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ABSTRACT. In this paper we introduce the notion of a “stack”
of geodesic spaces. Loosely speaking, this consists of a geodesic
space decomposed into a sequence of “sheets” indexed by a set of
consecutive integers. A stack is said to be “hyperbolic” if it is
Gromov hyperbolic and its sheets are uniformly Gromov hyper-
bolic. We define a Cannon-Thurston map for such a stack, and
show that the boundary of a one-sided proper hyperbolic stack is
a dendrite. If the stack arises from a sequence of closed hyperbolic
surfaces with a lower bound on injectivity radius, then this allows
us to define an “ending lamination” on the surface. We show that
the ending lamination has a certain dynamical property that im-
plies unique ergodicity. We also show that such a sequence is a
bounded distance from a Teichmiiller ray — a result obtained in-
dependently by Mosher. This can be reinterpreted in terms of the
Bestvina-Feighn flaring condition, and gives a coarse geometrical
characterisation of Teichmiiller rays. Applying this to a simply
degenerate end of a hyperbolic 3-manifold with bounded geome-
try, we recover Thurston’s ending lamination conjecture, proven
by Minsky, in this case. Various related issues are discussed.
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1. INTRODUCTION

There has been much recent work relating the geometry of hyper-
bolic 3-manifolds to the large-scale geometry of Teichmiiller space. One
major landmark in this has been the positive resolution of Thurston’s
Ending Lamination Conjecture by Minsky, Brock and Canary [Min6,
BroCM1, BroCM2|. This work has many consequences. One partic-
ular direction which we note here is the construction of the Cannon-
Thurston map see [CannT, Mitl, Mit2, Bow3, Mjl, Mj2, Mj3]. The
present paper focuses on the bounded geometry case, and sets this in
the broader context of coarse geometry. (It thus builds on the work of
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[Mit1, Mit2].) In the course of doing so, we obtain a number of results
regarding Teichmiiller geodesics, ending laminations etc. We also give
results about more general stacks.

We will give an outline of the main results in Section 2. In this
introduction we will describe some background which set the results in
context.

Let ¥ be a closed orientable surface, and let 7 = 7(3) be the
Teichmiiller space of . This can be thought of as the space of marked
hyperbolic structures on X, or equivalently, the space of conformal
structures on ¥ (see [Ga, IT]). We fix a small positive constant, 7,
(less than the Margulis constant) and refer to the closed subset of 7
consisting of those hyperbolic metrics of injectivity radius at least n as
the “thick part” of 7.

Suppose that M is a complete hyperbolic 3-manifold homeomor-
phic to X x R. We refer to the first and second coordinates as the
“horizontal” and “vertical” directions respectively. Associated to each
end of M we have an “end invariant” which is either a point of 7,
or a lamination (the “ending lamination”) which, very loosely, can be
thought of as an ideal point of 7. The Ending Lamination Theorem
[Min6, BroCM1, BroCM2] tells us that M is determined up to isom-
etry by these two end invariants. To simplify the discussion in this
introduction, we assume that M is doubly degenerate, that is, each
end invariant is a lamination. Again very loosely, we can think of the
geometry of M as being described by a path in 7, where the vertical
direction is the time parameter, and the horizontal direction is, in some
sense, represented by a point of 7. In [T, Bon], this is described in
terms of pleated surfaces.

In general, the above requires a lot of work to make precise. In the
bounded geometry case, however, one can give an outline description
more simply. Suppose we have a path 3 in the thick part of 7', which
is lipschitz with respect to the Teichmiiller metric. Up to bilipischitz
equivalence, there is a cononical way of putting a riemannian metric on
Y. so that, for all ¢, the induced metric ¥ x {t} is uniformly bilipschitz
equivalent to the hyperbolic metric ¥ given by G(t) € 7. (We say more
about this construction in Section 22.) We write P(f3) for the resulting
space.

Suppose that M is a doubly degenerate hyperbolic 3-manifold of
positive injectivity radius. It follows from the work of [T, Bon] us-
ing pleated surfaces, that M is bilipschitz equivalent to P((3) for some
such path 3. Moreover, 3 is proper, and converges on the two end-
ing laminations of M (necessarily distinct). In fact, we only require
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that the universal covers P(3) and M = H? are I'-equivariantly quasi-
isometric, where I' = 71(X) and H" denotes hyperbolic n-space. (This
is much easier to verify.) In [Minl] Minsky shows that, in this case,
0 is a bounded distance from a Teichmiiller geodesic, a. Thus « is
determined by the ending laminations. Moreover, P(«) is bilipschitz
equivalent to P(8) hence to M. It follows that M is determined up
to bilipschitz equivalence, hence by a result of Sullivan [Su], up to
isometry. This gives us the Ending Lamination Theorem in this case.
Again, to apply [Su], we only require a-priori that the universal covers
be equivariantly quasi-isometric. In this paper, we will give another
approach the result of Minsky above. We will show that bi-infinite
(or semi-infinite) path 3 in the thick part of Teichmiiller space is a
bounded distance from a Teichmiiller geodesic if and only if P(f) is
Gromov hyperbolic. This result has been obtained independently by
Mosher, by different methods, see [Mo]. Note that if 3 arises from a
doubly degenerate 3-manifold, then P(3) is quasi-isometric to H?, and
hence hyperbolic. It therefore follows that (3 is a bounded distance from
a Teichmiiller geodesic, and the argumet can be completed as before.

Another consequence of the above is a construction of the Cannon-
Thurston map in this case. This gives a [-equivariant surjective con-
tinuous map of the circle, 9H?, to the 2-sphere, H?. It originates in
[CannT]. Many variations and generalisations have been given since,
see for example, [AIDP, Mit1, Mit2, Bow3, Mj2, Mj3].

In this paper, we will reset this in the context of coarse geometry. To
this end, we will replace the path § by a sequence, (3;);, of surfaces,
indexed by Z. (For example, ¥; = 3(i).) We will assume that 3; lies
in the thick part of 7. We also assume that the Teichmiiller distance
between YJ; and YJ;,, is bounded above. The latter statement is equiv-
alent to the existence of a uniform equivariant quasi-isometry between
consecutive universal covers, X; and X;,;, where X; = 3, = H2. Out
of this we build a “stack”, which is a path metric space, =, containing
the X; as subspaces, which we call the “sheets” of Z. The stack Z is
well defined up to quasi-isometry. If ¥; = (i), for a lipschitz path, 3,
as above, then = is equivariantly quasi-isometric to p(ﬁ)

We can generalise this to construct a stack out of any sequence, (X;);
of geodesic spaces X; together with uniform quasi-isometries between
consecutive X;. If each X; is uniformly Gromov hyperbolic, then it fol-
lows from an argument of Bestvina and Feighn [BeF] that = is Gromov
hyperbolic if and only if it satisfies a certain “flaring” condition, which
we express here in terms of quasiconvexity of the a distance functions.
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We refer to such as stack as a “hyperbolic stack”. Note the the bound-
aries, 0X;, are canonically homeomorphic to each other, so we get a
“horizontal boundary”, "= = 90X, of 2. We will show that there is a
canonical “Cannon-Thurston map”, w : 9°Z — 9= (cf. [Mit1, Mit2]).

In this introducion, we have only discussed bi-infinite stacks, indexed
by Z, though we can similarly deal with stacks indexed by any set of
consecutive integers. We will give a summary of the main result in
Section 2.

Since the original draft of this paper was written, there has been con-
siderable progress in several directions. As noted above, we now have
a complete proof of the Ending Lamination Theorem, [Min6, BroCMI,
BroCM2] (see also [Bow4] for some discussion). This has lead to con-
structions of Cannon-Thurston maps in a more general setting, see in
particular, [Mj2, Mj3].

2. SUMMARY OF RESULTS

We give a summary of the main results. More precise statements
will be given in later sections. First we recall some basic facts and
definitions.

A geodesic in a metric space is a path whose length is equal to the
distance between its endpoints. (We will usually assume this to be
parameterised by arc-length.) A geodesic space is a metric space in
which every pair of points are connected by a geodesic. A metric space
is proper if it is complete and locally compact. It’s not hard to see that
a geodesic space is proper if and only if every closed bounded subset is
compact.

We recall the notion of a (Gromov) hyperbolic space [Grl, GhH].
This is a geodesic space in which every geodesic triangle is “thin”, that
is, every side lies a bounded distance from the union of the other two
sides. Such a space, X, has associated to it an ideal “boundary”, 0.X,
which a metrisable topological space, well defined up to homeomor-
phism. If X is proper, then 0X is compact.

We also recall the standard notion of a quasi-isometry between two
geodesic spaces, X,Y. This is a map ¢ : X — Y (not necessarily
continuous) which respects distances up to linear bounds, and such
that Y is a bounded neighbourhood of ¢(X). (We will describe a
variation on this definition, in terms of relations, in Section 3.) If X is

hyperbolic, then so is Y, and ¢ induces a homeomorphism from 0.X to
aY'.
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We now introduce the notion of a “stack” of spaces (cf. [BeF, Mit1]).
For the purposes of this summary, we deal with this informally. It will
be discussed further in Section 6.

A “stack” will consist of a geodesic space, (Z, p), with a collection,
(Xi)iez, of closed connected subsets indexed by a set Z C Z of consecu-
tive integers. We assume (in this section) that X; separates X;_; from
Xis1, that p(X;, X;11) is bounded below by a positive constant, and
that = is a bounded neighbourhood of | J;.; X;. Moreover, we assume
that there is a uniform quasi-isometry, ¢;, between X; and X, in their
induced path metrics and such that p(x, ¢;(x)) is uniformly bounded
above for all z € X;. Here “uniform” means that the relevant bounds
are independent of i. (In fact, we can use slightly weaker hypotheses
than those listed above, which are more natural in the coarse geometry
setting, see Section 6.) We refer to X; as a “sheet” of Z, which we
imagine as being “horizontal”. By a chain in =, we mean a sequence,
(x;);, of points indexed by i € Z, such that x; € X; for all i and such
that p(x;, z;41) is bounded above (for example, if x;11 = ¢;(z;)). We
can interpolate between the consecutive x; to give us a “vertical” path
which is transverse to the X; and which proceeds at a linear rate in the
vertical direction — in particular, it is a quasigeodesic in =.

If, conversely, we start with a sequence, (Xj, p;), of geodesic spaces,
and with uniform quasi-isometries, ¢;, between consecutive X;, we can
can construct a stack of this sort. For example, we can take the disjoint
union, | |, X;, and, for all 4, connect each z € X; to ¢;(xz) € X;41 by
a real interval of fixed bounded length. Provided this length is large
enough, p; will be the induced path-metric on X;. There are many
possible variations on this construction, but any sensible procedure
will yield a stack, =, that is equivalent up to quasi-isometry. Moreover,
if each X is proper, we can arrange that (Z, p) be proper.

Suppose now that each of the sheets X; is uniformly Gromov hyper-
bolic. Then the boundaries, 0.X;, are all canonically homeomorphic.
We can therefore define a “horizontal” boundary, 0°=, of =, which is
canonically homeomorphic to each 0.X;.

The paper of Bestvina and Feighn [BeF], now gives us a criterion
under which the stack = is itself hyperbolic. We express this as follows:

Theorem 2.1. Let = be a stack, where all sheets are uniformly hyper-
bolic. Then Z is hyperbolic if and only if whenever (x;); and (y;); are
chains, the function [i — p;(z;,y;)] is uniformly quasiconver.

The term “quasiconvex” refers to a coarse version of convexity de-
fined in Section 5. “Uniform” means that the relevant constants are in-
dependent of the chains (x;); and (y;);. Intuitively, this can be thought
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of as saying that whenever two chains diverge, then they do so at a
uniform rate. It is essentially equivalent to the “flaring” condition of
[BeF]. Theorem 2.1 is a consequence of Theorems 6.2 and 6.4.

We will refer to a stack arising as in Theorem 2.1 as a hyperbolic
stack. Note that it has its own boundary, 0=, as a hyperbolic space.
Following the argument of [Mit1l, Mit2], we see:

Theorem 2.2. There is a natural continuous map w : O°Z — O=.

This is referred to as the “Cannon-Thurston map”. Such a map was
introduced in a slightly different context in [CannT]. Theorem 2.2 is
an immedate consequence of Lemma 7.4 of this paper.

There are essentially three cases. If Z is finite, then the inclusion of
any sheet, X;, into = is a quasi-isometry. This induces a homeomor-
phism, w : 0X; — 0=, so this case is elementary. The interesting cases
are where Z = N or where Z = Z. We refer to these as “semi-infinite”
or “bi-infinite”.

For the purposes of this section, we assume henceforth that 7 = Z.
In this case, we write = = =~ U ZT, where 2~ N =T = X, and where
=~ and =" are semi-infinite stacks with sheets X;, indexed by —N and
by N respectively. (Again, we only really need a coarse version of these
statements.) Note that we can identify 9°Z = 9°=Z~ = 9'=".

Of course, the path-metric induced on Z* may be quite different
from p. Nevertheless, we have:

Theorem 2.3. If = is hyperbolic, then == and =% are hyperbolic.

The proof we give here passes via Theorem 2.2 (see Proposition 8.4).

For the purposes of this summary, we will view the case of a semi-
infinite stack as subsumed within the case of a bi-infinite stack (though
all the statements we make hold intrinsically). Note that we have three
Cannon-Thurston maps, namely w : °Z — 0=, w™ : PZ — 0=~
and wt : °Z — O=7.

We now restrict to the case where each X; is proper, so that = can
be assumed proper. In this case, the boundaries, 0°=, 0=*, J=, are all
compact.

Theorem 2.4. The are natural continuous maps, 7+ : 2% — 0=
such that w = 7% o w*. Moreover, we have 7= (027) U TT(9=1) = 0=
and 77 (0=7) N 7T (9=") = w(9°2).

This is a combination of results of Section 8. See in particular,
Lemma 8.11.

Recall that a Peano continuum is a connected locally connected com-
pact topological space. A dendrite is a metrisable Peano continuum in
which every pair of points are separated by a cut point.
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Theorem 2.5. 0= is a metrisable Peano continuum, and 0=F is a
dentrite.

(See Proposition 10.2.)

We now restrict further to the case where each sheet, X;, is isometric
to the hyperbolic plane, H2. Thus, °= = 0X; = 0H? is homeomorphic
to the circle, S'. In this case, the Cannon-Thurston map is surjective:

Theorem 2.6. If = is a hyperbolic stack of hyperbolic planes, then
wE(O°E) = 0=* (and so w(°E) = 9=).

For a proof, see Proposition 11.1. We can elaborate on this as follows.

A “lamination” on H? is a disjoint collection bi-infinite geodesics
called “leaves” whose union is closed in H2. One can define an equiv-
alence relation on OH? by deeming two points to be equivalent if they
are not separated by the closure any leaf in H? U OH?. (In particular,
the two endpoints of any leaf are equivalent.) One can verify that the
quotient of OH? is hausdorff. In fact (see Proposition 12.3):

Theorem 2.7. If= is a hyperbolic stack of hyperbolic planes, then there
are unique laminations, A~ and AT, such that each Cannon-Thurston
map, wt : 2 — O=* is the quotient map under the associated
equivalence relation on OH?.

Of course, this implies a particular identification of 9°= with OH?,
which we cannot expect to be canonical. We note that A™ and A~ are
transverse in sense that a leaf of AT can intersect a leaf of A~ in at
most one point.

We now suppose that we have a group, I', acting by isometry on =,
and fixing setwise each sheet, X;, of =. We suppose that the action of
I' on each X; is properly discontinuous and cocompact and preserves
orientation. Thus, ¥; = X;/I" is a hyperbolic surface. We can write
[' = m(X), where X is a closed topological surface which has a natural
homotopy equivalence to each ¥;. We can therefore think of each ;
as determining a point of the Teichmiiller space, 7, of ¥. We will
suppose, in addition, that the injectivity radius of each ¥; is bounded
below. In other words, each ¥; lies in the n-thick part of 7 for some
fixed n > 0. In this case, one can show that consecutive ¥; lie a bounded
distance apart in 7, and so we can interpolate between them by paths
of bounded length to give us a stable path in 7, that is, a lipschitz path
lying in the thick part of 7, as defined in the introduction. Conversely,
if we have a stable path, 3, in 7, we can construct a stack Z(3) of
this sort, so that (i) = (i) for all integers, i. Indeed we can take
=(6)/T to be a riemannian manifold diffeomorphic to ¥ x R. By any
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sensible construction, Z(3) will be well defined up to I'-equivariant
quasi-isometry. We will say more about this in Section 22.

If = is also hyperbolic, then we have two laminations, A~ and AT,
given by Theorem 2.7. These will now be ['-equivariant, and will de-
scend to a geodesic lamination on each ;. This will be the realisation
in ¥; of a fixed abstract lamination, Af = A*/I" in X (see [CasB]). We
refer to AY and AJ as the negative and positive “ending laminations”
of the stack. If = = Z((), then they depend only on §.

Only certain laminations can arise in this way. Let Ay be a lami-
nation on ¥. Fix any hyperbolic structure on ¥ and realise Ay, as a
geodesic lamination in 3.

Definition. We say that Ay is reqular if there is a linear function, f,
such that if £ C X is any compact interval lying in any leaf of Ay and
7 is any homotopically non-trivial curve in ¥ \ E, then length(E) <

f(length(v)).

One can check that this condition is independent of the choice of
hyperbolic structure (though, of course, the function, f, may change),
see Propositions 13.9 and 13.11. Intuitively, this condition says that
the leaves of Ay, fill up ¥ at a uniform rate.

We show (Propostion 13.6):

Theorem 2.8. A reqular lamination is uniquely ergodic.

That is, any two transverse measures on the lamination agree up to
scale. Moreover, we will show (Propostion 17.4).

Theorem 2.9. Any ending lamination of a hyperbolic surface stack is
reqular.

Moreover, any such lamination admits a transverse measure, and
so, by Theorem 2.8 has a unique structure as a projective (measured)
lamination.

Suppose that oo : R — 7 is a stable Teichmiiller geodesic. It has
associated to it two laminations. These arise from the singular folations
corresponding the real and imaginary parts of the associated quadratic
differential (see, for example, [Ga] or [IT]).

Recall that a stable path is a lipschitz path lying in the n-thick part
of 7.

Theorem 2.10. If « is a stable Teichmiiller geodesic, then Z(«) is a
hyperbolic surface stack. Moreover, the ending laminations are precisely
the folations associated to c.
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This statement is also proven in [Mo]. It has an intepretation in
terms of singular Sol geometry (cf. [CannT]), as discussed in Section
18, see Proposition 18.8 and Lemma 18.9.

Note that, putting together Theorems 2.8, 2.9 and 2.10, we conclude
that each of the two laminations associated to a stable Teichmiiller
geodesic is uniquely ergodic. We therefore recover the result of Masur
[Mas].

In fact, there is a converse to Theorem 2.10 as follows. This has been
obtained independently by Mosher [Mo].

Theorem 2.11. Suppose that §: R — T 1is a stable path. Then 3 is
a bounded distance from a Teichmiiller geodesic if and only if Z(3) is
Gromov hyperbolic.

The statement also holds if R is replaced by [0, 00). The result will
be proven in Section 20 (see Theorem 20.1).

Combining Theorems 2.1 and 2.11, we can give a simple criterion for
recognising such paths among stable paths. We can formulate this as
follows.

Given some o € 7, and a free homotopy class, v, of closed curve in
Y., we write [(o, 7) for the length of 7 when realised as a closed geodesic
in the hyperbolic structure determined by o. We will show:

Theorem 2.12. Suppose that §: R — T is a stable path. Then 3 is
a bounded distance from a Teichmiiller geodesic if and only if the maps
[t — 1(B(t),7)] : R — [0,00) are uniformly quasiconvez for all simple
closed curves, .

By this we mean that the constants of quasiconvexity are indepen-
dent of 7. Again, the same result holds if the domain, R, is replaced
by [0,00). This will be proven in Section 21.

One key application of Theorem 2.11 is already discussed in the
introduction, and will be elaborated on in Section 22. Let M be a hy-
perbolic 3-manifold homeomorphic to 2 x R, and without cusps. It has
two ending laminations, which, in general are geometric laminations.
In the case where M has positive injectivity radius, one can see, via the
result of Masur [Mas], that these are uniquely ergodic. (This is also a
consequence of Theorems 2.8 and 2.9 here.) In other words, they have
a unique structure as projective laminations, and so can be thought of
points of the Thurston boundary, 07, of 7. As we describe in Section
22, we recover the Ending Lamination Theorem in this case:

Theorem 2.13. If M = 3 x R is a complete doubly degenerate hyper-
bolic 3-manifold with positive injectivity radius, then M is determined,
up to isometry, by its end invariants.
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This is also valid where M is singly degenerate, or quasifuchsian.

3. COARSE GEOMETRY

In this section, we explain some of the conventions and principles of
coarse geometry that we shall be using throughout this paper. In par-
ticular, we will give definitions of the terms “path-metric”, “geodesic
space”, “net”, “quasi-isometry”, “equivalence” of quasi-isometries, “quasi-
isometric map”, “straight” subset, and the “stable length” of an isom-
etry.

The term “coarse geometry” might be loosely interpreted as the ge-
ometry of path-metric spaces defined up to quasi-isometry. Most of the
spaces with which we shall be dealing have various constants or func-
tions (of hyperbolicity, quasiconvexity etc.) associated to them. Such
constants or functions will be termed “parameters”. We shall speak of
other constants or functions as being “uniform” to mean that they de-
pend only these parameters. Precisely which parameters are involved
should be clear from the context.

At times, it will be convenient to adopt the following convention (cf.
[Bow2]). Given z,y € R and k > 0, we shall write  ~ y, v < y and
r < y to mean respectively | —y| < k, x <y+kand x <y — k.
We shall frequently drop the subscript, k£, and behave as though the
relations ~ and < were transitive. Unless it is otherwise stated, it is
to be assumed that the additive constants involved depend (in some
explicit way) only on the parameters of the spaces with which we are
dealing.

Let (X, p) be a metric space. If z,y € X, we write x ~ y to mean
that p(z,y) =~ 0. Given @ C X and r > 0, write N(Q,r) = {y €
X | ply, Q) < r}. Given P,Q C X, write hd(P,Q) = hd,(P,Q) =
inf{r | P C N(Q,r),Q C N(P,r)} € [0,00] for the Hausdorff distance
between P and Q). We write P ~ @ if hd(P, Q) ~ 0.

A path, a, connecting x to y in X is geodesic if length(a) = p(z,y).
We say that (X, p) is a geodesic space if every pair of points are con-
nected by a geodesic. We have the slightly weaker notion of a path-
metric space, where given any x,y € X and any ¢ > 0, x and y are
connected by a path of length at most p(z,y) + €. Any subset of X
has a (possibly) infinite induced path-metric. Any proper (i.e. com-
plete locally compact) path-metric space is geodesic. For simplicity,
we shall only explicitly deal with geodesic spaces. However, all results
(appropriately phrased) are easily seen to remain valid for path-metric
spaces, on the insertion of €’s in the appropriate places.
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A subset Q) C X is r-quasidense if X = N(Q,r). It is s-separated if
p(x,y) > s for all distinct z,y € Q). An r-net is an (r/2)-separated r-
quasidense subset. Every metric space admits an r-net for every r > 0.

Let (X, p) and (Y, 0) be path-metric spaces. Here it will be conve-
nient to define a “quasi-isometry”, ¢, between X and Y formally as
a particular kind of relation, denoted ~5 C X x Y. We write ¢~
for the inverse relation, ie. y ~y-1 x if and only if v ~4 y. We
write ¢(X) = {y € Y | (3z € X)(z ~4 y)}, and similarly define
¢ 1Y) C X. We say that ¢ is a quasi-isometry if ¢(X) is quasidense
inY, $~1(Y) is quasidense in X, and if there is a linear function F' such
that o(y,v') < F(p(z,2')) and p(z,2") < F(o(y,y)) for all z,2’ € X
and y,y’ € Y satisfying x ~, y and 2’ ~y v/'.

We shall say that two quasi-iometries ¢ and v are equivalent if ~4U
~y € X XY is a quasi-isometry. Note that, if this is the case, ¢p({z})U
¥({z}) has bounded diameter for all x € X. We shall say that ¢ is
weakenning of ¢ if it is equivalent to ¢ and if ~4 C ~y,. In particular,
if ¢ is any quasi-iosmetry, and r > 0, we can define another quasi-
isometry, 1, which we refer to as the r-weakening of ¢ by x ~, y if and
only if there exist 2’ € X and ¢y’ € Y satisfying p(z,2') < r,o(y,y’) <r
and 2’ ~, y'. By choosing r large enough we obtain ¢(X) = Y and
YY) = X. In this way we can view v as a “multivalued function”.
We shall sometimes abuse notation by writing ¢(x) or indeed ¢(x) for
some choice of y € Y with o ~y y.

Note that we can compose quasi-isometries in the obvious way, namely,
if o : X — Y and ¢y : Y — Z are quasi-isometries, we define the
quasi-isometry ¢ : X — Z by x~pz if (Jy € Y)(x~y,y and y~y, 2).
Such composition is consistent with composition of functions, at least
up to uniformly bounded distance. Note also that ¢~ l¢x ~ x for all
reX.

Suppose ¢ is a quasi-isometry between path-metric spaces, X and
Y, and » > 0. We construct a space Z by taking disjoint copies of
X and Y and connecting every pair of points x € X and y € Y
with  ~4 y by an arc of length 7, and equipping z with the induced
path-metric. Usually r will be appropriately chosen with respect to
the parameters (of the quasi-isometry etc.). Note that we recover the
original metrics on X and Y as the induced path-metrics. If X and YV
are both proper, we can modify the construction to that Z is proper.
To do this, choose nets in X and Y, take an appropriate weakening,
1 of ¢, in the sense described above, and connected only points in
the respective nets that are related under . Clearly this depends on
various choices. In any case, the resulting space, Z, is quasi-isometric
to both X and Y. We shall denote it by X V, Y. In practice, we shall
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be applying this construction to infinite sequences of spaces. The result
is always well defined up to uniform quasi-isometry.

Suppose, again, that (X, p) and (Y,0) are path-metric spaces. A
map f: X — Y (not necessarily continuous) is said to be straight if
there are functions, Fy, Fy : [0, 00) — [0, 00) such that for all z,y € X
we have Fy(p(z,y)) < o(f(x), f(y)) < Fa(p(z,y)), where Fi(t) — oo
as t — oo. Clearly, F» can always be taken to be linear. If F} can
also be taken to be linear, we refer to ¢ as a quasi-isometric map.
Clearly, a quasi-isometric map with quasidense image is (or gives rise
to) a quasi-isometry. Indeed this is true of any straight map with
quasidense image. If X is a subinterval of the real line, we refer to
a quasi-isometric map (or its image) as a quasigeodesic. Usually it is
convenient to assume that quasigeodesics are continuous.

If X CVY, we refer to X as a straight subset if its inclusion is a
straight map with respect to the induced path-metric on X. We can
replace straight maps by straight subspaces by a construction similar
to that of X V4 Y described earlier. Suppose that f : X — Y is
a straight map. This time we connect = to f(z) by an interval of a
fixed length, to obtain a path-metric space Z. We recover the original
metrics on X and Y as the induced path metrics. The inclusion of X
in Z is straight, and the inclusion of Y in 7 is a quasi-isometry. Again,
we can assume this construction preserves properness, by restricting
the construction to a net in X.

Suppose that f,g: X — Y are straight maps of path-metric spaces
with hd(f(X), g(X)) <r. The relation, ~, on X xY defined by x ~, y
if p(f(x),g9(y)) < r gives us a quasi-isometry, ¢, from X to Y. Note
that we can simultaneously extend f and g to a straight map of X V4V
into Z.

Finally, given an isometry of a metric space, ¥ : X — X, we define
its stable length (or stable translation distance) as sl(¢)) = lim,, . p(z, V" (z))
where x € X. This is well defined and independent of the choice of x.
Note that sl(¢™) = nsl(y) for all n € N.

4. HYPERBOLIC SPACES

In this section, we give a brief summary of relevant facts relating to
hyperbolic spaces as defined by Gromov [Grl]. Further expositions can
be found in [Bow2, CoDP, GhH, Sh]

Let (X, p) be a hyperbolic geodesic space, and let 0X be its bound-
ary. Thus, X UdX carries a natural topology. This is compact if X is
proper (though we shall not assume that in this section). We shall use
the notations ~, < and < as defined in the last section. The additive
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constants involved will depend on the constants of hyperbolicity (and
on quasiconvexity etc.).

