MA150 Algebra 2: Linear Algebra

Linear Algebra is one the most powerful and user-friendly parts of mathematics. It ties together
a host of calculations that you probably know in some form already, but refines and strengthens
them so they we may apply them across a huge range of different situations. Mathematics is about
solving equations. Linear Algebra takes the ideas that solve simultaneous linear equations and builds
a theoretical superstructure in which they are far more powerful and precise.

Perhaps the most difficult thing is merely that there are several starting points that are useful to have
at our fingertips before we discuss the bigger unifying ideas. You probably already know:

(i) basic arithmetic of column vectors: how to add them together v + w and multiply them by
scalars \v where v, w € R™ and )\ € R.

(i) how to multiply a column vector v € R™ by an m X n matrix A to get a new column vector
Av € R™. We will get a lot of profit by treating v — Av as a map R" — R™.

(iii) the dot product v - w € R of two column vectors v, w € R™, and how to use it to compute the
length of a vector and the angle between two vectors, or to project one vector onto another.

(iv) how to solve a system of m linear equations in n unknowns (for example by forming combinations
of equations to eliminate variables, giving equations in fewer unknowns and then backsolving).

We will review all this briefly, but you should make sure whatever is already familiar is ready to roll.
Having said that, do not be tricked into thinking that this is all Linear Algebra is about: after we
have set the scene with these calculations, we will state general definitions and prove theorems with
a much more formal flavour: you need to stay en garde.

In broad terms, we will develop this collection of ideas in different ways:

(i) As a suite of basic calculations that, with care, we can perform algorithmically without error or
confusion again and again forever.

(ii) A formal structure that binds together a host of examples and particular cases we may encounter.

(iii) A collection of clean and simple proofs that tie calculations to general theoretical ideas.

If you can recognise the substance of the calculations even when things get more formal, then you will
have intuition for most results. It is important that you keep in touch with what you already know
well, and see clearly how it ties in with our new much broader and more powerful viewpoints.

You may ignore all side remarks (shaded in yellow) if they are distractions. The definitions (shaded
in red, including places that flag idiomatic use of language or conventions) will become part of your
DNA by overuse, if that's how DNA works (which it isn't). The real point is to recognise how the
theorems capture the essence of calculations in a general setting.

Linear Algebra in the formal way we present it is relatively new. Although a range of calculations
have been available for some centuries, the first formal modern treatment | know of is in Birkhoff and
Maclane's 1942 book on Algebra. | have no idea whether at the time it seemed completely natural or
gratuitous hocus pocus, but today it reads like a standard, and only slightly dated, approach to the
subject. For a more applied view, Strang's book is great.

Gavin Brown Mathematics Institute, University of Warwick
December 2023
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Chapter 1

Column vectors in R"

We work very frequently in the plane, which we may also call 2-space,

R2 = {(a> a,bER}
b
and in 3-dimensional space, which we call 3-space,
ai
RSZ as al,GQ,a3€R
as

It is important that these are wholly familiar to you, and that you are very good at doing simple
calculations with vectors in them. We will review everything we need, but it will be useful if you can
revise this now and forever maintain your black belt ninja vector powers at all times.

Example

We usually draw R? as a planar picture, with an z-axis and a y-axis, so that it is easy to visualise
a square grid and plot vectors (with real coordinates, not only integers) relative to that.

Ty-axis
A N
<:§>- . . .

We also try to draw R? as a 3-dimensional picture, with the z- and y-axes in the plane and an
optical illusion of the z-axis pointing out of the plane: | hope you can see the x-y plane lying
flat on the page (or blackboard), with the positive z-axis pointing out in our direction and its
negative part behind the page (which the dotted line tries to indicate). We have some intuition
for this picture, but it's no help at all for the 17-eyed mathematicians who just landed from
some multi-dimensional interstellar void, and it won't help with our formal proofs later either.




> x-axis

Z-axis 1

As this sketch illustrates, it is almost impossible to draw particular vectors in 3-space in this
picture: you have to watch the picture being drawn, think about and trust the labels, and listen
carefully to what the artist says they are trying to illustrate — and then draw it again for yourself.

