i=0 length βi is bounded above by a linear function of n.

If π is an arc, the (γ, α) is efficient. If π is also quasigeodesic in K,
then (γ, α) is a σ-quasigeodesic. It follows that γ is a ρ-quasigeodesic.
Note that we are free to attach geodesic arcs α0 and αn to either end
of γ, with ∂α0 ⊆ Q(p0) and ∂αn ⊆ Q(pn), and the same argument
shows that α0 ∪ γ ∪ αn is a ρ-quasigeodesic, joining an arbitrary point
of Q(p0) to an arbitrary point of Q(pn). As a result, we may con-
clude (via Lemma 5.5) that γ is a bounded distance from the path
[Q(p0), Q(pn)].

We can apply these constructions to rays and biinfinite paths in K
as well as to cycles and circuits.

In summary, to each path π in K, we have associated a polygo-
nal path γ(π), or more properly (γ(π), α(π)), in X with the following
properties:

Lemma 7.6. If π′ is a subpath of π then γ(π′) is a subpath of γ(π). If
π is an arc, then γ(π) is efficient. If π is a quasigeodesic arc, then γ(π)
is a quasigeodesic in (X, ρ). If π is a finite quasigeodesic arc connecting
p to q in Π, the γ(π) is a bounded distance from [Q(p), Q(q)]. (Here
the bounds given by the conclusions, depend only on the bounds implicit
in the hypotheses.)

We now finally introduce the assumption of local finiteness into the
proceedings:

Lemma 7.7. Suppose that (Q(p))p∈Π is a locally finite sufficiently sep-
arated system of quasiconvex sets. Then, any nerve of (Q(p))p∈Π is
fine.

(We have only formally defined “nerve” under the assumption that
(Q(p))p∈Π is quasidense, though here this hypothesis is irrelevant.)

Proof. Suppose π is a circuit in K. Let (γ(π), α(π)) be the efficient
closed polygonal path given by Lemma 7.6. Now, there is a bound
(linear in n) on the quantity L(γ(π), α(π)), and hence, by Corollary
7.2, a bound (quadratic in n) on length γ(π). This bound, say C(n),
depends only on n and the hyperbolicity constant.

Suppose p0, p1 ∈ Π = V (K) are adjacent in K. Let δ = [Q(p0), Q(p1)].
If π is a circuit of length n containing the edge p0p1, then δ ⊆ γ(π).
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Thus, γ ⊆ N(δ, C(n)). If q ∈ π ∩ Π, then ρ(δ, Q(q)) ≤ C(n). By local
finiteness of (Q(p))p∈Π, there are only finitely many possibilities for q,
and hence for the circuit π. In other words, there are only finitely many
circuits of a given length in K containing any given edge. This shows
that K is fine. �

Combining Lemmas 7.5 and 7.7 we get:

Proposition 7.8. Suppose that (Q(p))p∈Π is a locally finite quasidense
sufficiently separated system of quasiconvex subsets of X. Then any
nerve of (Q(p))p∈Π is fine and hyperbolic.

Note that if X is proper (i.e. complete and locally compact), then
the hypotheses that (Q(p))p∈Π is locally finite is redundant.

We now want to apply this to geometrically finite actions on a proper
hyperbolic space.

Suppose then that (X, ρ) is a taut proper hyperbolic length space,
and that Γ acts as a minimal geometrically finite group on X. Let
Π ⊆ ∂X be the set of (bounded) parabolic points. We can view Π as
a Γ-set, which we have already seen is cofinite (Proposition 6.15). The
vertex stabilisers are precisely the maximal parabolic subgroups.

By Proposition 6.13, we can find a sufficiently separated system,
(B(p))p∈Π, of horoballs for Γ. Assuming that Π 6= ∅, this system is
necessarily quasidense. Let K be a Γ-invariant nerve for the system
(B(p))p∈Π. (For example, take K to be the u-nerve for some sufficiently
large u.) Since (X\

⋃
p∈Π int B(p)) is compact, it is easily seen that K/Γ

is finite. Thus, K is a (Γ, Π)-graph. By Proposition 7.8, K is fine and
hyperbolic. If, in addition, we assume that all peripheral subgroups
are finitely generated, then we conclude that Π is a hyperbolic Γ-set.
In summary, we have shown:

Proposition 7.9. Suppose that Γ acts as a (minimal) geometrically
finite group on a (taut) proper hyperbolic length space, X. Suppose that
all maximal parabolic subgroups are finitely generated. Let Π ⊆ ∂X be
the set of (bounded) parabolic points. Then, Π is a hyperbolic Γ-set.

(From the discussion of Section 6, we see that the hypotheses of
minimality and tautness are superfluous here.)

In other words, we have shown that a geometrically finite group is
hyperbolic relative to its maximal parabolic subgroups.

Putting these various results together, we can now conclude:

Theorem 7.10. Definition 1 and Definition 2 of the Introduction are
equivalent.
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Proof. To deduce Definition 1 from Definition 2, put together Propo-
sition 4.9, Lemma 3.7 and Theorem 3.8, as discussed at the end of
Section 4. For the converse, use Proposition 7.9 �

It is possible for the same group, Γ, to act as a minimal geometrically
finite group, on two taut proper hyperbolic length spaces, say X and
X ′, with same set, G, of peripheral (i.e. maximal parabolic) subgroups.
The spaces, X and X ′, need not be quasiisometric. However, we shall
see in Section 9, that the boundaries ∂X and ∂X ′ are Γ-equivariantly
homeomorphic.

Note that one of these spaces, X ′, could be taken to be the space
arising from the construction of Section 4 (for example, starting with
the nerve of X). Now, ∂X ′ is, by definition, the boundary, ∂(Γ,G),
of the relatively hyperbolic group (Γ,G). We shall therefore conclude
that ∂X is Γ-equivariantly homeomorphic to ∂(Γ,G).

We shall finish this section with a proof of the following result which
is described in [Gers] (although the argument presented there contains
a gap, of no consequence to the remainder of that paper).

Theorem 7.11. Suppose that Γ is a hyperbolic group, and that G is a
collection of infinite quasiconvex subgroups. Suppose that G is invariant
under conjugacy, and that there are finitely many conjugacy classes.
Then, Γ is weakly hyperbolic relative to G. If, in addition, each element
of G is equal to its normaliser, and the intersection of any distinct pair
of elements of G is finite, then Γ is hyperbolic relative to G.

The proof amounts to a variation on Proposition 7.8 where we drop
the assumption of sufficient separation. Of course, this gives an alter-
native route to Proposition 7.8 from that already described. However,
since the additional techniques are not required elsewhere, we prefer to
view it as a supplement to the main theme of this paper.

Let us return, for the moment, to the general setting of a hyperbolic
space (not necessarily proper). We shall show:

Proposition 7.12. Let (X, ρ) be a hyperbolic space, and let (Q(ρ))p∈Π

be a quasidense collection of uniformly quasiconvex subsets of X. Then,
any nerve of (Q(p))p∈Π is hyperbolic.

Recall what this means. We are assuming that (Q(p))p∈Π is t-dense
for some t ≥ 0. By definition, a nerve, K, is a graph with vertex set
Π, and with p, q ∈ Π adjacent if ρ(Q(p), Q(q)) ≤ u1 and not adjacent
if ρ(Q(p), Q(q)) > u2 where u2 ≥ u1 > 2t are fixed. For Proposition
7.12, we shall need to insist that u1 ≫ 0. This condition was automat-
ically satisfied in the case where the quasiconvex sets were sufficiently
separated.
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The argument is similar to that of the previous results, except that
we need to bring Proposition 5.7 into play. As usual, we shall verify
the thin triangle property.

Suppose that π = p0p1 · · · pn is a geodesic arc of length n in K. Thus,
p0, p1, . . . , pn ∈ Π are distinct. Let γ = β0 ∪α1 ∪ β1 ∪ · · · ∪αn−1 ∪ βn−1

be a broken geodesic, where βi is a geodesic of length � u2 connecting
Q(pi) to Q(pi+1), and αi is a geodesic with both endpoints in Q(pi).
Among all such broken geodesics, we choose γ to have length close to
minimal.

We claim that γ has bounded backtracking. In other words, there
is some l ≥ 0, depending only on the hyperbolicity constant (and qua-
siconvexity constant) and the quasidensity constant, t, such that the
backtracking of γ, in the sense defined in Section 5, is at most l Since
the geodesics βi all have bounded length, we just want to check if i < j
then αi and αj don’t backtrack a distance more than l.