Given z,y € X UOX, we shall write [z, y] for some choice of geodesic
connecting x to y (with the convention that [x,z] = {z}). This is well
defined up to bounded Hausdorff distance. If z,w € [x,y], we shall
assume that [z, w| C [z,y]. A centre of three points x,y,z € X U 90X
is a point, w € X such that p(w,[z,y]) ~ 0, p(w,[y,2]) ~ 0 and
p(w,[z,2]) ~ 0. Such a point exists provided no two of z,y,z are
equal to the same boundary point. It is well defined up to a bounded
distance. Given subsets P, Q) C X, we shall write P ~ () to mean that
PNnoX =QNoX and hd(PN X,Q N X) ~0.

We note that the property of hyperbolicy is quasi-isometry invariant
among path-metric spaces. Clearly a quasi-isometry will map geodesics
onto quasigeodesics. An important property of hyperbolicity is that
quasigeodesics remain close to geodesics. More precisely if a and [ are
two quasigeodesics with the same endpoints, then o ~ 3, where the
additive constant depends only on the parameters. Note that it follows
that a quasi-isometry respects centres up to bounded distance.

Suppose @ C X U 0X. We write 0xQ = Q N 90X, where Q is the
closure of @ in X U 0X. (In many cases, 0x@ can be thought of as
a Gromov boundary defined intrinsically to @), and we will abbreviate
OxQ to 0xQ.) Given r > 0 we write N(Q,r) = QUN(Q N X,r). Let
join(Q) = Hx,y] | =,y € Q}. Thus, djoin(Q) = 0xQ. We say that
@ is r-quasiconvez if join(Q) C N(Q,r). For any @, the set join(Q) is
uniformly quasiconvex. If @) is r-quasiconvex, then the induced path
metric on N(Q N X, r) agrees with p up to an additive constant. Thus,
N(Q,r) is intrinsically hyperbolic. Moreover, 0x@Q = IN(Q,r) can be
identified with the boundary of N(Q,r). If P C X U 0X is another
subset with P ~ (), then P is also quasiconvex, and Ox P = 0xQ. If
R C X U0X is a quasiconvex subset with p(Q N X, RN X) ~ 0, then
@ U R is quasiconvex, and Ox(Q U R) = dxQ U Jg. Note that this
applies if QN R # (. Note also that if Q C X U9JX, with Q N X dense
in @ and @ N X is quasiconvex, the @ is quasiconvex (possibly after
increasing the constant).

Suppose that () € X is quasiconvex and z € X U (0X \ 0x@). We
write g (z) for a point of () with the property that p(mg(z), [z,y]) >~ 0
for all y € (). Such a point exists and is well defined up to bounded
distance. If z € X, then it can be characterised by the property that
p(x,mo(z)) ~ p(z, Q). After moving the image a bounded distance, it
can always be assumed that mo(z) = = for all x € @, and that mg(y) =
() whenever y € [z, mg(z)]. We shall write [z, Q] = [z, mg(x)]. We
shall refer to the map mgy as a projection of X U (0X \ 0x@Q) onto
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(. Note that it need not be continuous. If z € 0x(@Q, we shall take
mo(z) = x, thereby giving us a map mg : X U0X — Q U 0xQ.
We note:

Lemma 4.1. For all z,y € X, p(mg(z), mo(y)) =< plz,y).

Here, as usual, the additive constant is “uniform”, i.e. depends only
on the parameters (of hyperbolicity and quasiconvexity).
We have the following converse:

Lemma 4.2. Suppose Q C X and ¢ : X — @ is a map which re-
stricts to inclusion on @ and with the property that p(Y(z),¥(y)) is
bounded above by a fized linear function of p(x,y). Then Q is quasi-
convex.

Proof. Let 7 > 0 and suppose z,y € N(Q,r). We choose points z =
x0, X1, ..., Ty, =yinx; € [x,y]so that p(x;, z,41) ~ 0 for all i and where
n is bounded above by a linear function of p(x,y). Let afz,mg(x)] U
[T (x0), mo(21)]U- - -U[mo(y), y]. If r is sufficiently large in relation to
the parameters, then « C N(Q,r). We deduce that any pair of points,
x,y € N(Q,r) are connected by a path in N(Q,r) whose length is
bounded by a linear function of p(z,y).

Now, let 3 be a path in N(Q,r) connecting x to y of minimal length
(up to an additive constant). Again, length(/3) is bounded above by
the a linear function of the distance between its enponts. Since the
same argument applies to any subpath of 3, we deduce that (3 is quasi-
geodesic. Thus, [z,y]| remains a bounded distance from  and hence
from @). Since, in particular, this applies to x,y € @), we deduce that
() is quasiconvex. O

(Note that this is stated in [Mit2], though the argument presented
there is incomplete.)

Suppose that Q C X U0X is quasiconvex and z € X U 0X. Recall
that mg(x) is characterised (up to bounded distance) by the property
that p(mg(z), [x,y]) ~0forally € Q. If P C X U0X with P ~ @,
then we see that mp(z) ~ mg(x) for all x € X U (90X \ Q). Since
quasigeodesics remain a bounded distance from geodesics, we similarly
deduce:

Lemma 4.3. Suppose ¢ : X — Y is a quasi-isometry of hyperbolic
spaces and Q@ C X is quasiconvexr. Then, ¢(Q) is quasiconver. More-

over, ¢(mg(x)) =~ meg)(d(x)) for allz € X U (0X \ Q).

(In writing ¢ : X — Y as though it were a function, we are implic-
itly making a choice of ¢(z) ~4 z, as discussed in Section 3.) Here we
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are using the fact that any quasi-isometry extends to a homeomorphism
of boundaries.
Note that if y,z € X U 0X, then [y, 2] is quasiconvex, and my, .

is a centre of the triple z,y,z. If w € W[lez} ly, z], then [w,[y,z]] =
~1

.- [¥> ). We note:

[w, myp(w)] € 7
Lemma 4.4. 7, 12} ly, x| is quasiconver.

Proof. This follows easily from the fact that any pair of points, a,b €
;121 [y, ] are connected by a broken geodesic with a bounded number

7r
[
of segments, namely [a, 7, (a)] U (7,2 (a), Ty,2 (0)] U [y, (), 0] O

Note also that if y € 0X (or if p(z,y) > 0), then y lies in the interior
of m, 12} ly, z]. We deduce:

Lemma 4.5. If x € 0X, then x has a countable decreasing base of
uniformly quasiconvex neighbourhoods.

Proof. Let (av,)nen be a decreasing sequence of rays tending to x. The
sets (w5 (o)) form a neighbourhood base. O

Let (P,)nen be a sequence of non-empty subsets of X UdX. We say
that (P,), is escaping if P,, C P, for m <n and if p(z, P, N X) — o
for some (hence all) z € X. (Note that if X is proper, and each P, is
closed, it is enough that (), P, € 0.X.)

Lemma 4.6. Suppose that (P,), is an escaping sequence of closed
uniformly quasiconvez subsets of X U0X. Then (), P, = {x} for some
x € 0X. Moreover, if U is any neighbourhood of x in X U 0X, then
P, CU for all sufficiently large n.

Proof. Fix any a € X. If m < n, then [a, P,,] is uniformly close to
la, P,]. Thus, there is a geodesic ray, @ = [a,z| such that [a, P,] is
uniformly close to a for all n. Note that 7p, (a) € P, converges to
z, and so x € (), P,. Let U be a neighbourhood of = in X U 0X.
By (the construction of) Lemma 4.5, there is some b € |[z,a] such
that 7 '[b,2] C U. Suppose for contradiction that there is some z,, €
P, \ 7 '[b,z] for infinitely many n. Then b is a bounded distance
from [z,,z] and hence P,, contradicting the assumption that (P,), is
escaping. 0

We shall need the following observation regarding divergence of (quasi)geodesics.
Suppose z,y € X. Let p(x,y) = 2r, and let m be the midpoint

of [z,y]. Suppose z,w € X are such that max{p(x,y), p(z,w)} < r

then p(m, [z, w]) ~ 0. In particular, if p(m, [z, w]) > 0, then p(x, z) +

p(y,w) > r. (This follows easily by considering an approximating
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tree for the four points z,y, z,w.) From the fact that quasigeodesics
remain a bounded distance from geodesics, we have a similar statement
for quasigeodesic segments. In this case, 2r is the length of the domain
interval, m is the “midpoint” as defined by the parameterisation, and
we deduce that p(x,z) + p(y,w) is bounded below by an increasing
linear function of r. More precisely:

Lemma 4.7. Suppose r > 0 and o, 3 : [—r,r] — X are quasigeodesic
segments. Suppose p(a(0), B([—r,r])) > [, where | is a constant suffi-
ciently large depending on the parameters (of hyperbolicity and quasi-
geodesicity). Then, p(a(t), B(t)) + p(a(—t), B(—t)) is bounded below by

an increasing linear function of t which depends only on the parameters.

In particular, provided the domain, [—r, 7] is sufficiently large, we
can arrange that p(a(t), 5(t)) + p(a(—t), B(—t)) is arbitrarily large.

Definition. We shall say that a hyperbolic space is taut if every point
is (or is a bounded distance from) the centre of three ideal points.

The following is an immediated consequence of the fact that quasi-
geodesics remain a bounded distance from geodesics, so that quasi-
isometries map centres a bounded distance from centres.

Lemma 4.8. Suppose that ¢, : X — Y are quasi-isometries whose
exentions to 0X are identical. Suppose that X (and hence also Y') is
taut. Then ¢ and 1) are equivalent (as defined in Section 3).

In particular, we see that p(¢(z), 1 (x)) is bounded for all x € X.

5. QUASICONVEX FUNCTIONS

In this section, we describe a notion of “quasiconvexity” for positive
functions. This gives a convenienient way of expressing the Bestvina-
Feighn flaring condtion (Section 6). Let I C R be an interval.

Let f: R — [0, 00).

Definition. We say that f has property (Q1) if there exist constants
t>0,k>0and 0 < X< 1/2 such that for all x € R, we have

F@) SAF@—t) + flz+1) + k.

We note that f(x) < N(f(x —2t) + f(z + 2t)) + k', where N =
% < Xand K = (ff;/é) k. By iterating this process, we see that,
at the cost of increasing ¢t and k, we can assume that X is arbitrarily

small.
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Let ;1 be any constant greater than . If f(z) > pk, then f(z —

B+ fe+t)>L(f@)—k) > L (1 - 5) f(z) > 2f(x). In particular,

max{ f(z — t), f(z + )} > sf(z), where s = & (1 - % > 1.

Moreover, if pk < f(z) < f(z+t), then f(z+2t) > $(f(z+t)—k)—
flx)> (2 =1) fla+t) -1 > (; - A—L) Fz+t) > rf(z+t), where
r=t=20=L 5 1. We see, inductively, that f(z +nt) > "1 f(z) for all
n € N. Similarly, if pk < f(z) < f(x —t), then f(z —nt) > r""! f(z).

Putting the above two observations together, we see that for any
x € R and any h > pk, the set of n € Z for which z + nt € I and
f(z+nt) < h form a (possibly empty) sequence of consecutive integers.

To be able to interpolate between these values, we shall need to add
another hypothesis.

N——

Definition. We shall say that f has property (Q2) if there are con-
stants t > 0, a,b > 0, such that for all x,y € I with |z — y| < ¢, then

fly) < af(z)+0.

We can assume (at the cost of increasing a and b) that t is the same
constant as that appearing in (Q1). Clearly, (Q2) implies that the
growth of f is at most exponential.

Definition. We shall say that a function f : R — [0, 00) is quasicon-
ver if it satisfies (Q1) and (Q2).

For the remainder of this section, we suppose that I = R (though
the statements hold for I = R).

Moreover, as n — +00, the sequence f(z + nt) is either bounded,
or grows exponentially, with an exponent that depends only on A and

k.

From this and the earlier observations, we see:

Lemma 5.1. Suppose f is quasiconvex. There are constants { > 0,
B > 0 and I > 0 depending only on the parameters such that the
following hold. FEither there is some ki > 0 such that f(z) > kie®®
for all x, or else f(x) is bounded as x — oo. Similarly, either there
is some ky > 0 such that f(—x) > koeS® for all z, or else f(—x) is
bounded as © — o0o. Moreover, there is a (possibly empty) subinterval
I CR such that f(x) < B for allxz € I, and f(x) > B forallz € R a
distance at least | from I.

Note that it follows that if f(x) is bounded as x — oo then f(z) < B
for all sufficiently large . The same statement holds for + — —oc.
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Moreover if f is bounded (in both directions), then f(z) < B for all
r e R.
The following is an elementary observation:

Lemma 5.2. Let F be a family of uniformly quasiconvex functions.
Define f : R — [0,00] by f(z) = sup{g(x) | g € F}. Then either
f(z) = oo for all x, or else f is a uniformly quasiconvex function to
0, 00).

We also note that any positive linear combination of uniformly qua-
siconvex functions is uniformly quasiconvex.
The property of quasiconvexity is quite robust. In particular:

Lemma 5.3. Suppose that h : [0,00) — [0,00) is any non-decreasing
function. Suppose that f : R — [0,00) has the property that for any
x € R, there is a uniformly quasiconvex function g : R — [0, 00) such

that [g(z) — f(x)| < h(0) and g(y) < f(y) + h(lz —y|) for all y € R.
Then f satisfies (Q1).

Proof. To simplify notation, we suppose that z = 0. For large enough
t, we have g(0) < $(g(t) + g(—t)) + k, where k is some constant. Let
¢ = h(t). We have |f(y) — g(y)| < c for all y € [—t,t]. Suppose
that f(0) > | = max{2c,c + k}. Since |[f(0) — ¢g(0)] < h(0) < ¢
and f(0) > ¢+ k, we have g(0) > k. Since |f(0) — g(0)| < f(0)/2,
we have f(0) < 2¢(0). We deduce that g(t) + g(—t) > 8¢(0) and so
f(t)+ f(—=t) > 8¢g(0) —2¢ > 4f(0) —2¢ > 3f(0). We see that, whatever
the value of f(0), we have f(0) < 3(f(t)+ f(—t))+1, where [ is a fixed
constant. This proves (Q1). O

Lemma 5.4. Suppose that h : [0,00) — [0,00) is any non-decreasing
function. Suppose that f : R — [0,00) has the property that for any
x € R, there is a uniformly quasiconvex function g : R — [0, 00) such
that |g(y) — f(y)| < h(lx —yl|) for ally € R. Then f is quasiconvex.

Proof. By Lemma 5.3, f satisfies (Q1). To verify (Q2), note that if
ly| < t, then f(y) < g(y)+c < (ag(0)+b)+c <af(0)+ac+b+c. O

Finally, suppose that f : R — [0, 00) has the property that multi-
ples nf : R — [0, 00) are uniformly quasiconvex for n € N. Then we
see that f is quasiconvex with the same multiplicative constants and
additive constants equal to 0.

In this case, we note that of f(x +t) > f(z), then f(z + 2t) >
152 f(x 4 t). Thus, as similar analysis as above shows that if f is
bounded as x — oo, then in fact, it decays exponentially. Moreover,
we note:
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Lemma 5.5. If f is quasiconvex with additive constants 0, then there
is some ¢ > 0 and k > 0 such that if v, u € R, then f(x) < ke S“(f(z+

u) + [z = u)).

6. STACKS

In this section, we shall describe more precisely the notion of a
“stack”, referred to in Sections 1 and 2. This can be thought of as
a geodesic space sliced up by a sequence of subspaces termed “sheets”.
If we assume that the sheets are uniformly hyperbolic in the induced
path-metrics, then hyperbolicity of the stack turns out to be equiv-
alent to a quasiconvexity condition on the distance functions — see
Theorems 6.2 and 6.4. This is essentially the same as the “flaring
condition” of [BeF|. Eventually, we will want to restrict attention to
“hyperbolic stacks”, i.e. those satisfying all of the conditions (S1)—(S6)
below, though we shall only introduce these hypotheses as we need
them.

For simplicity, we shall deal for the moment only with “bi-infinite
stacks”, i.e. those indexed by the integers, Z. However, everything
we say in this section applies equally well to stacks indexed by an
arbitrary set of consecutive integers. Of particular interest, of course,
will be “semi-infinite stacks”, i.e. those indexed by the natural numbers
N. We shall begin by giving a fairly general formulation of the notion
of a stack, but we shall see how, without loss of generality, we can make
a number of simplifying assumptions.

Let (=, p) be a geodesic space, and let ((X;, p;))icz be a sequence of
geodesic spaces. Let f; : X; — Z be a sequence of maps (not neces-
sarily continuous). Recall the definition of “straight” from Section 3.
We assume

(S1g) The maps f; are uniformly straight, and

(S20) p(fi(Xi), f;(X;)) is bounded below by an increasing linear func-
tion of |i — j].

Now, the constructions described at the end of Section 3 allow us
allow us to replace the maps f; with locally isometric embeddings (ex-
cept that we are now dealing with a sequence of maps rather than
just two). The new images will be uniformly separated. Moreover, the
second condition ensures that the original images were locally finite,
and so (by using nets) the construction can be assumed, if necessary,
to preserve properness. Thus, (at the cost of modifying = by a quasi-
isometry) we can replace each f; : X; — = by a subspace X; C =,



20 B. H. BOWDITCH

and assume:

(S1) With respect to the induced path-metric, p;, each of the spaces
X; is uniformly straight. Moreover, p(X;, X;) is bounded away from 0
for i # j.

(S2) p(X;, X;) is bounded below by an increasing linear function of
i =l

(The remaining axioms (S3)—(S6) we introduce can be readily rein-
terpreted in the more general set-up above.)

We remark that (S2) is implied by the assumption that each X;
“coarsely separates” = in the following sense:

(S2') If i < k < j, then any path connecting X; to X; in = passes
within a distance r of X}, where r is strictly less than half the separa-
tion constant appearing in (S1).

To see this, suppose that « is such a path. Let z; € a be a point
with p(zg, Xx) < r. The conditions imply that p(zy,z;) is bounded
below for distinct k,l € {i,i + 1,...,7}. It follows that length(a) is
bounded below by an increasing linear function of |i — j|.

Now, in addition to (S1) and (S2), we assume:

(S3) hd(X;, X;41) is bounded above for i € Z.

Given r > 0 and ¢ € Z, we define a relation between X; and X,
by writing « ~,; y if p(z,y) < r. Provided that r is sufficiently large
in relation to the parameters, this defines a quasi-isometry between
(X, pi) and (X;11, piv1). We refer to a quasi-isometry arising in this
way, or which agrees with such a quasi-isometry up to a bounded dis-
tance, as a natural quasi-isometry. We can consider the union of all
the relations, ~,; for i € Z as a relation on UZ.GZ X;. We can construct
aspace \/, X; = -+ Vg X1 Vy Xo Vy X1 Vg - -+, exactly as we did for
a pair of spaces in Section 3. Moreover, we get a uniformly proper
map \/, X; — Z. If necessary, we can assume that the construction
preserves properness. We also note, more generally that if 7,5 € I we
can can constuct a quasi-isometry between X; and Xj, for an example
by taking an iterate of ¢ as already defined, or by a redifining ¢ by
choosing r sufficiently large in relation to |i — j|. Such a quasi-isometry
will be “natural” in the following sense:
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Definition. We say that a quasi-isometry, ¢, between the sheets (X, p;)
and (X, p;) is natural if there is some r > 0 such that p(z,y) < r for
all z € X; and y € X; with z~uy.

Note that r can always be chosen less than some (linear) function of
|i — 7], so that the parameters of such a quasi-isometry are bounded in
terms of |7 — j|.

Definition. An 7-chain, (x;);cz is a sequence of points, x; € X; such
that p(z;, x;p1) < r for all 4.

We shall sometimes write z = (z;);. If r is sufficiently large (in
relation to the parameters), we can assume that every point of (J, X;
lies in an r-chain. Frequently, we shall make this assumption, and refer
simply to “chains”.

Note that chains are uniformly quasigeodesic, or, more precisely,
can be extended to uniform quasigeodesics on =, by interpolating with
geodesic segments of bounded length.

Let us now assume:

(S4) The spaces (X, p;) are uniformly hyperbolic geodesic spaces.
Given z;,y; € X;, write [z;, y;]; for some choice of geodesic from x;
to y; in (X, p;). We note:

Lemma 6.1. Suppose (z;); and (y;); are chains. Then, for all i,
hd([zi, yilis [Tis1, Yiv1)ivr) is uniformly bounded.

Proof. This follows from the fact that the image of [x;,y;]; under the
quasi-isometry, ¢, is uniformly quasigeodesic, and hence a bounded
distance from [z;41, Yis1]iv1- O

Thus, if z; € [x;,y;]; for some j, then we can extend z; to a chain,
(z1)i, with z; € [x;,y;]; for all i. (This may entail increasing the chain

constant by a controlled amount.) Indeed, if 29, 2},..., 2} € [z;,y5];
are a sequence of points appearing in this order, then we can extend
them to chains (z9);, (2})i, ..., (21"); such that 2 z} ... 2" appear in

the same order on [z;,y;]; for all 4.
Let us now assume:

(S5) (£, p) is hyperbolic.

Theorem 6.2. Suppose that (x;); and (y;); are chains. The map [i —
pi(xi, y;)] is uniformly quasiconvex.
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Here “uniformity means that the constants involved in quasiconvex-
ity depend on the parameters featuring in conditions (S1)—(S5) and on
the chain constant, but not on the chains themselves.

Proof. First note that property (Q2) is an immediate consequence of
the fact that ¢ is a quasi-isometry. To simplify notation, we shall
verify property (Q1) for ¢ = 0. In particular, we shall find a constant
L > 0 and some fixed ¢ > 0, such that p;(x;, ;) + p_i(x_i,y_;) >
3po(xo,yo) — L. To this end, we fix a constant h > 0 to be chosen
as described below, and take points zo = 23, 23, ..., 28, 20T = yo on
[0, yo] With po(z0, 25%) = mh for m < n, so that po(zo, 207 < h. As
described above, we can extend z{" to chains (2!");, where 2" € [z;, yis,
20 =2y, 2P =y, and 20, 2}, ..., 27! appear in the correct order along
[93,, y;]i- The chain constant involved is independent of z;, y; or h. Now
the chain (z!"); lies in a uniform quasigeodesic path ™. Let [ be the
associated constant arising from Lemma 4.7, given the hyperbolicity of
=. Choosing h sufficiently large in relation to [, we can assume that
p(zyr, ™) > Lfor all m € {0,...,n—1}. Thus, by Lemma 4.7, the map
[i = p(z™, 2T 4 p(2™, 2 TH)] Z — |0, oo) is bounded below by a

fixed linear function of . Now, p; > p for all . Thus, for ¢ sufficiently
large, we have pz( moZmtY (2™, 2™ > L = 3h. Summing

Z Y K3

over m € {0,...,n — 1}, we see that pl(xl,yl) + p_i(x_i,y—;) > nL >
(Po(wr(z,yo) _ 1) L Z (L/h)po(xo,yo) —L> 3p0(5507y0) — L. This proves
(Q1) as required. O

Let us now assume, in addition that:
(56) U,z Xi is quasidense in Z.

In this case, the image of the proper map f :\/,X; — Z is quasi-
dense, and so f must be a quasi-isometry. Thus, up to uniform quasi-
isometry, we can always assume that = is obtained in this manner.
Though not essential, this will be convenient for certain constructions.

Indeed, we can construct a stack abstractly from a sequence of geo-
desic spaces, (X;);, together with a sequence of uniform quasisometries,
between successive spaces. Again, if each of the X; is proper, we can
assume that the resulting stack, = =/, X, is proper.

In this construction, properties (S1), (S2), (S3) and (S6) necessarily
hold. Only the straightness of each of the spaces X; (as required by
property (S1)) calls for comment. In fact, we can formulate the argu-
ment as follows. Let Y; = X; V, X;11 C = be the “strip” lying between
X; and X1, and let g; be the induced path-metric on Y;. We note that
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0:(X;, X;) is bounded below, and that the inclusions of (X;, p;) and of
(Xit1, piv1) in (Y, 0;) are both uniform quasi-isometries. Moreover, we
note that Y;_; NY; = X; and that = = J,., Y. With this set-up, we
can deduce:

Lemma 6.3. If z,y € Xy, then po(x,y) is bounded above by an expo-
nential function of p(x,y), whose exponent depends only on the param-
eters.

Proof. 1t is easily seen that any path connecting x to y in = can be ap-
proximated by a broken geodesic with break points x = 2%, 2!, ..., 2" =
y, where n is bounded above by a linear function of length(«) and where
for each m, there is some i = i(m) such that 2™, 2™ € X; U X;;; and
o;(z™, 2™"1) ~ 0. Note that the maximal value of |i| is bounded by
n. Let y™ € X, be the basepoint of a chain that includes ™. We can
assume that 2° = y® and 2™ = y". We see that po(y™, y™!) is bounded
above by an exponential function of i(m) and hence of n. Summing
over all m € {0,...,n}, we see that py(z,y) is also bounded by an
exponential function of n and hence, in turn, of length(«). By taking
a to be a geodesic from x to y with respect to the metric p we get the
desired result. O

To conclude this section, we note that we have the following converse
to Lemma 6.2. Suppose that = is a stack satisfying axioms (S1)—(S4)
and (S6). We choose r large enough in relation to the parameters so
that the union of all r-chains is quasidense in =.

Theorem 6.4. Suppose for any pair of r-chains, (x;); and (y;);, the
function [i — pi(xi,y:)] : Z — [0,00) is uniformly quasiconver. Then
= is uniformly hyperbolic.

Proof. This follows from (a slight reinterpretation of) the main result
of [BeF]. O

In fact, we may weaken the hypotheses of Theorem 6.4 as follows:

Corollary 6.5. Suppose we have a family {(z%)? | p € P} of r-chains
in = indexed by some set P. Suppose that the sets {a¥ | p € P} are
uniformly quasidense in X; for all i € Z. Suppose also that for all
p,q € P, the function [i — pi(a,a!)] : Z — [0,00) is uniformly

quasiconvex. Then Z is hyperbolic.

Proof. Suppose that (a;); is any chain in =, and that j € Z. There is
some p € P so that p;(a;, %) is uniformly bounded. It follows that
pi(ai, ) < h(]i — j|) for some fixed non-decreasing function f: N —
R.
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Now, if (;); is another chain, we can similarly find ¢ with p;(b;, 1’;1)

uniformly bounded. Tt follows that |p;(a;, b;) — ps(a?, 2f)] < 2h(|i —

j|). Since the function [i — p;(a?,2¥)] is by hypothesis uniformly
quasiconvex, it follows by Lemma 5.3 that [i — p;(a;, b;)] is also. Since
(a;); and (b;); are arbitrary r-chains, we can apply Theorem 6.4 to

deduce that = is hyperbolic. O

We shall be applying Corollary 6.5 to the case where we have a sheet-
preserving action on = so the the quotients of the sheets have bounded
diameter, and where we take the orbit of a given r-chain.

We finish off with a corollary of Theorem 6.2 that will be used in
Section 15. Suppose ¥ : = — = is sheet preserving isometry of the
stack =. Thus, ¥|X; is an isometry of the sheet (X, p;). We write
sl;(1) for its stable length (as defined at the end of Section 3).

Lemma 6.6. If 1 : = — = is a sheet-preserving isometry. Then the
map [i — sl;(¢)] : Z — [0, 00) is uniformly quasiconvex with additive
constant 0.

Proof. Choose any x € X. By Theorem 6.2 the functions [i — p;(x, " (z))]
are uniformly quasiconvex for n € N, and so therefore are [i — £ p;(z, ¥"(z))].
The same therfore applies to the limit sl;(¢). Since sl;(¢¥") = nsl;i(v),

and the functions [i — sl;(¢")] are uniformly quasiconvex, it follows

that the additive constant must be 0. O

The above discussion applies equally well where we replace the in-
dexing set, Z by any set, Z C Z, of consecutive integers, in particular
for N. Note that, starting from a stack = indexed by Z, and Z C Z, we
can view the metric r-neigbourhood, Z(Z), of | J,.; X; as a stack, with
sheets (X;);ez, provided we choose r large enough in relation to the pa-

rameters. In particular, setting =+ = Z(£N), we have =t UZ~ = Z and
=TNZ" is a uniform neighbourhood of Xy. (In fact, in the construction
of = described earlier, we would have Z* N =2~ = X,.)