More generally, it is important that we are just as comfortable working in the space

ai
az

R" = , a; € Rforalli=1,...,n

Gn

for any given n > 1. This is called n-space. It is futile trying to imagine what it looks like, unless
n = 1,2 or 3: you have to rely on the algebra and any intuition from 3-space that seems to help.

Language 1.1

We refer to each of the spaces R" as a vector space (and we sometimes say ‘over the real
numbers’ if we wish to emphasise R). The elements of any of these spaces are called vectors.
We write elements of R™ as column vectors; being systematic about this helps us later. To

save space on the page, we may sometimes write (a1, asg, .. ., an)T to denote the column vector
ai
(al,a2,...,an)T: 2
Gnp,

The entries, a1, az, and so on, of a vector v = (ay, ag, ... ,an)T are called the components

of v, and we say that a; is the ith component of v. The components are real numbers.

Remark

You might wonder why we didn’t allow n = 0 to give us the vector space R°. In fact we do,
but in this notation it's a bit confusing to contemplate. We will work it out properly later, but
for now if you need to think about it just treat R? as the set {0} with just zero in it.



For this module, vectors have some vital properties that we summarise as:

(i) We can add vectors together (and subtract them) and multiply them by real numbers.
(i) We can multiply vectors by matrices.

(iii) We can define a notion of length of a vector and angle between vectors.

Those statements alone are just slogans and make no precise sense by themselves. We will work out
exactly what we mean by each one.

1.1 Linear combinations and the standard basis

We discuss the fundamental algebraic operations of the vector spaces R™, and the basic substantial
problem that needs solving.

Add, subtract and multiply by scalars

Two vectors v, w € R™ in the same space may be added together componentwise to make a third

vector in the same space: if v = (a1, as,...,a,)" and w = (by,ba,...,b,)" then
a1 + b
az + by
vtw = . e R"
an + by,

With this operation +, you easily see that R™ is an abelian group with

0 al —al
- - - a2 _a2
identity element 0= | . | e R" andinverse — | . | =
0 an —ap
In particular
a; — by
as — bo
v—w= eR"
an — by

We also refer to 0 € R™ as the zero vector or the origin of R™.

It is usual to think of this addition of vectors as completing a parallelogram with a vertex at the origin
and v and w as two adjacent sides there.




You can do this with more complicated linear combinations too: for example v —w and v+ 2w appear
in the picture above as

and

Convention 1.2

When giving names to vectors in R™ we usually underline them, writing v € R™ rather than
v € R™, to remind ourselves that these are column vectors of real numbers. Of course it doesn’t
really matter, and there may be exceptions, but it will help later if we fix this convention now.

When we write some vector v € R™ explicitly as a column vector v = (aq, ..., an)T, we often
say that we are writing v in coordinates.

Remark

When drawing pictures, it is very useful to draw vectors as arrows, as we have above. But
remember that the vector v = (a1,...,a,)" € R™ is really that single point of R that sits at
the tip of the arrow. Sometimes people refer to these as position vectors to distinguish them
from, for example, velocity vectors or force vectors. In this module we do not need to make the
distinction: we happily draw vectors as arrows and remember that they refer to the endpoints.

In particular, we won't draw the kind of phase portrait pictures you might have seen in differential
equations, which have a vector based at every point of the picture and you imagine flowing along
those lines of velocity: our vectors are based at the origin (except on occasion when it's clearer
in a picture to move them around a bit). | can explain the connection at the end.

That's all fine, but R™ is more than just an abelian group with operation +. We can also multiply

vectors componentwise by real numbers: if A € R and v = (a1, as,...,a,)" € R” then
)\a1
)\ag
= i e R"
Aag,
Lemma 1.3

Let v,w € R™ be vectors and A, x € R be scalars. Then

() vtw=w+v




(i) Mz+w) =+ w and (A + p)v = Av + pw

(iii) A(pw) = (Ap)v
(iv) ou=0,lv=u, (-)v=-v,v+v=20vand v —v =v+ (—v) = 0.

