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Abstract. We give a proof that a riemannian manifold of bounded geometry
admits a uniformly bilipschitz smooth triangulation. The bilipschitz constants
depend only on the curvature and injectivity radius bounds. A number of
refinements of this statement, and a generalisation to manifolds with boundary,
are described.

1. Introduction

A classical result of differential topology tells us that any smooth manifold is
triangulable, and thereby admits a PL structure which is canonical up to topo-
logical isotopy. A proof is given in [W], inspired by earlier work in [Ca]. A more
recent account (including manifolds with boundary) is given in [M].

Since every smooth manifold admits a riemannian metric, it is enough to deal
with riemannian manifolds. It can be shown that if one places bounds on curvature
and injectivity radius (i.e. “bounded geometry”), then one can arrange for the
triangulation to be bilipschitz with respect to the standard euclidean metric on
the simplicial complex (that is, where each simplex is regular, with unit side-
lengths). Moreover, one can put another euclidean metric on the complex, so that
the bilipschitz constants are arbitrarily close to 1. A proof of this has recently
been given in [BoDG], making use of some constructions in [DyVW]. Some earlier
related results can be found in [S] and [Br].

We will give a self-contained account of such triangulations. The overall strategy
uses generic Delaunay triangulations, similarly to that of [BoDG], though the
details are somewhat different. We also generalise to the case of manifolds with
boundary.

Here are some more precise statements of the results.
Let M be a complete smooth riemannian n-manifold.

Definition. We say M is (κ, χ)-bounded if all its sectional curvatures lie between
−κ and κ, and its convexity radius is at least χ > 0 everywhere.

(Recall that the convexity radius at any given point is at least half of the
injectivity radius, so it would be essentially equivalent to place a lower bound on
the the latter quantity.)
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We write ρM for the induced path-metric on M .
Let Θ be a simplicial complex. (All simplicial complexes here will be locally

finite.) A “euclidean structure” on Θ is the path-metric, ρΘ, obtained by giv-
ing each simplex the structure of a euclidean simplex. (Note that the euclidean
structure is determined by the edge-lengths.) A “standard (euclidean)” simplex
is one where all edge-lengths are equal to 1. If all simplices of Θ are (intrinsically
isometric to) standard ones, then we denote the induced path metric by ρ0

Θ, and
refer to it as the “standard structure”. Of course, this is equivalent to saying that
the edge-lengths of the 1-skeleton are all equal to 1.

By a triangulation of M we mean a simplicial complex, Θ, together with a
homeomorphism, τ : Θ −→ M . It is smooth if its restriction to each simplex
is smooth (in the sense defined below). We say that it is λ-bilipschitz if it is a
triangulation, and if it is λ-bilibschitz with respect to the metric ρ0

θ.
We show:

Theorem 1.1. Given κ, χ > 0 and n ∈ N, there is some λ > 0 such that any
(κ, χ)-bounded n-manifold admits a λ-bilipschitz smooth triangulation.

In fact, this is an immediate consequence of a stronger statement which we
formulate as follows.

Theorem 1.2. Suppose that M is a (κ, χ)-bounded m-manifold, and that µ > 1.
Then there is some η0 > 0, depending only on κ, µ, such that if η ≤ min{χ, η0},
then there is a euclidean simplicial complex (Θ, ρΘ), and a µ-bilipschitz smooth
triangulation, τ : Θ −→ M , with diam(τ(Σ)) ≤ η for all simplices Σ of Θ.
Moreover, we can assume that τ maps every 1-simplex of Θ isometrically to a
geodesic segment in M . In fact, we can assume that ρΘ ≤ ηρ0

Θ ≤ νρΘ, where
ν ≥ 1 depends only on the dimension, m.

Note that the penultimate statement determines the metric, ρΘ, on Θ uniquely.
One has a similar statement for a manifold M with boundary, ∂M . In this case

we say that M is (κ, χ)-bounded if in addition to the previous requirements, the
intrinsic convexity radius of ∂M is at least 2χ, the extrinsic curvature of ∂M is
at most κ in norm, and ∂M has a (2χ)-collar. The last statement means that the
(2χ)-neighbourhood of ∂M retracts onto ∂M .

Theorem 1.3. Suppose that M is a (κ, χ)-bounded manifold with boundary. Then
the conclusion of Theorem 1.2 holds with the following modification. Any edge of
the 1-skeleton of the triangulation is either an intrinsic geodesic segment in ∂M ,
or a geodesic segment in M which meets ∂M , if at all, in one of its endpoints.

(See Section 8 for a more precise statement of this result.)
It’s not hard to see that ∂M is necessarily a subcomplex of any smooth trian-

gulation. (In fact, this will follow directly from our construction.)
In the case where M has constant curvature, without loss of generality, −1, 0

or 1, we can arrange that each simplex is totally geodesic. In other words, we get:
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Theorem 1.4. Suppose that M is a hyperbolic, euclidean, or spherical n-manifold
of convexity radius at least χ > 0. Then M admits a triangulation where each n-
simplex is respectively (isometric to) a hyperbolic, euclidean or spherical simplex,
respectively, whose inradius is bounded below, and whose circumradius is bounded
above, and where these bounds depend only on n and χ.

In particular, this means that we can find an arbitrarily fine triangulation of
M , which is arbitrarily close to being isometric to the euclidean structure on the
triangulation with the same edge-lengths. Moreover, after appropriate rescaling,
it is uniformly bilipschitz equivalent to the standard euclidean structure. We can
allow M to have totally geodesic boundary, provided that it has a uniform collar.

For convenience in this paper, we will interpret “smooth” to mean C∞, though
one could make similar statements with different degrees of regularity. To interpret
curvature bounds as stated here one would need to assume M to be at least C2.
We make use of this degree of regularity in Sections 4 and 8. However, one can
meaningfully interpret curvature bounds in terms of comparison axioms, without
any a-priori differentiability assumption. We will not explore these technical issues
here.

To say that a triangulation, τ , is smooth we mean that τ restricted to each
simplex Σ is smooth. In other words, if we take Σ embedded as a standard
simplex in the euclidean space of the same dimension, then we can find a smooth
extension to some open set containing containing Σ. Note that the collection of
such extensions (or more precisely, their respective inverse maps) gives rise to a
smooth atlas for M .

We note that a smooth triangulation, τ : Θ −→M , is a combinatorial triangu-
lation, in the sense that the link of every simplex is homeomorphic to a sphere.
Hence, as usual, we get a PL structure on M . See [M] for more discussion of these
matters.

We remark that, in Theorem 1.1, we could equivalently replace “triangulation”
with “cubulation” — in the latter case, Θ is a cube complex built out of regular
unit euclidean cubes. (Note that, by coning over centroids, we can canonically
subdivide an n-simplex into n + 1 n-cubes, and an n-cube into 2nn! n-simplices.
These give rise to bilipschitz equivalent metrics. Moreover, it is a simple matter to
smooth out these subdivisions.) Cube complexes have the geometric advantage
that subdividing into equal smaller regular cubes does not change the induced
path-metric — at least up to rescaling.

Every smooth manifold admits a complete riemannian metric of bounded ge-
ometry (indeed, one which is asymptotically flat and with the convexity radius
tending to infinity. We therefore recover the fact that any smooth manifold ad-
mits a smooth combinatorial triangulation, and hence a PL structure. However,
there are additional facts about triangulations which we do not address here. For
example, one can show that the PL structure is unique up to topological isotopy
(see [M]).
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We briefly describe how our results and constructions relate to some of those
elsewhere. As noted earlier the construction (for manifolds without boundary)
is similar to that in [DyVW, BoDG]. Namely, one starts with a discrete net
of points in the manifold, and then perturbs it to become sufficiently “generic”
(or “regular”, as we call it here). This net is identified as the vertex set of a
combinatorial “Delaunay” complex. One extends the inclusion of the vertex set
to a map of the whole complex to give a smooth triangulation. We use a different
method to perturb the net to that described in [BoDG]. Also the method for
extending to a triangulation is different. The paper [DyVW] uses barycentric
coordinates as described by Karcher [K], whereas we use a different extension
method (as can be found in [L] for example). The former is arguably more natural,
though the latter adapts more readily to manifolds with boundary.

A related construction using Vorornoi cells was proposed in [ECHLPT] (Theo-
rem 10.3.1 thereof). However, they do not give a detailed proof, and their “coning”
construction would not in general give rise to a smooth triangulation.

The paper [S] gives a construction of a “fat” triangulation of a smooth riemann-
ian manifold. The methods are rather different. The hypotheses are more general,
but the conclusion is somewhat weaker than ours.

The paper [Br] gives a “thick” triangulation of (constant curvature) hyperbolic
manifolds. It also uses Delaunay triangulations. The strategy is broadly similar,
but their process for perturbing the net is again a little different. The paper
shows that individual simplices are uniformly bilipschitz to standard ones. It
does not discuss smooth or bilipschitz triangulations as such. However this could
be achieved with a little extra work (cf. Section 9 here).

The outline of this paper is as follows. In Section 2, we describe the Delaunay
triangulation in euclidean space. In Section 3, we construct regular nets, again in
euclidean space. In Section 4, we give some results relating to smooth maps on
simplices. In Section 5, we explain how curvature bounds imply that transition
maps can be chosen to C1-close to euclidean isometries. We apply this to define a
notion of “flatness” in Section 6. In Section 7, we construct a triangulation for a
manifold without boundary, and prove Theorem 1.2. In Section 8, we generalise
to manifolds with boundary, and prove Theorem 1.3. In Section 9, we discuss
how the results can be strengthened in the case of constant curvature, and prove
Theorem 1.4.

I am grateful to Daryl Cooper for a discussion we had some time ago, regarding
methods for showing that smooth manifolds are triangulable. An idea of per-
turbing nets, broadly along the lines of that discussed in Sections 3 and 7 here,
emerged from this discussion.

2. The Delaunay construction

In this section, we recall the construction of the Delaunay triangulation of
Rm, with the euclidean metric, ρE. This will be used for general manifolds in
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Section 6. It will also serve to introduce some notation and terminology used
later. In general, the Delaunay construction [De] gives a tessellation by polyhedral
cells (dual to the “Voronoi tessellation”). In the “generic” case, this will be a
triangulation.

To begin, we recall some linear algebra. We equip Rm with the euclidean metric,
ρE, that is, ρE(x, y) = ||x− y||, where ||.|| is the euclidean norm.

Suppose that B = {x0, . . . , xm} is a set of m+ 1 points in Rm. If B comes with

an order defined up to even permutation, we write it as ~B. We set

~Vm( ~B) =

∣∣∣∣∣∣∣∣
x01 x02 · · · x0m 1
x11 x12 · · · x1m 1
...

...
. . .

...
...

xm1 xm2 · · · xmm 1

∣∣∣∣∣∣∣∣
where xij is the jth coordinate of xi. We write Vm(B) = |~Vm( ~B)|. Note that
Vm(B) is invariant under any isometry of Rm. If B is a singleton, then V0(B) = 1.
If B = {x0, x1}, then V1(B) = ρE(x0, x1).