Proposition 6.7. Suppose that = is a stack with uniformly hyperbolic
sheets (X;)z. If = is hyperbolic, then so is =(Z), where T C 7Z is any set
of consecutive intergers. Morover, the hyperbolicity constant of =(T)
depends only on the parameters and hyperbolicity constant of =.

Proof. We first apply Theorem 6.2 to see that chains in = are uniformly
quasiconvex. Restricting to Z to see that that the same holds for Z(7).
Therefore Theorem 6.4 tells us that = is hyperbolic, as required. [
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7. THE CANNON-THURSTON MAP

In this section, we give a construction of quasiconvex sets in a hy-
perbolic stack, and explain how this may be used to construct the
“Cannon-Thurston” map from the boundary of a sheet to the boundary
of a stack. This was defined originally in the context of cyclic covers of
3-manifolds fibring over the circle [CannT], and generalised in [Min2].
The argument follows a similar strategy to that in [Mitl, Mit2]. For
further discussion and generalisations, see [AIDP], and the references
in [Bow3]. In this section, we shall not need to assume the properness
of the stack.

Definition. We say that a stack is hyperbolic if it satisfies axioms
(S1)—(S6) of Section 6.

Let = be a hyperbolic stack, with sheets, (X;); indexed by i € Z C Z
as before. Let 0= be its Gromov boundary. If i, j € Z, then there is a
natural quasi-isometry between the sheets X; and X;. We thus get a
homeomorphism between 0X; and 0.X;. Since such a quasi-isometry is
well defined up to bounded distance, (linear in |i — j|) this homeomor-
phism is canonical. We thus get canonical homeomorphisms between
the spaces 0X; for all i € Z. We write 9°= for the topological space
arising in this way. In other words, 9= comes equipped with a canoni-
cal homeomorphism to d.X; for all .. One of the main objectives of this
section will be to define the “Cannon-Thurston” map w : °Z — 0=,
We begin with a construction of quasiconvex sets in =.

Suppose that () C Z U 0= is non-empty. Let Q; = Q N X;. We say
that @ is stratified if:

(T1) @ N = is (topologically) dense in @,
(T2) hd(Q;, Qi+1) ~ 0 for all i € Z, and
(T3) U,ez Qi is quasidense in Q N E.

Note that (T2) implies that Q; # 0 for all i € Z. If ¢ is a natural
quasi-isometry from X; to X;.1, then ¢(Q;) ~ Q1.

We shall say that a stratified set, @), is quasiconvex-stratified if, in
addition to (T1)—(T3), we have:

(T4) The sets @; are uniformly quasiconvex in Xj.

Lemma 7.1. Let Q) be a quasiconvex-stratified set. Then Q) is quasi-
convez (as a subset of 2U 0=).
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Proof. By (1), it is enough to show that ) N = is quasiconvex. To this
end, we define a map ¢ : = — ) N = satisfying the hypotheses of
Lemma 4.2. Since |J; X; and |J, Q; are quasidense in = an () respec-
tively, it is enough to define ¢ : |J, X; — |, Q. Given z € X;, we
set ¥ (z) = m;(x), where m; = mg, : X; — Q; is the projection to Q); in
X;. If z,y € |J, X, we want to put an upper bound on p(¢(z),¥(y))
as a linear function of p(z,y).

In fact, it is enough to show that p(¥(x), 1 (y)) is uniformly bounded
for x € X; and y € X; with p(z,y) ~ 0 and |i —j| < 1. If i =
Jj, then since X; is straight, we also have p;(z,y) ~ 0. Moreover,
since p < p;, this case follows from Lemma 4.1. Otherwise, we can
assume that j =i+ 1. Let ¢ be a natural quasi-isometry between X;
and X;;;. By Lemma 4.3 and the preceding discussion, we see that

pis1(0(¥(x)), ¥(d(x))) ~ 0. Thus ¢(z) ~ ¢(p(x)) ~ P(¢(z)) ~ ¢(yD)

as required.

Lemma 7.2. Suppose that ) C = is a quasiconvez-stratified set, and
that x € Xo. Then po(z, Qo) < f(p(z,Q)), where [ :[0,00) — [0,00)

s an increasing function depending only on the various parameters.

Proof. Given r > 0, suppose that p(z,Q) < r. Then p(z,y) < r for
some y € @Q;, where |i| is bounded in terms of r. By property (T2),
there is some z € @y with p(y, z) bounded in terms of |i| and hence
r. Since X is straight in =, we see that p(z, z) is bounded in terms of

p(x,z) < p(z,y) + p(y, 2). O

Lemma 7.3. Suppose R C X is quasiconvex in Xo. Then there is a
uniformly quasiconvex-stratified set () C = such that Q N Xy = R.

Proof. By induction on 7, we shall construct sets @); for j € Z, with
|7] <4, so that @); is uniformly quasiconvex, and with hd(Q;, Qj+1) =~ 0.
We start with ()9 = R. For the inductive step, let ¢ : X; — X, be
a natural quasi-isometry. Now, ¢(@Q);) is quasiconvex in X;. If we were
simply to iterate this process, we would loose control of the quasicon-
vexity constant. Thus, instead we set ;41 = join(¢(X;)). The quasi-
convexity constant thus remains uniformly bounded. Moreover, since
the quasiconvexity constant of ¢(X;) is bounded in terms of the pa-
rameters, we see that hd,,,, (Qi+1, (Q;)) is uniformly bounded. Thus,
Qi ~ ¢(Q;) ~ Q;r1 with respect to the metric p. We similarly de-
fine @_(;+1). Continuing inductively, we obtain a sequence (Q;)icz of
uniformly quasiconvex sets. We set @ = J, @;. U

Given a (uniformly) quasiconvex subset, P C X, U 00Xy, let S(P) be
the closure, in ZU 0=, of the set ) constructed in Lemma 7.3, starting
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with R = PN Xy. Thus, S(P) is a closed uniformly quasiconvex-
stratified set with S(P) N Xy = P N X,. Moreover, if R C P, then
S(R) C S(P).

We are now ready to define the Cannon-Thurston map. We identify
O°= with 0X,. Suppose x € 0Xy. Let (P"),en be a decreasing base
of uniformly quasiconvex neighbourhoods of x in Xy U 0X, as given
by Lemma 4.5. Let Q™ = S(P") be the quasiconvex-stratified set
defined above. Thus, (Q"), is a decreasing sequence of closed uniformly
quasiconvex subsets of = U 0=. Since (P"),, is escaping (in the sense
of Lemma 4.6), we see by Lemma 7.2 that (Q"), is also escaping. By
Lemma 4.6, there is some y € 0= such that (), @, = {y}.

We set w(z) = y. A-priori, this might depend on the choice of the
sets (P™),. The fact that it is well defined is a consequence of the
following lemma. We set w(x) = x for all x € Xj, so as to give us a
map w : XgU0Xy — ZUOJZ=.

Lemma 7.4. The map w : Xog U 0Xqg — = U 0= is continuous.

Proof. Suppose z € Xy. Let P" and Q" = S(P") be as in the construc-
tion that defines w(x). Let U be a neighbourhood of w(z) in = U J=.
By Lemma 4.6, there is some m such that m such that Q™ C U. Sup-
pose that z lies in the interior of P™ in Xy U 0X,y. If 2 € X, then
z2€Q™CU,sow(z) =z€U. If z € 90Xy, let (R"),, be a base of quasi-
convex neighbourhoods of z in XoU0X, which defines w(z). Now there
is some n such that R" C @™, and so S(R") C S(P™) = Q™ C U.
Thus again w(z) € U. O

In retrospect, we see that in the definition of w(zx), we could have
taken any base (P"),, and indeed any set of closed uniform quasiconvex-
stratified sets (Q™), with Q" N Xy = P" N Xj.

Note that we could have carried out the same construction for any
1 € 7 to give us a continuous map, ' : X;U0X; — ZUJZ=. There is a
natural quasi-isometry, ¢’ : X, — X, which extends to a homeomor-
phism ¢’ : 0X, — 0X;, which is the identity on 0°= = 0X, = 0.X;.

If z € 0X,, and 2" € Xj is a sequence converging to x, then ¢*(z")
converges to ¢'(x). Thus, w'(¢'(z)) = ¢*(w(x)). Thus, under the iden-
tification with 9°Z, we see that w agrees with w’. In this way, we have
a canonical map w : °Z — OE.

Definition. We refer to w as the Cannon-Thurston map.

For future reference, we note that if = has the form Z = \/,_, X;,
and @ C = is a quasiconvex-stratified set, then @) can (up to bounded
Hausdorff distance) be assumed to have the form Q =\/,.; Q.



28 B. H. BOWDITCH

8. PROPER SPACES

In this section, we restrict attention to proper stacks, and consider
the relation between bi-infinite (or “two-sided”) and semi-infinite (or
“one-sided”) stacks.

Suppose that = is a bi-infinite proper hyperbolic stack. We fix some
r > 0 sufficiently large so that every point of |J, X; is contained in
an r-chain. (Later, we will want to place additional conditions on r.)
Normally we shall refer to an r-chain simply as a “chain”. We shall
distinguish between bi-infinite, positive and negative chains, indexed
respectively by Z, N and —N = {—n | n € N}. Each positive or
negative chain is a (quasidense subset of a) uniform quasigeodesic, and
hence determines an ideal point of 0=. Clearly, a positive chain cannot
be asymptotic to a negative chain, so they cannot determine the same
point. We define 0= = 0= (respectively 0= = 0, Z) to be the
subsets of 0= determined by positive (respectively negative) chains.
Thus OtZN O~ Z = 0.

By a partial positive chain, we mean a chain, (x;);e7, indexed by
an initial segment, Z, of N, i.e. either Z = {0,...,n} for some n € N
or I = N. We define the length of (z;); to be n or oo respectively.
We define the terminal point of (x;); to be either zI or the limit of
the sequence (z;); in 0T=. We shall frequently use the notation z for
a partial chain, and write x for its terminal point. We adopt similar
terminology and conventions for partial negative chains.

Lemma 8.1. Suppose that (z"),, is a sequence of partial positive chains
in =, with terminal points x™. Suppose that xf converges to a € Xy U
0Xo. Then x™ converges to w(a) € ZU J=.

Proof. By continuity w (Lemma 7.4), w(xy) converges to w(a) in EUJ=.
Now the chains 2" are uniformly quasigeodesic, and their distance from
any fixed point tends to infinity (cf. Lemma 7.2). It follows easily that
their terminal points must converge to same ideal point. [l

Now suppose that (z"), is any sequence of partial positive chains
whose lengths tend to oco. Passing to a subsequence, we can suppose
that z{ converges to a point zo € Xo U 0Xy. If 2y € Xy, then 2z}
remains in a compact subset of X;, and so subconverges on a point
r1 € X;. Continuing by a diagonal sequence argument, we can pass to
a subsequence of our partial chains, so that for each ¢, x]' converges to
a point z; in X;. Clearly x = (;); is an (infinite) positive chain. Now,
for large n, z} remains uniformly close to z; for arbitrarily many ¢. It
follows that the terminal points of 2™ converge on the terminal point,
x, of z.
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Proposition 8.2. If = is a bi-infinite hyperbolic stack, then 0= =
OTZUI " ZUw(0Z).

Proof. Let x € 0Z. Let (2"), be a sequence of points of | ., X; tending
to x. Passing to a subsequence, we can suppose (without loss of gener-
ality) that x,, € |J;cy Xi- We can represent 2" as the terminal point of
a partial positive chain, 2. Again, passing to a subsequence, we can
suppose that zf converges to a point, zy, in Xy U 0X,. If g € 90Xy,
then by Lemma 8.1, 2™ converges to w(xg) and so z = w(z) € w(9°=).
If xg € Xo, then the lengths of the partial chains necessarily tend to
oo. Thus, as discussed above, some subsequence of x™ converges to a
point of 0TZ. In this case, x € 0TZ=. O

Note that exactly the same reasoning applies to a semi-infinite stack,
=*. We obtain a Cannon-Thurston map w* : 0°Z% — 9=T. In this
case, we can obtain:

Proposition 8.3. If 27 is a semi-infinite proper hyperbolic stack, then
0=+t = 0T=T Uwt (9°=T).

Now, again let = be a bi-infinite proper hyperbolic stack. Now X
coarsely separates Z into semi-infinite substacks, =% and Z~, with
sheets (X;)ien and (X;);e_n respectively. These substacks are well de-
fined up to bounded Hausdorff distance.

To make this more explicit, we can assume (up to quasi-isometry)
that = has the form = = \/,_, X;. We set Z* = \/, . X; and &~ =
\/ie_N X;, which we can take to be substacks of Z. Let p* be the
induced path-metric on =*. Note that, with this construction, we have
ETUZ"  =Zand ETNE" = X,.

We note the following particular case of Proposition 6.7.

Proposition 8.4. If = is a bi-infinite hyperbolic stack, then the semi-
infinite substacks =t and =~ are also uniformly hyperbolic.

Now, =t and =~ have intrinsic hyperbolic boundaries, 9= and 0=,
respectively. We can identify the spaces °=" = 9=~ = 9°= = 0X,.
Clearly, every positive chain in =% is a positive chain in Z and vice
versa. Moreover two such chains are asymptotic in =% if and only if
they are asymptotic in =Z. The same applies to negative chains. We thus
have set-theoretical identifications 07=Z" = 0TZ and 0" =2~ = 0™ =.

In summary, we have Cannon-Thurston maps:

wt V2 — o=t

and
w: "2 — 0=,
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which extend to continuous maps:
wt i XoUdX, — =tuo=t

and

w:XoUodXy — zZUo=
via inclusion on Xj.

The next step will be to define maps:
7 9=F — OE,

which extend to continuous maps:

¥ EFUOEEF — ZU 0=

via inclusion on =%, and such that w = 7% o w®.

We shall need:

Lemma 8.5. Suppose a € O°= and y € OTE. Then w(a) = y if and
only if there is a sequence, (z™),, of positive chains, each converging to
y, and with x{ converging to a in Xy U 0X.

Proof. The “if” part is an immediate consequence of Lemma 8.1. The
“only if” part will be proven is Section 9 (see Lemma 9.2). O

(In fact, we can choose the chains so that xj converges to a along a
geodesic ray in Xj.)

Note that this lemma applies (by the same argument) to semi-infinite
stacks. Thus, the existence of such a chain is also equivalent to the
statement w™(a) = y. We deduce:

Lemma 8.6. Given a € °= and y € 0T=, we have wt(a) =y if and
only if w(a) = y.
We also note;

Lemma 8.7. If z,y € °Z are distinct and w*(z) = wt(y), then
wh(z) € 0TE.

We postpone the proof until Section 9 (see Lemma 9.3).
Putting this together with Lemma 8.6, we deduce:

Lemma 8.8. If v,y € "= and w™(z) = wT(y), then w(z) = w(y).

Although not needed for the construction of the maps 7%, we note
for future reference that:

Lemma 8.9. If z,y € 0= and w(x) = w(y), then either w*(x) =
wh(y) or w™(z) =w (y).



STACKS OF HYPERBOLIC SPACES 31

Again we postpone the proof until Section 9. Note that by Lemma
8.7, and the fact that 0T= N 9J~=Z = 0, if x # y, then the two latter
possibilities are mutually exclusive. Indeed, we note:

Lemma 8.10. Ifz,y,z € O°Z andw™(z) = wt(y) andw™(z) = w™(2),
then either x =y or x = z.

Note that, in particular, the map (wt,w™) : = — 9= x 9=~ is
injective. This places a restriction in the topology of 9°Z, as we shall
see in Section 10.

We now define the map 77 : 972 — 9= by setting 71 (y) = y for
y € OTET = 0T=, and 77 (w'(x)) = w(x) for z € w(z) for x € °=. By
Proposition 8.3 and Lemmas 8.6 and 8.8, this is well defined. Clearly
7t ow® =w. We set 77|=" to be the inclusion of = into =.

Lemma 8.11. The map 7+ : ZT U =T — Z U 0= is continuous.

Proof. Let F = w'(9°Z) C 9=. Now w = (77|F)ow™ : 3= — 0=
is continuous, and 77| F is surjective. Since all spaces are compact, it
follows that 77| F' is continuous.

Clearly 77|=7 is continuous. It therefore remains to show that if y" €
=T UOZT is a sequence of points converging on y € 9=, then 71 (y")
converges to 7(y). In fact, it’s enough to show that some subsequence
converges to 7(y). We can assume that y" € (J,.y Xi UOTE. Let 2"
be a sequence of partial positive chains with terminal points y". As
in the proof of Proposition 8.2, we can reduce to two cases. FKither
2" converges pointwise to an infinite positive chain, x, or xj converges
to a point a € 0X, = 0"Z. In the former case, y" converges to the
terminal point of z, both in Z* U9=" and ZU 0=. Thus, the terminal
point of z is y, and so 77(y") = y" — 7(y) = y. In the latter
case, we see by Lemma 8.1 (or by its variant for semi-infinite stacks)
that y"™ converges to w*(a) in ZF U =" and to w(a) in ZU d=. Thus
y=wt(a)and y" = 77 (y") — w(z) = 77 (w(a)) = 7 (w(a)) in ZUI=
as required. O

Clearly the same reasoning gives us a continuous map 7~ : =~ U
0=~ — ZUOI=.

Finally, we note that it follows from Proposition 8.2 that:

Lemma 8.12. If = is a bi-infinite proper hyperbolic stack, then 0= =
TH(O=ZT)YU T (0=7).

Clearly, 77 (0TZ) N 77 (07 2) = w(0°=).
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9. INTERVAL STACKS

In this section we shall consider “interval stacks”, i.e. hyperbolic
stacks whose sheets are all isometric to subintervals of the real line.
We shall see that the boundary of a semi-infinite interval stack is a
(possibly degenerate) interval. The boundary of a bi-infinite interval
stack may be a circle, an interval or the disjoint union of two intervals.
With future applications in mind, we shall phrase our arguments in
terms of interval substacks of a given stack, =. (A similar construction
was described in [Mitl, Mit2], where it was termed a “ladder”.)

Let = be, for the moment, a semi-infinite proper hyperbolic stack.
We use the notation z = (z;);en for a chain in =, and write = for the
terminal point of x.

First, we consider the case where the sheets are compact intervals.
Suppose z and y are chains. Let T = T(x,y) = U,cnl®i, il This is
well defined up to uniformly bounded Hausdorft distance. By Lemma
6.1, T is a quasiconvex-stratified set, and hence quasiconvex, by Lemma
7.1. As usual, we write 9T = 0=7 for the closure of T in Z U 0=
intersected with 0=. Clearly, z,y € 9. Note that if = = \/,_ X, then
(at least with appropriate quasi-isometries) we can identify the stack
T = Vienl®i, )i as a subset of Z, containing T as a quasidense subset.
Now T is intrinsically hyperbolic, and we may identify 0T with the
Gromov boundary, OY of T. Note that T is one-ended, since a base of

neighbourhoods of the end is given by the collection (ijl.[:cj, yj]j>i€N.

We conclude that 9T = 97T is connected. Moreover, YT = 0 and S0,
by Proposition 8.5, we have oY = oT. Thus, every point of Y is the
terminal point of a positive chain in T. Moreover, we can assume that
every point of T is contained in a chain in Y. (We, of course, need to
choose the chain constant appropriately taking account of the fact that
the parameters of T depend on the parameters of Z. We can assume
that such chains do not cross, i.e. if z;, w; € [z;,y;];, with z; € [z}, w;];,
then we can extend to chains (z;); and (w;); such that z; € [x;, z]; for
all 1.

Suppose z is a chain in T, so that T (z, z) and Y(z, y) are quasiconvex
subsets of T which intersect precisely in the chain z. It follows that
Y (z,2)U0Y(z,y) = 0T and 0Y(z,2)NOY(z,y) = {z}. In particular,
if z # x,y, then z separates = from y in Y. Since every point of
07T is represented by a positive chain in T, we see that every point of
OY \ {x,y} separates = from y. Since JT is a metrisable continuum, it
follows that it is an interval.

In summary, we have shown:
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Lemma 9.1. If v and y are chains in =, then 0T (x,y) is a (possi-

bly degenerate) topological interval with endpoints x and y. Moreover,
oY (z,y) COTE.

Next we move on the consider the case where the sheets are geodesic
rays. Suppose z is a chain in = and that a € °=. Let T = T(z,a) =
Uienl®i, @]. Again this is (uniformly) quasiconvex, and z,w(a) € 07.
By similar arguments as above, we see that 0 is connected. Moreover,
IY \ {w(a)} € 0T=. In fact, every element, z, of 9T \ {w(a)} is the
terminal point of a chain, z, in T. Note that T (z,z)UY(z,a) = T, and
that Y(x,2z) N T(z,a) = {z}. We therefore conclude, as before, that:

Lemma 9.2. 0Y(z, a) is a (possibly degenerate) interval with endpoints
x and w(a). Moreover, Y (z,a) C OTEU{w(a)}.

Note that if x = w(a), then 0Y(z,a) = {z}. In particular, every
chain in YT converges on z. Since every point of [z, aly is contained in
a chain, this proves Lemma 8.5.

On the other hand, if x # w(a), we can find a chain z in T such that
x ¢ Y(za).

We now move on the the case where all sheets are bi-infinite geodesics.
Suppose a,b € d°Z are distinct. Let T = Y (a,b) = [J,cyla, b];. By the
same reasoning as before, we have:

Lemma 9.3. 07 (a,b) is a (possibly degenerate) interval with endpoints
w(a) and w(b). Moreover, 0T (a,b) C 0T= U {w(a),w(b)}.

Note that if w(a) = w(b), then every point of [a, b]y lies on a positive
chain. In particular, w(a) € 9*=. This proves Lemma 8.7.

On the other hand, if w(a) # w(b), then we can find chains z and
y in Y such that 0Y(z,a) N Y (y,b) = 0. Indeed, given that every
point of T lies on a chain, we can arrange that p(Y(z,a), Y(y,b)) is
arbitrarily large. B

We now move on the consider the case where = is a bi-infinite stack.
Here, we shall only deal with the case where a,b € 9°Z. The other
cases can be dealt with similarly.

Let T = J,czla, 0li, YT = U,enla, 0] and Y™ = U, o _yla, b;.

We begin with the proof of Lemma 8.9:
Proof. Suppose that w*(a) # w'(b) and w™(a) # w=(b). We want
to prove that w(a) # w(b). From an earlier observation, we can find
positive chains zt and y* in YT such that p™ (YT (z",a), YT (y™",b))
is arbitrarily large. Similarly, we can find negative chains, = and
y~ in T~ such that p= (Y (27, a), Y~ (y~,b)) is arbitrarily large. In
fact, since every point of [a, b] is the basepoint of both a positive and
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a negative chain and that such chains can be taken not to cross, we
can assume, without loss of generality, that zj = x; and yd = y; .
We can therefore combine the positive and negative chains to give bi-
infinite chains z and y. Moreover, p(Y(z, a), Y(y, b)) is arbitrarily large.
In particular, we can arrange that 9Y(z,a) N 9Y(y,b) = (. Since
w(a) € 9T (z,a) and w(b) € 0Y(y,a), we have w(a) # w(b). O

Now we have already proven all the essential ingredients of Lem-
mas 8.11 and 8.12. Applying these to T (or more precisely to T =
Viezla, bli), we see that 0T = F* U F~ and F* N F~ = {w(a),w(b)},
where F* = 7%(97%).

Now 0Y* and 0Y~ are intervals with endpoints {w*(a),w*(b)} and
{w™(a),w™(b)}. Moreover, 7 restricted to the interior of T+ is injec-
tive, and the image of the interiors of 9T and 9T~ are disjoint. By
Lemma 8.7 we see that we cannot have simultaneously w™(a) = w™(b)
and w™(a) = w™(b). Thus at least one of the intervals 0T+, and
hence one of the intervals F*, must be non-degenerate. Finally note
that (by Lemma 8.9) if w(a) = w(b) then either w*(a) = w™(b) or
w~(a) = w™(b), and so in this case that (precisely) one of the intervals
F* is degenerate. In summary, we see that Y is either the union
of two non-degenerate intervals connected at their endpoints or else a
non-degenerate interval with its endpoints identified. Either way, we
obtain:

Proposition 9.4. If = is a bi-infinite proper hyperbolic stack, and
a,b € O°= are distinct, then OY (a,b) is a topological circle.

The remaining cases are readily dealt with similarly. We see that the
boundary of a bi-infinite stack of rays is a non-degenerate interval, and
the boundary of a bi-infinite stack of compact intervals is the disjoint
union of two (possibly degenerate) intervals.

10. DENDRITES

In this section, we show that the boundary of a semi-infinite proper
hyperbolic stack is a dendrite (Proposition 10.2). We deduce that the
boundary of proper bi-infinite hyperbolic stack is locally connected
(Proposition 10.4). We note that Proposition 10.2 greatly restricts the
geometry of the sheets in an infinite stack (Proposition 10.5).

A dendrite can be defined as a metrisable continuum (i.e. compact
and connected) in which every pair of distinct points are separated by
a third. A dendrite is necessary locally connected, and every pair of
points are connected by a unique arc, i.e. a subset homeomorphic to
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a (possibly degenerate) interval. There are many equivalent ways of
characterising dendrites. We shall use the following description.

Suppose that M is a metrisable continuum, and that to every pair
of points, x,y € M, we associate a closed subset, [z,y] C M, satisfying
the following for all x,y, z € M:

D1) [z,y] = [y, =],

(D1) [z

(D2) [z, 2] = {«},

(D3) [z, y] € [z,2] U [z, 9],

(D4) If x # y, then [z,y] # {z,y}, and
(

D5) If x # y, then there is a neighbourhood, U, of z in M such that
forallwe U, y ¢ [z, w].

Note that it follows that z,y € [z,y]. In fact, we shall see directly
from our construction that [x,y] is an arc connecting z to y.

Lemma 10.1. If M is a metrisable continuum satisfying properties
(D1)-(D5) above, then M is a dendrite.

Proof. Given z € M, define a relation on M \ {z} by deeming z,y €
M\ {z} to be related if z ¢ [z,y]. By properties (D1), (D2) and (D3),
this is an equivalence relation, and by (D5), each equivalence class is
open.

Suppose now that z,y € M are distinct. By (D4) there is some
z € [x,y] \ {z,y}. Now z and y lie in different equivalence classes of
M\ {z}, and so z separates = from y. O

Suppose now that = is a semi-infinite proper hyperbolic stack. Re-
call, from Section 9, the definition of the quasiconvex subsets Y (z,y),
Y(z,a) and Y(a,b) where x,y are chains, and a,b € 9°=. These sets
are well defined up to finite (in fact uniformly bounded) Hausdorff dis-
tance. If 2’ and y' are chains asymptotic to z and y respectively, then
hd(Y(z,y), T(z/, y)) < o0 and hd(Y(z,a), Y (z',;a)) < oo (though, of
course, these need not be uniformly bounded). If x,y € 0T= are ter-
minal points of x and y, we write [[z,y]] = 0T (z,y), [[x,a]] = 0T (z,a)
and [[a,b]] = 0T (a,b). These are all well defined by the above discus-
sion. If a = b € "=, we set [[a,b]] = {a}. We have thus defined [[p, q|]
for all p and ¢ in the formal disjoint union 0t*=19°=. By Lemmas 9.1,
9.2 and 9.3, we see that, in all cases. [[p, ¢]] is an interval with endpoints
w(p) and w(q), where (for the purposes of the present discussion) we
set w(z) = x for all x € 0=, Moreover, [[p, ¢]] is degenerate (i.e. a
singleton) if and only if w(p) = w(q).
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Suppose x, y, z are three chains in = converging respectively to x,y, z €
OTZ. For each i, [x;,y;]; lies in a uniformly bounded p;-neighbourhood
of [z, zi]; U [z, yi)i. Thus, Y(z,y) lies in a uniformly bounded neigh-
bourhood of Y(z,z) U Y(z,y), from which it follows that [[z,y]] C
[z, z]] U [[z, z]]. Note that if w(y) = w(z), then [[y, 2]] is degenerate,
and it follows that [[z,y]] = [[z, z]]. The same argument applies when
one or more of x, y or z belong to °=. Now by Proposition 9.3,

E =w(0=ZUd°Z), and so if z,y € 9=, we get a well defined interval,
[z, y], with endpoints = and y, by setting [z, y| = [[p, ¢]] where x = w(p)
and y = w(q). If z € 0=, we see that [z,y] C [z, 2] U [2,y]. Note also
that [z, y] = [y, 2], [z,2] = {z} and [z, 5] C = U {z, y}

We are now ready to prove:

Proposition 10.2. If = is a semi-infinite proper hyperbolic stack, then
0= is a dendrite.