Suppose they did. Choose points z ∈ αi and w ∈ αj with ρ(z, w) ≃ 0,
and such that z is closest to the initial endpoint of αi with the property
that such a w exists. By quasiconvexity, we can find z′ ∈ Q(pi) and
w′ ∈ Q(pj) close to z and w respectively. Since ρ(z′, w′) ≃ 0 ≪ u1,
we have ρ(z′, w′) ≤ u1, so that pi and pj are adjacent in K. Since π is
geodesic, it follows that j = i + 1. We now replace βi with [z′, w′] and
adjust αi and αi+1 accordingly. By choosing l sufficiently large (which
we can done a-priori), we see that this significantly reduces the length
of γ, contradicting approximate minimality. This proves the claim that
γ has bounded backtracking.

Suppose that γ connects x ∈ Q(p0) to y ∈ Q(pn). Since π is geodesic,
and (Q(p))p∈Π is quasidense, we see that n is bounded above by a
linear function of ρ(x, y). Also, by Proposition 5.7, it follows that
length γ − ρ(x, y) is bounded by a linear function of n. Thus, length γ
is bounded by a linear function of ρ(x, y).

Now, this argument applies equally well to any subpath of γ, and so
we see that γ is, by definition, a quasigeodesic. (In fact, by Lemma
5.6, it we see that any subexponential bound in Proposition 5.7 would
suffice.)

From here, the argument proceeds as before. Given a geodesic trian-
gle, (π1, π2, π3) in K, we get a quasigeodesic triangle, (γ1, γ2, γ3) in X.
By Lemma 5.5, this has a centre in X. By quasidensity of (Q(p))p∈Π,
this gives rise to a centre of (π1, π2, π3) in K as required.

We finally note that since u1 > 2t, by quasidensity, K, is connected.
This proves Proposition 7.12.
In general, of course, the nerve need not be fine. For this, we need

an additional hypothesis on our collection of quasiconvex sets.
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We shall say that (Q(p))p∈Π has bounded penetration (cf. [Fa]) if,
given any r ≥ 0, there is some D ≥ 0 such that for all distinct p, q ∈ Π,
the set N(Q(p), r) ∩ N(Q(q), r) has diameter at most D. In fact, it is
enough to assume this for some fixed r ≫ 0 — the statement for all r
then follows. Another way to view this condition is that the “projec-
tion” of any set Q(p) onto any other set Q(q) has bounded diameter.
Note that bounded penetration is clearly implied by sufficient separa-
tion.

Under this additional hypothesis, it is clear that if π is any arc in
K, and γ is an associated broken geodesic in X as constructed above,
then γ has bounded backtracking. By applying the same argument to
a circuit π, we see that there is a (linear) bound on the length of γ in
terms of the length of π.

The following follows exactly as in Lemma 7.7:

Lemma 7.13. Suppose that (Q(p))p∈Π is a locally finite collection of
uniformly quasiconvex sets with bounded penetration. Then any nerve
of K is fine.

We can now prove Theorem 7.11:

Proof. Suppose that G is a disjoint union of conjugates H1, . . . , Hk.
Any quasiconvex subgroup of a hyperbolic group is of finite index in
its commensurator (in this case, the unique maximal commensurable
subgroup, and the setwise stabiliser of its limit set). This commensu-
rator is itself quasiconvex, and equal to its normaliser. Thus, without
loss of generality, we can assume that each element of G is equal to its
normaliser. Let G be a disjoint union of conjugates of H1, . . . , Hk ∈ G.

Let (X, ρ) be a graph on which Γ acts freely with finite quotient,
X/Γ. We can assume that the graph X/Γ has at least k vertices. For
each i ∈ {1, . . . , k}, choose a vertex, vi, of X, so that v1, . . . , vk project
to distinct vertices of X/Γ.

Now, if G ∈ G, then G = gHig
−1 for some i ∈ {1, . . . , k} and

g ∈ Γ. Let Q(G) = gHivi. Since Hi is equal to its normaliser, this
is independent of the choice of g. Moreover this construction is Γ-
equivariant, i.e. Q(gGg−1) = gQ(G) for all G ∈ G and g ∈ Γ. Also, if
gQ(G) ∩ Q(G) 6= ∅, then g ∈ G.

The sets Q(G) are uniformly quasiconvex. Moreover, they are dis-
joint, and so form a locally finite collection. Let K be a nerve of
(Q(G))G∈G. Thus, G is precisely the set of vertex stabilisers of K. By
Proposition 7.12, K is hyperbolic. By local finiteness of (Q(G))G∈G,
there are only finitely may Γ-orbits of edges. Thus, by definition, Γ is
weakly hyperbolic relative to G.
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For the second statement, we want to verify that (Q(G))G∈G has
bounded penetration. Suppose, to the contrary, that there are se-
quences of vertices, (x1)i, (yi)i, (zi)i and (wi)i, and groups Gi, G

′
i ∈ G,

with Gi 6= G′
i, xi, yi ∈ Q(Gi), x′

i, y
′
i ∈ Q(G′

i), with ρ(xi, x
′
i) and ρ(yi, y

′
i)

bounded, and with ρ(xi, yi) → ∞. By local finiteness of X, we can
assume that yi and y′

i are constant, hence Gi = G and G′
i = G′ are

constant. In summary, we have sequences xi ∈ Q(G) and x′
i ∈ Q(G′),

with ρ(xi, x
′
i) bounded, but with ρ(xi, xj) unbounded. Since X is lo-

cally finite, it follows that on passing to a subsequence, we can find
gi ∈ Γ such that xi = gix0 and x′

i = gix
′
0. But now it follows that

gi ∈ G ∩ G′. By hypothesis there are only finitely many such gi giving
us a contradiction.

Finally, by Lemma 7.13, it follows that K is fine. Every element
of G, being quasiconvex, is finitely generated. Thus, Γ is hyperbolic
relative to G. �

8. Fine hyperbolic graphs.

In this section, we shall explore further the properties of fine hy-
perbolic graphs. This seems to be a fairly robust notion, and such
graphs share many of the properties of locally finite hyperbolic graphs.
The discussion will set the scene for the description of boundaries of
relatively hyperbolic groups in Section 9.

In the case of 2-vertex connected graphs, we can construct the space
X(Kn) where n is any sufficiently large number so that Kn is sim-
plicially hyperbolic, as discussed in Section 3. Indeed this space is
potentially a useful tool in studying such graphs, as we shall see in
Section 9. In particular, the boundary we shall define for K can be
canonically identified with the usual Gromov boundary of X(Kn).

Recall that a graph is fine if every edge is contained in finitely many
circuits of length at most n. We do not place any bound on this number,
though it is clear that one can easily reinterpret many of the results here
for “uniformly fine” hyperbolic graphs, where this number is controlled
as a function of n. Thus, various sets which are proven to be finite
here will be seen to have bounded cardinality in that case. All the fine
graphs of interest in studying relatively hyperbolic groups are uniformly
fine in this sense.

Another point worth noting is that for hyperbolic graphs (i.e. graphs
which are Gromov hyperbolic as path metric spaces), it is sufficient to
check fineness for circuits of a certain bounded length:

Proposition 8.1. Given k ∈ N there is a number n(k) such that if K
is a hyperbolic graph of hyperbolicity constant k with the property that
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any set of circuits of length at most n(k) containing any given edge is
finite, then K is fine. (In fact, n(k) can be taken to be a linear function
of k.)

Proof. The argument is a variation one of the standard arguments
for deriving a linear isoperimetric inequality from the “thin triangles”
property (cf. [Bo1]). In general, the idea is to inductively cut any cycle
into (a linearly bounded number of) cycles of bounded length. Here,
we perform essentially the same construction, but taking care to ensure
that if we start with a circuit, then we end up only with circuits. Only
the inductive step is relevant here. We prove, by induction on n start-
ing at n = n(k), that there are only finitely many circuits of length n
containing any given edge.