More generally, if B = {x0, x1, . . . , xk} ⊆ Rm for some m > k, then we define
Vk(B) using any k-dimensional subspace containing B. This is well defined by the
above observation.

The geometrical interpretation is that Vm is the m-volume of the convex hull,
hull(B), of B.

Suppose that C = {x0, . . . , xm+1} is a set of m+ 2 points in Rm. Again, given
an order defined up to even permutation, we set

~Qm(~C) =

∣∣∣∣∣∣∣∣
σ0 x01 x02 · · · x0m 1
σ1 x11 x12 · · · x1m 1
...

...
...

. . .
...

...
σm+1 xm+1,1 xm+1,2 · · · xm+1,m 1

∣∣∣∣∣∣∣∣
where σi = x2

i1 + x2
i2 + · · ·+ x2

im. We write Qm(C) = | ~Qm(~C)|.
Note that Qm(C) = 0 if and only if C lies in a codimension-1 sphere in Rm. In

general, Qm(C) can be viewed as a measure of the “non-sphericity” of C.
(To explain this, let V be the top right (m + 1) × (m + 1) cofactor in the

determinant. In other words, V = Vm(x0, . . . , xm). We can substitute xm+1 with
x ∈ Rm, thought of as a variable. If V 6= 0, then the determinant has the form
V ||x−a||2−k. In other words, it is the equation of a sphere. Substituting x = xi
for any i ≤ m gives 0. It is therefore the sphere containing the points x0, . . . , xm.
Similarly, if V = 0, we get a linear equation: that of the plane containing the
points x0, . . . , xm.)

Let Π be a connected simplicial complex, and let Π0 be its vertex set. We
write Ci(Π) for the set of formal i-simplices (in other words finite subsets of Π0 of
cardinality i + 1 which bound simplices). Here we are abusing notation slightly
by identifying a 0-simplex with a vertex of Π. In other words, we won’t bother to
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distinguish x and {x} for x ∈ Π0. We write C(Π) =
⋃∞
i=0 C(Π). Given C ∈ C(Π),

write Σ(C) = Σ(∆, A) ⊆ Π, for the simplex with vertex set C (i.e. the “realisa-
tion” of C). Write Cireal(Π) = {Σ(C) | C ∈ Ci(Π)}, and Creal(Π) =

⋃∞
i=0 Cireal(Π).

Write Πi =
⋃i
j=0

⋃
Cjreal for the i-skeleton of Π. We write ρ0

Π for the path-metric
on Π induced by giving each simplex the structure of a “standard simplex”; that
is, a regular euclidean simplex with all side-lengths equal to 1.

Note that any map f : Π0 −→ Rm has a unique “affine extension”, f : Π −→
Rm, that is affine on each simplex.

The following definitions make sense in any metric space, (X, ρX) (though, for
the moment, we can think of X as Rm. We will use N(.; r) to denote an open
r-neighbourhood.

Definition. We say that A ⊆ X is locally finite (or discrete) if every bounded
subset is finite.
Given r > 0, we say that A is r-dense if X = N(A; r).
We say that A is r-separated if ρ(x, y) ≥ r for all distinct x, y ∈ A. Given
s ≥ r > 0 we say that A is an (r, s)-net if it is r-separated and s-dense.

Note that for any r > 0, any maximal r-separated set will be an (r, r)-net. By
Zorn’s Lemma such always exists.

In this paper, all metric spaces will be proper (complete and locally compact)
geodesic spaces. Thus, any r-separated subset will be locally finite.

Given h > 0, let C(A, h) = {B ⊆ A | diam(B) ≤ h}. Let Π = Π(A, h) be the
simplicial complex with vertex set A, and with formal simplices C(A, h). In other
words, C(Π(A, h)) = C(A, h). If A is locally finite, then Π(A, h) is locally finite as
a simplical complex.

We now restrict again to the case where X = Rm.
Note that if A ⊆ Rm is locally finite, then the inclusion of A into Rm extends

to a proper affine map of Π(A, t) into Rm. If A is (t/2)-dense, then it is easily
seen that this map is surjective.

We can now define the Delaunay triangulation.
Let A ⊆ Rm be locally finite and t-dense. Given x ∈ Rm, let A(x) = {x ∈

A | ρE(x, a) = ρE(x,A)}, i.e. the set of nearest points of A to x. Write B(A) =
{A(x) | x ∈ Rm}, and let C(A) be the set of subsets C ⊆ A such that C ⊆ B
for some B ∈ B(A). Clearly C(A) is closed under inclusion, and so we can define
∆(A) to be the simplicial complex with vertex set ∆0(A) = A, and with formal
simplices C(A) (so C(∆(A)) = C(A)). Note that ∆(A) is a subcomplex of Π(A, 2t).
Moreover, the affine extension, τ : ∆(A) −→ Rm is surjective.

In general, τ need not be injective. (Suppose, for example, that |A(x)| = n ≥
m + 3. Then A(x) is the vertex set of an (n − 1)-simplex in ∆(A), which maps
under τ to hull(A(x)) ⊆ Rm.) However, generically, this cannot happen.

Theorem 2.1. Suppose that A ⊆ Rm is locally finite and t-dense. Suppose that
Qm(C) 6= 0 for all C ∈ Cm+1(A, 2t) (that is, for all C ⊆ A with |C| = m+ 2 and
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diam(C) ≤ 2t) then the affine extension, τ : ∆(A) −→ Rm is a triangulation of
Rm.

We refer to ∆(A) as the Delaunay triangulation with vertex set A. It has its
origins in [De] where a statement equivalent to Theorem 2.1 can be found. A
simple way of understanding this is to note that the m-simplices of the Delaunay
triangulation are those whose circumscribing spheres contain no point of A strictly
inside.

As well as the standard metric, ρ0
∆, ∆(A) also admits a euclidean metric, ρ∆,

such that (∆(A), ρ∆) is isometric to (Rm, ρE). Here ρ∆ is a “euclidean structure”
on ∆(A), in the sense defined in the introduction.

If we assume, in addition, that Vm(B) ≥ ω > 0 for all B ∈ Cm(∆(A)), (i.e.
there is a positive lower bound on the volumes of m-simplices in the Delaunay
triangulation) then τ is λ-bilipschitz on each simplex, where λ ≥ 1 depends only
on ω, t and m. In other words, the metrics ρ∆ and ρ0

∆ are λ-bilipschitz equivalent.
In view of the above, we make the following definition.

Definition. Suppose that A ⊆ Rm, and t, ω > 0. We say that A is ω-regular on
scale t (or just ω-regular, when t is understood) to mean that the following two
conditions hold:
(1): whenever B ⊆ A satisfies |B| = m+1 and diam(B) ≤ 2t, we have Vm(B) ≥ ω,
and
(2): whenever C ⊆ A satisfies |C| = m+2 and diam(C) ≤ 2t, we have Qm(C) ≥ ω.

(We will always assume that ω ≤ 1.)
We also note that if we move the points of a regular net a small distance, we

get another regular net:

Lemma 2.2. Given ω, δ, t > 0, there is some ω′ > 0 with the following property.
Suppose that A,A′ ⊆ Rm with [a 7→ a′] a bijection from A to A′ with ρE(a, a′) ≤ δ
for all a ∈ A. If A is ω′ regular on scale t+ δ, then A′ is ω-regular on scale t.

This is a simple consequence of the continuity of the functions, Vm and Qm

defined above. We also note:

Lemma 2.3. Given ω, t > 0 and there is some δ > 0 with the following property.
Suppose that A,A′ satisfy the hypotheses of Lemma 2.2 for ω, δ, t. Then the map
[a 7→ a′] induces a simplicial isomorphism of ∆(A) to ∆(A′).

Proof. Let B ⊆ A be a formal simplex of ∆(A). By ω-regularity, all points of
A \ B lie a definite distance from the circumscribing sphere centred on A. By
definition of ∆(A), these all lie outside. This remains the case on moving all
points a small enough distance. It is a simple exercise to properly quantify the
above statements. �

We note moreover that if µ > 1, then we can choose δ > 0, depending on ω, t,
such that the simplicial isomorphism ∆(A) −→ ∆(A′) is µ-bilipschitz with respect
to the metrics ρ∆(A) and ρ∆(A′).
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We will need the following general observations.

Lemma 2.4. Given v, δ, there is some δ′ > 0 such that the following holds.
Suppose x1, . . . , xp ∈ Rm with Vp(x1, . . . , xp) ≥ v. Suppose lij > 0 with |lij −
ρE(xi, xj)| ≤ δ′. Then there exist y0, . . . , ym ∈ Rm with ρE(xi, yi) ≤ Rm, with
ρE(xi, xj) = lij and ρE(xi, yi) ≤ δ for all i, j.

Moreover, given µ > 1, we can choose δ′ so that, in addition, the affine extension
of the map [xi 7→ yi] is µ-bilipschitz. The proof is a simple exercise.

We can apply this to the Delaunay triangulation as follows.

Lemma 2.5. Given ω, t > 0 there is some δ > 0 such that the following holds.
Suppose that A ⊆ Rm is ω-regular and t-dense and let ∆ = ∆(A), Suppose that
l′ : C1(∆) −→ [0,∞) satisfies |l(e) − l′(e)| ≤ δ for all e ∈ C1(∆), where l(e) is
the length of the edge, Σ(e), in the metric ρ∆. Then there is a (unique) euclidean
metric, ρ′∆, on ∆(A), such that the ρ′∆-length of each edge e is l′(e).

One could easily add that given any µ > 1, we could choose δ so that the
metrics ρ∆ and ρ′∆ are µ-bilipschitz equivalent (via the identity map). However,
this fact won’t be used explicitly.

Finally, we note that the Delaunay triangulation only depends locally on A.
Indeed, we only need to have A defined on a subset of Rm for the construction to
work. One way to express this is as follows.

Suppose that A ⊆ N(0; 4t) ⊆ Rm is t-dense in N(0; 4t). Let ∆(A) be the
simplicial complex with vertex set A defined as before. We make the same hy-
potheses as in Theorem 2.1, namely that Qm(C) 6= 0 for all C ∈ Cm+1(A, 2t).
Let D0 ⊆ ∆(A) be the subcomplex whose simplices meet N(0; 3t). Then τ |D0 is
injective and N(0, 2t) ⊆ τ(D0). This is a simple observation, noting that nothing
outside N(0; 4t) plays any role in the construction in N(0; 2t).

3. Constructing regular nets

We will show that we can perturb any net in Rm a little bit so that it becomes
uniformly regular. The real interest in this comes from its adaptation to suffi-
ciently flat manifolds in Section 7, where we modify some of the arguments given
here.