Proof. Given any z,y € 0=, there is an arc, [z,y|, defined as above,
connecting x to y. It follows that 0= is a continuum. We have already
observed that hypotheses (D1)—(D4) of Lemma 10.1 hold. It remains
to verify hypothesis (D5). We rephrase this in the form of Lemma 10.3
below. O

Lemma 10.3. Suppose that x,y € 0= and that the sequence x" € 0=
converges to x. Suppose thaty € [x", x| for alln. Then x =y.

Proof. Suppose, for contradiction, that = # y. We can suppose that
y # a™ for all n. Since y € [2™, x] \ {2", 2}, it follows that y € 07 =.
Moreover, passing to a subsequence, we can assume either (Case (1))
that 2" € 7= for all n, or (Case (2)) that 2" € w(d°Z) for all n (see
Proposition 8.3).

First, we consider Case (1). Let 2" be the terminal point of a chain,
2. Again after passing to a subsequence, we can assume (cf. Proposi-
tion 8.2) that either z" converges pointwise to a chain x (Case (1a)) or
that 2 converges in Xy U X, to a point a € 90Xy = 9°= (Case (1b)).

Let us consider Case (la). It is necessarily the case that x is the
terminal point of z. By definition, [z", x] = [[2",z]] = Y (2", x) C
OTE. Since y € [2", x], for each n, we can represent y by a chain y” in
T(z",z). In other words, for all i and n, we have y!' € [z}, x;];. But
now, for any given 7, z}' — x; as n — oo. Thus, y converges pointwise
to . We arrive at the contradiction that z = v.

In Case (1b), since 2" — x, we see by Lemma 8.1, that 2 = w(a).
Thus, by definition, [z", z] = [2™,w(a)] = [[z", a]] = 0T (2", a). Again,
since y € [2",z] \ {z}, for each n we can represent y by a chain y" in
T(z",a). In other words, y!' € [z}, a]; for all i and n. In particular,
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Yo € [x8, alo. Since xj — a, it follows that yj — a in XoU0X,. Again
by Lemma 8.1, we see that y = w(a), giving the contradiction that
r=y.

Finally consider Case (2), where 2" = w(a") for a™ in 0X,. Again,
without loss of generality, we can assume that " — a € 0Xy. By
continuity of w (Lemma 7.4), we have w(a™) — w(a), and so z = w(a).
By definition, [z",z] = [w(a"),w(a)] = [[a",a]] = 0Y(a",a). Again,
y" € [x™ x] \ {z", x} is represented by a chain " in Y(a",a). In
particular, yJ € [a",a]o. Since a” — a we have yj — a in Xy U 0Xp.
Thus by Lemma 8.1, we have the contradiction y = w(a) = z. O

We have thus proven Proposition 10.2.

Now, in retrospect, we see that if z,y € 0=, then [z, y| is the unique
arc connecting x to y in 0=. Given z,y,z € J=, we can define the
median, med(z,y, z), of the triple (x,y,2) as the unique intersection
point of the arcs [x,y], [y, 2] and [z, x]. This can be given a geometric
interpretation as follows. Suppose, for example, that z,y, 2z € 9T=. We
represent these three points by chains, z,y,z. Let w; be a centre of
(i, Y, z;) in X;. Thus w = (w;); is a chain (possibly after increasing the
chain constant by a controlled amount). Its terminal point, w, is equal
to med(z,y, z). Similarly, if z = w(a), y = w(b) and z = w(c) with
a,b,c € 9°Z distinct, we set w; to be a centre of (a,b,c) in X;. Again,
w = (w;) is a chain with terminal point med(z,y, z). The remaining
cases can all be described similarly.

We finish this section with a brief account of the bi-infinite case.

Let = be a bi-infinite proper hyperbolic stack. Either all the sheets
are compact (so that 9°= = (), or all the sheets are non-compact. In
the former case (by Lemma 8.12 and Proposition 10.2), we see that 0=
is the disjoint union of two dendrites. In the latter case, we obtain a
Peano (i.e. locally connected) continuum:

Proposition 10.4. If = is a bi-infinite proper hyperbolic stack whose
sheets are non-compact, then 0= is a Peano continuum.

Proof. By Lemma 8.12, 0= = 7H(0=%) U 77 (0=27) and 77(0=") N
77(027) = w(dE) # (. By Proposition 10.2, 7£(0=%) is a dendrite.
Since 7F is continuous (Lemma 8.11), 75(9=%) is a Peano continuum.
The result follows, given that the union of two intersecting Peano con-
tinua is a Peano continuum. U

It was pointed out to me by Bruce Kleiner that the results of this
section place severe restriction on the geometry of sheets that can form
an infinite hyperbolic stack. It is impossible, for example, to have an
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infinite stack of hyperbolic n-spaces for n > 3. I am grateful to Bruce
Kleiner for his permission to reproduce the argument below.

Suppose that = is a bi-infinite proper hyperbolic stack. By Lemma
8.10, the map (wh,w™) : = — I=* x J=~ is injective. The lat-
ter space is a product of two dendrites and hence contractible and
2-dimensional. It follows, for example, that 9°= has topological di-
mension at most 2, and cannot contain a 2-sphere.

We can apply this to other situations. We say that = is uniformly
proper if for each r > 0, the space of r-balls in = is precompact in
the Gromov-Hausdorff topology [Gr2]. This equivalent to (uniform)
uniform properness of the sheets.

Proposition 10.5. If = is an infinite uniformly proper hyperbolic
stack, then 0= embeds in a 2-dimensional contractible space.

Proof. (Sketch) Take a sequence of basepoints, p; € X;, and balls about
p; in =, whose radii tend to co. By a diagonal sequence argument, using
compactness in the Gromov-Hausdorff topology [Gr2] (or using ultra-
filters), one can construct a bi-infinite stack, =’, so that 9°= embeds in
0°Z’. By the above observation, this in turn embeds in a 2-dimensional
contractible space. O

The above applies to hyperbolic n-spaces, proving the earlier remark.
One can adapt this argument to other spaces. For example, an infinite
hyperbolic stack of half-spaces in H" for n > 3, is ruled out, since by
a similar diagonal sequence argument, one could construct from it a
bi-infinite stack of H"’s. No doubt one can give a more systematic
elaboration of these ideas, though we shall not pursue that here.

11. STACKS OF HYPERBOLIC PLANES

In this section we consider a semi-infinite proper hyperbolic stack,
=, of hyperbolic planes. In other words, X; is isometric to H? for all
1 € N. Together with the results of Section 12, we see that the Cannon-
Thurston map arises from a lamination. We write d for the hyperbolic
metric. Thus, 0°Z = OH? is a topological circle. First we shall show:

Proposition 11.1. The Cannon-Thurston map, w : O°Z — 0= is
surjective.

Before setting about the proof, we make some preliminary observa-
tions. The following are standard constructions involved in proving
the quasi-isometry invariance of isodiametric functions. Suppose that
¢ is a (possibly multivalued) quasi-isometry between geodesic spaces
X and Y. Given a closed loop, 7, in X, we can construct a closed
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loop 7' in Y as follows. We choose points xg, x1, ..., 2z, = xo along ~y
which cut v into n = O(length(v)) subpaths of bounded length, and
set 7' = Ul [0(:), d(wi41)]. We note that hd(v/, (7)) is bounded,
and that length(v’) is bounded above by a linear function of length(~).
(We shall choose the various constants dependent on the parameters of
¢.)

Suppose that Y is uniformly simply connected, i.e., every curve of
a given length bounds a disc of bounded diameter. Suppose that ~
bounds a disc, D, (not necessarily embedded). Then 4’ bounds a disc,
D', contained a bounded neighbourhood of ¢(D). This can be seen by
triangulating D sufficiently finely, mapping vertices under ¢, mapping
edges to geodesic segments, and extending to 2-cells using uniform
simple connectedness.

Now consider the case of the hyperbolic plane. We say that a loop
0B links a point x not in the image of 3, if it has non-zero winding
number about x. Note that # bounds a disc, D, whose image is the
union of those compact complementary regions that are unlinked by (.
In particular, if 5 does not link =, then d(z, D) = d(z, (3).

Suppose now that ¢ : H? — H? is a quasi-isometry. Suppose that
x € H? and T is a loop in H2 Let 7/ be constructed as above. If
7" does not link ¢(z), then it bounds a disc, D, as above. From the
earlier discussion, we see that v bounds a disc, D’, within a bounded
neighbourhood of ¢='D. If 4 links , then o must lie in the image of
D’. This places an upper bound on d(¢(z), D) = d(¢(x),~") and hence
on d(x,v). Put another way, if d(x,~) is sufficiently large in relation
to the parameters of ¢, and ~ links x, then ~' links ¢(z).

Lemma 11.2. Suppose v C H? is an embedded circle enclosing a point
x, and suppose that ¢ : H? — H? is a quasi-isometry. Then, there is
an embedded circle, 3 C H?, contained in a uniformly bounded neigh-
bourhood of ¢(3) and enclosing the point ¢(x). Moreover, length([3) is
bounded above by a linear function of length().

Proof. Let v be the loop arising from the above construction. If d(z,~)
is greater than some uniform constant (in fact, the only case that really
interests us), then 7' necessarily links ¢(x). If not, then we can always
modify 7/ by a bounded amount so that this is the case. Now let [
be the boundary of the complementary region of ~' which contains

o(x). O

We now return to our stack, =Z. Suppose that z = (z;); is a chain in
=, and that 79 C Xj is an embedded circle enclosing xy. By Lemma
11.2, we can find embedded circles v; in X;, enclosing x; for each 1,
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such that 7,,1 is contained in a uniformly bounded p-neighbourhood of
vi- Moreover, length(+;) is bounded above by an exponential function
in ¢, depending on length(7y) and the parameters of the stack. Note
that (for an appropriate chain constant) every point of J;cy7: is the
terminal point of a partial chain contained in [ J;.y -

We now prove Proposition 11.2:

Proof. By Proposition 9.3, 0= = 0"=Z Uw(d°=), so it’s enough to show
that the terminal point, x, of any infinite chain, z, lies in w(0°Z). By
Lemma 8.1, it suffices to find a sequence, (y"),, of partial chains, with
po(xo, yy) — 00, whose terminal points converge to = in ZUJ=. (Since,
on passing to a subsequence, we can suppose that yj — a € 9X,, and
then x = w(a).)

Let 77 be the circle of radius n in Xy = H?, centred on xq. Let (7).
be the sequence of topological circles constructed as above. Suppose
that there is some r such that for infinitely many n € N, there is some
i(n) such that p;(z;,7j(,,) < r. Choose y" € vy, with p(z;, y") < r.
Now, y" is the terminal point of a partial chain, y" lying in | J, 7. In
particular, y§ € vy and so po(xo,y() = n — oo. Moreover, i(n) — oo,
and so y" converges to x. This gives us our desired sequence of partial
chains.

Thus, we suppose for contradiction, that for all r, we have p(x;,v/") >
r for all sufficiently large n and for all 7. Fix any such n. Suppose
z; € . Thus, 2z is the terminal point of a partial chain, (z;); in
\U; vi- Now the function [j — p;(z;, 2;)] : {0,...,i} — [0,00) is un-
formly quasiconvex (Theorem 6.2), and bounded below by r. Moreover,
po(xo, z0) = n is fixed. Thus, provided r is sufficiently large in relation
to the parameters of the stack, we see, by Lemma 5.1, that p;(z;, z;) is
also bounded below by a fixed exponential function of j. Since z; € ~;
was chosen arbitrarily, we see that p;(x;, ;) is bounded below by a fixed
exponential function.

Now, length(y;) is at least the circumference of a circle of radius
pi(zi, ;) in X; & H2 Thus, length(y;) is bounded below by a superex-
ponential function of . However, by construction, it is also bounded
above by an exponential function. We therefore arrive at a contradic-
tion. U

Given four distinct point, z,y, z,w in the circle, S', we say that
{x,y} links {z,w}, if z and y lie in different components of S*\ {z, w}.
Identifying S' 2 9°Z, this means that [z, y]; intersects [z, w]; for all 4.

Recall that 0= is a dendrite, so that every pair of points, p,q € 0=
are connected by a unique arc [p, q]. We note:
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Lemma 11.3. Suppose that x,y, z,w € 0= are distinct, and that {x,y}
links {z,w}. Then [w(z),w(y)] N [w(z),w(w)] # 0.

Proof. Since [z, yi]; N [zi, wi]; # O for all i, we see that Y(x,y) and
T (z,w) intersect in an unbounded set. Since they are quasiconvex and
= is proper, it follows that their boundaries must intersect. 0

In fact, suppose the four points appear in the cyclic order x, z, y, w
around 0"Z. Let u; be a centre for x,y, z in X;. Then u; is a bounded
distance from [z, w];. Thus, the chain (u;); determines a point in the
intersection of [w(z),w(y)] and [w(z),w(w)].

Note, in particular, that if z,y, z,w € 9°Z are distinct and w(z) =
w(y) # w(z) = w(w), then {x,y} and {z,w} are unlinked.

Definition. We say that two disjoint subsets, A and B, of the circle,
St are linked if there are distinct x,y € A and distinct z,w € B such
that {x,y} links {z, w}.

Definition. We say that an equivalence relation on the circle is un-
linked if the equivalence classes are pairwise unlinked.

Recall that an equivalence relation is closed if it is closed as a subset
of S* x S'. In this case all the equivalence classes are closed.

We now define an equivalence relation on 9°Z = S! by writing x ~ y
if w(z) = w(y). By Lemma 10.3 and Proposition 10.1, we see that
this closed unlinked equivalence relation with quotient 0= & 9°=/~.
Moreover, by Proposition 10.2, this quotient is a dendrite.

12. LAMINATIONS

In this section we consider equivalence relations arising from (geo-
desic) laminations in the hyperbolic plane, H?. To avoid any confusion
with ideal boundaries, we shall write fr(Q) for the topological boundary
or “frontier” of a subset, @, of H? or of H2UOH?. We identify S* = 0H?2.
Given any closed subset, A C OH?, we write hull(A) for its hyperbolic
convex hull in H? U 9H?. This is closed, and OH? N hull(A) = A. If
A, B C H? are disjoint, then A and B are unlinked (as defined in Sec-
tion 11) if and only if hull(A)Nhull(B) = (. A closed connected subset,
Q, of H? U OH? arises as such a convex hull if and only if fr(Q N H?)
is a union of bi-infinite geodesics. If it is not a single ideal point, then
we refer to such a set as a polygon. Note that ) has finite area if and
only if 0xQ = Q NH?2 is finite.

Let ©,(S!) be the space of unordered pairs of S! in the Hausdorff
topology (or equivalently, S* x S! minus the diagonal quotiented by
the involution that swaps the coordinates). Thus, ©,(S!) is a Mdbius
band.
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Definition. An (abstract) lamination on H? is a closed subset of ©4(S1)
such that any pair of non-intersecting elements are unlinked.

We may “realise” each element, {z,y}, of such a lamination as a
bi-infinite geodesic, [z,y] = hull{z,y} C H? U OH?. We refer to such
a set as a leaf of the lamination. Let A be the set of all such leaves.
We refer to A as the realisation of the abstract lamination, and to a
set arising in this way as a (geodesic) lamination in H?. Note that
distinct leaves can only intersect in ideal points. Moreover, [JA is a
closed subset of H? U OH? which we refer to as the support of A. A
leaf, A € A, is isolated if A\ N OH? is an isolated point of the abstract
lamination.

Suppose that A is a lamination with no isolated leaves. We define a
relation ~ on H? U OH? by writing x ~ y if the geodesic segment [, ]
does not cross any leaf of A, or more preciseley, for all A € A, either
[z,y] € X or AN [z,y] C {z,y}. One can readily verify that this is
a closed equivalence relation. Note that its restriction to OH? can be
defined in terms of the abstract lamination. Moreover, we see that:

Lemma 12.1. The relation ~ thus defined on OH? is a closed unlinked
equivalence relation.

A stratum of A is an equivalence class of the relation ~ in H? U OH?2.
Equivalently a stratum is the convex hull of an equivalence class in
OH?. Let H(A) be the set of strata of A. We see immediately that
UH(A) = H2UOH?. Note that since every stratum meets OH?, we can
identify the quotients (H? UJH?)/~ and OH?/~. It is well known that
such a quotient is a dendrite. (We omit the proof here, since we shall
not be requiring it directly.)

We note that we can allow for a lamination with isolated leaves. In
this case, we take ~ to be the transitive closure of the relation defined
above. A stratum of A is then either a leaf of A or the closure of a
complementary component of H? \ [JA. Each ~-class is a union of
strata.

Conversely one can define laminations in terms of equivalence re-
lations on OH2. Let ~ be a closed unkinked equivalence relation on
OH?. Let H be the set of convex hulls of equivalence classes. Thus
each element of H is a polygon, and we write A for the set of geodesics
that arise in the frontiers of such polygons. It is easily verified that A
is a lamination without isolated leaves, and that each element of H is
a stratum of A, in other words, H C H(A). From this it follows that
UH is a closed subset of H? U OH?.

Suppose that @ € H(A) \ H. Let A = 0x@, so that @) = hull(A).
Now each of the frontier geodesics in () correspond to distinct ~-classes.
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In particular, A has not isolated points. Thus, A is a perfect subset
of the circle S = OH?, and each ~-class restricted to A is either a
singleton or the pair of endpoints of a complementary interval of S\ A.
Now, A/~ is obtained by collapsing each complementary interval to a
point, and is thus a topological circle. In other words, A projects to an
embedded circle in OH?/~. This is impossible if H?/~ is a dendrite.
We conclude that if this quotient is a dendrite, then H = H(A), and
so [JH = H? UOH2. In other words, H is precisely the set of strata of
A, and ~ is the equivalence class arising from A as described earlier.
In summary, we have shown:

Lemma 12.2. Suppose that ~ is a closed unlinked equivalence relation
on OH? such that OH?/~ is a dendrite. Then there is a unique lami-
nation A with no isolated leaves such that the strata of A are precisely
the convex hulls of equivalences classes of ~.

We note that if we start with a lamination A with isolated leaves and
take the equivalence relation, ~, as defined earlier, then the lamination
we recover by the above construction is equal to A with all its isolated
leaves removed.

Finally, we note that the equivalence relation arising from a stack
of hyperbolic planes satisfy the the hypotheses of Lemma 11.3, as dis-
cussed in the last section. Thus:

Proposition 12.3. Suppose that = is a semi-infinite proper hyperbolic
stack of hyperbolic planes. Let w : °= — O= be the (surjective)
Cannon-Thurston map. Then there is a unique abstract lamination,
A, on O°Z, without isolated leaves such that if v,y € O°Z, then w(x) #
w(y) if any only if there is an element of the lamination, disjoint from
{z,y}, which links {x,y}.

We shall say that two leaves of A are separated if they map to dif-
ferent points in the quotient dendrite.

13. GEOMETRIC AND ERGODIC PROPERTIES OF LAMINATIONS ON
SURFACES

In this section, we describe a property of a lamination on a compact
surface which we term “regularity”. We show that this implies unique
ergodicity of the lamination. We shall see later that the ending lami-
nation of a stable hyperbolic stack of surfaces is regular (Proposition
15.4). Putting this together with results of [Min5], one can deduce that
the end of a hyperbolic 3-manifold has bounded geometry if and only
if its ending lamination is regular. Further discussion of unique ergod-
icity in relation to Teichmiiller rays can be found in [K, Mas]. The
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notion of regularity plays a central role in the proof of Theorem 20.1.
In the course of our analysis, we introduce the notions of “projected
distance” and “decompositions” which will also feature in subsequent
sections.

We begin by recalling some basic facts about laminations on hyper-
bolic surfaces. Some standard references are [CanaEG, CasB].

Let ¥ be a closed surface with genus(X) > 2, and let I' = m(%).
Given a hyperbolic structure on 3, we can represent it as a quotient
Y = H?/T of H? under a free properly discontinuous action of I'. In par-
ticular we get an induced action of I' by homeomorphism on S* = 9H?2.
Any two such actions (corresponding to different hyperbolic structures)
will be topologically conjugate. We can define an abstract lamination
on ¥ as an equivariant lamination in S*. Thus, given a hyperbolic struc-
ture, we get a realisation as a geometric lamination, A. This projects to
a lamination, Ay, on ¥, which we can view as a set of disjoint geodesics,
whose support, |JAx, is closed in Y. Tt is always the case that the in-
terior of |JAy is empty. (Indeed |J Ay has Hausdorff dimension 1.)
We say that |JAyg fills X if every closed curve on ¥ intersects | J As.
In this case, each complementary component is a finite-sided polygon.
We say that Ay (or A) is mazimal if it is not contained in any strictly
larger lamination, or equivalently, if every complementary region is an
ideal triangle. Every lamination, Ay, lies inside a maximal lamination
obtained by adding a finite number of isolated leaves.

A transverse measure to a lamination, Ay, is a Borel measure on each
transversal geodesic segment to the lamination, which is invariant un-
der pushing along the lamination. (See [CanaEG]| for more precision.)
A measured lamination is a lamination equipped with a transversal
measure. (We won’t necessarily assume that its support is all of [ J Ax.)
Any geodesic lamination admits a non-zero transverse measure. We say
that the lamination is uniquely ergodic if this measure is unique up to
scale.

Let us fix, for the moment, a hyperbolic structure, ¥ = H?/I". We
denote by d the metric on either H? and X. Recall that the injectivity
radius, inj(X), is half the length of the shortest geodesic, or equivalently,

inj(X) = %min{d(z,gzz) |z €W gel\{1}}.

Let A and Ay be respectively the realisations of an abstract lami-
nation in H? and Y. We shall define the notion of “regularity” for Ay,
referred to above with reference to this particular hyperbolic structure.
Eventually we will need to verify that it only depends on the underlying
abstract lamination (Propositions 13.9 and 13.11).
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Definition. A horizontal interval (in H? or X) is a compact subinterval
of a leaf of the lamination.

We write H (respectively Hy) for the set of horizontal intervals in
H? (respectively ). Given E € Hy, a surrounding curve of E is a
closed curve in ¥ \ E which is essential in ¥\ E.

Definition. The exterior length, ext(E), of E is the infimum of the
lengths of surrounding curves of E.

(Clearly we get the same definition if we restrict to simple surround-
ing curves.)

The exterior length can be thought of a measure of the extent to
which the interval £ “fills up” the surface 3.

Definition. A function f : [0,00) — [0,00) is a regulating function
if for all £ € Hy, we have length(FE) < f(ext(E£)).

Clearly if such a function exists, then Ay fills 3. Conversely, if Ayg
fills ¥ and there are no isolated leaves then it is not hard to see that
A admits some regulating function. (We omit the proof since we shall
not be requiring this fact.) However, by placing some restriction on
the regulating function (for example by supposing that it only depends
on certain parameters) we get a genuine geometric restriction on Ay.
In particular we have the following:

Definition. We say that a lamination is regular if it admits a linear
regulating function.

Suppose that Ay is regular with linear regulating function f. We
present a series of lemmas aimed at showing that Ay, is uniquely ergodic.

For the purposes of this section, we set ¢ = inj(X) and define a
transversal to be a non-horizontal geodesic arc in ¥ of length at most
e. If E € Hy, then a diverting arc for E is a transversal, «, which
meets F precisely in its endpoints 0o = a N E. We write E, for the
subinterval of E lying between these endpoints. Thus o U E, is an
essential closed curve.

Lemma 13.1. Let Ay, be a reqular lamination with requlating function,
f. There is an integer p € N, depending only on f and inj(X) such that
if E, F € Hy and « is a transversal with a N E = (), then length(E) >
[n/p] length(F'), where n = |a N F| and [.] denotes integer part.

Proof. Note that « cuts F' into (at most) n+1 segments, Fy, Fy, ..., F,.
For 1 <i<n—1, let a; be the subarc of o connecting the endpoints
of F;. Thus v; = F; U «; is a surrounding curve of E of length at most
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length(F;) + € (though not necessarily embedded). By regularity, it fol-
lows that length(F;) is bounded below by an increasing linear function
of length(FE). In particular, we can find constants a,b > 0 such that if
length(E) > a, then length(F;) > blength(FE).

Case (1), length(F) < a:

Since v; = a; U F; is essential, it must have length at least 2¢, and so
length(F;) > e. Thus length(F) > (n — 1)e > (¢/a)(n — 1) length(E),
and so length(F) > [n/p]length(F) for large enough p depending on e

and a and hence on inj(3) and f as required.

Case (2), length(£) > a:

In this case, length(F) > "7 'length(F;) > (n — 1)blength(FE) and
so length(F) > [n/p]length(E), where p depends on b and hence on
f- O

Lemma 13.2. There is a constant ¢ € N depending on inj(X) and f
such that if E,F € Hyx., « is a transversal with a NE =0 and 3 is a
diverting arc of E, then |6NF| > [n/q|, where n = |a N F|.

Proof. Let m = | N F|. We can cut F' into (at most) m + 1 seg-
ments, Fp,- -, I, not meeting 3. Now S U Ejs is a surrounding arc
for each F;. Thus length(F;) < f(length(E) + €) so that length(F') <
(m + 1) f(length(E) + €). But by Lemma 13.1 we have length(F") >
[n/p]length(E). Since f is linear, the result follows. O

As an immediate corollary, we note:

Lemma 13.3. If E, F € Hyx and «, 3 are diverting arcs of E and F
respectively, then min{|a N F|,|5 N E|} is bounded above in terms of
inj(X) and f.

Indeed, we can take the bound to be equal to ¢ of Lemma 13.2.

Lemma 13.4. There is a constant N > 0 such that if E, F € Hx, and
a, B are transversals with min{|a N E|, |6 N E|,|laN F|,|f N F|} > 2,

then 5 »
anEIBNF| _

lanFl|BNE] ~—
Proof. This is an easy consequence of Lemmas 13.3 and 13.4 considering

the order of the points of intersection of E and F' along each of the
transversals « and [3. O

Now let AY be A minus the (finite) set of isolated leaves. Thus A° is
a sublamination of A with no isolated leaves. Clearly A° is also regular
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and thus fills A. In particular, its support is connected, and so there
is no proper sublamination. Thus, A° is the support of any non-zero
transverse measure to A. Moreover, it follows that every half-leaf of A°
is dense. This allows us to define the “first return map” as follows. Let
a be transversal with a M A% # () and with daNA® = (). Thus, K is a
Cantor set. We choose positive and negative sides of the transversal a.
Thus, if 2° € K is the intersection point of a and A € A°, then we can
define the positive and negative unit tangent vectors, * and = to A
at 2°. Let K = KT UK. Thus (as a subset of the unit tangent bundle
to ) K is also a Cantor set. Let 7 : K — K be the projection map
sending z* to 2°.

Let f : K — K be the first return map following A°. In other
words, if 2% € K, then 7o f(z%) lies in the same leaf, X € A% as x~.
If E(x*,1) is the subinterval of A between m(z%) and 7 o f(2%), then
E@@® 1) Nna = {r(z*),mo f(z*)}.

Given z € N, define E (2%, n) inductively by E (2%, n+1) = E(z*,n)u
E(f*(z%),1). Thus E(x*,n) is a horizontal interval meeting « in the
n + 1 points fi(z*) for i = 0,...,n. More generally, if 3 C « is a
subarc, then |3 N E(x®,n)| = [{i | i < n,7o fi(z*) € B}|. We write
A*(x, 8,n) for this quantity, where x = m(z*). If BNA° is infinite, then
by the recurrence property we have A%(z, 3,n) — oo as n — oo for all
x € BN A°. Reinterpreting Lemma 13.4 in these terms, we deduce:

Lemma 13.5. Suppose that 31, B2 are subintervals of a, that x1,x9 €
K and that n € N. If A (x;, Bj,n) > 2 for all i,j € {1,2}, then

AT (21, Br,n) AT (22, B2, 1) <N
At (21, Bo,n) At (2o, B1,m) —

Note that any transverse measure on A gives us a Borel measure, j,
on K°, which pulls back to an f-invariant measure 1’ on K. Normalis-
ing we can suppose that p has unit mass. If we have two distinct such
measures, then applying the Hahn-Jordan decomposition theorem to
their difference, we can suppose that they are mutually singular. Since
they are assumed to be Borel measures, it follows that for any M > 0,
we can find intervals 3, 82 C «, each intersecting K in infinite subsets,

such that g (51)p2(B2) > Mg (B2)pa(51)-

Proposition 13.6. A regular lamination is uniquely ergodic.