Suppose then, that γ is a circuit in K of length greater than n(k).
By a standard argument (see for example, Lemma 6.1.4 of [Bo1]) we
can cut γ into two subarcs, γ1 and γ2, and find a geodesic arc, α, in
K, such that γ1, γ2 and α all have the same pair of endpoints, and
such that length α < min{length γ1, length γ2}. (It is from this result
that the constant n(k) arises.) Moreover, we can suppose that α meets
γ only in these endpoints. For, in the general case, let α1, . . . , αm be
the closures of the components of α \ γ. By considering the successive
distances between the endpoints of these arcs in the induced path-
metric on γ, we see easily that there is some i such that the endpoints
of αi cut γ into two subarcs each of length greater than length αi. We
can then replace α by αi.

Now, let βi = α ∪ γi. Thus, β1 and β2 are circuits with γ ⊆ β1 ∪ β2,
and length βi < length γ. Suppose we fix an edge e ∈ E(γ). Without
loss of generality, e ∈ E(β1). By the induction hypothesis, there are
only finitely many possibilities for β1. Since β1 ∩ β2 contains at least
one edge, there are thus only finitely many possibilities for β2. Since
γ ⊆ β1 ∪ β2, there are finitely many possibilities for γ, as required. �

From now on, we shall assume that K is a fine hyperbolic graph with
combinatorial metric d = dK . Let ∂K be the usual Gromov boundary
of K (as discussed in Section 5). This caries a natural topology, though
for the moment, we just regard it as a set.

Suppose f, g : N −→ N are functions. We write f ≤ g to mean that
f(n) ≤ g(n) for all n ∈ N. We write 1N for the identity function. We
are interested here only in linear functions, or function bounded above
by linear functions. If f ≥ 1N is such a function, an “f -quasigeodesic”
arc is an arc β such that length α ≤ f(d(x, y)) for any subarc, α of β,
where x, y are the endpoints of α. Thus, a 1N-quasigeodesic arc is a
geodesic.
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We stress that thoughout this section we are only interested in quasi-
geodesic arcs, i.e. paths which never return to the same vertex. This
is essential to the application of the fineness assumption.

Given a, b ∈ V (K)∪∂K, we write Ff(a, b) for the set of f -quasigeodesic
arcs from a to b, and write Ff (a, b) =

⋃
Ff(a, b). Thus, Ff(a, b)

is a connected subgraph of K. We shall abbreviate F1N
(a, b) and

F1N
(a, b) to F(a, b) and F (a, b) respectively. Clearly, if f ≤ g, then

Ff(a, b) ⊆ Fg(a, b). Also, if c ∈ F (a, b), then F (a, c) ⊆ F (a, b). For
any a ∈ ∂K, we set Ff (a, a) = Ff(a, a) = ∅.

If α, β ∈ Ff(a, b), then there is a constant r ≥ 0, depending only on
the hyperbolicity constant and f , such that β ⊆ N(α, r).

Note that if a, b ∈ V (K), then F (a, b) is finite, by fineness. More
generally, we have:

Lemma 8.2. For any a, b ∈ V (K) ∪ ∂K and any linear function, f ,
the graph Ff(a, b) is locally finite.

Proof. Let α be any geodesic from a to b. Since Ff (a, b) ⊆ N(α, r), it’s
enough to show that Ff (a, b) ∩ N(x, r) is finite for all x ∈ V (α). For
simplicity, we shall assume that a, b ∈ ∂K, or at least, that d(x, a) ≥ 4r
and d(x, b) ≥ 4r. The remaining cases are dealt with similarly.

Let y1, y2 ∈ V (α) be vertices on either side of α such that d(x, y1) =
d(x, y2) = 4r. Suppose that z ∈ V (Ff(a, b))∩N(x, r). Then, z ∈ V (β)
for some β ∈ Ff(a, b). The point z divides β into two subarcs β1

and β2. Since z ∈ N(x, r) and β ⊆ N(α, r), it is easily seen that
d(y1, β1) ≤ 2r and d(y2, β2) ≤ 2r. Let δi be a geodesic connecting yi to
the nearest point, zi, in βi. Let ǫ be subarc of β connecting w1 to w2,
and let γ = δ1 ∪ ǫ∪ δ2. Thus, γ is an arc of bounded length connecting
y1 and y2 and containing z. By fineness, there are only finitely many
possibilities for γ and hence for z. �

Using Lemma 8.2, it’s not hard to see that if a, b, c ∈ V (K) ∪ ∂K,
then the set V (Ff (a, b)) ∩ V (Ff (b, c)) ∩ V (Ff(c, a)) is finite. Also, for
suitable f , depending only on the hyperbolicity constant, this set is
non-empty, provided that no two of a, b, c are both equal to the same
point of ∂K. This leads naturally to a strong notion of a centre of a
triple of three points. We shall not pursue this notion further here,
so some of the subsequent constructions could be rephrased in these
terms.

Lemma 8.3. Suppose f ≥ 1N is a linear function, and e ∈ E(K).
Then there is a finite set Ef(e) ⊆ E(K) with the property that if α
and β are f -quasigeodesic arcs connecting the same pair of points of
V (K) ∪ ∂K and with e ∈ E(α), then Ef(e) ∩ E(β) 6= ∅.
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Proof. Suppose a1, a2 ∈ V (K) ∪ ∂K and α, β ∈ Ff(a1, a2), with e ∈
E(α). We can suppose that e /∈ E(β). We aim to construct a circuit,
γ, of bounded length, with e ∈ E(γ) and E(β)∩E(γ) 6= ∅. By fineness,
there are only finitely many possibilities for γ. We can thus set Ef(e)
to be the union of all sets E(γ) as γ ranges over all such possibilities.

Let α1, α2 be the components of α \ e with endpoints a1, a2 respec-
tively. Thus, α = α1 ∪ e∪α2. Let ǫ be any geodesic connecting a1 and
a2. Thus, α, β ∈ N(ǫ, r) for some fixed r ≥ 0.

Suppose first that α and β meet only in their endpoints (i.e. αi∩β =
{ai} if ai ∈ V (K) and αi ∩ β = ∅ if ai ∈ ∂K). We construct arcs δi

connecting αi to β as follows.
Let x ∈ V (ǫ) be a point with d(x, e) ≤ r. If d(x, ai) ≤ 4r, set

δi = {ai}. If d(x, ai) > 4r, let xi ∈ V (ǫ) be the vertex of ǫ a distance
4r from x in the direction of ai. Since αi ⊆ N(ǫ, r) and d(xi, αi) ≤ r,
we see easily that d(y1, αi) ≤ 2r. Let yi ∈ V (αi) be a vertex with
d(xi, yi) ≤ 2r. We also choose zi ∈ V (β) with d(xi, zi) ≤ 2r. Let γi

be any geodesic from yi to zi. We can find a subarc, δi, of γi which
meets αi in a single point, y′

i, and meets β in a single point, z′i. By
construction, we see that δ1, δ2 and e are all disjoint. Let α′ be the
subarc of α between y′

1 and y′
2, and let β ′ be the subarc of β between

z′1 and z′2. Note that e ∈ E(α′) and E(β ′) 6= ∅. Let γ be the circuit
α′ ∪ δ1 ∪ β ′ ∪ δ2. We see that γ has bounded length, e ∈ E(γ) and
E(γ) ∩ E(β) 6= ∅ as required.

To deal with the general case, note that some subarc, β0, of β must
connect a vertex of α1 to a vertex of α2 (where we allow for the pos-
sibility that β0 ∩ αi = ∅ and β0 has endpoint ai ∈ ∂K). By choosing
a minimal such subarc, we can suppose that β0 meets α only in these
points. Let α0 be the subarc of α connecting these points. Thus,
e ∈ α0. By replacing α by α0 and β by β0, we are reduced to the
situation already dealt with. �

The next step will be to define a boundary of K. The construction is
analogous to that described in [Bo5]. This boundary will be a compact
hausdorff space, incorporating V (K) as a dense subset. Vertices of
finite degree in K will be isolated. In the case where K is 2-vertex con-
nected, this boundary can be identified with the usual Gromov bound-
ary of the complex X(Kn) for sufficiently large n, as constructed in
Section 4. Details of this will be discussed in Section 9.

Let ∆K = V (K)∪∂K. We put a topology on ∆K as follows. Given
a ∈ ∆K and A ⊆ V (K), we write

M(a, A) = {b ∈ ∆K | A ∩ V (F (a, b)) ⊆ {a}}.
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If A, B ⊆ M , then M(a, A)∩M(a, B) = M(a, A∪B). In particular, if
A ⊆ B, then M(a, B) ⊆ M(a, A). Note also that a ∈ M(a, A).