A
A

The proof illustrates how useful it can be to consider each component of a vector separately: a vector
in R™ is nothing more or less than the data of its components in that order.

Proof. We prove (ii). Let a; be the ith component of v and b; be the ith component of w. Then
the ith component of A(v 4+ w) is, by definition, A(a; + b;), while the ith component of Av + pw
is, by definition, Aa; + ub;. These are evidently equal, since all quantities are real numbers. Since
every component of the vectors A(v + w) and Av + Av are the same, these two vectors are the
same. The other parts of the lemma are similar. ]

The calculations in part (iv) may look confusing at first, but they are clear if you unpick them carefully.
For example, in the first one, on the left there is a vector v multiplied by the scalar zero, 0 € R, while
on the right is the zero vector 0 € R™. That’s just what you expect: if you scale a vector by zero,
you get the zero vector — but it does need checking (just this once) to confirm that our expectations
do indeed match the definitions, and so do the other points.

Convention 1.4

We refer to real numbers as scalars: they are used to scale vectors, after all. The point is that
later we may use other scalars (complex numbers, for example). So from here on we will refer to
‘multiplication by scalars’ or ‘scalar multiplication’ when we multiply a vector by a real number.

Linear combinations

For any nonzero vector v € R™, we may consider the straight line along it that passes through the
origin. This line consists exactly of all vectors of the form Av as A varies through all elements of R.
In the picture below, this line is indicated by the dotted line (which you should imagine continuing
indefinitely in both directions): you can imagine drawing arrows for each of the vectors 3v, —2uv, %g,
Zv and so on (even including Ouv = 0), and they would all lie along the dotted line.

]

~

With that in mind, we say that two vectors are collinear if they lie on the same line through the
origin. Of course the formal definition does not use the idea of the picture: it uses scalar multiples.



Definition 1.5

Two vectors v and w € R"™ are collinear if either v = Aw or w = A\v for some A € R.

This definition is fine but a little clumsy. It has to cope with the fact that either v or w or both might
be the zero vector 0 € R™, which is why it offers the scaling by A both ways round. Note again that
this notion of collinearity is referring only to lines that pass though the origin.

The ideas of addition and multiplication by scalars immediately produce more complicated expressions:
linear combinations of vectors. If v,w € R™ and A, u € R, then the expression (the vector)

v+ pw € R®

is called a linear combination of v and w, with (scalar) coefficients A and u respectively. The same
notion works with any finite number of vectors.

Language 1.6
For any vectors v;,vs,...,v, € R™ and scalars A1, A2, ..., As € R, the expression
Avy + Aovy + ..+ Asu, € R

is called a linear combination of v;,v,,...,v, € R™ . As usual, we may use the summation
symbol to abbreviate this linear combination as

S
E )\iQZ‘
=1

but it's often worth continuing to write out such summations in the long form with + ...+
until you're wholly comfortable with the abbreviation.

We call such expressions a nontrivial linear combination if at least one of the )\; is not zero,
and conversely when all the A\; = 0 we call the expression the trivial linear combination.

This idea has a particularly simple but important case.

Definition 1.7

The standard basis of R" is the collection of n vectors

1 0 0
0 1 0
o _ o 0 o .
=9 722_ o 9 7Qn_ GR
0 0 0
0 0 1

That is ¢; is the vector whose components are all zero except the ¢th component which is 1.

You will use the standard basis all the time. The point is that any other vector may be written uniquely

6



(up to the order in which you write the sum) as a linear combination of the standard basis:

ax
. az -
ifv=1| . 6R"theng=a1§1+...+an§nzg aie;
: i=1
an

The fundamental problem

The basic problem in the subject is this: given some vectors v;,...,v, € R™ and a target vector

b € R"™, can you find scalars Ay, ..., A\s € R for which

Avy + .o+ A, =D

or can you prove that no such scalars exist? Furthermore, if you can find one solution, can you go on

to find all possible ways this can be done?