Here is a formal statement:

Lemma 3.1. Suppose t1 > t0 > 0 and δ > 0. Then there is some ω =
ω(δ,m, t0, t1) with the following property. Suppose A ⊆ Rm is t0-separated. Then
there is an injective map, [a 7→ a′] : A −→ Rm, such that A′ = {a′ | a ∈ A} is
ω-regular on scale t1, and ρE(a, a′) ≤ δ for all a ∈ A.

Note that if δ < t0/4, say, then A′ is (t0/2)-separated. If it is also t0-dense,
then A′ is (2t0)-dense. This means that we can always construct a regular net,
by starting with a t0-net (a maximal t0-separated subset) and then perturbing it.
(Of course one could easily construct uniformly regular nets explicity in Rm.)
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Given an upper bound on diameter, then a lower bound on the volume of a
simplex implies a lower bound on the volumes of each of its faces. For the proof
of Lemma 3.1, it will be convenient to formalise this as follows.

Definition. We say that A is strongly ω-regular (at scale t), if the following two
conditions hold:
(1): If 1 ≤ k ≤ m, and B ⊆ A with |B| = k+1 and diam(B) ≤ t, then Vk(B) ≥ ω.
(2): If C ⊆ A with |C| = m+ 2 and diam(C) ≤ t, then Qm(B) ≥ ω.

In other words, we have strengthened (1) so that it holds for all dimensions at
most m.

The following is a key step in the process.

Lemma 3.2. Given t1 > t0 > 0, δ, ω > 0, there is some ω′ = ω′(m, δ, ω, t1, t0),
with the following property. Suppose that A ⊆ Rm and a ∈ Rm \ A, with A ∪ {a}
t0-separated. Suppose that A is strongly ω-regular on scale t1. Then there is some
a′ ∈ Rm, with ρE(a, a′) ≤ δ, and with A ∪ {a′} strongly ω′-regular on scale t1.

Proof. We only need to consider E = A∩N(a, 2t1 + δ). Note that |E| is bounded
above in terms of m, t0, t1, δ.

Suppose that B ⊆ E with |B| = k, with k ≤ m−1. By hypothesis, Vk(B) ≥ ω.
Let PB ⊆ Rm be the (unique) k-plane containing B. If x ∈ Rm with ρE(x, PB) ≥
η > 0, say, then Vk(B ∪ {x}) is bounded below by a fixed positive function
(depending on m) of ω and η. (In fact, Vk+1(B ∪ {x}) ≥ ωη/m!.)

Similarly, suppose C ⊆ E with |C| = m+1. Note that Vm+1(C) ≥ ω. Let SC ⊆
Rm be the (unique) m-sphere containing C. If x ∈ Rm with ρE(x, SC) ≥ η > 0,
say, then Qm(C ∪ {x}) is bounded below by a fixed positive function (depending
on m) of ω and η.

Now consider the union, Y , of all sets of the form PB and SC , and B,C range
over all such subsets. Note that there are boundedly many such B,C, and so Y is
a union of boundedly many planes and spheres of codimension at least 1. If η is
small enough in relation to these bounds, then N(Y ; η) cannot contain any δ-ball
in Rm. In other words, we can find some a′ ∈ N(a; δ) with ρE(a′, Y ) ≥ η, where
η > 0 depends only on δ,m, ω and t2/t0. This places a lower bound, say ω′ > 0,
on Vk+1(B ∪ {a′}) and Qm(C ∪ {a′}) for all such B,C.

We can suppose that ω′ < ω. Given that A is assumed strongly ω-regular, this
account for all subsets of A∪{a′} of cardinality at most k+ 1. Therefore A∪{a′}
is strongly ω′-regular as required. �

We will also need:

Lemma 3.3. Suppose that A ⊆ Rm is t0-separated, and t2 ≥ t0 > 0. We can
write A =

⊔ν
i=0 Ai, where each Ai is t2-separated, and where ν ∈ N, depends only

on m and t2/t0.

Proof. Note that there is a bound, ν, on the cardinality of any subset of A of
diameter at most 2t2.
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First set A0 ⊆ A be a maximal t2-separated subset. Now define Ai inductively,
by taking Ai+1 to be a maximal t2-separated subset of A \

⋃
j≤iAj. Note that

if a ∈ A, then at least one element of the set N(a; t2) ∩ A gets added at each
stage until it is filled. But this set has at most ν elements, so the process must
terminate after at most ν steps. �

(The above can be seen as an expression of the fact that any graph of degree
at most d is (d+ 1)-colourable.)

Proof of Lemma 3.1. We write A =
⊔ν
i=0 Ai as given by Lemma 3.3, with t2 = 2t1.

We will inductively define [a 7→ a′] on the sets A≤i =
⋃
j≤iAj, so that A′≤i =

{a′ | a ∈ A≤i} are strongly ωi-regular on scale t1, where ωi depends only on
i, t0, t1, δ,m.

To begin, set a′ = a for all a ∈ A0. Note that A0 is vacuously strongly ω-regular
for all ω, so we can set ω0 = 1, say.

Suppose that we have inductively defined, A′≤i, and let a ∈ Ai+1. Now A′≤i is
strongly ωi-regular, so by Lemma 3.3, we can find a′ ∈ Rm with ρE(a, a′) ≤ δ and
with A′≤i ∪ {a′} strongly ωi+1-regular, for some ωi+1 > 0. We can find such a′

for all a ∈ Ai+1. Now Ai+1 is (2t1)-separated, and A′i+1 is t1-separated provided
δ < t1/2. In particular, any subset of A≤(i+1) of diameter at most t1 contains at
most one element of A′i+1. Therefore, A′≤(i+1) is strongly ωi+1-regular.

Setting ω = ων , we end up with A′ = A′≤ν , which is (strongly) ω-regular as
required. �

We remark that the construction of [Br] (for hyperbolic manifolds) offers an
alternative approach to this, which could probably be adapted for the above pur-
poses.

4. Smooth maps on simplices

Given A ⊆ Rm, we say that a map, f |A −→ Rn is smooth if there is an open
set, U ⊆ Rm, with A ⊆ U , and a smooth function, F : U −→ Rn with F |A = f .
(One can check that a map is smooth if it is smooth in a neighbourhood of every
point.)

In the cases of interest here, where A is an m-simplex, or an open subset of Rm,
we can write TxA = TxRm ≡ Rm, for the tangent space at x ∈M . We then get a
well defined derivative map, dxf : Rm −→ Rn (independent of the extension, F ).

We write Λ0(f) = max{||f(x)|| | x ∈ A} and Λ1(f) = max{||dxf ||o |∈ A},
where ||.|| denotes the euclidean norm on Rm, and ||.||o denotes the operator
norm.

Definition. We say that f is ε-small if Λ1(f) ≤ ε.

In other words, ||(dxf)(v)|| ≤ ε||v|| for all x ∈ A and all tangent vectors,
v ∈ Rm.
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Note that if A is convex, diam(A) ≤ d and f(x) = 0 for some x ∈ a, then
Λ0(f) ≤ dε.

Let Σ ⊆ Rm be an m-simplex. Let Σ0,Σ1, . . . ,Σm be the codimension-1 faces
of Σ, and write ∂Σ =

⋃m
i=0 Σi.

Now let Σ be the regular m-simplex with unit side-lengths, which we refer to
as the standard m-simplex. The following construction can be found in [L] (see
Lemma 16.8 thereof). We make explicit here the control on derivatives.

Lemma 4.1. Suppose f : ∂Σ −→ Rn is a map with f |Σi smooth and ε-small for

all i. Then there is a (Kε)-small smooth map, f̂ : Σ −→ Rn, where K = K(m)
depends only on m.

In particular, it follows that f is smooth (on ∂Σ).
(We also note that we could equivalently replace ∂Σ by any union of faces,

in the above statement. The equivalence can be seen by using induction over
i-skeletons.)

We remark that the construction we give below is canonical.

Proof. Note that, taking each coordinate separately, we can take n = 1; that is,
f maps to R. For the proof, we will identify Σ (up to a scale factor of

√
2) with a

simplex in Rm+1. To this end, we are use coordinates, t = (t0, . . . , tm) for Rm+1.
Let Im = {0, 1, . . . ,m}. Given I ⊆ Im, write IC = Im \ I. Given i ∈ Im write
Ri = {t ∈ Rm+1 | ti = 0}. Given I ⊆ Im, write RI =

⋂
i∈I Ri (so Ri = R{i}).

Given t ∈ Rm+1, write t̄ =
∑m

i=0 ti. Let P = {t ∈ Rm+1 | t̄ = 1}, and write
PI = P ∩ RI . Let Σ = P ∩ [0,∞)m+1 = P ∩ [0, 1]m+1, and ΣI = Σ ∩ RI . Thus,
ΣI ∩ ΣJ = ΣI∪J . If i ∈ Im, write Σi = Σ{i} and Σ{i}C = {vi}. In other words, Σi

is the codimension-1 face of Σ opposite the vertex vi.
Fix, for the moment, some i ∈ Im, and let Ii = {I ⊆ Im | i /∈ I}. Given

I ∈ Ii, we define a linear map πI,i : Rm+1 −→ Rm+1 as follows. Given t ∈ Rm+1,
set πI,i(t) = u, where uj = 0 if j ∈ I; uj = tj, if j /∈ I ∪ {i}; and where
ui = ti +

∑
j∈I tj. Thus ū = t̄. Also, ū ∈ RI . Therefore, if t ∈ P , then

u ∈ P ∩ RI = Pi. In particular, πI,i : P −→ Pi is an affine retraction of P to Pi,
which restricts to a retraction of Σ to Σi. Note that π∅,i|Σ is the identity. Also
if, i, j ∈ Im are distinct, and I ⊆ {i, j}C , then πI,i|Pj = πI∪{j},i|Pj.

Suppose f : P −→ R is any map. Write fI,i = f ◦ πI,i : P −→ R (so
f∅,i = f). If j ∈ {i}C and I ⊆ {i, j}C , then fI,i|Pj = fI∪{i},i|Pj. It follows that∑

I∈Ii(−1)|I|fI,i = 0 (since the terms in I and I∪{j} cancel, and we can partition

Ii into such pairs). Set f̂i = −
∑

I∈Ii\{∅}(−1)|I|fI,i. Then f̂i|Pj = f∅,i|Pj = f |Pj.
Note that the definition of f̂i|Σ makes sense if f is only defined on each Σi

for j 6= i. (Since πI,i maps to Σ into some such face, if I 6= ∅.) In this case,

f̂i|
⋃
j 6=i Σj = f . Moreover, if f is smooth on each Σj, then f̂i is smooth. (Note

that f |Σj can be extended independently to a smooth function in a neighbourhood

of each Σj in Pj, so this gives f̂ defined on a neighbourhood of Σ in P by the same
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formula.) Moreover, Λ1(f̂i) is bounded above by some fixed multiple of Λ1(f, ∂Σ),
where Λ1(f, ∂Σ) = maxmi=0 Λ1(f |Σi).)