We shall take the collection {M(a, A)}A as A ranges over all finite
subsets of V (K), as a basis for the topology about a. In other words, we
define a set U ⊆ ∆K to be open if for all a ∈ U there is a finite subset
A ⊆ V (K) such that M(a, A) ⊆ U . The above observations show that
this is indeed a topology. We shall eventually see that M(a, A) is a
neighbourhood of a in this topology, so the collection {M(a, A)}A is
a neighbourhood base for a. First, however, we describe a number of
equivalent bases for a.

Note that M(a, A) is the set of points b ∈ ∆K such that each ge-
odesic from a to b meets A, if at all, in a. We could similarly use
quasigeodesics. Thus, given a function, f : N −→ N, with f ≥ 1N and
f bounded by a linear function, we define

Mf (a, A) = {b ∈ ∆K | A ∩ V (Ff(a, b)) ⊆ {a}}.

Thus, if f = 1N, we recover M(a, A). We similarly define M ′
f (a, A) to

be the set of points b ∈ ∆K such that there exists an f -quasigeodesic
arc, β, from a to b with V (β) ∩ A ⊆ {a}.

We can do a similar thing with edges. Given a subset I ⊆ E(K), we
write

Pf(a, I) = {b ∈ ∆K | I ∩ E(Ff(a, b)) = ∅}.

We set P ′
f(a, I) to be the set of b ∈ ∆K such that there exists an f -

quasigeodesic arc from b to a with E(β) ∩ I = ∅. In each of the above
definitions we shall drop the subscript f if f = 1N, i.e. if we are dealing
with geodesics.

We claim that we can obtain equivalent bases for the point a ∈ ∆K
by taking any of the collections {Mf (a, A)}A, {M ′

f(a, A)}A, {Pf(a, I)}I

or {P ′
f(a, I)}I , where f ≥ 1N is any fixed function bounded above by

a linear function, and where A or I ranges over all finite subsets of
V (K) or E(K) respectively. We shall also see that if a ∈ V (K), then
is sufficient to allow I to range only over finite subsets of edges incident
on a.

To prove these facts, we first make some trivial observations. Firstly,
note that Mf (a, A) ⊆ M ′

f (a, A) and Pf (a, I) ⊆ P ′
f(a, I). Also, if f ≤ g,

then

Mf(a, A) ⊇ Mg(a, A)

M ′
f(a, A) ⊆ M ′

g(a, A)

Pf (a, I) ⊇ Pg(a, I)

P ′
f(a, I) ⊆ P ′

g(a, I).
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Now, suppose I ⊆ E(K) is finite and f ≥ 1N. Let J =
⋃

e∈I Ef(e),
where Ef (e) is the finite set of edges associated to e as given by Lemma
8.3. We see that P ′

f(a, J) ⊆ Pf(a, I). Since Pf(a, I) ⊆ P ′
f (a, I), we

deduce the equivalence of {Pf(a, I)}I and {P ′
f(a, I)}I as I ranges over

all finite subsets of E(K).
Given f, g ≥ 1N, let h = max{f, g}. Putting the above facts together,

we derive the equivalence of {Pf(a, I)}I with {Ph(a, I)}I and hence
with {Pg(a, I)}I . Thus, up to equivalence, these bases are independent
of f .

Now, given any finite I ⊆ E(K), let A(I) ⊆ V (K) be the set of
vertices incident on some element of I. Thus, Mf (a, A(I)) ⊆ Pf (a, I),
and M ′

f (a, A(I)) ⊆ P ′
f(a, I).

Conversely, given any finite set A ⊆ V (K), let I(A) be the set of
edges of

⋃
b∈A E(Ff (a, b)) which are incident on some element of A. By

Lemma 8.2, I(A) is finite. We now have Pf(a, I(A)) ⊆ Mf (a, A) and
P ′

f(a, I(A)) ⊆ M ′
f (a, A).

We have thus derived the equivalence with the bases {Mf (a, A)}A

and {M ′
f (a, A)}A as A ranges over all finite subsets of V (K).

Finally, note that if a ∈ V (K), then in the last but one paragraph, we
could instead have taken I(A) to be the set of edges of

⋃
b∈A E(Ff(a, b))

which are incident to a. We again get Pf(a, I(A)) ⊆ Mf (a, A) and
P ′

f(a, I(A)) ⊆ M ′
f (a, A). We thus derive the equivalence with the bases

{Pf(a, I)}I and {P ′
f(a, I)}I as I ranges over finite subsets of edges

incident on a.
This proves all the equivalences we previously asserted.
In applications, a certain class of quasigeodesic arc frequently arises.

Suppose α and β are geodesics meeting only at a common endpoint,
a ∈ V (K). Suppose, moreover, that a is the nearest point of α to
each point of β. Then α ∪ β is an f0-quasigeodesic, where we can
take f0 to be a fixed linear function (with multiplicative constant 1).
We shall abbreviate Mf0

(a, A) to M0(a, A) etc. Note that if γ is any
geodesic, and x ∈ ∆K, we can “drop a perpendicular”, β, from x to
γ at some point y ∈ V (γ), which we call “foot” of the perpendicular.
Now, y separates γ into two (possibly trivial) subarcs, α1 and α2, so
that β ∪ α1 and β ∪ α2 satisfy the above conditions, and so are f0-
quasigeodesic arcs. In the case where x ∈ ∂K, the existence of a
perpendicular calls for a diagonal sequence argument, noting that there
are only finitely many possibilities for y, and hence for each of the
successive vertices of β, using Lemma 8.2. The same argument allows
us to drop a perpendicular from any element of ∆K to any finite subset
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of V (K). This last observation will be used in the proof of Proposition
8.6.

We are finally ready to verify that {M(a, A)}A is indeed a neighbour-
hood base for any a ∈ ∆K. In other words, given any finite A ⊆ V (K),
we can find a finite B ⊆ V (K) such that if b ∈ M(a, B) then the exists
a finite C ⊆ V (K) such that M(b, C) ⊆ M(a, A). In fact, from the
equivalence of the bases we have described, it is enough to verify the
following statement. Given any finite A ⊆ V (K) and b ∈ M0(a, A) we
have M0(b, A) ⊆ M(a, A).

We can suppose that b 6= a. Given any c ∈ M0(b, A), let α be any
geodesic from a to c. We drop a perpendicular, β from b to α, whose
foot divides α into two subarcs α1 and α2 so that γ1 = β ∪ α1 and
γ2 = β ∪ α2 are both f0-quasigeodesic arcs. Since b ∈ M0(a, A), we
have γ1 ∩ A ⊆ {a}. Since c ∈ M0(b, A), we have γ2 ∩ A ⊆ {b}. Since
α ⊆ γ1 ∪ γ2, we conclude that α ∩ A ⊆ {a}. Since α was arbitrary, it
follows that c ∈ M(a, A). Thus M0(b, A) ⊆ M(a, A) as claimed.

We remark that one can go on to show fairly easily that the collection
{M(a, A)} as a ranges over V and A ranges over all finite subsets of
V , forms a base for the topology on ∆K. It this follows that ∆K is
second countable.

We now move on to study properties of the boundary, ∆K. Firstly,
we note:

Lemma 8.4. ∆K is hausdorff.

Proof. Suppose a, b ∈ ∆K are distinct. Choose an edge e ∈ E(F (a, b)).
Thus e lies on a geodesic α from a to b. By dropping a perpendicular
to α as in the previous argument, we see that P0(a, {e})∩P0(b, {e}) =
∅. �

Proposition 8.5. The subspace topology on ∂K induced from ∆K
agrees with the usual boundary topology on ∂K.

Proof. In the boundary topology, a neighbourhood base for a point a ∈
∂K is given by the collection {M(a, A)}A as A ranges over all bounded
subsets of V (K). We therefore need to replace bounded subsets by
finite subsets. In other words, given a bounded subset A ⊆ V (K) we
want to find a finite subset B ⊆ V (K) such that M(a, B) ⊆ M(a, A).

Fix any vertex c ∈ V (K). By Lemma 8.2, the set V (F0(a, c)) is
locally finite. Thus, for any r ∈ N, the set B(r) = N(c, r)∩V (F0(a, c))
is finite. We claim that M(a, B(r)) = M(a, N(c, r)). To see this,
suppose that b /∈ M(a, N(c, r)). Then there is some geodesic α from
a to b with d(c, α) ≤ r. Let β be a geodesic from c to a nearest
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point, x ∈ V (α). Concatenating β with a subarc of α, we get an f0-
quasigeodesic arc connecting c to a and containing the point x. Thus,
x ∈ B(r), and so α ∩ B(r) 6= ∅. It follows that b /∈ M(a, B(r)). Since
M(a, N(c, r)) ⊆ M(a, B(r)), the claim follows.