Proof. Suppose for contradiction that A is not uniquely ergodic. Then
in the above notation, we can find measures 1, 1o on « and intervals

Br, B2 € asuch that py(B1)pa(B2) > Npa(B2)p2(61). The pull backs of
py and py to K are f-invariant. Thus, applying the Birkhoff ergodic
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theorem, we can find @1, x5 € K such that 2 AT (z;, 8;,n) — 1;(5;) as
n — oo for i,7 € {1,2}.
Moreover, by the recurrence property, we know that A*(z;, 8;,n) >

2 for all sufficiently large n. This gives a contradiction to Lemma
13.5. U

Next we give a slightly different formulation of regularity which is
useful for applications such as its invariance under change of hyper-
bolic structure (Proposition 13.9). First we introduce the notion of
“projected distances” which play a central role in the next few sec-
tions.

Given z € H? and A € A, we write my(z) € X for the projection of
to A, i.e. the point of A which minimises d(z,m\(x)). Given z,y € H?,
we write

ox(@,y) = d(mx(x), ma(y))
and
o(z,y) = onlz,y) = sup{oa(z,y) | A € A}.

We note that ¢ is a metric on H? with ¢ < d. It restricts to the
standard metric on each leaf of A. Moreover, it is “monotone” in the
sense that if z,y, 2 € H? with z € [z,y], then o(z, 2) < o(z,y).

Definition. We refer to o(x,y) as the projected distance between z
and y with respect to A.

Suppose @ C H? and A € A. We write pdiam, (Q) for the diameter
of m\(@), and pdiam(Q) = sup{pdiam,(Q) | A € A}.

Definition. We refer to pdiam(Q) as projected diameter of () with
respect to A.

If P,Q C H? and PN Q # 0, then pdiam(P U Q) < pdiam(P) +
pdiam(Q). If P C @, then pdiam(P) < pdiam(Q).

Suppose that a is a path in ¥. We define pdiam(«) = pdiam(a),
where @ is any lift of o to H2. Clearly pdiam(a) < length(c). These
measurements coincide for horizontal intervals. We also note that the
projected diameter of a path is at least that of the geodesic connecting
its endpoints in the same homotopy class.

Suppose that v is a closed curve, and x is any point on 7. This
determines a path, v,. which starts and ends at x following v. Suppose
y is another point on . By considering the projected lengths of the
two paths into which x and y cut v, we see easily that pdiam(vy,) <
2 pdiam(~y,).

Definition. We define the projected length, plength(~y), of v as the
maximum value of pdiam(,) as x runs around ~.
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Clearly, plength(vy) < 1length(y). We also note that plength(y) <
2 pdiam(~y,) for any = in 7. As a consequence, we note:

Lemma 13.7. Ify = a;U- - -Uay,, then plength(y) < 237" | pdiam(a;).

Given a horizontal interval, F € Hy, we can define its projected
exterior length, pext(E), as the infimum of the projected lengths of
(simple) surrounding curves of E. We can similarly define regulating
functions with respect to projected length. In particular, we have:

Definition. We say that Ay is strongly regular if there is a linear
function, f : [0, 00) — [0, 00) such that for all E € Hy, length(E) <

f(pext(E)).

It is clear that strong regularity implies regularity. In fact, we shall
see that they are equivalent (Proposition 13.11). First we show that
strong regularity is independent of hyperbolic structure.

Suppose that X' = H?/T" where [" = I" represents another marked
hyperbolic structure. Let Af, be the realisation of the abstract lam-
ination underlying Ay. Suppose that ¢ : H? — H? is an equi-
variant quasi-isometry. (This induces an equivariant homeomorphism
¢ : OH? — OH? sending the abstract lamination underlying A to that
of A".)

Lemma 13.8. In the set-up described above, there is another equivari-
ant quasi-isometry, 1 : H? — H? which maps H?> homeomorphically
to H?, and which maps each leaf of A homeomorphically to the corre-
sponding leaf of A'. Moreover, 1 sends the centre of each complemen-
tary triangle of A to the centre of the corresponding complementary
triangle of A'. Finally the parameters of 1 depend only on those of ¢.

Proof. We can forget about the group actions. Since the construction
we give is canonical, it is automatically equivariant.

We first define ¢||JA. Suppose r € A € A with A N OH? = {a,b}.
Let y1,y> € OH? be the points such that [y;, 9] meets A orthogonally
in . Thus, m\(y1) = m\(y2) = x, and z is a centre of both {a,b,y;}
and {a, b, ys}.

Let N € A’ be the geodesic connecting ¢(a) to ¢(b). Let ¢;(x) =
T (6(yi)), and let ¥ (x) be the midpoint of [¢1(x), 2(x)] € N. Now,
¢(z) and ¢ (z) are both centres of {¢(a), (b), d(y1)} and so d(¢(z), ¥ (x))
is uniformly bounded. The same goes for d(¢(z), 1o(x)). It follows that
d(¢(x),¢(x)) is uniformly bounded. Moreover, since ¢ and 1 both
map A homeomorphically to X', we see that 1 does so also. It is easily
seen that ¢||(J A is a homeomorphism onto [JA’.
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We need to extend this map over each complementary triangle, T',
of A. Let T" be the corresponding complementary triangle to A’. Let
c and ¢ be the centres of T and T” respectively. Let e be a sufficiently
small uniform constant. If A\, € A are edges of T', and y € A\, z €
i, with d(y, z) < e and with y, z lying in the same horocircle about
AN p, then we map the geodesic segment [y, z] linearly to the segment
[¥(y),¥(2)]. We do this for all such pairs, {y,z}. This defines 1 on
all but a hexagonal subset, H, of T', whose boundary consists of three
horizontal intervals of bounded length (depending on €) alternating
with three segments of length exactly €. Note that c lies in the interior
of H. We have already defined v on the boundary, fr(H), of H. Again
by choosing e sufficiently small in relation to the parameters of ¢, we
can assume that ¢ (fr(H)) encircles ¢ and that there is a positive lower
bound on d(¢(fr(H)), ). We now extend ¢ over H by sending ¢ to ¢
and coning linearly. U

Note that for each A € A, the homeomorphism |\ — () € A’ is
a uniform quasi-isometry of from ¥|A — ¥(\) € A’. Thus v distorts
projected distances by at most a linearly bounded amount, depending
only on the parameters of ¢/ and hence of ¢.

Proposition 13.9. Suppose that Ay, and A%, are realisations of the
same abstract lamination with respect to different hyperbolic structures.
Then Ay, is strongly regular if and only if A% is.

Proof. Write Y for the second structure. By symmetry, we can suppose
that A%, is strongly regular. Let ¢ : H? — H? be any equivariant quasi-
isometry (for example, the lift of any diffeomorphism from ¥ to ' that
respects markings) and let ¢ be the quasi-isometry given by Lemma
13.8. Thus 1 decends to a homeomorphism from ¥ to ¥’ which we also
denote by .

Let E € Hyx, and let v be a surrounding curve whose projected
length is arbitrarily close to pext(E). Now ¢(FE) is a surrounding
curve of ¥(E) in ¥', and so length(¢(E)) is linearly bounded in terms
of plength(¢)(y)) and hence plength(y). Moreover, length(F) is lin-
early bounded in terms of length(¢(E)). It follows that Ay is strongly
regular. U

(Note that we cannot apply the above argument directly to regular-
ity, since in general ¢ will not be lipschitz.)

We remark that the relation between the regulating functions of Ay
and A% depend only on the parameters of ¢ and hence of ¢. More-
over, we can choose ¢ so that these parameters depend only on the
Teichmiiller distance between ¥ and X',



STACKS OF HYPERBOLIC SPACES 51

To show that regularity implies strong regularity (and for further
applications later) we introduce the notion of a “decomposition” of 3.
We shall use a number of variants on this construction, but they all
have in common certain features which we go on to describe.

By a decomposition of ¥, we shall mean a collection, P, of open
subsets of ¥ which are precisely the complementary components of a
finite embedded connected 1-complex, G = G(P), in 3, with respect to
a fixed metric (here pg). The 1-cells of (or “edges”) of G partitioned
into horizontal and vertical types. Each horizontal edge is a horizontal
interval (i.e. contained in a leaf). Each vertical edge is an arc meeting
Ay, in its endpoints, not homotopic into a leaf relative to its endpoints.
We shall also assume the vertical edges to be pairwise disjoint. Each
vertex of G is either of degree 3 (the endpoint of a vertical edge) or
degree 1 (the endpoint of a horizontal edge). We refer to vertices of
degree 1 as vertical 0-cells. We refer to G as the 1-skeleton of P.

We refer to an element of P as a region. A region is rectangular if it
is simply connected, and its boundary contains precisely two vertical
edges. We shall assume that no two rectangular regions meet along a
vertical edge.

All the above conditions will be assumed to hold for any decompo-
sition. We make a few observations.

The union of all horizontal edges is a disjoint union of horizontal
intervals, which we refer to as the base of P. We define the complexity
of P to be equal to the number of regions, |P|. This is bounded in
terms of genus(X) and the number of components of the base (which is
half the number of vertical 0-cells). Note that the complexity in turn
gives a bound on the number of edges and vertices on the 1-skeleton.

The boundary of any region is a union of (not necessarily embedded)
closed curves each consisting of an alternating sequence of vertical cells
and horizontal sides — a side being a non-empty union of horizontal
edges. (Note that every vertical 0-cell is terminal in the 1-skeleton,
so the boundary curve doubles back along the same edge after passing
through such a cell.)

If R is a rectangle, we shall refer to its length, length(R), as the
minimum of the lengths of its two horizontal sides.

Definition. We define the girth of P as the maximal length of all edges
other than those incident on rectangles on both sides (these might be
the same rectangle).

We shall normally place some sort of uniform bound on girth(P).
Note that the total length of the 1-skeleton of G(P) is bounded in
terms of |P|, girth(P) and the length of the longest rectangle.
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By the trivial decomposition, we mean the decomposition consisting
of a single horizontal edge, E, and hence just one complementary region
¥\ E. We can think of the boundary of this region as a closed path
that encircles E.

Note that we can remove from a decomposition, P, any set of rect-
angles and amalgamate the adjacent regions to form another decom-
position, P’. Note that P’ is “coarser” than P in the sense that each
element of P is a subset of an element of P’.

We next describe how to construct a decomposition, P(FE), with base
E with the property that each vertical edge is incident on a rectangle,
and such that its girth is bounded above in terms of genus(X). Note
also that |P| is bounded above in terms of genus(X). In all applications,
E will be a horizontal interval of A.

To give the idea, imagine, for the moment, that £ were a non-
separating simple closed geodesic rather than a geodesic arc. We cut
> along FE so as to obtain a hyperbolic surface S with surface with to-
tally geodesic boundary. Let € > 0 be sufficiently small, and let Sy C S
be the set of points of S which lie on a geodesic segment of length at
most € connecting two points of the boundary, but which does not lie
entirely in the boundary. Thus Sj is a disjoint union of rectangular
strips. We can take the set of all rectangles which arise in this way
as the rectangular regions of a decomposition of 3. The case where
E' is an interval requires a slight modification to take account of the
endpoints of F but the argument is similar. (If an endpoint lies in a
component of Sy, then we remove a neighbourhood of this endpoint
from Sy so as to cut this component into three rectangles, separated by
a small non-rectangular region containing a vertical 0-cell.) Note that
all but a subset of F of bounded length lies in one of the horizontal
edges of a rectangle. We shall denote the resulting decomposition by

P(E).
For future reference, we note that we can perform a similar con-
struction given a disjoint union of intervals, F' = F,..., F,. In this

case, the resulting decomposition, P(F') will have complexity, |P(F)|
bounded in terms of n and genus(X).
Our first application of decompositions is the following:

Lemma 13.10. Suppose that E € Hsx,. We can find a surrounding
curve, v, of E with length(y)—n pext(E) bounded in terms of genus(3),
and such that v has the form v = FiUa UFyUaaU- - -UF, Uay,, where
the F; are disjoint geodesic segments, where each o; is a path of length
bounded in terms of genus(X) and inj(X), and where n is bounded in
terms of genus(X).
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If Ay, is mazimal, then we can take each of the F; to be a horizontal
interval.

We remark for future reference (see Lemma 14.7) that the same
argument will show that we can also choose such a 7 so that length(vy)—
ext(F) is bounded.

Proof. Let P(E) be the decomposition with base E constructed as
above. We can assume that the length of each rectangle exceeds girth(P(E)).
Let 3 be a surrounding curve of projected length arbitrarily close to
pext(E). We perform a series of operations to obtain ~ from f.

Suppose R € P(FE) is a rectangular region. We can suppose that each
component of 5 N R crosses R, for otherwise we could push it off R,
decreasing the length of 3. Moreover, we can suppose that there is at
most one such component, for if there were two, we could connect them
by a geodesic segment 6. Now o cuts [ into two closed curves, at least
one of which must be essential. The component of its intersection with
R that contains ¢ can be pushed off R so as to obtain a new closed curve
of projected length no greater than the original. We perform these
operations for each rectangular region. The resulting curve intersects
the set of rectangles in arcs which can be adjusted to be geodesic, thus
giving us our arcs Iy, Fy, ..., F,. If A is maximal, they can also be
assumed to be horizontal. Note that n < |P(£)| is bounded in terms
of genus(X), and that we have increased the projected length of 5 by
at most an amount bounded in terms of genus(X%).

Now the diameters of the rectangular regions are bounded in terms
of genus(X) and inj(X). Thus, after shortcutting « in similar fash-
ion if necessary, we get a bound on the length of the connecting arcs
ai,...,a,. Moreover, we can similarly arrange that v be simple, as
required.

Finally note that the lengths of each interval F; approximately equals
its projected length, and so length(vy) — n plength(+) is bounded. The
result follows. U

As an immediate consequence we deduce that ext(E) is bounded by
a linear function of pext(E) depending only on genus(X) and inj().
In particular:

Proposition 13.11. A lamination is reqular if and only if it is strongly
reqular.

As usual we have a control over the respective regulating functions.

Finally we note that Propositions 13.9 and 13.11 together tell us
that the regularity of a lamination does not depend on the hyperbolic
structure.
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14. STABLE SEQUENCES OF SURFACES

In this sections, we consider a sequence of hyperbolic metrics on a
surface which have particular properties in relation to a given lami-
nation (see Propositions 14.2 and 14.6). Under these hypotheses, we
show that such a lamination is regular. We apply these results in later
sections.

Suppose that (p;);en is a sequence of hyperbolic metrics on a closed
hyperbolic surface, 3. We also write p; for the induced metric on the
universtal cover, X = ¥, of ¥.. Thus, ¥ = X/I', and (X, p;) is isometric
to the H? for all i. Suppose that A (respectively Ay) is simultaneously
(the realisation of) a lamination with respect to each of the metric p;.
We make the following assumptions about the metric p;.

(L1) The identity maps from (X, p;) to (X, p;r1) are uniform quasi-
isometries

(L2) If x,y € A € A, then the maps [i — p;(z,y)] : N — [0, 00) are
bounded and uniformly quasiconvex.

(L3) The injectivity radii of the surfaces (X, p;) are bounded below by
a positive constant.

(L4) For all [ > 0, there is some p € N such that if 7, j € N and v is a
simple closed curve of ¥ with max{l;(7),l;(7)} <, then |i — j| < p.

In (L4), ;(y) denotes the length of the closed geodesic in (3, p;) in
the same homotopy class as . In the case of interest to us (where
the distance function is quasiconvex) it is not hard to see that (L3)
and (L4) are equivalent (see Proposition 17.3). Property (L3) is the
“stability” condition on the surfaces — they project to a bounded set in
moduli space. The intuitive interpretation of (L2) is that the sequence
of metrics “collapses” in the direction of the lamination A — cf. the
ending lamination of a 3-manifold.

We begin by deriving some consequences of (L1) and (1.2), so for the
moment, the group I' is irrelevant.

Firstly, it will be convenient to replace (L.2) by a stronger property,
namely that the sequence a; = p;(x,y) satisfies a;11 < ta; + r for all 7,
where t < 1 and r > 0 are constants depending only on the parameters.
This is justified by replacing p; by p, for a sufficiently large integer
p € N (cf. Lemma 5.1). In what follows, we will say that a function
[i — a;] is linearly controlled if a; 1 < ta; +r for all i, where 0 < ¢ < 1
and r > 0. We shall consider other functions satisfying this property,
where we may need to modify r depending on the parameters. Note



STACKS OF HYPERBOLIC SPACES 55

that such a sequence decreases monotonically to at most some uniform
constant, k£, and then remains bounded by k.

Definition. A sequence of points (z;); in X form a chain if there is
some h > 0 such that p;(z;, z;11) < h for all 4.

Such a chain thus has a “chain constant”, h, associated to it, which
we can choose to be uniformly bounded and sufficiently large for what
follows. (If the sequence of metrics arises from a stack, then this ter-
minology is consistant with that previously introduced — see Section
17.) Note that, by (L1) this is equivalent to bounding p;11(x;, Tiy1)-

If (z;); and (y;); are both chain sequences in a leaf A € A, then the
sequence p;(z;,y;) is also linearly contolled (at the cost of increasing r
in relation to the chain constant). In particular (by setting y; = ¢ for
all i), we see that p;(zo,z;) is bounded above.

Given x € X and A € A, write 7y ;(x) for the projection to x to A
in (X, p;). By hypothesis (L1) we see that (7 ;(z)); is a uniform chain
sequence. As a consequence. we see that the maps [i — oy ;(z,y)]
and [i — o;(x,y)] are linearly controlled where o, ; and o; denote pro-
jected distances with respect to A and A in the metric p;. Moreover, if
Q C X, then [i + pdiam, ;(Q)] and [i + pdiam,;(Q)] are also linearly
controlled.

We shall say that a sequence of horizontal intervals F; C X\ form
a chain if they have the form E; = [z;,y;| for chain sequences (z;);
and (y;);. Clearly [i — length,(£;)] is linearly controlled, as is [i —
pi(E;, F;)] where (F;); is any other chain of intervals.

Suppose that A, u € A are distinct leaves. The intervals E; = my ()
thus form a chain. In particular, if z € A, p;(x, E;) is linearly controlled
and is hence uniformly bounded in terms of py(z, Ey). Moreover a pos-
itive lower bound on length,(E;) gives an upper bound on p;(A, p).
Suppose that z € p. Let z; = m,;(x). Then (z;); is a chain sequence,
and so p;(z;, z) is bounded above in terms of py(zo, 2) < po(x, z). Since
pi(x,z) < pi(A\ p), we conclude that a lower bound on length(E;)
places an upper bound on p;(z,z) in terms of po(x,z). As a conse-
quence, we have:

Lemma 14.1. There are constants, r1 and ro, depending on the pa-
rameters of (L1) and (L2) with the following property. Suppose x,y € A
and z,w € p where A, u € A are distinct. If po(z,z) <11, po(y, w) <1
and pi(x,y) > 3ry, then pi(z,2z) < ry and pi(y, w) < ro.

Proof. Let E; = my;(p). Note that po(z, Ey) < po(x, pn) < po(z,y) <
r1. Thus p;(z, E;) — 1 is bounded above in terms of the parameters of
(L1) and (L2). The same applies to p;(y, ;). Since p;(z,y) > 3rq, we
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get a lower bound on length,(E;) — 1. Thus by choosing r; sufficiently
large in relation to the parameters, we get a uniform lower bound on
length,(E;). From the discussion preceding the lemma, we thus obtain
an upper bound on p;(z, z) and p;(y, w) and in terms of r1. We denote
this upper bound by rs. O

This lemma has an interpretation in terms of the rectangular regions
of a decomposition of 3 — while the horizontal edges remain sufficiently
long, the lengths of the vertical edges remain bounded.

Before proving the main result of this section (Proposition 14.6), we
start with a weaker version which will be sufficient for some application,
in particular, those of Section 17. We remark that some analogous ideas
can be found in [MasM].

Proposition 14.2. Suppose that A and (X, p;) satisfy hypotheses (L1)-
(L4) above. Then, in any of the metrics p;, A has a requlating function
which depends only on the parameters of (L1)-(L4).

Note that an immediate consequence is that A fills the surface . To
simplify notation, we prove this for the metric pg. In other words, we
want to show that if £ € Hy, and 7 is a surrounding curve of F, then
length,(E) is bounded in terms of length, (7).

To this end, we introduce another measure on the size of an inter-
val £ € Hy. First, let 7 be a constant so that length,(E) decreases
monotonically to at most ry, and then remains bounded by rg. (Indeed
for future applications, it will be convenient to assume that rq is suf-
ficiently large so that the other linearly controlled functions discussed
earlier also have this property.) We write:

h(E) = min{i € N | length;(E) < ro}.

Thus if ¢ > h(F) then length,(F) < ro. By property (L1), length,(E)
is bounded by an (exponential) function of h(E). It therefore suffices
to find an upper bound for h(FE).

First, we construct a decomposition, Py, with base E, with the prop-
erty that 7 is entirely contained in some region, Py, of Py, and such that
girthy(Py) is bounded above by a (linear) function of length,(vy). To
this end, we start with the decomposition, P(E) described in Section
13. We delete any rectangle which is completely crossed by a subarc
of v, and push ~ off any other rectangles. In this process we may in-
crease the girth of the decomposition, but only by an amount bounded
in terms of length(vy). Finally we throw away any rectangles whose
po-length is at most ro. (Recall that the length of a rectangle is defined
as the minimum of the lengths of the two horizontal sides.) We also
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assume that rq > 3ry, where r; is the constant of Lemma 14.1. We
denote the resulting decomposition by Pj.

Now given ¢ € N, let P; be the decomposition obtained by throwing
away from P, all those rectangles whose p;-length is at most ry, and
amalgamating the adjacent non-rectangular regions. By the choice of
1o, it follows that if 7 < j, then P; is coarser than P;. Moreover, by
Lemma 14.1, we see that if we straighten out any vertical edge, i.e.
replace it by the homotopic geodesic with the same endpoints, then its
pi-length will be bounded by ry. Let P; be the region of P; containing
Py and hence 7.

Let {hy,ho,...,h,} = {h(R) | R is arectangle in Py} with h; <
hy < -+ < hy. Here, h(R) denotes min{h(F}), h(F,)} where F} and F,
are the horizontal sides of R. Thus, the h,, are precisely the levels at
which the combinatorics of P; changes. Note that n is bounded by the
number of rectangles, and hence by genus(3).

At each critical level i = h,,, the p;-lengths of the horizontal edges of
the non-rectangular regions may increase, since we are amalgamating
a number of horizontal edges, some coming from old non-rectangular
regions and others coming from rectangles we are deleting. However,
the p;-lengths of edges the latter type are uniformly bounded. Since
we have a bound on the total number of regions, we have an inductive
control on the p;-lengths of edges of the former type. In summary, we
have a bound, depending on [ and the various parameters on the p;-
length of each horizontal edge of each non-rectangular region of P;. It
follows that we have a bound on the p;-length of the homotopic closed
geodesic to each boundary curve of such a region. (First straighten out
the vertical edges, and then homotop to a closed geodesic.)

Now let (3; be any boundary curve of P;. We note:

Lemma 14.3. Ifi < h,,, then [3; is essential in 3. Moreover, 1;([3;) is
uniformly bounded.

Proof. The second statement is a consequence of the discussion im-
mediately preceding the lemma. For the first statement, we push j;
slightly into P; so that it becomes embedded but remains disjoint from
v. Suppose that it bounds a disc, D. Since 7 is essential, it follows
that DN~ =0, and so E C D. Since no vertical arc can be homotoped
into F, it follows that there can be no vertical arcs. In other words,
the decomposition is trivial, and so i > h,,. 0

Now hypothesis (L.4) puts a bound on the number of consecutive ¢
for which (3; can remain homotopically constant. Since it is determined
by the combinatorics of P;, we deduce:
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Lemma 14.4. There is somep € N such that for allm, h,,—h,,—1 < p.
Finally, we note:
Lemma 14.5. There is some bound q € N such that h(E) — h,, < q.

Proof. By definition, Py, is trivial, from which it follows that the pp, -
length of F is bounded. (For example it is encircled by ), .) Since
pi(E) grows uniformly exponentially in h(E) — 4, this places an upper
bound on h(E) — h, as required. O

We can now prove Proposition 14.2:

Proof. By Lemmas 14.4 and 14.5, we have h(E) < np + q. Here, n
depends on genus(X) and p and ¢ depend on [ the parameters of (L1)—-
(L4). This puts a bound on length,(E). O

We can now sharpen this to give the principal result of this section:

Proposition 14.6. Let A and (X, p;) satisfy hypotheses (L1)-(L4)
above. Then A is regular. In fact, there is a linear regulating func-
tion which depends only on the parameters of (L1)—(L4).

To begin with we define the size size(P) of a decomposition, P,
as the total length of the 1-skeleton, G(P). Note that for a given
complexity, |P|, and girth, the size of P is bounded above by a fixed
linear function of the length of the longest (horizontal) interval (or of
the longest rectangle).

In the following lemma, size and girth are measured in the metric
po- (In fact, the lemma is valid for any lamination on a hyperbolic
surface.)

Lemma 14.7. Suppose that A is a mazimal lamination and that E €
Hs.. Then there is a decomposition, P, of 3 such that |P| is bounded in
terms of genus(X) and girth(P) and size(P) —ext(P) are each bounded
in terms of genus(X) and inj(X). No subarc of any vertical edge is
homotopic into E relative to its endpoints. Moreover, the union of all
edges not meeting E is essential in 3 (i.e. contains an essential closed
curve).

Proof. Let v = FiUa; U---U F, U, be a surrounding curve of £
with F; € Hy and length(v) — ext(y) bounded in terms of genus(X) as
given by the remark following Lemma 13.10. Let P(F') be the decom-
position with base F' = (J;_, F; described in Section 13. Thus, |P(F)]
and size(P(F')) — ext(F) are bounded as required. Moreover, since the
vertical arcs of P(F') are geodesic, the second requirement is automat-
ically satisfied. To meet the final requirement, however, we will need
to modify the set of vertical arcs as follows.
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Firstly, we delete any rectangular region entirely crossed by a subarc
of any «;. Now the endpoints of each «; lie in non-rectangular regions.
Thus, if «; intersects any rectangular region, then it enters and leaves
by the same vertical edge, 5. We can thus homotop ( so that it no
longer intersects «; by following close to a subarc of «;. We continue
this process so as to get rid of all intersections of each «; with each
vertical edge. This increases the length of each vertical edge by a
bounded amount. We now push the endpoints of each «; slightly so
that they meet F; and F}; at interior points. We can now adjoin the «;
as vertical edges. Finally we delete all vertical edges that are incident
on two rectangular regions. This gives us our decomposition, P, and
gives us the required essential closed curve in the 1-skeleton.

There is a technical detail in that it is conceivable that one of the
arcs, «; might be homotopic into a leaf A € A, contrary to one of
the requirements of a decomposition. In this case, let K C X be the
interval between F; and F;.;. If EN K = (), then we can replace,
at the outset, the arc F; U oy U F;;; by a single horizontal interval
F,UKUF;,. If FUK, then the length of E is bounded, and one can
find an alternative construction, though this case will be of no interest
to us in applications. O

To apply this, we note:

Lemma 14.8. Any lamination satisfying (L1)-(L4) can be extended
to a mazimal lamination satisfying (L1)—(L4).

Proof. We know by Proposition 14.2 that such a lamination fills >.
Thus each complementary region is a finite-sided polygon that can
be subdivided into ideal triangles by adding a finite number of isolated
leaves. Each such leaf is the union of two geodesic rays each asymptotic
to a leaf of the original lamination. From this property (L2) follows
easily. U

Thus, without loss of generality, we can assume that A is maximal.
Let P be the decomposition given by Lemma 14.7. If R € P is a
rectangular region, let A(R) = min{i | length,(R) < 79}. We can
suppose that 7 is sufficiently large so that if i = h(R) and « is any arc
crossing R, then length,;(R) > ro/2.