We now fix φ : R −→ [0, 1] to be any smooth function satisfying φ(x) = 0 if
x ≤ 1/2(m+ 1) and φ(x) > 0 if x > 1/2(m+ 1). Given i ∈ Im, define φi : P −→
[0, 1], by φi(t) = φ(ti). We set Φ(t) =

∑m
i=0 φi(t), and σi(t) = φi(t)/Φ(t). (Note

that Φ(t) > 0 since ti > 1/2(m + 1) for at least one i.) Thus
∑m

i=0 σi ≡ 1. In
other words {σi}i is a smooth partition of unity for Σ. Note σi|Σi ≡ 0, and that
Λ1(σi) is bounded above in terms of m.

Suppose now that f : ∂Σ −→ R with f |Σi smooth for each i. Let f̂i : Σ −→ R
be defined as above, and set f̂ =

∑m
i=0 σif̂i. Again f̂ is smooth Σ and Λ1(f̂) is

bounded above by some multiple of Λ1(f, ∂Σ) depending only on m.

We claim that f̂ |∂Σ = f . For suppose that t ∈ ∂Σ. Then t ∈ Σj for some

j ∈ Im. We have noted that f̂i|Pj = f |Pj when i 6= j, so f̂i(t) = f(t) for all

j 6= i. Also, σj(t) = 0. Therefore, f̂(t) =
∑m

i=0 σi(t)f̂i(t) =
∑

i 6=j σi(t)f̂i(t) =

f(t)
∑

i 6=j σi(t) = f(t)
∑m

i=0 σi(t) = f(t). �

(We illustrate the above construction when m = 1. In this case, Σ = {(t0, t1) |
t0, t1 ≥ 0, t0 + t1 = 1} is an interval. Then I0 = {∅, {1}} and π∅,0(t0, t1) = (t0, t1)
and π{1},0(t0, t1) = (1, 0). Similarly, swapping 0 and 1, we get π∅,1(t0, t1) = (t0, t1)

and π{0},1(t0, t1) = (0, 1). So f̂0(t0, t1) = f(1, 0) and f̂1(t0, t1) = f(0, 1). Thus f̂ is
a diffeomorphism of Σ to the interval between f(1, 0) and f(0, 1). Of course, we
could instead have taken a linear map, in this particular case.)

Note that, if f ≥ 0, then f̂ ≥ 0. Also the construction is linear in f . In other
words, if f =

∑n
k=1 λkfk, where the λk are constant, then f̂ =

∑n
k=1 λkf̂k.

We will make use of the following notion. Suppose that A ⊆ Rm and f : A −→
Rn is smooth.

Definition. We say that f is ε-affine if there is a linear map, L : Rm −→ Rn,
such that ||dxf − L||o ≤ ε for all x ∈ A.

This is equivalent to saying that there is an affine map, T : Rm −→ Rm, such
that f − T is ε-small. This follows directly from the definitions: take any affine
map with linear part (or derivative) L.

Clearly we always postcompose T with a translation, so that f(x) = T (x) for
any fixed x ∈ A. Note that if A is convex and has diameter at most d, then this
implies that Λ0(f − T |A) ≤ dε.

Now let Σ ⊆ Rm be an m-simplex, with vertex set Σ0, so that diam(Σ) =
diam(Σ0).

For future reference we note the following easily verified observation:

Lemma 4.2. There is some ε0 = ε0(m) such that if f : Σ −→ Rn is ε0-affine,
then diam(f(Σ)) ≤ diam(f(Σ0)).

In fact, for our application, it would be enough to have diam(f(Σ)) bounded
above by some fixed multiple of diam(f(Σ0)).
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We can give another description of ε-affine maps as follows.
Suppose first that S : Rm −→ Rn is any affine map. Then Λ0(S|Σ) = Λ0(S|Σ0).

Moreover, the following is a simple exercise in linear algebra:

Lemma 4.3. Let Σ be an m-simplex. Suppose diam(Σ) ≤ d and vol(Σ) ≥ v > 0,
and S : Rm −→ Rn is affine. Then Λ1(S) ≤ K0Λ0(L|Σ0), where K0 ≥ 0 depends
only on m,n, d, v.

Now, given any map, f : Σ −→ Rm, let Tf : Rm −→ Rn be the unique affine
map with Tf |Σ0 = f |Σ0.

Lemma 4.4. Suppose that f is ε-affine. Then Λ1(f − Tf |Σ) ≤ K1ε, where K1

depends only on m,n, d, v.

Proof. By definition, we have Λ1(f − T |Σ) ≤ ε for some affine T : Rm −→
Rn. Choosing any x0 ∈ Σ0, we can suppose that f(x0) = T (x0). Therefore,
Λ0(f −T |Σ) ≤ dε, so Λ0((T −Tf )|Σ0 ≤ dε, so Λ1((T −Tf )|Σ) ≤ K0dε. Therefore,
Λ1(f − Tf |Σ) ≤ Λ1(f − T |Σ) + Λ1((T − Tf )|Σ) ≤ ε + K0dε = K1ε, where K1 =
1 +K0d. �

We note the following result about extending ε-affine maps.

Lemma 4.5. Let Σ be the standard m-simplex. Suppose that f : ∂Σ −→ Rn is a
map with f |Σi ε-affine for all i. Then there is a (Kε)-affine map, F : Σ −→ Rn

with F |∂Σ = f . Here K = K(m) depends only on m and n.

Proof. Let T = Tf . Then T |Σi = T(f |Σi), so Λ1((f − Tf |Σi) ≤ K1ε. Apply Lemma
4.1 to give G : Σ −→ Rn, with G|∂Σ = f − T and Λ1(G− (f − T )) ≤ kK1ε. Set
F = G+ T and K = kK1. �

Now suppose that m = n. Let X ⊆ Rm and suppose that f : X −→ Rm is
smooth.

Definition. We say that f is ε-congruent (or an ε-congruence) if there is an
orthogonal linear map, L : Rm −→ Rm, such that ||dxf − L||o ≤ ε for all x ∈ X.
We say that f is ε-translating (or an ε-translation) if ||dxf−I||o ≤ ε for all x ∈ X,
where I is the identity matrix.

In other words, f is ε-congruent if there is an isometry T : Rm −→ Rm such
that f − T |X is ε-small. It is ε-translating if f − ι is ε-small, where ι : A −→ Rm

is the inclusion map. Clearly any ε-translation is an ε-congruence. Conversely, we
can postcompose any ε-congruence with an isometry of Rm so that it becomes an
ε-translation.

Now let Σ ⊆ Rm be an m-simplex.

Lemma 4.6. Given µ > 1, there is some ε > 0 such that if f : Σ −→ Rm is an
ε-congruence, then f is a bilipschitz homeomorphism to f(Σ).
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Proof. After postcomposing f by an isometry of Rm, we can assume that it is
ε-translating. Let x, y ∈ Σ, write l = ||x− y||, and let α : [0, l] −→ Σ be the unit-
speed geodesic from x to y. Let β = f ◦α : [0, l] −→ Rm. Let v = (y−x)/l = α′(t)

for all t ∈ [0, l]. Then ||β′(t)−v|| ≤ ε. Then ||y−x−vl|| = ||
∫ l

0
β′(t)−v dt|| ≤ εl,

so (1− ε)l ≤ ||f(y)− f(x)|| ≤ (1 + ε)l. It follows that f is (1/(1− ε))-bilipschitz
for any ε < 1. �

Lemma 4.7. Suppose that diam(Σ) ≤ d and vol(Σ) ≥ v > 0. Suppose that
f : Σ −→ Rm is ε-affine, and that ρE(x, f(x)) ≤ ε for all x ∈ Σ0. Then f is
(K2ε)-translating, where K2 depends only m, d, v.

Proof. By assumption, we have Λ0(f − ι|Σ0) ≤ ε. By Lemma 4.4, we have Λ1(f −
Tf ) ≤ K1ε. Also, Λ0((Tf − ι)|Σ0) ≤ ε, so by Lemma 4.3, Λ1(Tf − ι) ≤ K0ε. Thus
Λ1(f− ι) ≤ Λ1(f−Tf )+Λ1(Tf− ι) ≤ K1ε+K0ε = K2ε, where K2 = K1 +K0. �

We note that being almost affine is preserved under postcomposition with an
almost congruent map:

Lemma 4.8. Suppose that f : Σ −→ Rn with ||dxf −L|| ≤ ε for all x ∈ Σ, where
L is a fixed matrix with ||L||o ≤ N . Suppose that g : f(Σ) −→ Rn is ε-congruent.
Then g ◦ f : Σ −→ Rn is (K3ε)-affine, where K3 depends only on m,n,N .

Proof. This is just an application of the chain rule. Let v ∈ Rm. If x ∈ Σ,
then ||(dxf)v − Lv|| ≤ ε||v||, and ||(dfxg)(dxf)v − (dxf)v|| ≤ ε||(dxf)v||. So
||dx(g ◦ f)v − Lv|| ≤ (1 + ||dxf ||)ε||v|| ≤ (1 + (N + ε))ε||v||. So if ε ≤ 1, say, then
||dx(g ◦ f)− L||o ≤ K3ε, where K3 = 2 +N . �

Now suppose that Π is a simplicial complex with some euclidean metric ρΠ.
Let f : Π −→ Rn. We say that f is smooth (respectively ε-affine) if its restric-

tion to each simplex of Π is smooth (respectively ε-affine).
The following says that a small perturbation of a Delaunay triangulation is still

a triangulation.

Lemma 4.9. Given ω, t > 0 and µ > 1, there is some ε1 > 0 with the following
property. Suppose that A ⊆ Rm is t-dense and ω-regular on scale t. Let ∆(A) be
the Delaunay triangulation with induced metric ρ∆ (isometric to Rm). Suppose
that f : ∆(A) −→ Rm is ε1-affine, and that ρE(a, f(a)) ≤ ε1 for all a ∈ A. Then
f is a µ-bilipschitz triangulation of Rm.

Proof. Note that each m-simplex, Σ, of ∆(A) has diameter at most t and volume
at least ω > 0. Let ε > 0 be the constant given by Lemma 4.6 given µ. Let K2

be the constant of Lemma 4.7, given n = m, v = ω and d = t. Let ε1 = ε/K2. By
assumption, Λ1(a, f(a)) ≤ ε, for all a ∈ Σ0 ⊆ A, and f |Σ is ε1-affine. Therefore,
by Lemma 4.7, f |Σ is ε-translating. Therefore, by Lemma 4.6, f |Σ is bilipschitz
onto f(Σ).

In fact, the same proof as Lemma 4.6 shows directly that f : ∆(A) −→ Rm is
µ-bilipschitz. Let x, y ∈ ∆(A) ∼= Rm, and let α be the euclidean geodesic joining
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them. The path β = f ◦ α is continuous, and smooth for all but finitely many
parameters, and so the argument goes through as before. �

Of course, Lemma 4.9 is not quite what we need for the general case, but it
serves to illustrate the argument (see Section 7).