Now, any bounded set, A ⊆ V (K), lies inside N(c, r) for some r ≥ 0,
and so M(a, B(r)) ⊆ M(a, A) as required. �

We note that V (K) is dense in ∆K. This is easily seen directly from
the definition of the topology. If x is any point of ∂K, choose any
geodesic ray in K converging on x. The sequence of vertices of this
geodesic tends to x in the topology of ∆K.

We also remark that if x ∈ V (K), and n ∈ N, then the n-ball,
N(x, r) ⊆ V (K) is closed in ∆K. In fact, if V0(K) is infinite, then x is
the unique accumulation point of depth n in N(x, r).

For the next proof, we shall need the following “shortcutting” pro-
cedure.

Suppose that a, b ∈ ∆K are not both equal to the same point of ∂K,
and that c ∈ V (K). Suppose that α and β are geodesics connecting a
to c and c to b respectively. We want to shortcut c by jumping from
α to β near a centre of the the points a, b, c. (Here we use “centre” in
the sense of a Gromov hyperbolic space, as discussed in Section 5. It
is well defined up to a bounded set.) If α and β meet at some point
near the centre, then we choose the nearest intersection point on α to
a. We then jump directly from α to β at this point. If there is no
such intersection point, choose any points x ∈ V (α) and y ∈ V (β)
near the centre, and let δ be a geodesic from x to y. By replacing δ
by a suitable subarc, if necessary, we can suppose that α ∩ δ = {x}
and β ∩ δ = {y}. Let α′ be the subarc of α between a and x, and let
β ′ be the subarc of β between b and y. Let γ = α′ ∪ δ ∪ β ′. Thus, γ
is an f1-quasigeodesic arc from a to b, where f1 depends only on the
hyperbolicity constant. We shall abbreviate Mf1

(a, A) to M1(a, A) etc.
Note that since length δ is bounded, this shortcutting only changes
things in a bounded neighbourhood of α, where the bound depends
only on the hyperbolicity constant. Note also that if a ∈ V (K) and
c 6= a, we can easily arrange that the edge of α incident to a also lies
in γ.

We are now ready for:

Proposition 8.6. ∆K is compact.

Proof. We begin with the observation that if A ⊆ V (K) is finite, then
∆K =

⋃
a∈A M ′(a, A). This can be seen by dropping a perpendicular

from any point of ∆K to A.
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Now, let (An)n∈N be an increasing sequence of finite subsets of V (K)
with V (K) =

⋃
n∈N

An. Suppose that U is an open cover of ∆K. We
claim that there is some n such that for all a ∈ An, there is some U ∈ U
such that M ′(a, An) ⊆ U . This gives rise to a finite subcover of ∆K
by the observation of the first paragraph.

Suppose to the contrary, there for each n there is some point an ∈ An

such that M ′(an, An) is not contained in any element of U .
Suppose first that an = a is constant. Now, a ∈ U for some U ∈ U .

Thus, there is some finite set B ⊆ V (K) such that M ′(a, B) ⊆ U . Now
B ⊆ An for all sufficiently large n, and so we get M ′(a, An) ⊆ M ′(a, B)
contrary to our assumption.

We can therefore assume that the an are all distinct. Fix any x0 ∈
V (K). For each n, we choose some geodesic, αn, connecting x0 to an.

Now x0 ∈ U for some U ∈ U , and so we can find a finite set, I,
of edges incident on x0 such that P ′

1(x0, I) ⊆ U . Moreover, we can
suppose that each endpoint of each edge of I lies in An for all n.

Suppose that I∩E(αn) = ∅. In this case, we claim that M ′(an, An) ⊆
P ′

1(x0, I). To see this, suppose b ∈ M ′(an, An). We connect b to an by
a geodesic, β, with V (β) ∩ An = {an}. In particular, we note that
x0 /∈ V (β). By the shortcutting procedure described earlier, we can
find an f1-quasigeodesic arc, γ, connecting b to x0, with e ∈ E(γ).
Thus, I ∩ E(γ) = ∅. This shows that b ∈ P ′

1(x0, I), as claimed. We
therefore see that M ′(an, An) ⊆ U , again contrary to our assumption.
We deduce that I ∩ E(αn) 6= ∅.

Since I is finite, after passing to a subsequence, we can assume that
the first edge of the geodesics αn is fixed. Let x1 ∈ V (K) be the other
endpoint of this edge. Now, by applying exactly the same argument,
with x1 replacing x0 (and ignoring the first edge of the arcs αn), we
can assume that second edge of each of the geodesics αn is also fixed.
Continuing in this way, and using a diagonal sequence argument, we
can find a fixed geodesic ray, ǫ, emanating from x0, such that for each
n, the geodesic αn agrees with ǫ for at least the first n edges.

Let y ∈ ∂K be the endpoint of ǫ. There is some U ∈ U such that
y ∈ U , and hence some finite set B ⊆ V (K) such that M ′

1(y, B) ⊆ U .
We can suppose that B ⊆ An for all n. Now, B ⊆ N(x0, r) for some
r ≥ 0. Let n be some number much bigger than r. We claim that
M ′(an, An) ⊆ M ′

1(y, B).
To see this, connect y to an by any geodesic α. Since ǫ and αn agree

on an initial segment of length much bigger than r, we see (by the “thin
triangle” property) that d(x0, α) is also much bigger than r. Suppose
that z ∈ M ′(an, An). Then there is a geodesic, β, connecting z to an

meeting An only in the point an. In particular, V (β) ∩ B = ∅, since
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B ⊆ An. We now carry out the shortcutting procedure on α ∪ β, to
obtain an f1-quasigeodesic, γ, from z to y. Since the shortcutting only
changes things on a bounded neighbourhood of α, and since d(x0, α) is
much bigger than r, we get that V (γ)∩B = ∅. Thus, z ∈ M ′

1(y, B) as
claimed.

This shows that M ′(an, An) ⊆ U contrary to our assumption. We
have thus derived a contradiction, proving the result. �

We remark that since ∆K is hausdorff and second countable, it is
also metrisable. In the case where K is 2-vertex-connected, this fact
also follows from the results of Section 9 (since ∆K can be identified
with ∂X(K)).

We finally note that the boundary remains unchanged by some of
the operations described in Section 2.

Suppose that K and L are fine hyperbolic graphs with the same
vertex set, V = V (K) = V (L), and with E(K) ⊆ E(L). Suppose
moreover that if x, y ∈ V are adjacent in L then they are connected by
an arc of length at most p in L. In other words, the metrics dK and
dL are related by dL ≤ dK ≤ pdL. Then, the embedding of K in L is
a quasiisometry, so we get a natural identification of the sets ∂K and
∂L, and hence of ∆K and ∆L.

Now, any geodesic in K is an f -quasigeodesic arc in L, where f is the
map [n 7→ pn]. Thus, if a ∈ ∆K ≡ ∆L, and A ⊆ V , we see that the set
M ′(a, A) ⊆ ∆K as defined in K is a subset of the set M ′

f(a, A) ⊆ ∆L
as defined in L. This shows that the identification map from ∆K to
∆L is continuous. Since ∆K is compact and ∆L is hausdorff, it must
be a homeomorphism. We have shown:

Proposition 8.7. If K ⊆ L is a quasiisometric embedding of fine
hyperbolic graphs with the same vertex set V , then there is a natural
homeomorphism from ∆K to ∆L which is the identity on V .

In particular, in the notation of Section 2, we see that ∆K can be
naturally identified with ∆Kn for any n ∈ N, and indeed with ∆L for
any graph L with K ⊆ L ⊆ Kn.

If K is the graph featuring in the second definition of a relatively
hyperbolic group, (Γ,G), in the introduction, then ∆K can be taken
to be the boundary of (Γ,G). This will be elaborated on in the next
section.

We remark that one can give a unified approach to boundaries of
hyperbolic and relatively hyperbolic groups. If K is a fine hyperbolic
graph, then it is easily verified that the isolated points of ∆K are
precisely the finite degree vertices of K. Now if K is any (Γ, V )-graph,
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we can take the boundary of (Γ,G) to be ∆K minus the set of isolated
points.