Lemma 14.9. Let P be as above. There is some p > 0 depending on
genus(X) and the parameters of (L1)—(L4) such that E intersects each
edge of P in at most p points.

Proof. Let Q C P be the set of regions that intersect £ non-trivially.
We prove the lemma by induction on |Q].
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Let @ be the closure of | J Q, and let Ky = KN Q. We claim that K
contains a closed curve, 3, which is essential in ¥\ E. To see this, note
that if all of the components of ¥\ @ are discs, then we can homotop
an essential closed in K (as given by the hypotheses) into Ky. On
the other hand, if some such component is not a disc, then one of its
boundary components has the required property.

Now let R € Q be a rectangular region for which ¢ = h(R) is maximal
among rectangles in Q. Let ¢ > 0 be the number of components of
EN R. All but at most two of the components of £ N R cross R, and
so length,(E) > (¢ — 2)ro/2.

On the other hand, the p;-lengths of all the horizontal intervals of
Ky are uniformly bounded (given the choice of R). Moreover, the po-
lengths of all the vertical intervals are bounded by girth(P). This puts
a bound on their projected diameters with respect to p; in terms of
the parameters of (L1)—(L4). By Lemma 13.7, we therefore have a
bound on the total projected length of the curve 8. Since 3N E = (),
Proposition 14.2 and Lemma 13.10 place an upper bound on the p;-
length of E. Putting this together with the inequality of the previous
paragraph, we get an upper bound on q.

We now replace Q by Q \ {R} and apply the induction hypothesis
to the (at most ¢+ 1) components of E'\ R (pushed slightly of R). The
result follows. O

Corollary 14.10. With the same hypotheses as Lemma 14.9, the length,(E)
is bounded by a linear function of sizey(P), which depends on |P],
genus(X) and the parameters of (L1)-(L4).

Proof. Let P € P and F be a component of PN E. If P is non-
rectangular, we see that length,(F') is uniformly bounded, whereas if
P is rectangular, then length,(F’) minus the length of P is similarly
bounded. Clearly the length of each rectangle is bounded by sizey(P).
The result follows applying Lemma 14.9. U

We can now prove Proposition 14.6:
Proof. By Lemma 14.8, we can assume that A is maximal. We con-
struct P as in Lemma 14.7 and apply Corollary 14.10. U
15. OTHER PROPERTIES OF LAMINATIONS

In this section, we consider some further, more technical, properties
of laminations. In particular, we (Lemma 15.7) show that for surfaces
with a lower injectivity radius bound, a control on projected distances
is sufficient to produce a uniform quasi-isometry between the universal
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covers. This will be needed for the main result (Theorem 17.1) of
Section 17. This is, in turn, key to Theorem 2.11.

Let ¥ = H?/T be a closed hyperbolic surface with a positive lower
bound on injectivity radius, inj(X) > inj, > 0. This places an upper
bound, dy, on the diameter, diam(X), of 3. Thus, the I'-orbit, I'z, of
any point, z € H? is dy-dense. We write d for both the metric on ¥
and that on HZ2.

If a = [z,y] C ¥ is a geodesic segment and 0 < r < %d(a:,y), we
write mid(a, r) = [2/,y'] where 2,y € « satisfy d(x,2') = d(y,y') =
r. We can interpret the projected diameter, pdiam(«a) = o(z,y) a
bounding the distance over which a can remain close to a leaf of A.
More precisely, we have:

Lemma 15.1. Given k > 0 there exist 5,0, > 0 such that if o C H?
is a geodesic segment with length(a) > 2k and pdiam(a) < k, then any
leaf of A that intersects int(«) does so at an angle at least §;. Moreover,
if X € A satisfies d(\, mid(«, k)) < dq, then A Nint(a) # 0.

We deduce:

Lemma 15.2. Given k,6 > 0, there is some n = n(k,0) > 0 such that
if « C H? is a geodesic segment with length(a) > 2k and pdiam(a) < k,
and x € H? \ JA with d(z,mid(a, 1)) < n, then x can be connected to
int(a) by a path, 3, with length(3) < 0 and SNJA = 0.

Proof. Let 01,95 > 0 be the constants given by Lemma 15.1. We can
assume that n < ds. Suppose that z, a are as in the hypotheses. Choose
y € mid(a, k) with d(z,y) < n. If [z,y] NJA = 0, we are done by
setting n < 6. If not, let A be the first leaf of A that intersects [z, y]
starting from z. Let A N [z,y] = {z}. Now, d(\,y) < n < d, so by
Lemma 15.1, A meets int(«) at some point w. The angle of intersection
of a and A is bounded below by d;. Considering the triangle xyw, we see
that there is an upper bound on d(w, z) which can be made arbitrarily
small by ensuring that d(z,z) < 7 is sufficiently small. In particular,
we can choose n < 6/3 sufficiently small so that d(w,z) < 6/3. Now
connect z to int(«) by a path 3 that first runs along [z, y] nearly to z,
and then follows close to A in H? \ |J A until it hits int(«) near w. O

Suppose now that A is maximal. Each complementary region, T
is an ideal triangle, so we can associate to it its centre of symmetry,
cent(7T"). Let C be the set of all such centres. Note that C is a finite
union of I'-orbits, and is hence dy-dense in H?. Moreover, it is d;-
separated where d; = log(3) is a universal constant. Thus, C is a
(uniform) net in H?, as defined in Section 3.
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Lemma 15.3. Given (; > 0, there is some ( > 0 such that if v € H?>
then there is some y € H? with d(z,y) < { and d(y,|JA) > (.

Proof. Suppose, to the contrary, that there is some (;-disc, N = N(z, (1),
such that NN ({JA) is (-dense in N for ¢ > 0 arbitrarily small. There
are two leaves A, i intersecting N such that all other leaves intersect-
ing N lie between A and . Now d(A N N, N N) is bounded below,
so we can find some z € H? a bounded distance from z such that
N’ = N(x,dp) lies in the region of H? bounded by A U u. By choos-
ing ( sufficiently small, we can arrange that N’ N ((JA) is arbitrarily
quasidense in N’. In particular, we can arrange that N’ contains no
centre of any complementary triangle. This contradicts the fact that C

is dp-dense. O

Lemma 15.4. Given u > 0, there is some v = v(u), such that if
a C H? is a geodesic segment with pdiam(a) < u and length(a) > 2u,
then for all x € «, there is some y € C with d(z,y) < v and such that
the complementary triangle containing y intersects .

Proof. Choose any § > 0, and let 7 = n(u, ) be the constant of Lemma
15.2. Let (5 be the constant of Lemma 15.3 given (; = 7.

Now suppose that z € . There is some z € mid(«, u) with p(z, z) <
u. By Lemma 15.3, there is some w € H? with d(w,z) < n = (; and
with p(w,|JA) > (5. By Lemma 15.2, we can connect w to « by a path,
B (with length(3) < 0) so that SN(|JA) = 0. Let T be the complemen-
tary triangle containing w and let y = cent(7T). Since p(y,|JA) > (o,
we see that d(w,y) and hence d(z,y) < d(z,z) + d(z,w) + d(w, y) is
bounded above. Moreover, since § C T, we see that T N« # ) as
required. 0

If z,y € C let (x,y) C C be the set of centres of triangles that
intersect the geodesic segment [x,y] C H2. Note that this is determined
entirely by the combinatorics of the lamination A.

Given t > 0, let By(z,y) = {2z € (z,y) | o(2,{z,y}) < t} and let
vi(x,y) = |Bi(x, ).

Lemma 15.5. Given u > 0, there is some s > 0 such that for all
n > 0, there is some | > 0 such that for all z,y € C with o(x,y) < u
and vs(z,y) < n, we have d(z,y) <.

Proof. We can suppose that [ > 2u. Let v = v(u) be as given by
Lemma 15.4. Suppose that p(x,y) > 2u. Every point w € [z,y] is a
distance at most v from a point z € (z,y). Now o(w, z) < d(w, z) < v
and so o(z,2) < o(z,w) + o(w, 2) < o(zr,y) + o(w,2) < u+wv. Thus,
setting s = u + v, we see that z € By(x,y). By hypothesis, there are
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at most vs(z,y) < n such points z, which gives us an upper bound on
the length of the segment [z,y] in terms of u and n as required. O

Lemma 15.6. Givenr,t > 0, there is some n € N such that if v,y € C
with d(z,y) <r, then v (z,y) < n.

Proof. Suppose z € By(z,y). Thus z is the centre of a complementary
triangle, 7', with T'N[z,y] # 0. There is an edge A of T with AN [z, y] #
0. Now ox(z,{z,y}) < o(z,{x,y}) < t. Since z is a bounded distance
from A, this places a uniform upper bound on d(z, [z, y]), and hence an
upper bound on d(z, z) in terms of r. Since C is uniformly separated,
this bounds v, (z,y) = | Bi(z, y)|. O

Suppose now that ¥’ is another hyperbolic surface homeomorphic to
Y. We assume that ¥ and ¥’ are “marked” surfaces, so that there is
a natural isomorphism, 6 : I' — I, where I = 7 (¥’). Thus [ acts
on H? with ¥/ = H?/T”. We shall assume that inj(¥') > inj,. There is
a unique homeomorphism, v : OH? — OH? which is equivariant with
respect to the actions of I' and I'" via the isomorphism 6. Let A’ be the
(realisation of) the image of the lamination A under that map . Thus
A’ descends to a lamination, A%, on ¥’. Let C be the set of centres of
complementary triangles of A’. There is a canonical bijection from C
to C’ which we also denote by 1. Let ¢’ denote projected distance on
H? with respect to A’.

Lemma 15.7. Suppose there is an increasing function, f :[0,00) —
[0,00) such that for all x,y € C, we have

o' (P(x),¥(y) < flo(z,y))
and

o(z,y) < f(o'(Y(x), ¥(y))).

Then the map ) : C — C' is bilipschitz (with respect to the hyperbolic
metric d) with constants depending only on f, genus(X) and inj,.

Proof. We know that C and C’ are dy-dense, where dy depends only on
genus(X) and inj,. Moreover, since the situation is symmetrical with
respect to interchanging ¥ and Y, it suffices to place an upper bound
on d(¢(z),¥(y)) for z,y € C with d(z,y) < 2dp.

Let 7 = 2dy. Let s be the constant of Lemma 15.5 given u = f(r),
and let t = f(s).

Suppose z,y € C with d(x,y) < r. By Lemma 15.6 (applied to ¥),
there is a bound, n, on v;(x,y) depending on r and t.

We claim that By ( (), ¥(y)) € ¥(Bi(x,y)). To see this, suppose
Y

z € Cwith ¢(z) € By(¢(2),9(y)). Thus ¢(z) € ($(x),4(y)) and so



64 B. H. BOWDITCH

z € (x,y). Moreover, o’ (¥ (z2), {v(x),¥(y)}) < s, and so o(z, {z,y}) <
f(s) < t. Thus z € By(x,y) so that ¥(z) € ¥(B(x,y)) as claimed.

Since 1 is a bijection, it follows that vs(¢(x), ¥ (y)) < vi(z,y) < n.
Now o' (¢(z),¥(y)) < f(o(z,y)) < f(r) <u. Thus, by Lemma 15.5

(applied to ') we see that d( (x),¥(y)) < I, where [ depends on n

and u, and hence ultimately on f, genus(3) and inj,,. O

Note that C and C’ are both uniform nets in H?. We therefore deduce
that ¢ : C — C’ is (or determines) an equivariant quasi-isometry from
H? to H? whose parameters depend only on f, genus(X) and injj,.

In summary, we have shown that a uniform control on projected
distances gives us a uniform equivariant quasi-isometry.

16. STRATIFIED QUASI-ISOMETRIES

In this section, we return briefly to hyperbolic stacks, and define the
notion of a “stratified quasi-isometry”, which can be thought of as a
quasi-isometry that sends sheets close to sheets. We begin by giving a
more formal definition of this notion.

Suppose that (=, p) and (Z/,p’) are hyperbolic stacks, with sheets
(Xi)ier and (X})jer respectively. Here, the indexing sets Z and 7’
have the form Z = INZ and Z' = JNZ where I and J are subintervals
of the real line. The sheets are X; and X ]’ are assumed to have the
induced path metrics p; and p); respectively.

Suppose that ~ C = x Z’' is a relation between = and Z'. Given
i € T and j € 7', we write ~; ; = ~ N (X; x X}) for its restriction
to a relation between X; and Xj. If we fix a set of parameters, we
can define a relation ~ between Z and 7' by writing ¢ ~ j if ~; ; is a
quasi-isometry between X; and X7 with these parameters.

Suppose that ¢ : & — Z’ is a quasi-isometry, formally defined as a
relation, ~,; C = x Z'.

Definition. We say that v is a stratified quasi-isometry if the relation
~ between Z and Z’ defined as above is a quasi-isometry from Z to Z’
(with their standard metrics as subsets of R).

Given i € 7 and j € 7' with i ~ j, we write 1, ; for the quasi-
isometry from X; to X} given by the hypotheses.

It is easily seen that any weakening of a stratified quasi-isometry
(as defined is Section 3) is a stratified quasi-isometry. Indeed, we can
weaken any stratified quasi-isometry so that each point of Z is ~-related
to a point of 7' and vice versa.

We say that two stacks are stratified quasi-isometric if there is a
stratified quasi-isometry between them. It is readily seen that this
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relation is symmetric and transitive, and thus defines an equivalence
between stacks.

A stratified quasi-isometry, ¢ : = — Z’ induces a homeomorphism
from 0= to 0=’ which we also denote by 1. We can also construct a
homeomorphism 9° : 9°=Z — 9°Z' as follows.

Suppose i,7 € Z and 7,5/ € I' with i = ¢ and j ~ j'. Let
¢1 = wi,i’ . Xz — Xz/’ and ¢2 = wj,j’ . Xj — XJ// There are
natural quasi-isometries ¢ : X; — Xj and ¢' : X;, — XJ,. Re-
call this means that p(x,y) < r whenever z ~, y and p'(z/,y") < 1/
whenever ' ~4 7', where r and r’ are constants depending on the
parameters, and, respectively |i — j| and |i — j’|. By definition, these
natural quasi-isometries extend to the identities on 9°= and 9°Z' via
the identifications 0X; = 0X; = 0°Z and 0X], = 90X, = 0°Z".

Suppose that © € X;, y € X, 2’ € Xj,, v,z € X}, with z ~4 y,
¥ ~y Yy, x o~y 2l and y ~y 2. Now p(z,y) < rand p/(2,y) < 1.
Since v is a quasi-isometry from = to Z', we see that p’(2/, z) is bounded
in terms of r. Thus, p(v/, z) and hence p;(y/, ) is uniformly bounded.
This means that the quasi-isometries ¢’ 011 and 13 0 ¢ from X; to X7,
agree up to a bounded distance and hence induce the same map on
boundaries. Put another way, up to the standard identifications, the
maps 11 and ¥, extend to identical maps from 9°Z to 9°='.

In summary, we conclude:

Lemma 16.1. If ¢ : = — Z' is a stratified quasi-isometry, then
there is a natural map ¢° : O°Z — O°Z', such that for all i € T
and j € ' with i = j, the quasi-isometry 1, ; + X; — X, extends to
the map ¢° : 0X; — 0X; under the identifications 0X; = "= and
0X! = 9%

r=0'F

Moreover, it is easily verified that these maps commute with the

Cannon-Thurston maps. In other words, 1 o w = w’ o ¢°, where w :
NZ — 0= and W’ : "2 — 0=’ are the Cannon-Thurston maps.

Definition. We say that a stack is “taut” if its sheets are uniformly
taut.

In other words every point of each sheet is a uniform distance from
the centre of some three ideal points.

For taut stacks, the notion of a stratified quasi-isometry can be char-
acterised sheetwise as follows. Suppose ~ C (U; Xi) x (U; X)) is a
relation between = and Z/. We define a relation between Z and Z' by
writing i & j if ~; ; # 0.

Lemma 16.2. Suppose that =~ defined as above is a quasi-isometry
between I and I'. Suppose also that there is a bijection, ¥° : °= —
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=" such that for all i € T and all j € T’ the relation ~; ; is a quasi-
isometry from X; to X, which induces the map PO o 0X;, — X
under the identifications O°E = 0X; and O°Z' = 0X),. Then v is a
stratified quasi-isometry.

Proof. We need only check that ~ is a quasi-isometry. For this in turn
it suffices (by symmetry) to check that for all & > 0, there is some
k' > 0 such that if x,y € J; Xi and 2/,y' € U, X} with z ~ 2/, y €
and p(z,y) < k then p'(2/,y') < k. Let z € X;, y € X, 2’ € X/, and
y € Xj. Let ¢ : X; — Xj and ¢' : Xj, — X, be natural quasi-
isometries. Thus, we can find constants r,r" depending only on |i — j]
and |i" — j’| and hence ultimately only on k such that there are some
z € Xjand 2’ € X}, so that x ~y z and 2" ~ 2" and p(z,2) <r and
Py, 2") <r' Let ¢y 0 Xi — Xj and ¢ © Xj — X7, be the quasi-
isometries given by the hypotheses. Thus ¢’ o ¢y 0 7! : X; — X
is a quasi-isometry whose parameters depend only on k. Moreover, by
hypothesis, 15 and ¢’ o ¢, o $~! induce the same map, namely ¥°, on
the boundaries. Since X; and X7, are uniformly taut, it follows that
they agree up to bounded distance depending on k& (Lemma 4.8). Now,
by definition of ¥; and 1y, y is related to y’ under v, and z is related
to 2/ under ¢’ o9y o ¢, Since p(y, z) < p(x,y) + p(x,2) < k+ris
bounded, p;(y, z) is bounded. Thus p'(y’,2') < p(y',2") and hence
P y) <’ +p(y,7) is bounded as required. O

Reinterpreting all this in more familiar terms, suppose that f : 7 —
7' is a quasi-isometry and that for all 7 € Z, we have a uniform quasi-
isometry from X; to X ]/‘(i)‘ Suppose all these quasi-isometries induce

the same map from 9°= to 0°='. Then we can assemble these quasi-
isometries sheetwise to give us a stratified quasi-isometry from = to Z'.
Indeed, it suffices to define f on some quasidense subset of Z.

We finally mention the following easily verified result. Since we shall
not be using it directly, we omit the proof.

Proposition 16.3. Suppose that a group I' acts by sheet preserving
isometry on the stacks = and Z'. Suppose that the diameters of the
quotients X; /T and X! /T are uniformly bounded. Then any equivariant
quasi-isometry from = to Z' is a stratified quasi-isometry.

17. HYPERBOLIC SURFACE STACKS

In this section, we consider stacks of hyperbolic surfaces with a posi-
tive lower bound on injectivity radii. More formally we shall be dealing
with stacks of hyperbolic planes admitting a cocompact action of a sur-
face group. We shall eventually see that such stacks are hyperbolic if
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and only if the surfaces stay close to a geodesic in Teichmiiller space
(Section 20). In this section, we take hyperbolicity (or equivalently,
quasiconvexity of the distance function) as a hypothesis. This allows
us to define the “ending lamination” of such a stack. From the re-
sults of Section 14, such a lamination is regular. The principal result
(Theorem 17.1) will be that a hyperbolic surface stack with lower in-
jectivity radius bound is determined up to equivariant quasi-isometry
by its ending lamination.
Let X be a closed topological surface, and let I' = 7 (X).

Definition. A hyperbolic surface stack, =y, consists of a proper hyper-
bolic stack, =, of hyperbolic planes, X; = H?, together with a sheet-
preserving isometric action of I', such that the induced action on each
sheet is properly discontinuous and cocompact.

Thus, for each ¢, 3; = X;/T"is a compact hyperbolic surface. For each
i, the identification of m(3;) = I' = m(X) gives a natural homotopy
class of homeomorphism from ¥ to ;. We can thus view the Y; as
“marked” hyperbolic surfaces. Note that any homotopy equivalence
from 3J; to X; that respects this marking lifts to a quasi-isometry from
X, to X;. This quasi-isometry extends to the natural identification of
0X; and 0X; with 9°=. We shall use the same notation, p;, to denote
the geodesic metric on either X; or ;.

Suppose that =y is a semi-infinite hyperbolic surface stack. Fix,
for the moment, some i € N. We identify X; = H? and 0X; = 0°=.
Proposition 12.3 now gives us a well defined abstract lamination on 0°=
which can be realised as a lamination on X;. The latter descends to a
(geometric) lamination, Ay, on ;. This pulls back, via the marking
of ¥; to a lamination, Ay, on 3 (viewed as a topological object). Since
everything is canonical, this is independent of the choice of ¢ € N.

Definition. We refer to Ay, as the ending lamination of Zs..

Definition. The injectivity radius, inj(Zx), of the stack Zy is defined
as inf{inj(%;) | i € N}.

We shall see that the ending lamination is regular if inj(Zx) > 0.
There is a kind of converse, described in Section 18.

Suppose that Ey, and Zf, are semi-infinite hyperbolic surface stacks
of the same topological type. Suppose that fy : 39 — % is a ho-
motopy equivalence that respects the markings. Thus, f; lifts to a
quasi-isometry vy : Xo — X{, which in turn extends to an equivari-
ant homeomorphism vy : 0°Z — 9°Z’. The main result of this section
gives a condition under which vy extends to a quasi-isometry.
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Theorem 17.1. Suppose inj, > 0. Let Zx, and =5, be hyperbolic surface
stacks with inj(Zx) > inj, and inj(=%;) > inj,. Suppose that 1y : Ex, —
=5 is an equivariant quasi-isometry that sends the ending lamination
of Ex, to that of Z5. Then, 1y extends to an equivariant quasi-isometry
= — Z/. Moreover, the parameters of this quasi-isometry depend only
on the parameters of 1y, Zx, Z% (including genus(X)) and on inj,.

Note that such a quasi-isometry is necessarily a stratified quasi-
isometry with uniform parameters (by Proposition 16.3, since a lower
bound on injectivity radius on hyperbolic surfaces places an upper
bound on their diameters). In fact, our construction will give us a
stratified quasi-isometry directly.

Conversely, it is easily seen that any equivariant (stratified) quasi-
isometry must respect ending laminations. (See for example, Lemma
16.2 and the subsequent comments.) Whereas the assumption on in-
jectivity radii plays an essential role in the proof, it is unclear to what
extent it is necessary for the result to hold.

Before beginning the proof of Theorem 17.1, we give a brief outline of
the overall strategy. We shall construct the quasi-isometry sheetwise,
using Lemma 16.2 and subsequent remarks. This falls into two pieces.
Firstly we need a quasi-isometry, f : A — N, where A C N is a
quasidense subset. Secondly we will need uniform sheetwise quasi-
isometries, ¢; 1 X; — X }(i) for all i« € A. Since the intrinsic geometry
on the sheets, X; and X7, is evolving exponentially in the indices i and
7, we will need to determine f up to an additive bound in order to have
any hope of constructing the quasi-isometries ;. Determining how the
levels of = and Z' correspond with this precision constitutes the major
part of the proof. Once this is achieved the maps 1; are constructed
using Lemma 15.7. In other words, we only need to control projected
lengths lengths with respect to the ending laminations, Ay and A, of
the stacks. We are thus effectively reduced to analysis of the lengths
of horizontal segments, and how these change as the level changes. We
need to show that it does so in some kind of uniform way. For this, we
can work in just one of the stacks, say =.

For reasons of exposition, it will be convenient to shift perspective
and imagine the spaces X; = X as being fixed, while the intrinsic met-
ric, p;, changes. (This is justified by Lemma 13.8.) In particular, we are
interested in the restriction of p; to leaves of the lamination. In retro-
spect (given Theorem 17.1, and the “model case” described in Section
18), we know that, up to reparameterising within linear bounds, these
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distances must decay uniformly exponential. To see how to reparam-
eterise, we shall use the regularity of the lamination as discussed in
Section 13.

Let =5 be a semi-infinite hyperbolic surface stack with ending lam-
ination Ay. Suppose inj(Zx) > inj, > 0. By adding a finite number
of isolated leaves, we can assume, for convenience that Ay, is maximal
(In fact, since Ay is regular, it necessarily fills ¥.) For each i, have a
natural equivariant quasi-isometry ¢; : X; — X;y;. Indeed we can
assume that ¢; satisfies the conclusion of Lemma 13.8. In particular,
¢; is equivariant, and sends the realisation of A in X to its realisation
in X;,;. For expositional convenience, we shall identify all the spaces
X, via compositions of the maps ¢;, to give as a fixed set X, with a
sequence of metrics p;. Note that (X, p;) is always isometric to H?, and
the realisation of A is fixed as a collection of subsets of X. We can also
assume that the centres of all complementary triangles are fixed. The
metrics, p;, descend to a sequence of hyperbolic metrics on 3 which we
also denote by p;. We are thus in the situation described in Section 14.
We need to verify properties (L1)—(L4).

Property (L1) is immediate from the construction. Note that chain
sequences as defined in Section 14 correspond exactly to chains in the
stack Zyx. In particular, given z,y € X, the function [i — p;(x,y)] is
uniformly quasiconvex. If x,y € A € A, then this function is bounded.
We have thus verified property (L2). Property (L3) is given by the
hypotheses. We thus need to show that (L4) follows from (or is indeed
equivalent to) (L3).

Given a closed curve, v in Y, write 7; for the homotopic closed ge-
odesic in (X, p;). By definition, [;(y) = length,(y). If g € T' is any
element in the conjugacy class representing ~y, then [;(y) is precisely
the stable length, sl;(¢g), of g. By Lemma 6.6, we obtain:

Lemma 17.2. The map [i — [;()] is uniformly quasiconver, with
additive constant 0.

The following is now an easy consequence of the discussion in Section
5, in particular, Lemma 5.5.

Proposition 17.3. Let Zx, be a hyperbolic surface stack. The following
are equivalent:

(1) inj(Ex) > 0.

(2) (VI)(3p) if v is an essential closed curve on X and i,j € N with
Li(v) <1 and lj(y) <1, then |i — j| < p.

(3) (3, p) if v is an essential closed curve on 3 and i,j € N with
Li(v) < 1andl;(y) <1, then |i — j| < p.
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It follows by Proposition 14.6 that:

Proposition 17.4. The ending lamination of a hyperbolic surface stack
with lower injectivity radius bound is regqular.

Indeed with respect to any of the metrics, (X, p;), there is a linear
regulating function depending only on the parameters of the stack.

The version we shall require in this section is that there is a function
fo : N — [0,00) depending on the parameters such that if £ € Hy,
and 7 is any surrounding curve, then length,(E) < f(plength;(v)).
(For the moment, we not require that the function fy be linear, and so
Proposition 14.2 suffices for this.)

It will be convenient to assume that (L2) is strengthened to assume
that the distances are linearly contolled, i.e. that there exist ¢t < 1 and
r > 0 such that p;11(z,y) < tp;(z,y)+rforalli € Nand z,y € A € A.
This is justified by the remarks in Section 14.

We shall need the following combinatorial means of comparing the
lengths of horizontal intervals. First, we choose a constant, r, suffi-
ciently large so that if « is a path in 3, and 7 € N, then pdiam; () <
max{pdiam,(«), r; }. Moreover, we can assume that any point of (3, p;)
is contained in a (simple) closed curve of length at most r;. (This de-
pends only on genus(X) and inj(X) > inj,.) Given FE € Hy, we write
h(E) = min{i | length,(E) < r;}. We can suppose that r; is large
enough so that h(E) > 0, then length, g (E) > ry for some uniform
constant, r, > 0.

We define a shortcut of a horizontal interval £ € Hy, to be an arc o
such that aNFE = da and aUE,, is essential in 3, where F,, is the subarc
of a lying between the endpoints da, and such that pdiam(a) < 7.
By the choice of ry, every horizontal interval admits a shortcut, and
pdiam;(«) < ry for all ¢ € N.

Given E, F' € Hy, let n(E, F) be the minimal value of |aN F'|, where
a is a shortcut of E.

Lemma 17.5. There is a function, fi : N — N depending on the
parameters of Zs such that if E,F € Hy, with n(E,F) < p, then
hE) < h(E) + fi(p).