5. Curvature bounds

We make a digression into a general result of riemannian geometry.
Note that the metric on any riemannian manifold of bounded geometry can

be rescaled to make the curvature arbitrarily small and the indectivity radius
arbitrarily large. By the Rauch comparison theorem [Ch], this means that the
exponential map on from balls of any given fixed radius will be bilipschitz with
constant arbitrarily close to 1. We will also need a more subtle fact, namely that
the transition functions can be taken to be ζ-congruences, in the sense defined in
Section 4 for some fixed (arbitrarily small) ζ. We give the background to this in
this section. Accounts of this can be found in [BuK] and Section 3.3 of [DyVW].

First, we introduce the following notation. Given unit vectors, v1, v2 in a (finite
dimensional) inner-product space, we write v1 ∼ζ v2 to mean that ||v1 − v2|| ≤ ζ.
Given two linear maps, L1, L2, between two such normed space, we write L1 ∼ζ L2

to mean that ||L1 − L2||o ≤ ζ. In other words, L1v ∼ζ L2v for all unit vectors, v,
in the domain.

Let P be a geodesically convex smooth riemannian manifold, with metric ρP .
(Typically it will be an open subset of M or of Rm.) Given x, y ∈ P , let αPxy :

[0, ρP (x, y)] −→ P be the unique unit-speed geodesic from x to y. Let τPxy :
TxP −→ TyP be the isometry of tangent spaces given by parallel translation
along αPxy. Note that τPxx = 1, and τPyx = (τPxy)

−1.
Suppose that diam(P ) ≤ r, and that all sectional curvatures of P are bounded

in norm by some κ > 0 (which we think of as being small).
Let β be any piecewise smooth path in P from x to y, of length at most l. Let

τ : TxP −→ TyP be parallel transport along β. There is some fixed constant,
h > 0, such that τ ∼kκl τPxy. In particular it follows that if x, y, z ∈ P , then

τPxz ∼ζ0 τPyz ◦ τPxy, where ζ0 = 2kκr (which we can again take to be small).
Now suppose that Q is another such manifold, and that φ : P −→ Q is a

diffeomorphism. Given x ∈ P , we have a linear isomorphism dxφ : TxP −→ TφxQ.
We will assume:

(C1): There is some ξ ≥ 1 such that for all x ∈ P and y ∈ Q, ||dxφ||o ≤ ξ and
||dy(φ−1)||o ≤ ξ.

In other words, the map f is ξ-bilipschitz. Note that this implies that there is
an orthogonal matrix, O, such that dxf ∼ζ1 O for some fixed ζ1, depending on ξ
and m, and with qz1 → 0 as ξ → 0., and with qz1 → 0 as ξ → 0.
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We also assume that the derivative approximately agrees with parallel trans-
port in the following sense:

(C2): There is some ζ > 0 such that if x, y ∈ P , then τQφx,φy ◦ dxφ ∼ζ dyφ ◦ τPxy.

Note that swapping P and Q, and replacing φ with φ−1, all the above maps are
inverted. In particular, it follows that φ−1 also satisfies (C2), but with ζ replaced
by ζ||ξ||2. We will assume henceforth that ||ξ||2 ≤ 2, say.

The above properties are also respected by composition in the following sense.
Suppose P,Q,R are such manifolds, and φ : P −→ Q and ψ : Q −→ R both
satisfy (C1) and (C2). Clearly, ψ◦φ is ξ2-bilipschitz. Moreover, suppose x, y ∈ P .

Then τQφx,φy ◦ dxφ ∼ζ dyφ ◦ τPxy, and τRψφx,ψφy ◦ dφxψ ∼ζ dφyψ ◦ τ
Q
φx,φy. So

τRψφx,ψφy ◦ dφxψ ◦ dxφ ∼2ζ dφyψ ◦ τQφx,φy ◦ dxφ ∼2ζ dφyψ ◦ dyφ ◦ τPxy,

and so τRψφx,ψφy ◦ dx(ψ ◦ φ) ∼4ζ dy(ψ ◦ φ) ◦ τPxy. In other words, ψ ◦ φ satisfies (C2)
with ζ replaced by 4ζ.

If (C2) holds for some fixed x and all y ∈ P , then it holds for all y, z ∈ P ,

modulo adjusting the constant. More precisely, τQφy,φz ◦ dyφ ∼ζ+4ζ0 dzφ ◦ τPyz.
Now suppose that P,Q ⊆ Rm are convex and equipped with the euclidean

metrics. We can identify all tangent spaces with Rm. Then parallel transport is
the identity map. In particular, it follows that if f : P −→ Q satisfies (C2), then
for all x, y ∈ P , we have dxφ ∼ζ dyφ.

Now let M be any manifold with sectional curvatures bounded by κ, and con-
vexity radius at least χ at a ∈M . Let Ω = N(o;χ) ⊆ Rm and W = N(a;χ) ⊆M .
The exponential map, θ : Ω −→ W is a diffeomorphism, and W is geodesically
convex. Moreover (by the Rauch comparison theorem) it is ξ-bilipschitz, where ξ
depends only on κ. Indeed, we can make ξ arbitrarily close to 1, by assuming κ
small enough. We also claim (cf. [BuK]):

Lemma 5.1. Given any ζ > 0, if κ is sufficiently small in relation to χ, then θ
satisfies (C2) for this ζ.

Proof. Let x ∈ Ω \ {o}, and let b = θ(x). Let l = ρE(o, x) = ρM(a, b). Let
α = αΩ

ox : [0, l] −→ Ω be the geodesic from o to x, and let β = θ ◦ α. By the
definition of the exponential map, β is the geodesic from a to b in W ⊆ M .
Let v0 ∈ Rm be the fixed unit vector, α′(0) = (x − o)/l for t ∈ [0, l]. Then
dα(t)v0 = β′(t) is the tangent vector to β in W . This is parallel transport, and so
(dbθ)(v0) = τWab ◦ (doθ)v0.

Now let v ∈ Rm be a unit vector orthogonal to v0. Let V = (doθ)(v) ∈ TaW .
Note that the vector field, [v 7→ tv/l] where tv/l ∈ Rm ≡ Tα(t)Rm, is a Jacobi field
along α in Ω ⊆ Rm. Let X(t) = (dα(t)θ)(tv/l), so that X(l) = (dxθ)(v). This is
an orthogonal vector field along β. In fact, by the definition of the exponential
map, it is again a Jacobi field along β. It therefore satisfies the Jacobi equation:
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D2

∂t2
X(t) = R(β′(t), X(t))β′(t), where D

∂t
denotes the covariant derivative in the

direction β′(t), and where R is the Riemann curvature tensor. From the linearity
of R, the norm, |R|, is bounded by a fixed multiple of the norms of the sectional
curvatures. In fact (from the symmetries of R) one can show that |R| ≤ 4κ/3 (see
?? for example). (The factor of 4/3 is not important to our discussion.) It follows

that ||D2

∂t2
X(t)|| ≤ 4

3
κ||X(t)||. Note also that at t = 0, we have D

∂t
X(t) = V/l.

Now let Y0(t) be parallel transport of the vector V along β. In other words,
D
∂t
Y0(t) = 0. By definition, Y0(0) = V and Y0(l) = τWab V . Let Y (t) = tY0(t)/l. In

particular, Y (l) = τWab V = τWab ◦ doθ(v0). This is another orthogonal vector field
along β. Now D

∂t
Y (t) = Y0(t)/l. In particular, at t = 0, we have D

∂t
Y (t) = V/l.

Also, D2

∂t2
Y (t) = 0 for all t.

Let Z = X − Y . We have Z(0) = 0 and D
∂t
Z(t) = 0 at t = 0. Also ||D2

∂t2
Z(t)|| ≤

4
3
κ||Z(t)|| for all t, so ||Z(l)|| ≤ 2

3
κl2. Therefore, by choosing κ hence ζ2 small

enough we can arrange that ||Z(l)|| is arbitrarily small. In other words, ||τWab ◦
doθ(v)− dbθ(v)|| is arbitrarily small.

Recall that τWab ◦ doθ(v0) = dbθ(v0). Since v is was an arbitrary unit vector
orthogonal to v0, it now follows that ||τWab ◦ doθ− dbθ||o is arbitrarily small. Since
τΩ
ox is just the identity map (identifying TxRm = Rm), it follows that θ satisfies

(C2) as required. �

Lemma 5.2. Given ε > 0, there is some κ > 0 with the following property.
Suppose that M is (κ, χ)-bounded, and a, b ∈ M . Let Wa = N(a;χ) and Wb =
N(b;χ). Let θ−1

b ◦ θa|θ−1
a (Wa ∩ Wb) : θ−1

a (Wa ∩ Wb) −→ θ−1
b (Wa ∩ Wb) be the

transition map. Then θ−1
b ◦ θa is an ε-congruence. Since parallel translation is the

identity map on Rm, this implies that θ−1
b ◦ θa is an ε-congruence, where ε > 0 is

arbitrarily small.

Proof. First, choose κ > 0 so that θa and θb are ξ-bilipschitz for ξ arbitrarily
close to 1. Choose any x ∈ θ−1

a (Wa ∩Wb) (assuming this is non-empty). Then
dx(θ

−1
b ◦ θa) is ξ2-bilipschitz. By Lemma 5.1, θa and θb both satisfy (C2), and so

therefore does θ−1
b ◦ θa. �

A variation on these results also holds for manifolds with boundary, as we
discuss in Section 8.

6. Flatness

The results of Section 5 tell us that a bounded geometry manifold is almost eu-
clidean on sufficiently small scales. We summarise this in the notion of “flatness”,
and describe some of its consequences. To simplify notation, we will rescale the
metric so that it is flat on some (arbitrarily) fixed scale.

Let M be a riemannian manifold. Given α ∈ M we choose an identification
of TxM with Rm, and let θα : Rm −→ M be the exponential map. We fix some
R > 0, and assume that the convexity radius of M is at least R everywhere. (For
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example, if the injectivity radius is at least 2R.) Let Ω = N(0;R) ⊆ Rm be the
euclideanR-ball about the origin. Given α ∈M , the map θα|Ω is a diffeomorphism
to the geodesically convex set, Wα = N(α;R) ⊆ M . Let φα = θ−1

α : Wα −→ Ω
be the inverse (“logarithm”) map. Then the family of maps (φα)α∈M is a smooth
atlas for M .

Definition. We say that M is (ξ, η)-flat (at the scale R) if each of the charts,
φα : Wα −→ Ω, is ξ-bilipschitz, and if each of the transition functions, φβ ◦
φ−1
α |φα(Wα ∩Wβ) : φα(Wα ∩Wβ) −→ φβ(Wα ∩Wβ), is an η-congruence.

We will generally write φβ◦φ−1
α for the transition function, where the restriction

to φα(Wα ∩Wβ) is implicitly assumed. Clearly, each of the transition functions is
ξ2-bilipschitz.

Suppose we are given R > 0, ξ > 1, η > 0 and m ∈ N. If M is (r, χ)-bounded,
then we can rescale the metric by a constant factor, depending only on R, r, χ, so
that it is (ξ, η)-flat (at scale R). This follows by Lemma 5.2. To simplify notation,
we fix R (say R = 1000).