9. Boundaries

This section can be viewed a continuation of Section 7. The main
goal will be to show that the boundary of a relatively hyperbolic group
is well defined. We already seen a number of ways of associating a
boundary to such a group, either via geometrically finite groups, as
suggested in Section 6, or via fine hyperbolic graphs, as suggested in
Section 8. We therefore need to relate these constructions. Most of
this can be done without introducing group actions.

We discussed fine hyperbolic graphs in some detail in Section 8. Most
of this is not logically required for the results of this section, though it
helps to set them in context. We shall just need to recall the definition
of the boundary.

Let K be a fine hyperbolic graph, with vertex set V (K) and Gromov
boundary ∂K. Let ∆K = V (K)∪∂K. Given a ∈ ∆K and A ⊆ V (K),
let M(a, A) be the set of points b ∈ ∆K such that any geodesic from
b to a meets A, if at all, only in the point a. We define a set U ⊆ ∆K
to be open if for all a ∈ U , there is a finite set A ⊆ V (K) such that
M(a, A) ⊆ U .

Now, suppose that (X, ρ) is a proper hyperbolic length space. The
(Gromov) boundary, ∂X, is compact metrisable. Suppose Π is a subset
of ∂X, and that (B(p))p∈Π is a sufficiently separated quasidense system
of horoballs. It follows easily that Π is a countable dense subset of ∂X.
Let K be a nerve of (B(p))p∈Π. By definition, the vertex set, V (K), is
precisely the indexing set Π. We can thus identify Π both as a subset
of ∂X and as a subset of ∆K. We aim to show:

Proposition 9.1. There is a homeomorphism from ∆K to ∂X which
fixes Π.

Since Π is dense in ∂X, it follows that this homeomorphism must be
unique.

Before we set about proving this, let’s recall more precisely the rele-
vant definitions. We are assuming that there are constants, r1, r2, r3, r4,
such that (B(p))p∈Π is r1-separated and r2-dense, and such that K con-
tains the r3-nerve of (B(p))p∈Π and is contained in the r4-nerve. We
necessarily have that r1 ≤ r2 and that r3 ≤ r4. We need in addition
that 2r2 < r3 and that r1 is sufficiently large in relation to the hy-
perbolicity constant. In other words, r1 ≤ 2r2 < r3 ≤ r4, and r1 is
large.
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For the purposes of proving Proposition 9.1, it will be convenient to
alter the meaning of the notations ≃, ≃, ≪, etc. and the terminology
“close”, to take account of these new constants. In other words, we
write ζ � ξ to mean that ζ ≤ ξ + c, where c depends on r1, r2, r3, r4 as
well as the hyperbolicity constant. As usual, the value of c at any given
point in an argument is completely determined as a function of these
basic constants, though we won’t bother to explicitly keep track of it.
With this new convention, we can write, for example ρ(B(p), B(q)) ≃ 0
whenever p, q ∈ Π are adjacent in K.

Suppose π is a path in K. As described by Lemma 7.6 we may
construct a polygonal path, γ(π), in X. If p ∈ π∩Π, then γ(π)∩B(p) 6=
∅. Moreover, any point of γ(π) lies close to B(p) for some p ∈ π ∩ Π.
If π is a geodesic, then γ(π) is a quasigeodesic. If π′ ⊆ π connects
p, q ∈ π ∩Π, then γ(π′) ⊆ γ(π) and γ(π′) lies a bounded distance from
[B(p), B(q)]. (In this section, we may as well take [B(p), B(q)] to be
a shortest geodesic connecting B(p) to B(q).) Note that [B(p), B(q)]
lies close to [p, q] \ (B(p) ∪ B(q)).

We want to associate a geodesic, δ(π), in X to a geodesic path, π,
in K. We consider three possibilities. Firstly, if π connects p, q ∈ Π,
we set δ(π) = [p, q]. Secondly, suppose π is a geodesic ray based at
p ∈ Π. Now, γ(π) is a quasigeodesic ray in X, and so converges to some
y ∈ ∂X. Since γ(π) meets infinitely many horoballs in X, we see easily
that y /∈ Π. We set δ(π) = [p, y]. Finally, if π is a biinfinite geodesic,
then γ(π) is a biinfinite quasigeodesic with endpoints x, y ∈ ∂X \ Π.
We set δ(π) = [x, y].

Note that, in the first case, γ(π) lies close to δ(π) \ (B(p) ∪ B(q)).
In the second case, it lies close to δ(π) \ B(p). In the final case, it
lies close to δ(π). Here “close to” means that each lies in a bounded
neighbourhood of the other.

To construct our homeomorphism, we shall also need to associate
geodesics in K with geodesics in X.

Lemma 9.2. Suppose α is a geodesic ray in X, tending to a point, y,
of ∂X \ Π. Then there is a geodesic ray, π, in K such that γ(π) lies a
bounded distance from α.

Proof. Let (xn)∞n=1 be a sequence of points of α with x0 an endpoint of
α, and with ρ(x0, xn) tending monotonically to ∞ (so that xn → y). For
each n, we choose qn ∈ Π so that ρ(xn, B(qn)) ≃ 0. Passing to a subse-
quence if necessary, we can suppose that the qn are all distinct, and that
ρ(xm, B(qn)) ≫ 0 whenever m 6= n. (Here we use the fact that y /∈ Π.)
It follows easily that if 0 < m < n, then ρ(xm, [B(p0), B(pn)]) ≃ 0.
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Now, for each n, we choose a geodesic, πn, in K connecting q0 to
qn. Since γ(πn) runs close to [B(q0), B(qn)], we see that if 0 < m < n,
then xm lies close to B(pm,n) for some pm,n ∈ πn ∩ Π. Since (B(p))p∈Π

is locally finite, we see that for a given m, there are only finitely many
possibilities for pm,n. By a diagonal sequence argument, we can there-
fore suppose that pm,n = pm is independent of n > m. In other words,
pm ∈ πn for all n > m. We set p0 = q0. It’s now easy to see that
the points pm all lie on a geodesic, π, in K emanating from p0. Since
ρ(xm, B(pm)) ≃ 0 and xm → y, we see that π must be infinite, i.e a
geodesic ray. Moreover, γ(π) lies a bounded distance from α as re-
quired. �

By a slight variation on this argument, we can also deduce:

Lemma 9.3. Suppose that α is a biinfinite geodesic in X with both
endpoints in ∂X \Π. Then, there is a biinfinite geodesic, π, in K such
that γ(π) lies a bounded distance from α.

We are now in a position to define the map f : ∆K −→ ∂X, which
we shall eventually prove to be a homeomorphism. We set f |Π to be
the inclusion of Π in ∂X. Suppose a ∈ ∂K. Let π be a geodesic in K
tending to a. We define f(a) to be the endpoint of the quasigeodesic
γ(π) in X. We have already observed that f(a) /∈ Π. By Lemma 9.2
f is surjective. To see that f is injective, it’s enough to show that if
a, b ∈ ∂K are distinct, then f(a) 6= f(b). But we can find rays π and π′

tending to a and b respectively such that π ∪ π′ is a biinfinite geodesic
in K. Now γ(π ∪ π′) is a biinfinite geodesic in X, and its endpoints,
by definition, are f(a) and f(b). Therefore f(a) 6= f(b) as claimed.

Of course, we still have to verify that f is well defined, i.e. does not
depend on the choice of ray π. Suppose that π and π′ are both rays in
K tending to a ∈ ∂K. Let y, y′ ∈ ∂X\Π be the endpoints of γ(π), γ(π′)
respectively. Suppose, for contradiction, that y 6= y′. Using Lemma
9.3, we can find rays τ, τ ′, in K such that τ ∪ τ ′ is a biinfinite geodesic
in K, and such that γ(τ) and γ(τ ′) tend to y and y′ respectively. Let
b, b′ be the endpoints of τ, τ ′ in ∂K. Thus, b 6= b′. By the injectivity
part of the argument, we see that b = a = b′. This contradiction shows
that y = y′ as claimed.

So far, we have constructed a bijective map f : ∆K −→ ∂X. To
show that it is a homeomorphism, we need some preliminary observa-
tions.

Fix a point w ∈ X. Given r ≥ 0, let Π(r) = {p ∈ Π | ρ(w, B(p)) ≤
r}. Thus, Π(r) is finite.
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Suppose that π is a geodesic in K with π ∩ Π(r) = ∅. Since δ(π) is
a bounded distance from

⋃
p∈π∩Π(r) B(p), we see that ρ(w, δ(π)) � r.