Proof. Let i = h(E). Suppose first that n(E, F) = 0. There is a
shortcut, a, such that v = a U E, is a surrounding curve for F. Now,
pdiam,(E,) = length,(«) < length;(E£) < 7. Thus, by Lemma 13.7,
plength;(v) < 2(pdiam,(E,) + pdiam,(«)) < 47y, and so length,(F) <
f0(4’f’1).
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In the general case, we can cut F' into (at most) p + 1 subintervals
Fy, ..., F, with n(E, Fj) = 0. Thus length,(F) < (p+ 1) fo(4r1). This
places an upper bound on h(F') — i in terms of p. O

Conversely, we have:

Lemma 17.6. There is a function fo : N — N depending on the
parameters of Zs, such that if E, F € Hy, with h(F) < h(E) + p, then
n(E, F) < fa(p).

Proof. Let a be a shortcut of E with |a N F| minimal. Let Fi, ..., F,
be the subintervals into which o N F' cuts F'. For each j, let «; be the
subarc of o between the endpoints of Fj, and let v; = o; U Fj. Now
7; is essential in X, for otherwise, we could reduce |ooN F| be replacing
a by an arc following close to F};. (This would increase pdiam,(a) be
at an arbitrarily small amount, so it would remain a shortcut of E.)
Thus, v; is a surrounding curve for £.

Now choose j so that h(F};) is minimal, and let i = h(Fj;). Now

pdiam(F;) = length(F;) < r; and pdiam(c;) < pdiam(a) < rq. Thus
by Lemma 13.7, plength(y;) < 474, and so length,(E) < fy(4rq). This
places an upper bound, say ¢, on h(F) in terms of the parameters of
5.
Case (1): ¢ = 0. Now h(F) < t+ p, and so length,(F") is bounded
above in terms of p. Let 3 be the shortest shortcut of E. Thus, [ is a
geodesic segment of length at most r;. But there is a bound, in terms
of inj(3, po) > inj,, on the number of points in which two geodesic
segments of bounded length, in particular, § and F', can intersect.
This puts a bound on n(E, F) < | N F| as required.

Case (2): i > 0. In this case, there is positive lower bound, 75, on
length,(F},) for all k. Thus length,(F') > (¢g—1)r;. Moreover, h(F)—i <
h(E) +p—i < t+ p. This places an upper bound on length  F') and
hence on ¢ in terms of p. But n(E, F') < ¢, and the result follows. O

Lemma 17.7. For each i € N, there is an interval E; € Hyx, with
h(E;) =i. Moreover we can assume that E; C E;q for all i.

Proof. Choose any o € A € A. Given any t € [0,00) let E; be the
horizontal interval of pg-length ¢ lying on one side of xy, and let f(¢,7) =
length,(E;). For each i, the map [t — f(t,i + 1) is continuous and
strictly increasing in t. Moreover, for all i, f(¢,i+1) < max{f(t,4),r}.
If follows that h(E;) = min{i | f(¢,4) < r1} is non-decreasing in ¢, and
takes all possible values in N. 0

We are now ready to embark on the proof of Theorem 17.1. Let =y
and =%, be as in the hypotheses. In each stack we identify the sheets as
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sets, and write them as (X, p;) and (X', p}). We write A and A’ for the
ending laminations realised in X and X’. Let ¥ = X/I" and ¥’ = X/I",
and let vy : (X, p;) — (X', p}) be the equivariant quasi-isometry as
given by the hypotheses.

We first observe, that (up to stratified quasi-isometry), there is no
loss in assuming that py = pj), and that 1y is the identity. To see this,
note that we can replace Z' by the stack \/,.y Y;, where Y5 = X, and
Y; = X! | fori > 1, and where the connecting quasi-isometries between
Y; and Y, are taken to be v if 7+ = 0 and to be the natural quasi-
isometry between X/ ; and X, in Z' for ¢ > 0. (In other words, we
have essentially added another sheet, Xy, to Z' via the quasi-isometry
to.) Note that the new parameters of =’ depend on the old, and those
of the quasi-isometry 1)y.

From this point on, we can identify (X, po) with (X, pj), and hence
A with A’. We want to construct a sequence of uniform quasi-isometries
between the sheets (X, p;) an (X, pl,). First we need to work out the
correspondence between the i’s and i'’s.

Let A’ : Hy, — N be the function corresponding to A for the stack
='. We can apply Lemmas 17.5 and 17.6 equally well to A’. We thus
have h(F) < h(E)+p = n(E, F) < fo(p) = K'(F) < F'(E)+ fio f(1),
and similarly interchanging h and h'. Setting ¢ = fi o fo(1), we deduce
that:

h(F) < h(E)+1= N(F) < N(E)+q
W(F) < K(E)+ 1= h(F) <h(E) +q.

Now let E; be the sequence of intervals given by Lemma 17.7 for the
stack =. Given i € N, let f(i) = h/(E;). This defines a non-increasing
function f : N — N with f(0) =0 and f(:+1) < f(i) + ¢. Moreover,
if f(i) = f(j), then |i — j| < ¢. It follows that f is a quasi-isometry
from N to N.

By Lemma 16.2, it remains to construct a uniform quasi-isometry
from (X, pi) to (X, ply)-

Lemma 17.8. There is a function g : [0,00) — [0, 00) with the fol-
lowing property. Suppose that i € A and let j = f(i). If E € Hy, then
#(E) < g(pi(E)) and pi(E) < g(,(E)).

Proof. By symmetry, it is sufficient to verify the first inequality. Let
r1 be the constant featuring in the definitions of h and b’ (i.e. h(E) =
min{i | p;(£) < ri} and B'(E) = min{j | pi(E) < 71}). We can
subdivide any interval, F, into subintervals of p;-length at most rq,
and so it suffices to bound the p’-length of E for any F € Iy with
pi(E) < 1. To do this, note that h(E) < i = h(E;). Thus M'(E) <
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W (E;) + q. By definition of f, we have W'(E;) = f(i) = j, and so
W (E) — j < g. But this now places a bound on p/;(E) as required. [J

The following is now an immediate consequence of the definition of
projected distances, o and o”.

Lemma 17.9. There is a function g : [0,00) — [0, 00) with the fol-
lowing property. Suppose i € A and j = f(i). Then for all z,y € X,
we have U;(I,y) < g(O’Z(SL’,y)> and O-i(x7y) < g(oé(xuy))

We have thus verified the hypotheses of Lemma 15.7. This shows
that for each i € A, there is a uniform quasi-isometry from (X, p;) to
(X, p}(i)). Assembling these quasi-isometries, as described by Lemma
13.2, we obtain a stratified quasi-isometry from = to Z'.

This proves Theorem 17.1.

18. SINGULAR EUCLIDEAN METRICS AND SOL GEOMETRY

In this section we shall discuss singular euclidean metrics on surfaces,
and describe how these give rise to stacks with a singular Sol geometry.
Spaces of this type are constructed in [CannT], and play an important
role in the work of Minsky [Min2]. In Section 20, we shall explain how
such stacks arise from Teichmiiller geodesics. For some discussion of
singular euclidean surfaces, see [EP, Bowl], and the references therein.
We are primarily interested in non-positively curved metrics. These
are locally CAT(0) in the sense of Aleksandrov as defined by Gromov
|Grl]. For further references on CAT(0), and more generally, CAT (k)
spaces, see for example Ballmann’s article in [GhH] or [BriH].

Definition. A singular euclidean surface is a complete locally compact
path-metric space, (X, d), together with a discrete subset, S C X, such
that X \ S is locally modelled on the euclidean plane.

Thus, X is topologically a surface. Each point, x, of S is a cone
point, i.e. is has a neighbourhood isometric to the completion of the
quotient of the universal cover of R?\ {0} by a rotation through an
angle of O(x). We refer to 0(x) as the cone angle at x. (We allow for
X to be non-singular at z, i.e. 8(x) = 27.)

Remark. For most of what we do in this section, one can drop the
assumption of local compactness, thereby allowing for “cone angles” of
00, as for example, in the completion of the universal cover of R\ {0}.

Definition. We say that X is non-positively curved if 6(z) > 27 for
all z € S.
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This is equivalent to asserting that X is locally CAT(0). If X is also
simply connected, then it will be globally CAT(0).
If we sharpen this condition slightly, we obtain:

Lemma 18.1. Given r,e > 0, there is some k > 0 such that if X is a

simply connected singular euclidean surface such that S is r-dense in
S and such that 0(x) > 2w + € for all x € S, then X is k-hyperbolic.

We note that in this case, the Gromov boundary, 0.X, is a topological
circle. There are a number of ways to see this. For example, note that
any pair of points of 0X are connected by a bi-infinite geodesic which
cuts X into two convex sets. It follows that the pair separates 0.X. We
see that 0X is a metrisable continuum in which every pair of points
separates, and thus homeomorphic to a circle.

The idea of the proof of Lemma 18.1 is to “diffuse” the negative
curvature away from the cone points so as to obtain a space that is
globally CAT(—n?) for some 1 > 0 depending only on r and ¢. Such a
space is k-hyperbolic, where k depends only on 1. One way to achieve
this is to combine to following two lemmas:

Lemma 18.2. Suppose that X is a singular euclidean surface such
that S is r-dense in X. Then we can triangulate X so that each edge
is geodesic of length at most 2r.

Proof. (The technicalities of the proof are simpler if we assume that
X is CAT(0), as will be the case in applications. In this case we get
a genuine triangulation with no loops or multiple edges etc.) One can
start with the Delaunay cellulation of S, (see [EP, Bowl]). Thus, we
join z,y € § by an edge if there is a closed euclidean disc D C X such
that DNS = {x,y}. This cuts X into cyclic polygons of circumradius
at most . We then subdivide each polygon into triangles. U

Given a euclidean triangle, 7', and n > 0 we write T'(n) for the
comparison triangle in the space of constant curvature —n? (i.e. having
the same side lengths). The following is a simple geometric exercise:

Lemma 18.3. Given R > 0, there is a continuous function, g :
[0,00) — R, with Ag(0) = 1 with the following property. Suppose that
1n > 0, and that T is a euclidean triangle with side lengths at most R.
Suppose that 6 and 0(n) are corresponding angles in T and T'(n). Then

0(n) > Ar(n)0.
We can now prove Lemma 18.1:

Proof. We take the triangulation given by Lemma 18.2, and replace
each triangle by the comparison triangle in the space of constant cur-
vature —n?. This gives a surface locally modelled on this space with
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cone angles at least Ay, (27 + €). By choosing 7 sufficiently small in re-
lation to €, we can arrange that this is always at least 2w. Such a space
is locally CAT(—n?). Since X is simply connected, it is also globally
CAT(—n?), and hence k-hyperbolic, where k depends on 1 and hence
on r and e. U

Definition. By a grid structure we mean a parallel line field on X'\ S.

Such a structure is locally modelled on a field of parallel lines in the
euclidean plane. We refer to such lines as horizontal. A grid structure
gives rise to a horizontal foliation. Such a leaf is generically locally
geodesic, with tangent vectors horizontal, though we need to allow
leaves to have finite valence branch points at the cone points.

We can rotate a grid structure through any angle. In particular,
rotating by 7/2, we obtain an orthogonal grid structure. We refer to
the horizontal foliation of the latter as the wvertical foliations of the
former.

A singular euclidean surface admits an grid structure if and only if
all the cone angles are integral multiples of 7, in which case we get a
whole circle of grid structures.

Definition. By a grid surface, we mean a singular euclidean surface
together with a grid structure.

Note that if X is a non-positively curved grid surface, then the set
of cone angles lies in {27, 37,4, ...}. (A non-positively curved grid
surface is essentially the same as a Riemann surface together with a
quadratic differential [Gal.) If X is also simply connected, then every
non-singular horizontal leaf is a bi-infinite geodesic which cuts X into
two convex half-spaces. A singular leaf is a geodesically embedded tree
whose complement is a (possibly infinite) union of convex half-spaces.

In a neighbourhood of a non-singular point, we can choose horizontal
and vertical coordinates, (£, (), so that -axes and (-axes are respec-
tively horizontal and vertical. The infinitesimal metric, ds, is given by
ds® = d¢? + d¢?. Tt will sometimes also be convenient to consider the
L'-metric, d, given infinitesimally by the Finsler metric d¢ + d¢. The
identity map from (X, d) to (X, d) is thus v/2-bilipschitz.

Given a real number, ¢, we can deform the metric d by contracting
by a factor e* in the horizontal direction, and expanding by a factor
e! in the vertical direction. In other words, the infinitesimal metric
ds; is given by ds? = e 2d€? + €?*d¢®. We write d; for the induced
path metric. This is also a grid surfaces, whose horizontal and vertical
foliations are identical with the original. Note that cone angles, and
thus non-positive curvature, are preserved by such a deformation.
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A path a C X is a local geodesic with respect to the metric d if and
only if each component of a\ S is a euclidean geodesic and the exterior
angles at each cone point are at least w. This property is clearly invari-
ant under the deformation under the deformation described above. If
X is non-positively curved, then any local geodesic is a global geodesic.
We conclude:

Lemma 18.4. Let (X,d) be a non-positively curved grid surface. If «
15 geodesic with respect to the metric d, then it is geodesic with respect
the the metric d; for all t € R.

Lemma 18.5. Let (X,d) be a simply connected non-positively curved
grid surface. If x,y € X, then the map [t — di(z,y)] : R — [0, 00) is
uniformly quasiconvex.

Proof. Let a be the d-geodesic connecting = to y. By Lemma 18.4, «
is a di-geodesic for all ¢, and so d;(x,y) is the di-length of a. Now the
L*length, d;—length(a) of a has the form Ae! + Be™ for constants
A, B > 0. Thus the map [t — d;— length(«a)] is a uniformly quasiconvex
function, being a positive linear combination of the quasiconvex func-
tions [t — €] and [t — e7?]. Now the d;-length of a is v/2-bilipschitz
related to its di-length, and so it follows that [t — d;— length(a)] is
uniformly quasiconvex as required. O

Suppose that § : R — X is a path. We say that 3 has speed bounded
by u > 0if for all t € R, limsup,_,,d;(8(t), B(t + u)) < p. (Thus if
£ is smooth, then the tangent vectors 93/0t have length at most u
with respect to the metric d;.) We note the following generalisation of
Lemma 18.5:

Lemma 18.6. Suppose that o, : R — X are paths with speed
bounded by p > 0. Then the map [t — di(a(t), 5(t))] is quasiconvex
with parameters depending only on L.

Proof. First note that d;(a(t), a(u)) < h(t — u) where h(z) = p(el* —
1). We see that if t,u € R, then d,(a(u),5(t)) < dy(a(u),at)) +
du(a(t), B(t)) + du(B(t), B(u)) < du(a(t),B(t)) + 2h(t — u). Now the
map [u +— d,(a(t), 5(t))] is uniformly quasiconvex by Lemma 18.5, so
the result follows by Lemma 5.3. O

Definition. We say that grid surface is normal if it satisfies the hy-
potheses of Lemma 18.1.

In other words, X is simply connected, S is quasidense in X, and
the set of cone angles lies in {37, 47, 57,...}.
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Now, X is hyperbolic, and 0X is a circle. Every horizontal leaf of X
is convex, and so determines a closed subset of JX. This is a pair in
the generic case of a non-singular leaf.

Note that for all ¢ € R, the identity map from (X,d) to (X,d;) is
bilipschitz, and hence a quasi-isometry. Note that (X, d;) is also normal
(perhaps with larger quasidensity parameter), and we get a natural
identification of 0X with the Gromov boundary of (X, d;). Under this
identification, each horizontal leaf gives rise to the same closed subset
of 0X.

Definition. If I C R, we say that X is I-normal if the grid surfaces,
(X, d;) are uniformly normal for ¢ € I.

Suppose that X is [0,00)-normal. In this case, any two parallel
horizontal rays must eventually coincide. For otherwise they would
bound a euclidean strip foliated by horizontal rays. For sufficiently
large ¢, such a strip would contain arbitrarily large euclidean d; discs,
contradicting uniform normality.

As a consequence, we see that the closed subsets of 0X determined
by distinct leaves are disjoint. We thus obtain an equivalence relation
~ on 0X, by writing x ~ y if x = y or if x and y are the endpoints of
a horizontal bi-infinite geodesic. This relation is closed and unlinked.

We shall need the following observation:

Lemma 18.7. Suppose that A, B C X are disjoint closed horizontal
half-spaces bounded by bi-infinite geodesics lying in different horizontal
leaves. Then diy(A, B) — 0o ast — oo.

Proof. From the above observations, the boundaries of A and B must
diverge in both directions. There is thus a shortest path in (X, d)
connecting A to B. Such a geodesic meets the boundaries of A and
B in angles at least w/2. Since this property is preserved under the
stretching deformation, we see that it remains a shortest path between
A and B in (X,d;) for all t > 0. Now this path cannot be entirely
horizontal, and so its length must tend to oo. 0

Suppose that X is a grid surface, and I C R is a closed interval. We
can put a singular riemannian metric on = = X x I as follows. Let (¢, ()
be horizontal and vertical coordinates in a neighbourhood of a point of
X\ S. Let t be the I-coordinate. We define an infinitesimal metric, ds,
by ds? = e72d€? + e?'d(? + dt®. Let p be the induced path metric on
(X \S) x I. This extends to a complete path metric on X x I, which
we also denote by p. This is a “singular Sol” metric in the sense that
away from S x [ it is locally modelled on 3-dimensional Sol geometry
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(see for example [Sc]). Note that paths of the form {z} x I for z € X
are all global geodesics.

Given t € I, let X; = X x {t} C =, and write p; for the induced
path-metric on X;. Thus, the map [z — (z,t)] is an isometry from
(X,d;) to (Xy, pr). We can thus think of = as a “continuous stack”.
To relate this to our discrete formulation, we can take the sheets to be
(X:)icrnz. (We can assume that I NZ # ().)

Suppose that now that X is non-positively curved, and that a C X
is a horizontal segment. Then « X [ is a totally geodesic surface locally
modelled on the hyperbolic plane. The arcs a x {t} are horocyclic. In
particular, note that if « if bi-infinite and I = [0, 00), then we get a
horodisc foliated by horocircles.

Proposition 18.8. Suppose I C R is an interval and that X is an I-
normal grid surface. Let = = X X1 be the singular Sol space constructed
above. Then Z is hyperbolic where the hyperbolicity constant depends
only on the quasidensity parameter of the normality hypothesis.

Proof. Indeed, = is a hyperbolic stack with sheets (X;)ic;nz. This
follows easily by applying Lemma 18.1, Lemma 18.6 and Theorem 6.4.
O

Now suppose that I = [0,00). It follows by Proposition 10.2 that
0= is a dendrite. As usual we may identity 0°Z with 0X. We have
a Cannon-Thurston map w : X —— 0=. This is surjective. This
can be seen by applying essentially the same argument as Proposition
11.1, Alternatively, it can be seen more directly as follows. Suppose
(x;,t;)ien converges on y € 0=, where z; € X and t; € [0,00). If
(x;) is unbounded, then it subconverges on a point a € 90X, and we
see that w(a) = y. If not, then t; — oo, and z; subconverges on
some x € X. Now z lies in some horizontal bi-infinite geodesic «. In
this case, a x [0,00) is a geodesically embedded horodisc, and (z;,t;)
converges on its limit point. This limit point is equal to w(a) where
a € 0X is either of the ideal points of a.

We have already defined a closed unlinked equivalence relation, ~, on
0X, where equivalent points are the endpoints of a horizontal geodesic.
We note:

Lemma 18.9. Ifa,b € XUOX, then w(a) = w(b) if and only if a ~ b.

Proof. Suppose first that a ~ b. Let a be the horizontal geodesic
connecting a to b. Now a x [0,00) is a totally geodesic horodisc, and
so the both rays of a converge on the same point of 9=. Thus (using
Lemma 7.4) we have w(a) = w(b).
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Conversely, suppose that a ¢ b. Let ¥ C X be a bi-infinite geodesic
connecting a to b. Since v is not horizontal, it must cross two distinct
horizontal bi-infinite geodesics, a and 3. Let A and B be closed half-
spaces bounded by « and 3, so that AN B =0, a € A C 90X and
bec 0B C0X.

Let P=Ax[0,00) CZand Q = B x [0,00) C Z. Thus P and Q
are convex subsets. By Lemma 18.7, d;(A, B) — oo as t — oo, from
which it follows that N(P,r) N N(Q,r) is compact for all » > 0. Thus
OPNJQ = (. By Lemma 7.4, w(a) € P and w(b) € 9Q, and so
w(a) # w(b), as required. O

In other words, we conclude that the lamination on X determined
by the equivalence relation ~ on 90X is the ending lamination of the
stack =.

We now consider a closed non-positively curved surface (X, d). Let
A = area(X,d). Let I C R be an interval.

Lemma 18.10. Suppose that o C X is an arc of length €. Then there is
a horizontal interval E C X of length at least A/e and with aNint(E) =
0.

(For the moment, we need to allow for the possibility that E wraps
around a closed horizontal geodesic disjoint from a.)

Proof. Given r > 0, let S(«,r) be the set of points of ¥ that are
contained in an interval of length less than r that intersects ae. We see
that area(S(«,r)) < 2er. Setting r = A/2¢, we see that there is some
point y € ¥\ S(a,r). Let E be the horizontal interval of length 2r
centred on y. O

As for hyperbolic surfaces, the injectivity radius, inj(X,d) can be
defined as half of the length of the shortest closed geodesic. We note
that diam(X, d) is bounded above in terms of area(3, d) and inj(3, d)
(see Lemma 19.1). If ¥ has negative Euler characteristic, then it follows
that the universal cover, X = ¥ is uniformly normal.

Note that area(3,d;) is constant. As above, we can put a singular
Sol geometry on ¥ x [0,00). Let = be its universal cover. Applying
Lemma 18.1 and Proposition 18.8, we see:

Lemma 18.11. Suppose that ¥ is a closed grid surface with genus(¥) >
2. Suppose that for all t € I, we have inj(X,d;) > n > 0. Then the
singular Sol space = = Y x 1 is hyperbolic, with constant depending on
area(X), genus(X) and 7.
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Given a grid surface, we can define the notion of a “surrounding
curve” of a horizontal interval, and hence a “regulating function” ex-
actly as for laminations in Section 13. We thus have a notion of “reg-
ularity” for a grid surface. We now suppose again that I = [0, 00). We
note:

Lemma 18.12. If (X, d) is a compact non-positively curved reqular grid
surface, then there is a positive lower bound on the injectivity radii of
the surfaces (3,d;) fort € [0,00) which depends only on the regqularity
function and area(A).

Proof. We show that for any v > 0, there is some 1 > 0 such that
if inj(3,d;) < n for some ¢, then we can find a simple closed curve
(in fact, a closed geodesic) and a disjoint horizontal interval, E, with
d(E) > vd(~y). Moreover, if 7 is sufficiently small, then F can be chosen
arbitrarily long.

To this end, choose n < /A/2v. Suppose that inj(X,d;) < n. Let v
be a simple closed geodesic of d;-length at most 2. By Lemma 18.11
(applied to (X,d;)), there is a horizontal interval disjoint from 7 of d;-
length at least A/2n > vn. Now length(y) < e'length,(v) < ne' and
length(FE) = e’ length,(E) > vne' and the result follows. O

In fact, we can elaborate on Proposition 18.12. We claim that we can
choose v to consist of an alternating sequence of horizontal and vertical
segments, where the length of each vertical segment is bounded in terms
of A, and the total number of such segments is bounded in terms of
genus(2).

To this end, we define a rectilinear path to be one consisting only
of horizontal and vertical segments. Fix a structure, (¥,d;), and in
the proof of Proposition 18.12. Clearly we can find a rectilinear closed
curve of length at most v/2 times the injectivity radius. Among such
curves, choose one of minimal length. Note that such a curve must be
simple. Now among such shortest curves, choose one with a minimal
number of segments. We can assume that each vertical segment of such
a curve contains at least one singular point, since by pushing it as far
as we can in a horizontal direction, we either run into a singular point,
or reduce the total number of segments, contrary to our assumption.
Since the curve is simple, the number of vertical segments is bounded
by the number of singular points, and hence in terms of genus(X).

We now use this curve in the proof of Proposition 18.2. We see
that the d;-lengths and hence the d-lengths of the vertical segments
are bounded in terms of A as claimed.
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19. NON-POSITIVELY CURVED METRICS ON SURFACES

We want to relate singular euclidean metrics of the type described
in Section 18 to hyperbolic metrics on a surface, 3. We shall do this
by placing them in the more general context of non-positively curved
metrics. We aim to show that two such surfaces, of given area, are a
bounded distance apart in Teichmiiller space if and only if their uni-
versal covers are uniformly equivariantly quasi-isometric, given a lower
bound on injectivity radius. Indeed, we show that it is enough that
one such surface has a lower bound on injectivity radius.

Let X be a closed surface with genus(X) > 2, and let I' = m(X). Let
7 = T (X) be the associated Teichmiiller space. We can thus think of
T as the space of marked conformal structures, or equivalently marked
hyperbolic structures, on X. Let dr be the Teichmiiller metric. The
mapping class group of ¥ acts property discontinuously on 7, with
quotient the “moduli space” of X.

By a “non-positively curved metric” on ¥ we shall mean a non-
positively curved riemannian metric, possibly with a finite number of
cone singularities each with cone-angle at least 2m. The induced con-
formal structure gives us a point in 7.

We note:

Lemma 19.1. Giwen n >0 and A > 0, there is some L > 0 such that
if 3 is a non-positively curved surface with inj(X) > n, area(¥) < A
then diam(X) < L.

Proof. This is standard argument. Given any x,y € Y, we connect x
to y by a shortest geodesic, a. The (1/2)-neighourhood of & must then
be a regular neigbourhood, whose area is at least nd(z,y). It follows
that d(x,y) < A/n. O

Recall that d7(3,%’) is defined as logarithm of the minimal quasi-
conformal deformation of a quasiconformal homeomorphism from ¥ to
Y respecting the marking. We note:

Lemma 19.2. Given A,n > 0 and k > 1, there is some ' > 0, such
that if 3,%" are non-positively curved surfaces each of area A, with
dr(3,%Y) < k and inj(X) > n, then inj(¥') > n'. Here, n depends on
A,n, k and genus(X) = genus(X).

Proof. This will be a simple consequence of Lemma 19.6, as we note
after the proof thereof. U

Lemma 19.3. Suppose A,n > 0 and k > 0. Suppose ¥,% are non-
positively curved surfaces of area A and injectivity radius at least 7).
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Suppose f: ¥ — ¥ is a k-quasiconformal map. Let f:2— 3 be
a lift of f to the universal covers. Then f is a quasi-isometry whose
parameters depend only on A,n, k and genus(2) = genus(X).

This will be proven at the end of this section.
Conversely, we note:

Lemma 19.4. Suppose that n, A > 0. Suppose that ¥ and ' are
non-positively curved surfaces of area A and inj(3) > n' and that there
1s an equivariant quasi-isometry from the universal cover of ¥ to the
universal cover of ¥'. Then, dr(3,%) < k, where n and k depend on
n, A, genus(X) and the parameters of the quasi-isometry.

Proof. Replacing ¥ and ¥ by the hyperbolic surfaces in the same con-
formal class and applying Lemmas 19.2 and 19.3, we see that it is
enough to prove Lemma 19.4 for hyperbolic surfaces.

Now, the length of a closed geodesic on a surface is the stable length
of the corresponding element of I'. The ratio of such lengths un-
der quasi-isometry remains bounded (depending on the parameters of
quasi-isometry). In other words, the ratio of lengths of the correspond-
ing closed geodesics in ¥ and ¥’ remain bounded, and the result follows
easily. U

In summary, we have seen that two non-positively curved surfaces of
the same area are a bounded distance apart in Teichmiiller space if and
only if the universal covers are quasi-isometric, where we have uniform
control over the various parameters involved. This control depends on
the injectivity radius of one of the surfaces (and hence both).

We next recall some basic facts regarding moduli and extremal length
[LV].

Let ¥ be any Riemann surface (not necessarily compact). Let II
be any set of paths in ¥. The extremal length of Il can be defined as
sup{inf{length(y)? | v € I1}} where the supremum is taken over all rie-
mannian pseudometrics compatible with the given conformal structure.
(We allow for isolated cone singularities.) If R is a conformal annulus,
we define its modulus, mod(R), as the reciprocal of the extremal length
of the set of essential closed curves. Clearly if () C R is an essential
subannulus, then mod(Q) < mod(R).