This means that ξ > 1 is sufficiently close to 1, and η > 0 sufficiently small,
in relation to the various parameters to make the arguments go through. We will
express this loosely by saying that M is “sufficiently flat”.

We also fix some R0 ≤ R/10 (say, R0 = 100), and write W 0
α = N(α;R0), and

Ω0 = N(o;R0) ⊆ Rm. Thus φα(W 0
α) = Ω0.

Given the convexity radius bound, if x, y ∈M with ρM(x, y) ≤ R, then x, y are
connected by a unique geodesic, [x, y] ⊆ M of length ρM(x, y). In particular, if
α ∈M , and x, y ∈ W 0

α, then [x, y] ⊆ Wα.
To simplify terminology, we will write F = (ξ, η) where it is assumed that ξ > 1

and η > 0. We then refer to the manifold M as being “F -flat”.

Lemma 6.1. Given ε > 0, there is some F such that the following holds. Suppose
that M is F -flat,and f : Σ −→ M is smooth. Suppose that φα ◦ f : Σ −→ Rm is
ε-affine for some α ∈M with f(Σ) ⊆ Wα. Then f is (2ε)-affine.

Proof. In other words, if β ∈ M with f(Σ) ⊆ Wβ, we need that φβ ◦ f is (2ε)-
affine. Given the fact that the transition function, φβ ◦ φ−1

α is η-congruent, this
follows from Lemma 4.8, and assuming that η < ε/K3, where K3 is the constant
featuring there. �

Note that, by Lemma 4.8, if η is small enough in relation to ε (namely that
η ≤ ε/2K3), then if φα ◦ f : Σ −→ Rn is (ε/2)-affine for some such α, then f will
be ε-affine.

If Π is any simplicial complex, we say that a map f : Π −→ M is ε-affine if
f |Σ is ε-affine for all Σ ∈ Creal(Π). Here, each simplex is given the structure of
the standard simplex.

We say that f is fine if for all Σ ∈ Creal(Π), there is some α ∈ M with f(Σ) ⊆
Wα. (Of course, it’s enough that diam(f(Σ)) ≤ R.) By Lemma 4.2, we can
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take ε small enough (depending on m) such that if f is fine and ε-affine, then
diam(f(Σ)) ≤ diam(f(Σ0)) for all Σ ∈ Creal(Π).

From the above, we see that if f is fine and ε-affine, and α ∈ M , Σ ∈ Creal(Π)
with f(Σ0) ⊆ W 0

α, then f(Σ) ⊆ Wα.
Let A ⊆ M be locally finite. Let Π = Π(A,R0) be the complex defined in

Section 2 (for an arbitrary metric space). We can extend the inclusion of A =
Π0 into M to a fine map, f : Π1 −→ M , of the 1-skeleton, such that each 1-
simplex gets mapped linearly to the unique shortest geodesic segment connecting
its endpoints. If M is sufficiently flat, then this map will be ε-affine for arbitrarily
small ε > 0.

Lemma 6.2. Given ε > 0, there is some F = F (ε,m) such that if M is F -flat,
then there is a fine ε-affine extension, f : Πm −→M .

Proof. Let K = K(m) be the constant of Lemma 4.5. Let εi = ε/(2K)m−i. We
claim inductively on i = 1, . . . ,m, that, provided M is sufficiently flat, there is a
fine εi-affine extension f : Πi −→M .

To begin, we can suppose, by the earlier discussion, that f : Π1 −→ M as
already defined is ε1-affine.

Suppose then that we have defined f on Πi. Let Σ ∈ Ci+1
real(Π). Now (by

the definition of Π) we have diam(f(Σ0)) ≤ R0. Thus, there is some α with
f(Σ0) ⊆ W 0

α. Let Σ0 be an i-face of Σ. Since f(Σ0
0) ⊆ W 0

α, we can assume
(if M is sufficiently flat) that f(Σ0) ⊆ Wα. By the induction hypothesis, f |Σ0

is εi-affine. By definition, this means that φα ◦ f |Σ0 : Σ0 −→ Ω ⊆ Ri is εi-
affine. Since this holds for all i-faces, we have that φα ◦ f |∂Σ = ∂Σ −→ Rm is
εi-affine. By Lemma 4.5, it has a (Kεi)-affine extension g : Σ −→ Rm. Since
g(Σ0) = φα ◦ f(Σ0) ⊆ Ω0, we can assume that g(Σ) ⊆ Ω. We can therefore
extend f over Σ by setting it equal to φ−1

α ◦ g. By Lemma 6.1, this extension is
(2Kεi)-affine, provided M is sufficiently flat. Doing this for all Σ ∈ Ci+1

real(Π), we
get an extension f : Πi+1 −→ M . This is fine, and by an earlier observation, we
can assume it to be (2Kεi)-affine. In other words, f is εi+1-affine as required.

Given that εm = ε, we eventually end up with a fine ε-affine map f : Πm −→M
as required. �

If we assume that A is t-separated for some t > 0, then there is a bound,
depending on t and m, on the dimension of Π. In this case, the argument would
give us a fine ε-affine map f : Π −→M , provided we allow ξ to depend also on t.

7. Construction of the triangulation

Let M be F -flat, where F = (ξ, η). For each α ∈ M , we have a ξ-bilipschitz
chart φα : Wα −→ Rm. Recall that Wα = N(α;R) and that W 0

α = N(α,R0),
where R = 1000 and R0 = R/10 = 100, say. By definition, the transition functions
are η-congruent. We will assume that ξ ≤ 2.
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Lemma 7.1. Given δ > 0, there is some F such that the following holds. Suppose
that M is F -flat. Let α, β ∈ M . Then after postcomposting β by an isometry of
Rm, we can suppose that ρE(φαx, φβx) ≤ δ, for all x ∈ Wα ∩Wβ.

Proof. We can suppose that Wα ∩ Wβ 6= ∅. After postcomposing φβ with an
isometry, we can assume that φβ ◦φ−1

α is (δ/R)-translating, and that φβ ◦φ−1
α (o) =

o. Since φα(Wα ∩Wβ) ⊆ Ω = N(o;R), it follows that φβ ◦ φ−1
α moves each point

a distance at most δ. �

Given A ⊆ M , i ∈ N and α ∈ M , write Ciα(A) for the set of B ⊆ A ∩W 0
α with

|B| = i + 1. Write Ci(A) =
⋃
α∈M Ciα(A). Clearly, if B ⊆ A with |B| = i + 1 and

diam(B) ≤ R0, then B ∈ C(A). Also if B ∈ C(A) then diam(B) ≤ 2R0.

Definition. Given ω > 0 and A ⊆M , we say that A is ω-regular if:
(R1): for all α ∈M and B ∈ Cmα (A), Vm(φαB) ≥ ω, and
(R2): for all α ∈M and C ∈ Cm+1

α (A), Qm(φαC) ≥ ω.

Lemma 7.2. Given ω > 0 there is some F such that if M is F -flat, then the
following holds. Suppose B ⊆ Ckα(A)∩Ckβ(A), with Vk(φαB) ≥ ω for k ≤ m. Then

Vk(φβB) ≥ ω/2. Similarly, if C ⊆ Cm+1
α (A) ∩ Cm+1

β (A) with Qm(φαC) ≥ ω, then
with Qm(φβC) ≥ ω.

Proof. This follows easily from Lemma 7.1, given the continuity of the functions
Vm and Qm. �

For the proof below, we note that we can define “strongly ω-regular” allowing
for lower dimensional simplices, similarly as in Section 3. A similar discussion
applies.

Now fix some R1 = R0/10, so that R1 = 10 = R0/10.

Definition. A net in M is an R1-separated (6R1)-dense subset.

(Here the factor “6” could in principle be replaced by any number bigger than
2.)

Lemma 7.3. There exist ω > 0, F , depending only on m such that if M is F -flat,
then it admits an ω-regular net.

Proof. We follow a similar argument to that of Lemma 3.1.
Let A ⊆ M be any 2R1-separated 4R1-dense subset. (Take any maximal 2R1-

separated subset.)
We will construct another set, A′ ⊆ M , which is ω-regular, together with a

bijection [a 7→ a′] : A −→ A′, for all a ∈ A. Note that this implies that A′ is a
net.

We first write A =
⊔ν
i=0 Ai, where ν ∈ N depends only on m, and where each Ai

is (4R0)-separated. (This follows as with Lemma 3.3: Given that ξ ≤ 2, there is
a bound, depending only on m, on the cardinality of any subset of A of diameter
at most 8R0, say.)
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We write A≤i =
⋃
j≤iAj and A′≤i =

⋃
j≤iA

′
j.

We claim inductively that we can construct A′i so that A′≤i is strongly ωi-regular,
where ωi > 0 depends only on i.

We begin by setting a′ = a for all a ∈ A0. It follows vacuously that A′0 = A0 is
strongly ω-regular for all ω > 0, so we can set ω0 = 1, say.

Now suppose that we have constructed A′i so that A′≤i is strongly ωi-regular.
Let a ∈ Ai+1. We now apply a similar argument to that of Lemma 3.2 to

φa(W
1
a∩A), where W 1

a = N(a; 3R0). Suppose that B ⊆ Cpa(A′≤i). Then Vp(φaB) ≥
ωi (by the inductive assumption). We can now find a′ ∈ M , with ρM(a, a′) ≤ r,
so that if B ∈ Cp(A≤i) and B ⊆ W 1

a , then Vp+1(φa(B ∪ {a′})) ≥ ω′, where ω′ > 0
depends only on ωi and i, hence ultimately, only in i. Similarly, if C ∈ Cm(A≤i)
with C ⊆ W 1

a , then Qm(φa(C ∪ {a′})) ≥ ω′.
We do this for all a ∈ Ai+1, and thereby construct A′i+1. Note that A′i=1 is (3R0)-

separated. We claim that A′≤(i+1) is ωi+1-regular, where ωi+1 = min{ωi, ω′/2},
thereby proving the inductive step.

To see this suppose B ∈ Cp(A′≤(i+1)), that is, B ⊆ A′≤(i+1)∩W 0
α for some α ∈M .

Now since A′i+1 is (3R0)-separated, B can contain at most one point of A′i+1. If
B ∩ A′i+1 = ∅, then B ∈ Cp(A′≤i), and so Vp(φαB) ≥ ωi ≥ ωi+1 by the inductive
hypothesis. If B∩A≤i = {a′} with a ∈ Ai+1, then B ⊆ W 1

a (since diamB ≤ 2R0),
and so Vp+1(φa(B∪{a′})) ≥ ω′, by the construction of A′i+1. Therefore, by Lemma
7.2, provided M is sufficiently flat, we see that Vp+1(φα(B ∪{a′})) ≥ ω′/2 = ωi+1.

The argument works similarly for C ∈ Cp+1(A′≤(i+1)), thereby proving the claim.