Now suppose π is a geodesic ray or segment in K with an endpoint
at p ∈ Π. Suppose that π ∩ Π(r) ⊆ {p}. In this case, we see that
ρ(w, δ(π) \B(p)) � r. Now a simple geometric argument shows that if
δ is any biinfinite geodesic with endpoint at p, then (since w /∈ B(p))
we have ρ(w, δ \ B(p)) � 2ρ(w, δ). In particular, putting δ = δ(π), we
see that ρ(w, δ(π)) � r/2.

Conversely, suppose that A ⊆ Π is finite, and that π is a geodesic
in K satisfying ρ(δ(π),

⋃
p∈A B(p)) ≫ 0. Now, γ(π) is close to δ, and

meets B(p) for each p ∈ π ∩ Π. We thus conclude that π ∩ A = ∅.
We are now ready for the proof of Propostion 9.1:

Proof. We have constructed a bijective map, f : ∆K −→ ∂X. We
need to show that it is a homeomorphism. We first show that it is
continuous. We fix a basepoint, w ∈ X.

Suppose a ∈ ∂K and r ≥ 0. Suppose b ∈ M(a, Π(r)). Let π be a
geodesic connecting a to b in K. Thus δ(π) connects f(a) to f(b) in X.
Now, by the definition of M(a, Π(r)), we have that π∩Π(r) = ∅. From
the previous discussion, we have that ρ(w, δ(π)) � r. In other words,
we can ensure that ρ(w, [f(a), f(b)]) is arbitrarily large, by choosing r
large enough. This shows that f is continuous at a.

Suppose a ∈ V (K) and r ≥ 0. Suppose b ∈ M(a, Π(r)). This time,
we have π ∩ Π(r) ⊆ {a} for any geodesic, π, from a to b in K. From
the earlier discussion, we deduce that ρ(a, δ(π)) � r/2, so we can again
ensure that ρ(w, [f(a), f(b)]) is arbitrarily large. This shows that f is
continuous at a.

We have shown that f is continuous everywhere. It remains to show
that f−1 is continuous.

Suppose, then, that x ∈ ∂X \Π, and that A ⊆ V (K) is finite. Now,
A∪

⋃
p∈A N(B(p), C) =

⋃
p∈A({p}∪N(B(p), C)) is closed in X∪∂X for

all C ≥ 0. Taking C ≫ 0, we see that for all y ∈ ∂X sufficiently close
to x, we get that ρ(δ,

⋃
p∈A B(p)) ≫ 0 for all geodesics δ connecting

x to y. Now, suppose that π is a geodesic in K connecting f−1(x)
to f−1(y). We have ρ(δ(π),

⋃
p∈A B(p)) ≫ 0, so π ∩ A = ∅. Thus,

f−1(y) ∈ M(f−1(x), A). Since A is arbitrary, this shows that f−1 is
continuous at x.

Finally, suppose x ∈ Π, so that f−1(x) = x. Suppose A ⊆ V (K)\{x}
is finite. The same argument shows that f−1(y) ∈ M(x, A) for all
y ∈ ∂X sufficiently close to x. This shows that f−1 is continuous at x.

We have shown that f−1 is continuous everywhere, thus concluding
the proof of Proposition 9.1. �
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We remark that we could have bypassed some of the above proof,
using the fact that a continuous bijection from a compact space to
a hausdorff space is continuous (using Proposition 8.4). The above
argument is perhaps more generally applicable in that we have made
no use of the local compactness of X, other than the fact that the
collection (B(p))p∈Π is locally finite.

Note that, if K is 2-vertex connected, we could apply Proposition
9.1. to the proper hyperbolic space X(K) constructed in Section 3. We
conclude that, in this case, the space, ∆K, we have defined is really
the same as the boundary ∂X(K). This gives another proof of the fact
that ∆K is compact and metrisable in this case.

We now apply this result to geometrically finite groups. Suppose that
Γ acts a geometrically finite group on a taut proper hyperbolic space,
X. Let Π ⊆ ∂X be the set of (bounded) parabolic points, which we
assume to be non-empty. As discussed in Section 7, we can construct
a sufficiently separated Γ-invariant system of horoballs, (B(p))p∈Π, for
Γ. Let r ≫ 0, and let K be the r-nerve of (B(p))p∈Π. Thus, K is a
(Γ, Π)-graph. By Proposition 7.8, K is fine and hyperbolic. From the
naturality of the construction, Γ acts by homeomorphism on ∆K. By
Proposition 9.1, there is a homeomorphism from ∆K to ∂X fixing Π.
This homeomorphism is unique, and hence Γ-equivariant.

We can now prove:

Theorem 9.4. Suppose that X and X ′ are taut proper hyperbolic length
spaces, and that Γ acts as a minimal geometrically finite group on
both X and X ′. Let Π ⊆ ∂X and Π′ ⊆ ∂X ′ be the respective sets
of (bounded) parabolic points. Suppose that there is a Γ-equivariant bi-
jection, f : Π −→ Π′ such that Γ(p) = Γ(f(p)) for all p ∈ Π. Then we
can extend f to a Γ-equivariant homeomorphism f : ∂X −→ ∂X ′.

Proof. We identify Π and Π′ via f . Thus, Π is a Γ-set. Let L and L′ be
Γ-equivariant nerves for the systems of horoballs for the actions of Γ on
X and X ′ respectively. Let K be a (Γ, Π)-graph containing both L and
L′. Thus, K is a nerve for both systems of horoballs. By Proposition
9.1 and the above discussion, we get Γ-equivariant homeomorphisms,
g : ∆K −→ ∂X and g′ : ∆K −→ ∂X ′, both fixing Π. Now let
f = g′ ◦ g−1. This gives the desired homeomorphism. �

We have been considering only minimal geometrically finite actions
and taut hyperbolic spaces. However, as observed in Section 6, there is
no essential loss of generality in doing this. If Γ acts as a geometrically
finite group on a proper hyperbolic space, X, then it acts as a minimal
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geometrically finite group on the taut proper hyperbolic space, join ΛΓ,
where ΛΓ ⊆ ∂X is the limit set of Γ.

Translating Theorem 9.4 into these terms, we see that if we have
geometrically finite action of a group Γ on proper hyperbolic spaces, X
and X ′, with f : Π −→ Π′ as in the hypotheses, then we can extend f to
a Γ-equivariant homeomorphism between the corresponding limit sets.
For geometrically finite kleinian groups (constant negative curvature of
any dimension) this is proven in [Tu].

Theorem 9.4 enables us to make simplifying assumptions about a
geometrically finite action when we are interested in relating properties
of the boundary to properties of the group. Thus, for example, we can
assume that X has the form of a complex built out of ideal hyperbolic
triangles in the manner described in Section 3 (at least, if all peripheral
subgroups are finitely generated). In particular, this puts a strong
control on the geometry of horoballs. This is needed, for example, in
[Bo9].

10. Connectedness of boundaries

In this section, we make a few observations about splittings of rela-
tively hyperbolic groups over finite subgroups. We express such split-
tings in terms of actions of the group on simplicial trees with finite edge
stabilisers and without edge inversions. A splitting is said to be relative
to a certain collection of subgroups if every subgroup in this collection
fixes a vertex of the tree. It is non-trivial if no vertex of the tree is
fixed by Γ. The quotient of the tree by the group gives a representation
of the group as the fundamental group of a graph of groups.

The first result tells us when a boundary is connected:

Proposition 10.1. The boundary, ∂Γ, of a relatively hyperbolic group,
Γ, is connected if and only if Γ does not split non-trivially over any
finite subgroup relative the to peripheral subgroups.

There is also an accessibility result:

Proposition 10.2. Any relatively hyperbolic group can be expressed as
the fundamental group of a finite graph of groups with finite edge groups
and with every peripheral subgroup conjugate into a vertex group, and
with the property that no vertex group splits non-trivially over any finite
subgroup relative to the peripheral subgroups.

We also note:

Proposition 10.3. Suppose a relatively hyperbolic group splits as a
graph of groups with finite edge groups and relative to the peripheral
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subgroups. Then each vertex group is hyperbolic relative to the periph-
eral subgroups that it contains.