If A, B C ¥ are closed and non-empty we define the capacity, capy,(A, B),
to be the extremal length of the set of curves connecting A to B. If
R =%\ (AU B) is an annulus, then mod(R) = capy(A4, B). If ¥ =C,
A= N(0,r) and B=C\ N(0,s), then mod(R) = 5= log(s/r).

If R is the quotient of the hyperbolic plane by a loxodromic element
of translation distance [, then mod(R) = 7/l. As a corollary, we note
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that if X is any complete hyperbolic surface, and R C X is an essential
annulus homotopic to a closed geodesic of length [, then mod(R) < 7/I.
We write M(X) = max{mod(R)}, where R varies over essential annuli
in ¥. We see that M(X) < 7/2inj(%).

In fact, we get similar inequalities in the case of any complete non-
positively curved surface of finite area A. In this case, mod(R) < A/I?,
and so M () < A/4inj(X)2.

Suppose now that ¥ is a non-positively curved surface (riemannian
away form isolated cone singularities). Given z € X, let C(x,r) =
{y € ¥ | d(z,y) = r}. Thus, C(x,r) is a rectifiable (indeed piece-
wise smooth) set. In what follows, we shall assume that there is
some A > 0 such that length(C(z,r)) < Ar. Integrating, we see that
area(N(z,r)) < $Ar?. In particular, area(X) < A diam(X)?. This sit-
uation arises, for example, if the total curvature of X (i.e. the integral
of scalar curvature with respect to area) no less than some negative
constant, u. In this case, we can take A = 27 — pu. (The worst case
being a euclidean cone with cone angle 27 — i at z.) Note that if ¥ is
compact, then the total curvature is 2wy (%), where x(X) is the Euler
characteristic. and so we can take A = 2w (1 — x(X)).

Lemma 19.5. Suppose ¥ is as above, and that o, 3 C X are simple
closed curves bounding an annulus, R, and that v € ¥ with o C N(x,r)
and d(x, ) > s. Then mod(R) > 1 log(s/r).

Proof. Giveny € R, let v(y) = 1/d(x,y) ifr < d(z,y) < sandv(y) =0
otherwise. We obtain a (singular) riemannian pseudometric by scaling
the original metric locally by the function v. With respect to the
new pseudometric, we have area(R) < [7(At)(1/t*)dt = Xlog(s/r).
Moreover, any path from « to 3 in R has length at least [*(1/t)dt =
log(s/r). Thus, mod(R) = capg(a,3) > (log(s/r))?/Alog(s/r) =
T log(s/r). O

Lemma 19.6. Suppose M > 0 and g > 2. There is a function D :
[0,00) — [0,00) with D(0) = 0 depending on M and g which have
the following property. Suppose (£, d) is a closed non-positively curved
surface with genus(3) = g, mod(X) < M and inj(¥) < n. Then
diam(X) < D(n).

Proof. There is a bound, n, depending on genus(X), on the number of
pairwise non-homotopic simple closed curves one can embed disjointly
into X. Let A = 27(1 — x(2)) = 27(genus(X) + 3), and let k be
any constant bigger than e*. We claim that diam(X) < D(n) =
2(1+ \)nk™.
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To this end, choose = € ¥ so that N(x,n) is not a disc. If the claim
is false, then there is some y € ¥ with d(z,y) > (1 + A\)nk™. For
each i € {0,...,n}, let r; = nk’. Now, y lies in a component, B;, of
Y\ N(x,r;). Clearly fr(B,) C C(x,r,), and so length(fr(B,)) < Ar,,. It
follows that C,, cannot be a disc. For otherwise (using standard facts of
non-positive curvature) we would have d(y, fr(B,)) < length(fr(B,)) <
nra, so that d(z,y) < r, + Ar, = (1 + A\)nk", contradicting the choice
of y.

Thus, for each y, we know that neither B, nor its complement is
a disc. We can therefore choose an essential simple closed curve j;
arbitrarily close to fr(B;). From the choice of n we can find 0 < i <
J < mn, so that 3; and 3; are homotopic and hence bound an annulus,
R. But now r;/r; > k > e and so, by Lemma 19.2, we must have
mod(R) > 3 log(e*) = M > M(X) giving a contradiction. O

Note that area(X) < A(diam(X))* < AD(n)% If ¥’ is another such
surface, and f : ¥ — ¥’ is k-quasiconformal, then + M(Z) < M(X') <
kM (Y). Lemma 19.2 is now an immediate consequence.

We now prove Lemma 19.3:

Proof of Lemma 19.3. Again, we let A = 2m(1 — x(X)).

It will be enough to place a bound on [ = d(f(z), f(y)) for =,y € &
with d(x,y) < 1. The same statement then follows for arbitrary x,y,
any by symmetry, on swapping ¥ and ¥'.

To this end, let D be the disc of radius 1 centred on the midpoint of
[z,y] and let R be the annulus D \ [z,y|. By Lemma 19.5, mod(R) >
+1og2, and so mod(f(R)) > 1 log 2. Since inj(X) > 7, D and hence
R meets no image of itself under the action of I'. We see that the same
must be true of f(R) and so area(f(R)) < A.

Suppose 7 is an essential curve in f (R). Since the projection to
[f(), f(y)] in X is 1-lipschitz, we must have length(v) < 2d(f(z), f(y)) =
2l. Now, 1/mod(f(R)) is the extremal set of such curves. Thus,
1/ mod(f(R)) > (20)?/A, and so [? is bounded above by A/4 mod(f(R)) <
ANk /41og?2 as required. O

20. TEICHMULLER GEODESICS

In this section, we give one of the main results of this paper, namely
Theorem 20.1.

Given n > 0, and let thick,(7") be the n-thick part of Teichmiiller
space, 7, that is, the set of points corresponding to hyperbolic surfaces
of injectivity radius at least n. Let I C R be an interval.
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Definition. A stable path is a bilipschitz path from I to thick, (7") for
some 7 > 0.

(Note that mapping into the thick part is the same as mapping into
a bounded subset of moduli space in the quotient.)

Definition. A lipschitz path, §: 1 — 7, is a pseudogeodesic if there
is bilipschitz homeomorphism, s : I — J, to another interval, J, and
a Teichmiiller (geodesic) ray o : J — 7T such that dr(«a(s(t)), 5(¢)) is
bounded for all ¢ € [.

The principal cases of interest are when [ is either R or [0, 00), in
which case, we can take J = I.

Out of a stable path, 5 : I — T, we will construct a stack, Z(3), out
of the hyperbolic surfaces corresponding to (i) fori € Z =1 NZ. (A
reinterpretation of this, in terms of metrics on 3 x I will be described
in Section 22.) First, we describe this in general terms, using non-
positively curved surfaces, since these will be needed later.

Suppose (2;);e7 is a stable sequence of non-positively surfaces of fixed
area A. We have inj(X;) > n > 0 for all i. Let X; = %; be the universal
cover of ;. By Lemma 19.4, there are uniform equivariant quasi-
isometries, ¢ : X; — X;;1. We can thus construct the stack, = =
V,er Xi as described in Section 6. The construction can be assumed to
be equivariant. Any other choice of quasi-isometries, ¢’ : X; — X1
will be equivalent to ¢ (i.e. ¢ and ¢’ remain a bounded distance apart,
see Lemma 4.8). Thus, the resulting stack will be quasi-isometric to =
by an equivariant sheet-preserving quasi-isometry.

Suppose > is another sequence of non-positively curved surfaces with
dr(%;, ;) bounded above. It follows that (X}); is uniformly stable and
that dr (3, 37, ;) is bounded above. We can similarly construct a stack,
=) from the sequence (X);. By Lemma 19.4, there is an equivariant
quasi-isometry from X; to X/ = ¥/ As with Lemma 16.2, we can
assemble these to give an equivariant sheet-preserving quasi-isometry
from = to Z'.

Suppose that a : I — 7 is stable lipschitz path. We apply the
above construction to the sequence (a(7)); to give a stack Z(«), well
defined up to equivariant sheet-preserving quasi-isometry. If we repa-
rameterise o by precomposing by a bilipschitz homeomorphism of I,
then we get another stack equivariantly quasi-isometric to =(«). Such
a quasi-isometry is equivalent to an equivariant quasi-isometry.

We can now state:
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Theorem 20.1. Suppose that [ =R or I =0,00), and that §: 1 —
T is a stable geodesic path. Then [ is a pseudogeodesic if and only if
the stack Z(3) is hyperbolic.

We shall see that the parameters of hyperbolicity depend on those of
quasigeodesicity and vice versa (as well as genus(X), the lower bound
on injectivity radius, the area of the surfaces in the construction of
Z(0), and the bilipschitz constant).

As an immediate corollary, we have:

Corollary 20.2. Any hyperbolic surface stack of positive injectivity
radius 1s equivariantly quasi-isometric to the singular Sol stack con-
structed from a Teichmailler ray.

Such stacks were described in Section 18, and are necessarily hyper-
bolic (Lemma 18.11). We already have enough information to prove
one direction of Theorem 20.1. Suppose that 3 : I — 7 is a pseu-
dogeodesic, and a a Teichmiiller ray given by this assumption. From
the above discussion, we know that =(«) and Z(f3) are quasi-isometric.
Since Z(«) is hyperbolic, it follows that Z(3) is hyperbolic.

We next move on to prove the other direction of Theorem 20.1. We
first deal with the case where I = [0, 00).

Let us suppose therefore that 5 : [0,00) — 7 is a stable path. We
assume =(J3) to be hyperbolic. Let Ay be the ending lamination (as
defined in Section 17). From the theory of quadratic differentials [Gal,
we know that there is a grid surface (3, d) which induces the confor-
mal structure, 5(0), on ¥ and whose horizontal foliation determines
the lamination, Ay, in the manner described in Section 18. We shall
normalise so that area(3,d) = 1. (Note that this involves a choice of
transverse measure to Ay, — a grid surface structure is equivalent to a
conformal structure together with a quadratic differential, which is in
turn equivalent to a conformal structure together with a transversely
measured foliation. However by Proposition 17.4, Ay is regular, and
hence uniquely ergodic, so there is a unique measure up to scale.) Now,
let a(t) be the structure (X, d;). Thus « is a Teichmiiller geodesic.

Let us suppose, for the moment, that:

Lemma 20.3. For all t € [0,00), inj(X,d;) is bounded below by a
uniform constant n > 0.

It now follows, by Proposition 18.8; that Z(«) is uniformly hyper-
bolic. By Lemma 18.9, its ending lamination is precisely Ay. By Theo-
rem 15.1, there is an equivariant stratified quasi-isometry from Z(«a) to
=(4). Thus, we get a quasi-isometry s : N — N and for all i € N, an
equivariant quasi-isometry from the universal cover of (¥, d;) to that of
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the hyperbolic surface corresponding to 5(s(7)). Thus, by Lemma 19.4,
dr(a(1), 5(s(7))) is uniformly bounded. Now, we can assume that s is
strictly increasing and that s(0) = 0. Thus by interpoling to a bilips-
chitz homeomorphism of [0, 00), we deduce that [ is a pseudogeodesic
as required.

We have thus proven Theorem 20.1 modulo Lemma 20.2. Lemma
20.3 relies on the following result:

Lemma 20.4. Let X be a compact Riemann surface. Let d be a grid
structure, and p a hyperbolic metric inducing the given conformal struc-
ture on X. Let Ay, be the hyperbolic lamination corresponding to the
horizontal foliation of (¥,d). Then Ay, is regular in (X, p) if and only
if the horizontal foliation is reqular in in (X, d).

This is similar to, and can be proven by similar means to Proposition
13.8. Here we only need and prove the “if” part. The converse follows
by similar arguments. Let (X, d) be the universal cover of (X, d) and
let (H2, p) be the universal cover of (¥, p). By Lemma 19.3, there is
a uniform equivariant quasi-isometry from X to H?2, which extends to
a homeomorphism ¢ : 0X — OH?. Each horizontal leaf of X gives
us a stratum of the lamination A. After making minor adjustments if
necessary, we can confine ourselves to considering non-singular leaves.
Thus, to each non-singular leaf, A € A, we can associate a (generic)
leaf ¢(\) in H2. Given x € A we can associate a point, denoted ¢(z),
in ¢(\) exactly as in the proof of Proposition 13.8 The resulting map ¢
need not be continuous as we move from one leaf to another, however,
nearby points will be mapped to points a uniformly bounded distance
apart. If £ C X is a horizontal interval with endpoints xz,y € A, we
write ¢(F) for the horizontal interval with endpoints ¢(x) and ¢(y). If
a is a vertical arc with endpoints w and z and with a N E = (), then
é(o) Nmid(E, k) = () for some uniform k& > 0, where ¢(«) denotes the
geodesic [p(w), (2)].

Suppose now that E' is a horizontal interval in (3, d) and that -~ is
a closed curve in ¥ with £ N+ = (. By a construction similar to that
of Proposition 13.10, we can assume that v consists of an alternating
sequence of a bounded number of horizontal and vertical intervals, F;
and «; respectively. The vertical intervals are of uniformly bounded
length. We now lift everything to (X, d). We get an equivariant set of
lifts, E of E and F, of F; and &; of ;. We can assume, for convenience,
that the E and F} all lie in different non-singular leaves. We map them
across to disjoint horizontal intervals ¢(E) and ¢(F) in (H?,p). We
connect together the QS(FZ) in H? with geodesic segments of the form
¢(a;) to give us a path which projects to a closed curve +' in (X, p).
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Now +" does not intersect mid(FE’, k), where E’ is the projection of (any
copy of) ¢(E) to (X, p). From the stability condition on (X, p), we see
that the p-length of E’ is bounded by a linear function of the p-length
of 4/. We have a linear control on the deformation of lengths under ¢,

and so the stability condition for (3, d) now follows.

Proof of Theorem 20.1 for I = [0,00). By Proposition 17.4, we know
that the lamination Ay, is regular, as defined in Section 13. Lemma
20.4 now tells us that the horizontal foliation of the corresponding
grid surface is regular, as described in Section 18. It now follows by
Lemma 18.2 that inj(%;, d) is bounded below by a positive constant, as
required. 0

We finally need to deduce the case of bi-infinite geodesics from the
semi-infinite case. To this end, let § : R — 7 be a stable path such
that Z(3) is hyperbolic. Let 57 = /[0, 00) and =~ = §|(—o0, 0]. Now,
E(6) =Z(BT)UZ(B7) and Xy = Z(B7) NZ(67). By the Proposition
6.7, Z(57) is hyperbolic, and so by the above, we see that 7 is pseu-
dogeodesic. The same applies to [|[t,00) for all ¢ € R. In particular,
for each n € N, we see that after uniform bilipschitz reparameterisa-
tion, (|[—n, c0) remains a unformly bounded distance from a geodesic,
a, 1 [—n,00) — 7. By a diagonal sequence argument we can suppose
that (after bilipschitz reparameterisation) we have «, (i) — (i) € T
as n — oo for all ¢ € Z. We can extend o : Z — 7T to a geodesic
a: R — 7, and we see that ( remains a bounded distance from c.
This proves Theorem 20.1 in the bi-infinite case.

21. A CRITERION FOR RECOGNISING STABLE PSEUDOGEODESICS

In this section, we give a simple geometrical criterion for recognising
Teichmiiller pseudogeodesics among stable sequences of surfaces (or
stable paths in Teichmiiller space).

Let 3 be a compact surface, and let (d;);en be a sequence of hyper-
bolic metrics on ¥. We write (3;); for the surface ¥ with the metric
d;. We say that the sequence is stable if inj(%;) is bounded below and
the Teichmiiller distance between >; and ;. is bounded above. It is
a pseudogeodesic if it remains a bounded distance from a Teichmiiller
ray and the Teichmiiller distance between X; and ¥; is bounded below
by a linear function of | — j|. (This is a reformulation in terms of
sequences of the definition of Section 20.)

Given an essential closed curve, «, in X, we write [;(«) for length of
the simple closed geodesic in the same homotopy class. This is equal
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to the stable length (here the minimal translation distance), sl(g), of
the corresponding element, g € I.
We show:

Theorem 21.1. Let T be either Z or N. Let (3;);e7 be a stable se-
quence of surfaces. Then (X%;); is pseudogeodesic if and only for for
each essential simple closed curve o in %, the function [i — [;(«)] is
uniformly quasiconvex.

As usual the parameters of pseudogeodesicity depend on the con-
stants of quasiconvexity and vice versa. We can also rephrase the
statement in terms of stable paths. Theorem 2.12 is an immediate
consequence, on taking ¥; = (i), where (3 is a stable path in 7.

The proof relies on the following observation:

Lemma 21.2. Let ¥ = H?/T be a compact hyperbolic surface. There is
a constant, k, depending only on inj(X) and genus(X) with the following
property. If v € H? and g € T, there is some h € T such that p(z, hx) <
k and p(hxz, gx) < sl(h~tg) + k.

Proof. First note that, at the cost of increasing k, it is enough to prove
this for x lying in a given I'-orbit. Now it is a simple exercise to show
that we can find constants, § > 0 and [ > 0, depending only on inj()
and genus(X), so that ¥ contains two closed geodesics, a and f3, each
of length at most [, and meeting at an angle of at least 6 at some point
y € X. As observed above, we can suppose that y is the projection of
x.

Now elementary hyperbolic geometry gives us another constant, r,
such that any broken geodesic path whose segments all have length at
least r and where adjacent segments meet at angles at least 6/3 remains
a uniformly bounded distance from a geodesic. We can suppose that
r > [. Thus, there a multiples m, n respectively of the curves «, 3, so
that o™ and 3" each have length between r and 2r.

Now consider the geodesic path, ~, based at y, that corresponds to
the element g € I'. We can suppose that length(y) = p(z,gx) > r
(otherwise we simply take h = 1 and k > r). Let ¢ be the angle of v
at y.

If ¢ > 0/3, then 7 lifts to a broken geodesic a bounded distance from
the axis of g. It follows that length(+) —sl(g) is uniformly bounded, so
we again take h = 1.

If on the other hand, ¢ < /3, then both endpoints of 7 meet either
a or 3 at an angle at least /3. Suppose, without loss of generality, it
is a. Let h € I' be the element represented by o™ with basepoint at
y, so that p(x, hz) < 2r. The closed path v U a™™ lifts to a broken
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geodesic a bounded distance from the axis of h=tg. Now p(hz,gz) =
p(z, h~tgx) <length(yUa ™), and so p(hz, gz) —sl(h~1g) is uniformly
bounded, as required. 0

Now let (X;); be a stable sequence of surfaces, and let = = (X;); be
the associated stack of hyperbolic planes.

One direction of Theorem 21.1 is fairly elementary. If (3;); is pseu-
dogeodesic, then by Theorem 20.1, = is hyperbolic. If « is an essential
closed curve on X and g is the corresponding element of I', then we can
find a uniform chain (x;); so that x; lies on the axis of g in X;. Thus
li(a) =sl(g) = p(x;, gz;), so [i — l;(a)] is uniformly quasiconvex.

For the converse, let (x;); be any chain in Z. It is enough to show
that the function [i — p;(x;, gz;)] is uniformly quasiconvex for all g € T,
since by Corollary 6.5, it then follows that = is hyperbolic and we can
apply Theorem 20.1.

Suppose g € I' is fixed and ¢« € Z. By Lemma 21.2 applied to ¥;,
there is some h € T such that p;(z;, ha;) and p;(ha;, gr;) — sli(h™tg)
are uniformly bounded above. Now p;(z;, hx;) < h(|i — j|) for some
uniform non-decreasing function, h : Z — R.

Now sl;(h™"g) < pj(ha;, gu;) < pi(), gx;)+pi (5, hag) < pjlay, goy)+
h(]i — j|). Moreover, |sli(g7'h) — pi(x;, gx;)| is uniformly bounded
(without loss of generality by h(0)). Thus, by Lemma 5.3, the func-
tion [i — p;(x;, gx;)| satisfies condition (Q1) of quasiconvexity. Since
it automatically satisfies (Q2), we see that it is uniformly quasiconvex
as required.

This proves Theorem 21.1.

22. ENDS OF 3-MANIFOLDS

In this section, we return in more detail to the subject discussed
in the introduction, namely the geometry of hyperbolic 3-manifolds.
Let M = H?/T be a complete orientable 3-manifold, with T' = (M)
finitely generated. It follows by tameness [Bon, Ag, CalG], that M
is topologically finite, i.e. homeomorphic to the interior of a compact
manifold. Moreover, the Ending Lamination Theorem [Min6, BroCMI,
BroCM2] together with [O] or [NS] gives a complete description of
M in terms of its topology and end invariants. For many purposes,
one can effectively reduce to the case where I' = m(X) for a closed
orientable surface, 3, so that, by tameness [Bon|, M is homeomorphic
to X X R. We consider here the case where M has no cusps. Let H
be the convex core of M (the quotient of the convex hull of the limit
set). Then, up to isotopy in M, we can assume that H has the form
H =Y x1C M, where I C R is a closed interval. If I is compact,
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then M is quasifuchsian, and this case is understood by earlier work
of Ahlfors, Bers, Marden etc. (see, for example, [Mar|). Otherwise, we
can assume, without loss of generality, that I = [0,00) or [ = R. In
the former “singly degenerate” case, one of the end invariants lies in 7,
and the other, corresponding to the infinite end of H, is a lamination.
The former invariant lies a bounded distance in 7 from the hyperbolic
structure induced on the convex surface, 0H = ¥ x {0}. In second
“doubly degenerate” case, where H = M, there are two (necessarily
distinct) ending laminations. These end invariants were described in
[T, Bon]. The Ending Lamination Theorem in this case tells us that
these end invariants determine M up to isometry.

The general strategy for proving the Ending Lamination Theorem,
as used in [Minl, Min6, BroCM1], is to construct a “model space”,
P, with a bilipschitz map to H. In fact, all we really require is a I'-
equivariant quasi-isometry between the universal covers, P of P, and
H C H3. The model space, P, can be chosen to depend only on the
end invariants of M. By a result of Sullivan [Su], this is sufficient to
prove the Ending Lamination Theorem for such manifolds. Here we will
consider only the bounded geometry case, as described in [Minl], that
is, where M has positive injectivity radius. We consider how models
are constructed out of a path in Teichmiiller spaces.

Let » > 0 be some constant, less than the 2-dimensional Margulis
constant. Let thick,(7") be the n-thick part of 7, that is, the closed
subset corresponding to hyperbolic surfaces of injectivity radius at least

n.

Lemma 22.1. Given p > 0, there is some v > 0, depending only on
n and i, such that given any p-lipschitz path, 5 : I — thick,(7),
there is a smooth riemannian metric, p, on 3 X I with the following
properties.

(1) For all x € X, the map [t — (z,t)] : I — {x} x I is v-bilipschitz.
(2) For all t,u € N with |t —u| < 1, the map [(x,t) — (x,u)] :
Y x {t} — ¥ x {u} is v-bilipschitz.

(8) For all t, there is a v-bililpschitz map, in the natural homotopy
class, from 3 x {t} to the hyperbolic structure on ¥ represented by

B(t).

Moreover, if p' is another such metric, then there is a uniformly bilips-
chitz diffeomorphism from (X x I, p) to (X x I,p'), which is homotopic
to the identity, and which preserves setwise each surface, ¥ x {t}.
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We will write P = P(3) for X x I with a riemannian metric of the sort
given by Lemma 22.1. This is well defined up to bilipschitz diffeomor-
phism as described. One can construct such a metric by approximating
0 by a smooth path, and pulling back the canonical ¥-bundle over 7.
Since we do not formally need Lemma 22.1 for the proofs of the main
theorems, we will not give details here. In practice, we can work in-
stead with equivariant coarse quasi-isometries involving stacks, though
the description in terms of the model space P([3) is more intuitive.

Let Z = ZN 1. We assume that Z # 0. Given i € Z, let %,

Y x {i} C P, and let X; = %;. Then P is a stack with sheets, (XZ)Zg
Note that the map [(z,i) — (z,i+1)] : X; — Xy is blhpschitz.
Up to bounded distance, it agrees with the quasi-isometry from X; to
Xii1, described for a general stack in Section 6. Note that we can
reconstruct a stack for the sheets, (X;);, and these quasi-isometries.
Up to sheet-preserving quasi-isometry, this agrees with P. We have
seen (Theorem 2.11 proven is Section 20), that if I = [0,00) or I = R,
then P is Gromov hyperbolic if and only if § is pseudogeodesic, that
is, a bounded distance from a Teichmiiller geodesic.

Let us return to the case of a hyperbolic 3-manifold, M = ¥ x R,
with no parabolics. Suppose that the positive end of M is simply
degenerate. That is, ¥ x [0,00) can be assumed to be contained in
the convex core, H. This implies that there is a sequence of uniformly
lipschitz, in fact, 1-lipschitz, homotopy equivalences, with f;(%;) going
out the end (see [T, Bon]).

Each ¥; has a marking, detemined by the induced homotopy equiv-
alence with Y, and hence determines a point in 7. The structure
tends (in an appropriate sense) to an “ending lamination”. We can as-
sume that for all ¢ > 0, f;(3;) homologically separates f;_1(¥3;_1) from
fir(Sin).

Suppose that inj(M) > n for some n > 0. Then we will have ¥; €
thick, (7). In particular, it follows that the diameters of the ¥; are
bounded, hence the diameters of the f;(3;) are bounded above in terms
of n and genus(X). Moreover (by interpolation of pleated surfaces)
we can assume that the distances between consecutive images, f;(3;)
and f;11(X;11) are bounded above and below, again in terms of 7 and
genus(X).

Suppose that M is singly degenerate. In this case, we can suppose,
in addition, that fy is an isometry from ¥y to 0H = {0}. In this
case, every point of H is a bounded distance from some f;(3;). Let
fi: Xi =% — H C H? be the lift. Now a geometric limit argu-
ment (see [Minl] or [Bow3]) shows that f; : X; — H is a uniform
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embedding. In particular, the relation defined by z ~ y if and only
if p(fi(x), fixi(y)) < r, for z € X;, y € X;11 is a uniform equivariant
quasi-isometry from X; to X;.i, provided r is chosen large enough.
This enables us to construct a stack, =, with sheets (X;);. We also
note that the existence of these quasi-isometries implies that distance
in 7 between X; and X, is bounded above, so we can interpolate to
give a lipschitz path 3 : [0,00) — 7, which converges on the end-
ing lamination. This enables us to construct a riemannian manifold,
P(B) = ¥ x [0,00), as in Lemma 22.1, with P(f3) quasi-isometric to
=. We define a map f : P — H, by setting f(x,7) = f;(x) for each
i € N, and then interpolate linearly between (z,i) and (x,i + 1) along
a geodesic segment in H between f;(x) and f;11(z) in the appropriate
homotopy class. (This can be done equivariantly in the universal cov-
ers.) This gives us a uniformly lipschitz map f : P — H, which lifts
to f . P — H C H3. It is easily checked that f is a quasi-isometry,
and we can deduce that P is hyperbolic. (One can arrive at the same
conclusion by constructing a quasi-isometry from the stack, =, based
on (X;); to H, which would bypass the construction of a riemannian
manifold.) It follows by Theorem 2.11 that 5 is a bounded distance
from a geodesic ray, «, and so we can replace P(3) by P(«). (In this
case, P(a) will be bilipschitz equivalent to the singular Sol geometry
manifold described in Section 18.) We can now proceed as described
in the introduction.

A similar construction works in the doubly degenerate case. In this
case, we see that M is bilipschitz equivalent to P(a), where « is a
bi-infinite geodesic whose limit points in 97 are the end invariants of
M. In particular, suppose that M’ = H3/I" is another hyperbolc 3-
manifold with positive injectivity radius, and the same end invariants,
then passing via P(«a), we get a quasi-isometry from H3 to itself, which
is equivariant with respect to the actions of I" and I". This gives rise
to an equivariant quasiconformal map from OH? to itself. From the
result of Sullivan [Sul, it follows that this must in fact be conformal.
Therefore the actions of I" and I are conjugate by an isometry of
H?3, and so M and M’ are isometric, by an isometry in the natural
proper homotopy class. This proves the Ending Lamination Theorem
for doubly degenerate manifolds with positive injectivity radius.

In the singly degenerate case, we get an equivariant quasi-isometry
between the convex hull of the limit sets. This time we need to deal
with the geometrically finite end. One approach to this is described in
[Minl] and [Min6]. A different approach is described in [Bow4]. The
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quasifuchsican case is well known from earlier work of Ahlfors, Bers,
Marden etc., see for example, [Mar].
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