We finally end up with A′ = A′ν , and we set ω = ων . �

Remark: it is easily seen that any ω-regular r-dense subset is necessarily s-
separated, where s depends only on ω, r and m. However, the fact that our
sets are uniformly separated is an immediate consequence of the construction.

Lemma 7.4. Given ω > 0, there is some F such that if M is F -flat, then the
following holds. Suppose that A ⊆M is an ω-regular net, and B ⊆ A∩W 0

α ∩W 0
β

for α, β ∈M . Then B ∈ C(∆(φα(A∩W 0
α))) if and only if B ∈ C(∆(φβ(A∩W 0

β ))).

Proof. Let δ > 0 be as given by Lemma 2.3 given ω and t = R. The construction of
the Delaunay triangulation is invariant under isometries of Rm, so by Lemma 7.1,
we can assume that ρE(φαx, φβx) ≤ δ for all x ∈ Wα ∩Wβ. We now use Lemma
2.3, together with the observation that the Delaunay triangulation is determined
locally, as discussed at the end of Section 2. �

Now, let ∆(A) be the simplicial complex defined by letting B ∈ C(∆(A)) when-
ever φαB ∈ C(∆(φα(A ∩W 0

α))) for some, hence any, α ∈M with B ⊆ A ∩W 0
α.

Note that any such B has diameter at most 2R0, therefore ∆(A) is a subcomplex
of Π = Π(A,R0), as defined in Section 6. In fact, it lies in the m-skeleton, Πm,
thereof.
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Given ε > 0, we can assume that M is sufficiently flat so that we have an
ε-affine map, f : Π −→ M , as given by Lemma 6.2. This restricts to a map
f : ∆(A) −→M .

Lemma 7.5. f : ∆(A) −→M is a triangulation.

Proof. By construction and Lemma 7.4, f coincides with the image of the Delau-
nay triangulation under the exponential map with domains W 0

α. Therefore (by
Theorem 2.2, and the discussion at the end of Section 2) f is a local homeomor-
phism. In fact, since the sets W 0

α have uniform diameter, it is a covering map.
Since f |A is injective, it follows that f is a homeomorphism: in other words, a
triangulation of M . �

Lemma 7.6. Given ω > 0, then there is some F such that if M is F -flat, then
the metric on the 1-skeleton, ∆1(A), extends to a euclidean metric, ρ∆, on ∆(A).

Proof. Let Σ be an m-simplex of ∆(A), and let α ∈ Σ0, so that f(Σ) ⊆ Wα. Since
φα : Wα −→ Rm is ξ-bilipschitz, we can assume (if ξ is sufficiently close to 1) that
each euclidean edge-length agrees with that induced by ρM , up to an additive error
of at most the constant δ, given by Lemma 2.5 (given ω and t = R). Therefore
there is a euclidean m-simplex (unique up to isometry) where each edge-length
agrees with that given by ρM . Gluing these simplices together and taking the
induced path-metric gives us the required metric, ρ∆, on ∆(A). �

Lemma 7.7. Given µ > 1 and ω > 0, there is some F such that if M is F -flat,
then f : (∆(A), ρ∆) −→ (M,ρM) is µ-bilipschitz.

Proof. We first take M sufficiently flat so that ξ ≤ √µ. In other words, the
charts φα are

√
µ-bilipschitz. By Lemma 6.2, f is ε-affine, where we can make

ε arbitrarily small, by choosing F appropriately. Similarly, as with Lemma 4.9,
we can now assume that the maps φα ◦ f are also ξ-bilipschitz. The composition
f = φ−1

α ◦ (φ ◦ f) is therefore µ-bilipschitz. �

Proof of Theorem 1.2. Recall that we have chosen a fixed scale R = 1000, say.
Given κ, χ we choose η0 > 0 so that if we rescale the metric, ρM by a factor 1/η0,
it becomes F -flat, where F is determined by the following condition. First, we
require that F should satisfy the conclusion of Lemma 7.3. Now Lemma 7.3 also
gives us a constant ω > 0 (so that M admits an ω-regular net). We assume also
that, given this ω, the constants F are also sufficient for Lemmas 7.2, 7.4 and
7.6 to hold, as well as for Lemma 7.7 to hold, given the constant µ > 1 of our
hypotheses. Note that, these statements also hold on recaling the metric, ρM , by
any factor 1/η for η ≤ η0 (as required for the conclusion of Theorem 1.2).

Let A be the ω-regular net as given by Lemma 7.3. Let f : ∆(A) −→ M
be as described above (constructed using Lemma 6.2). By Lemma 7.5, this is a
triangulation. Let ρ∆ be the metric on ∆(A) given by Lemma 7.6. By Lemma
7.7 the triangulation is µ-bilipschitz with respect to the metrics ρ∆ and ρM/η.
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Moreover, ρ∆ is λ-bilipschitz to the standard metric, ρ0
∆, where λ depends only

on ω and m, and hence ultimately only on κ, χ,m.
Now let Θ = ∆(A). We rescale everything back by a factor of η. In other

words, ρ0
θ = ρ0

∆ and ρθ = ηρ0
θ. Write τ = f . Then τ : Θ −→ M is the required

triangulation. �

8. Manifolds with boundary

Let M be a riemannian m-manifold with smooth boundary, ∂M .
If a ∈ ∂M we can identify Ta(∂M) as an (m − 1)-dimensional subspace of

Ta(M). Given a ∈ ∂M , write ν(a) ∈ Ta(M) for the inward-pointing unit normal
to ∂M . Let βa : [0, h] −→ M be the unit-speed geodesic with βa(0) = a and
β′a(0) = ν(a). We say that M is h-collared if the map ψ : ∂M × [0, h] −→ M ,
defined by ψ(a, t) = βa(t) for all a ∈ ∂M and t ∈ [0, h], is an injective immersion.
Its image is then the closed h-neighbourhood of ∂M in M . We refer to it as the
(closed) h-collar.

Thinking of the boundary, ∂M , as a hypersurface in M , it has a second fun-
damental form, S, given by S(v, w) = 〈ν,∇vw〉 = −〈∇vν, w〉, for v, w ∈ Ta(∂M),
where ∇ is the Levi-Civita connection on M .

Definition. We will say that M is (κ, χ)-bounded if the following conditions hold:
The sectional curvatures of M and the norm of the second fundamental form of
∂M are all at most κ.
The convexity radius of M is everywhere at least χ.
The intrinsic convexity radius of ∂M is everywhere at least χ, and ∂M is (2χ)-
collared.

The conditions on ∂M imply that the intrinsic sectional curvatures of ∂M are
bounded in norm by some fixed multiple of κ.

We need to define a modified exponential map for a ∈ ∂M . To this end,
let Rm

+ = Rm−1 × [0,∞) and ∂Rm
+ = Rm−1 × {0}. Given χ > 0, write Ω+ =

N(o; 2χ)∩Rm
+ and ∂Ω+ = Ω∩ ∂Rm

+ . (We will later rescale, and set χ to be equal
to a fixed constant.)

Given a ∈ ∂M , we choose an isometric identification of TaM with Rm, such
that Ta(∂M) gets identified with ∂Rm−1, and inward-pointing vectors with Rm−1×
(0,∞). Let θ∂a : ∂Ω+ −→ ∂M be the intrinsically defined exponential map on ∂M .
Given x ∈ Ω+, write x = (x̂, t), where x̂ ∈ ∂Ω+ and t ∈ [0, 2χ). Let c = θ∂a(x̂)
and set θa(x) = βc(t). This defines a map θ = θa : Ω+ −→ M . Since M is (2χ)-
collared, θ is injective. Let W = Wa = θ(Ω+). This is an open neighbourhood of
a in M . We write ∂W = θ(∂Ω+) = W ∩ ∂M .

By the Rauch comparison theorem, θ : Ω+ −→ W is ξ-bilipschitz, where ξ
depends only on κ. In fact, if κ is small enough, then ξ is arbitrarily close to 1.

We also claim that θ satisfies property (C2) of Section 5, where ε is arbitrarily
small depending on κ. To make sense of this, we first need to define parallel
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transport on W . In what follows we will write ∼ for the relation ∼ε, where ε > 0
depends only the stage of the argument and parameters of the hypotheses. It can
be made arbitrarily small by taking κ sufficiently small.

Given b, c ∈ W , we define an isometry τWbc : TbW −→ TcW , by parallel transport
along a path form b to c. For definiteness, we can take the θ-image of the geodesic
from θ−1b to θ−1c in Ω+. However the choice doesn’t matter much. If τ is parallel
transport along another path in W of length at most 4χ say, then τ ∼ τWbc .

Also, if b, c ∈ ∂W and X ∈ Tb(∂W ) is any unit vector, then τ∂Wbc X ∼ τWbc X,
where τ∂Wbc is the intrinsic parallel transport along geodesics in ∂W . This follows
since the extrinsic curvature of W in ∂W is arbitrarily small.

Now suppose that x, y ∈ Ω+. We claim that τWθx,θy ◦ dxθ ∼ dyθ. Here we have
identified TxΩ+ ≡ TyΩ+ ≡ Rm, so that parallel transport is just the identity map.
We can assume that x = o, so that θ(x) = a. The argument, similar to that of
Lemma 5.1, goes as follows.

Write y = (ŷ, l) and let z = (ŷ, 0). Let c = θ(z) ∈ ∂W . Let α0, α1 be
respectively the unit-speed geodesics from o to z and from z to y. Let βi = θ ◦αi.
Thus, β0 is the intrinsic geodesic from a to c in ∂W , and β1 = βc is the geodesic
from c to b in M , orthogonal to ∂M . Let τi be parallel transport in M along βi.
Thus, τWab ∼ τ1 ◦ τ0.

Let v0 = (0, . . . , 0, 1) be the unit vector in Rm
+ orthogonal to ∂Rm

+ . Let V0 =
ν(a) = (daθ)v0 ∈ TaW . Then τ0(V0) ∼ ν(c) and so β′1(l) = (dbθ)v0 ∼ τ1 ◦ τ0(V0).

Suppose that v ∈ ∂Rm−1 × {0}. Let V = (daθ)v ∈ Ta(∂W ). Let X0 = (dbθ)v ∈
Tb(∂W ). Let X ′0 be the parallel transport of V along β0 intrinsically in ∂M . By
Lemma 5.1, intrinsic to ∂M , we have X ′0 ∼ X0. Let X ′′0 = τ0X

′′
0 (that is, parallel

transport in M), so that X ′′0 ∼ X ′0 ∼ X0.
We now define two orthogonal vector fields, X, Y , along β1, with X(0) = Y (0) =

X0. First setX(t) = (dβ′
1(t)θ)v. Note that this is a Jacobi field along β1. Therefore,

as in Section 5, we have ||D2

∂t2
X|| ≤ 4κ/3. Also at t = 0, we have ||D

∂t
X|| =

||∇X0ν|| ≤ κ. We let Y (t) be parallel transport along β1, and so D
∂t
Y (t) = 0. It

follows that ||Y (l)−X(l)|| is arbitrarily small.
Now Y (l) = (dbθ)v, and X(l) = τ1 ◦ τ0(X0) ∼ τ1(X ′′0 ) = τ1 ◦ τ0(V ), so

(dbθ)v ∼ τWab (dyθ)v. It follows that τWab ◦ dxθ ∼ dyθ as required.