In the last result, we need to admit the possibility that a vertex group
might be finite, or might consist of just a single peripheral subgroup.
In all cases, the boundary of a vertex group is naturally identified as a
closed subset of the boundary, ∂Γ, of the whole group, Γ.

If the splitting is maximal the sense of Proposition 10.2, then the
boundary of each vertex group is connected. In fact, each component of
∂Γ is either a single point or the boundary of an infinite non-peripheral
vertex group. A singleton component is either fixed point of a vertex
group that is also a peripheral group, or else corresponds to one of the
ideal points of the tree corresponding to the splitting.

In the context of hyperbolic groups, Propositions 10.2 and 10.2 are
simple consequences respectively of Stallings’s theorem on ends of finitely
generated groups and Dunwoody’s accessibility theorem for finitely pre-
sented groups, and Proposition 10.3 is a simple exercise. One can eas-
ily adapt these arguments to deal with the relative case, though since
there seems to be no explicit reference, it is appropriate to give some
commentary.

In view of the fact that the hyperbolic case is well-known, it is con-
venient to restrict to the non-hyperbolic case, i.e. where the set, G of
peripheral subgroups of Γ is non-empty. Thus, Γ acts on a Γ-set V ,
such that Γ is precisely the set of point stabilisers of V , so that we
can identify ∂Γ with ∂V . Now, Γ acts on a simplicially hyperbolic
2-complex, Σ, in the manner described by Proposition 4.9. Let K be
the 1-skeleton of Σ, and let X = X(K) be the hyperbolic complex con-
structed in Section 3. Thus we can identify ∂Γ ≡ ∂V with ∆K ≡ ∂X.

We shall say that K is multiended if and only if we can partition
V (K) into two disjoint infinite subsets A ⊔ B such that only finitely
many edges of K connect A to B. Note that if K is fine and every vertex
has infinite degree (as in the case above) then the same holds for the
full subgraphs, KA and KB, on the sets A and B. Thus, by Lemma
2.11 it’s enough to suppose that A and B are non-empty. Indeed, this
implies that KA and KB must be intrinsically unbounded, from which
it follows easily that A and B must be unbounded as subsets of K.

Returning the case where K is the 1-skeleton of our complex, Σ, we
note:

Lemma 10.4. The space ∆K is disconnected if and only if K is mul-
tiended.

Proof. This is probably most easily seen using the complex X.
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Suppose that ∆K ≡ ∂X is disconnected. Write ∂X = P ⊔Q, where
P and Q are disjoint closed and non-empty. Let A = P ∩ V and
B = Q ∩ V . Since V is dense in ∂X, A and B are non-empty. Now,
X ∪ ∂X is compact hausdorff, so we can find disjoint open subsets,
O ⊇ P and U ⊇ Q, of X ∪ ∂X. Now (X ∪ ∂X) \ (O ∪U) is a compact
subset of X which meets every edge of K connecting A to B. Thus,
the set of such edges is finite.

Conversely, if only finitely many edges of K connect A to B, then
there is a compact subset of Σ \ V ≡ X which separates A from B.
It is now easily seen that the closures of A and B in ∂X are disjoint.
Since V is dense in ∂X, these closures partition ∂X. �

Propositions 10.1 and 10.2 now follow by combinatorial arguments.
We only require that Σ is simply connected and locally finite away
from V . Following Dunwoody [Du], we define a track on Σ to be a
connected subset Σ \ V which meets each edge of Σ in a finite set, and
each 2-simplex of Σ in a finite set of disjoint arcs, each arc connecting
two different faces of the simplex. If A ⊆ B are connected by a finite
set of edges, then we can find a track, t, which meets an edge of Σ (in
one point) if and only if this edge connects A and B. Thus, t separates
A from B. In other words, K is multiended if and only if Σ admits a
finite separating track.

The proof of Proposition 10.1 is now identical to that given in [Du].
If Σ admits a finite separating track, then one can find such a track, t,
such that any Γ-image of t is either equal to t or disjoint from it. This
gives rise to an action of Γ on a simplicial tree, T , whose edges are
in bijective correspondence to the set, Γt, of Γ-images of t, and whose
vertices are in bijective correspondence with the connected components
of Σ\

⋃
Γt. In particular, each vertex stabiliser of Σ fixes a vertex of T .

In other words, we get a splitting relative to G. (In [Du] it is assumed
that the complex, Σ, is locally finite, though only the fact that it is
locally finite away from V is used.)

The converse of this result is easier. If Γ acts on a simplicial tree, T ,
with each element of G fixing a vertex, then there is an equivariant map
of V to the vertex set, V (T ), of T . We can assume that the action on T
is non-trivial. Let K be a any (Γ, V )-graph. If e is any edge of T , then
it is easily seem that only finitely many edges of K connect vertices of
K which map to vertices of T on different sides of e. This finite set of
edges separates K into (at least) two unbounded components. Thus,
K is multiended.

Putting the results of the previous two paragraphs together with
Lemma 10.4, we deduce Proposition 10.1.
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The accessibility result of Proposition 10.2 also follows immediately
from [Du]. There is a bound on the number of non-parallel tracks one
embed in the quotient complex, Σ/Γ. (We may to subdivide Σ in order
to take the quotient.) Thus there is a bound on the complexity of any
representation of Γ as a reduced graph of groups. The result follows
by taking such a splitting of maximal complexity.

To prove Proposition 10.3, suppose that Γ acts on a simplicial tree,
T , such that each element of G fixes a (unique) element vertex of T .
We can assume that this action is minimal. By collapsing down the
irrelevant bits of the graph of groups, we can suppose that the quotient
is a finite graph. Moreover, after subdividing the edges of T , we can
assume that the vertex set, V (T ), can be partitioned as V (T ) = V0(T )⊔
V1(T ), such that each element of V0(T ) has finite degree and finite
stabiliser, and such that each edge of T has one endpoint in each of
these sets. We obtain an equivariant map, φ : V −→ V1(T ). We
can extend this to an equivariant map of a (Γ, V )-graph, L, into T .
After subdividing the edges of L, we obtain a graph, M , whose vertex
set can be written as a disjoint union, V ⊔ W , where W is a cofinite
Γ-set with finite point stabilisers, such that each edge of M is either
mapped to a vertex or to an edge of T . Now the preimage in W of each
element of V0(T ) is finite. By connecting every pair of points in such
a preimage by an edge, we obtain a new (Γ, V ∪ W )-graph, K ⊇ M ,
and an extension φ : K −→ T , with the property that φ−1x is a finite
connected subgraph of K for each x ∈ V0(T ). Note that K is fine and
hyperbolic.

Now suppose that x ∈ V1(T ). Let T (x) be the star of x in T , i.e.
the union of all incident edges. Let K(x) = φ−1(T (x)) ⊆ K. Thus,
K(x) is a subgraph of K. Moreover, since K is connected, and the
preimage of each vertex of T adjacent to x is connected, we see easily
that K(x) is connected. Now, the vertex stabiliser, Γ(x), acts on K(x)
with finite quotient. Thus, K(x) is a (Γ(x), V (K(x)))-graph. Since it
is a subgraph of K, it must be fine. The infinite degree vertices of K(x)
are precisely the vertices of V which correspond to those elements of G
which lie inside Γ(x). Thus, to prove Proposition 10.3, it remains only
to check that the graph, K(x), is hyperbolic.

There are several ways to see this. Probably the simplest is to note
that the diameters of the subgraphs φ−1y where y is adjacent to x,
are bounded. Thus if α is any geodesic connecting two points of K(x),
there is a bound on the length of the components of α\K(x). It follows
that K(x) is quasiconvex in K, and hence intrinsically hyperbolic.

This proves proposition 10.3.
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The results of this section represent only the first step towards study-
ing topological properties of boundaries. The next natural things to
consider are splittings over parabolic subgroups. Splitting of this type
are studied in [Bo8]. Topologically they can be recognised from global
cut points in the boundary. There is an accessibility result for such
splittings, as well as an analogue of Proposition 10.3.

These results are used in [Bo9] to show that the boundary of a rel-
atively hyperbolic group is locally connected if it is connected — at
least provided one assumes that each peripheral subgroup is finitely
presented, one-or-two ended and contains no infinite torsion subgroup.
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[Sz] A.Szczepański, Relatively hyperbolic groups : Michigan Math. J. 45 (1998)
611–618.

[Tu] P.Tukia, On isomorphisms of geometrically finite Möbius groups : Publ.
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