Recall that we have defined maps, θa : Ω+ −→ M , for a ∈ ∂M . Given
a ∈ M \ N(∂M,χ), we define define θa : Ω −→ M to be the usual exponen-
tial map, where Ω = N(o, χ) ⊆ Rm. We now see that the statement of Lemma
5.2 holds, with a, b ∈ ∂M ∪ (M \N(∂M ;χ0)). The inverses of these maps define
a smooth atlas for M . Exactly as in Section 6, we say that the atlas is (ξ, η)-flat
if the charts are all ξ-bilipschitz and the transition functions are η-congruences.
Which after rescaling, can be assumed to be arbitrarily flat i.e. with ξ > 1 arbi-
trarily close to 1 and with η > 0 arbitrarily small.
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The next step is to observe that the Delaunay triangulation works also for the
euclidean half-space. Suppose that A ⊆ Rm

+ is locally finite and t-dense in Rm
+

and also that A ∩ ∂Rm
+ is t-dense in ∂Rm

+ . We construct the Delaunay complex,
∆(A) ⊆ Π(A, 2t), exactly as in Section 2, allowing (for the moment) x to be any
point of Rm. (In other words allowing the centres of circumscribing spheres to lie
outside Rm

+ .) Under the same non-degeneracy assumption as in Theorem 2.1, the
map τ : ∆(A) −→ Rm

+ is a triangulation of Rm
+ . Moreover, its restriction to ∂Rm

+

is precisely the intrinsically defined Delaunay triangulation, ∆(A ∩ ∂Rm
+ ).

We would like the centres of circumscribing spheres to lie inside Rm
+ . This is

necessarily the case if we suppose, for example, that ρE(A∩∂Rm
+ , ∂Rm

+ ) ≥ t. Such
a set can always be constructed. For example, choose any s ≤ t/2, and let A be
a maximal s-separated set in ∂Rm

+ ∪ (Rm
+ \ N(∂Rm

+ ; t)). We will however want a
more general construction which works for our manifold, M .

To this end, we fix constants, R = 1000 and R0 = R/10, as in Section 7.
Let Ω = N(o;R) and Ω+ = N(o;R) ∩ Rm

+ . and Let M ′ = M \ N(∂M ; 2R).
After rescaling the metric appropriately, we can define an altlas, with indexing
set M ′ ∪ ∂M , as above.

Namely, if α ∈ ∂M , let Wα = θα(Ω+), and let φα = θ−1
α : Wα −→ Ω+. α ∈M ′.

If α ∈M ′, let Wα = θα(Ω) = N(α;R), and let φα = θα : Wα −→ Rm be the inverse
exponential (logarithm) map. Then {φα}α∈M ′∪∂M , is an atlas for M . Moreover,
by rescaling sufficiently, we can assume that the atlas is as flat as we want.

We also have an atlas of smaller charts. Let Ω0 = N(0, 2R0) and Ω0
+ =

N(o;R0) ∩ Rm
+ . Let W 0

α = θα(Ω0
+) for α ∈ ∂M . Let W 0

α = θα(Ω0) = N(α;R0) for
α ∈M ′. Then {φα|W 0

α}α∈M ′∪∂M is also a smooth atlas.
We need to modify the definition of “ω-regular”.
As before, given A ⊆ M , i ∈ N and α ∈ M ′ ∪ ∂M , write Ciα(A) for the set of

B ⊆ A ∩W 0
α with |B| = i + 1 (with W 0

α now defined as above). We now write
Ci(A) =

⋃
α∈M ′∪∂M Ciα(A).

Definition. Given ω > 0 and A ⊆M , we say that A is ω-regular if:
(R1′): for all α ∈M ′ ∪ ∂M and B ∈ Cmα (A), we have Vm(φαB) ≥ ω,
(R2′): for all α ∈M ′ ∪ ∂M and C ∈ Cm+1

α (A), we have Qm(φαC) ≥ ω, and
(R3′): for all α ∈M ′ ∪ ∂M and C ∈ Cmα (A), we have Qm−1(φαC) ≥ ω.

(Note that this implies the intrinsic regularity of A ∩ ∂M in ∂M .)
Let R1 = R0/10.

Definition. A net A ⊆M , is a subset A ⊆M ′ ∪ ∂M which is R1-separated and
(6R1)-dense in M ′ ∪ ∂M .

(As before, the “6” could be replaced by number greater than 2.)
We can generalise Lemma 7.3 to manifolds with boundary. (The statement is

identical.)
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Lemma 8.1. There exist ω > 0 and F , depending only on m such that if M is
F -flat, then it admits an ω-regular net.

Proof. We start with a (2R1)-separated (4R1)-dense subset of M ′ ∪ ∂M ′. (Take
any maximal (2R1)-separated subset thereof.) We now move it slightly so that
it becomes ω-regular. The argument is a slight modification to that of 7.7. First
perturb the set on ∂M so that it becomes uniformly regular there. Now fixing that
set, we perturb it on M ′, by partitioning it into a bounded number of subsets, and
moving each in turn, so as the satisfy the remaining conditions. This proceeds by
essentially the same construction as with the proof of Lemma 7.7. �

The results of Section 6 go through similarly. In particular, Lemma 6.2 applies
in this case, moreover with the addendum that if B ∈ Ci(Π) with B ⊆ ∂M ,
then f(Σ(B)) ⊆ ∂M . In other words, if the vertex set of a simplex of Π lies
in ∂M , then the extension of the map to the simplex also lies in ∂M . This
is an immediate consequence of the construction for extending smooth maps on
boundaries of simplices.

To prove Theorem 1.3, we now proceed as in Section 7. We rescale so that M is
sufficiently flat (as required by Lemma 8.1) and let A ⊆M ′∪∂M be an ω-regular
net.

We extend the inclusion of the net to a map of the whole complex. First we
map in the 1-skeleton, so that edges map to geodesics either in M or to intrinsic
geodesics in ∂M . The remainder of the extension process follows as in Section 7.
We need to observe that if the boundary of a simplex lies in ∂M , then so does
the extension. This is an immediate consequence of the construction.

To see that this gives the required triangulation, we follow the proof of Theorem
1.2 at the end of Section 7. The relevant results all hold in the case of a manifold
with boundary. We substitute Lemma 8.1 for Lemma 7.3. The other ingredients,
Lemmas 7.2, 7.4, 7.5, 7.6 and 7.7, go through without any essential change.

This proves Theorem 1.3.

9. Constant curvature

In this final section, we say how the results can be strengthened in the case of
constant curvature: namely that the simplices of the triangulation can be taken
to be totally geodesic (Theorem 1.4).

If we only care about the images of individual simplices, this would be rel-
atively straightforward once we have constructed a regular net. The Delaunay
construction (which we have described for euclidean space) works for any con-
stant curvature manifold. This gives a partition into simplices, each of which is
uniformly bilipschitz equivalent to regular euclidean simplex. A construction of a
regular net for hyperbolic manifolds (slightly different from ours) and the resulting
Delaunay triangulation, is described in [Br].
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If we want a genuine smooth triangulation, then we need to consistently repa-
rameterise the simplices. In other words, we construct an explicit map from a
simplicial complex. This follows from the earlier constructions, though taking
care to ensure that the images are totally geodesic.

Up to scale there are three cases, spherical, euclidean and hyperbolic. We first
discuss the case of hyperbolic geometry. Let Hn be hyperbolic n-space.

Given a finite subset A ⊆ Hn, we write Σ(A) for its convex hull. This is
a polyhedron with vertex set, Σ0(A), contained in A. We say that A is non-
degenerate if Σ0(A) is a simplex with Σ0(A) = A. In this case, |A| ≤ n+ 1. Note
that if H ⊆ Hn is a totally geodesic subspace, then H is isometric to Hm for some
m ≤ n, and we can take the convex hull intrinsically in Hm.

Let Σm be the standard euclidean m-simplex. We choose a preferred ordering
of the vertex set as Σ0

m = {v0, . . . , vm}. Note that any permutation, π, of the
vertex set extends to an isometry, π̄, of Σm. If i ≤ m, we can identify Σi with the
face of Σm with vertex set, {v0, . . . , vi}.

Given a map f : Σ0
m −→ Hn, we there is a canonical smooth extension,

f̄ : Σm −→ Hn, such that [f 7→ f̄ ], satisfies the following properties:

(E1): f̄(Σm) = Σ(f(Σ0
m)).

(E2): If f is injective and f(Σ0
m) is non-degenerate, then f̄ is a diffeomorphism

from Σm to Σ(f(Σ0
m)).

(E3): If π is any permutation of Σ0
m, then f ◦ π = f̄ ◦ π̄.

(E4): If i ≤ m, then f |Σ0
i = f̄ |Σi.

(E5): The map f̄ |Σ1 is a linear map to the geodesic segment Σ(f(Σ0
1)).

(E6): If g : Hn −→ Hn is any isometry, then g ◦ f = g ◦ f̄ .
(E7) Given any m ∈ N and ε > 0, there is some r > 0, so that if diam f(Σ0

m) ≤ ε,
then φ ◦ f̄ is ε-affine, where φ is the logarithm (inverse exponential) map, Hn −→
Rn, based at any point of f̄(Σm).

In fact, we can also assume that the map [f 7→ f̄ ] is smooth, thought of as a
function from (Hn)m × Σm to Hn, though we will not need this.

One way to construct the map would be to use the extension process described
by Lemma 4.1. To this end, we assume inductively that we have defined f̄ |∂Σm.
We now take the Klein model for Hn, centred on the barycentre of f̄(Σ0

m), and
extend f̄ as in Lemma 4.1. Since hyperbolic and euclidean convex hulls coincide in
the Klein model, the image, f̄(Σm), will be the hyperbolic convex hull of f(Σ0

m).
A more natural process would be to use the “barycentre” construction of [K].

Given x ∈ Σm, write x =
∑m

i=0 λivi, where Σm
0 = {v0, . . . , vm}. Let y ∈ Hn be

the unique point which minimises
∑m

i=0 λidHn(y, f(vi))
2, and set f(x) = y. Again

this has the properties laid out above.
The proof of Theorem 1.4 in the hyperbolic case now follows by previous argu-

ments. We construct a regular net (as in Section 7 or 8 here, or by the method
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of [Br]). We then take the hyperbolic Delaunay triangulation, and construct a
smooth triangulation using the canonical maps as described above. Properties
(E3) and (E4) ensure that this is well-defined on intersecting simplices.

In the case of euclidean space, we just take the triangulation to be affine on
each simplex.

For spherical geometry, we could use the barycentric construction of [K] as
mentioned above.
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