Example

Let v; = (2, 1,3)T and vy = (1, -1, 1)T € R3. We consider three different target vectors:
(1) b=0 (2) b=(1,53)" (3) b=¢ =(1,0,0)".
For (1), we look for A1, Ay € R such that
2 1 0
M1l +X]|-1]=]|0
3 1 0

Considering the three components separately, this is exactly the same as solving the following
three linear equations simultaneously:

201 + Ay =
Al — Ay =
3A\M + XAy =

You can be ad hoc or systematic or mysterious or magical about how you solve such equations —
you probably have your own favourite methods, and how you do it probably depends on exactly
what the equations are. In this case you could say that the second equation says that A\ = Ao,
and then substituting into either of the other two equations shows that they are both zero.
Thus, there is exactly one solution A\ = Ay = 0. Later we will say that v; and v, are linearly
independent because of this.

For (2), we look for A1, A2 € R such that

2 1 1
M1 +x|-1]=(5 (1.1)
3 1 3

Considering the three components separately, this is exactly the same as solving

201+ = 1
AM—X = 5
3\Mi+XA = 3

The equations are a bit harder to solve, but not much. For example, adding the first and second
equations together gives 3\; = 6 so if there is any solution at all it must have A\; = 2. Plugging




that value of \; into the first equation gives 4+ A5 = 1, so if there is any solution at all it must
have A2 = —3. Finally we check that the pair of values (A1, \2) = (2, —3) satisfies all three
equations: it does, so again we have a unique solution — and the wise mathematician quickly
checks that this really does solve the original problem (1.1) to avoid any daft mistakes.

We approach (3) in the same way. After considering components, we get

201 + Ay =
AM—2X = 0
3A + XAy =

We attempt to solve them as before: adding the first and second equations together gives
3\1 = 1 so if there is any solution at all it must have A\; = 1/3. Plugging that value of \; into
the first equation gives 2/3 + Ay = 1, so if there is any solution at all it must have Ay = 1/3.
Finally we check whether the pair of values (A, A2) = (1/3,1/3) satisfies all three equations:
but now while it is a solution of the first two equations (necessarily, given the way we found it),
it is not a solution of the third. In this case there is no solution at all.

It is useful to think of this exercise in geometrical terms, without being too precise about things.
The collection of all possible vectors A\jv; + Aov, describes a (flat, linear) plane W through the
origin in R3. The origin is clearly on the plane since we may choose A\; = Ay = 0, and this is
what happens in case (1): the only question is how many different solutions are there, and in
this example there was only one.

In case (2), the vector b = (1,5,3)” happens to lie on this plane W, which we reveal by finding
values for A\; and A\o. The question is then how many different solutions are there, and the
answer is the same as in the previous case: there was precisely one solution then, and so there
is also precisely one solution in this case (necessarily, as we shall prove later).

In case (3), the vector e; does not lie on W: we discover this when we find that there are no
solutions at all for the pair A1, A2. If we could have seen the picture and spotted that e; ¢ W,
then we would not have had to do any work at all to say that there cannot be any solutions.

As you see, this problem is exactly the same problem as solving systems of simultaneous linear equa-
tions. We will build a powerful machine for solving all three of these problems in Chapter 2 below,
but for now it is useful practice to work out solutions with our bare hands.

Example

Consider v; = (2, —1)T, vy = (1,1)T and v3 = (3,1)T € R? and two different target vectors:
Lb=0 @b=(,-1"

For (1), we look for A1, A2, A3 € R such that

() (o))

Considering the two components separately gives

2M1 + Ao + 33
A +XA+A3 = 0

To solve this, we might add twice the second equation to the first, eliminating \; from the
equations, to get 3\s + 5A3 = 0. This has lots of solutions: for any value of A3 € R, simply




choose Ao = —(5/3)\3. Then we could use the second equation to calculate
2
Al =X+ A3 = —g)\:a
Finally we need to check whether these solutions also satisfy the first equation: they do, since

2XA1 + A2 + 33 =2 X ?2)\3—2)\34-3)\3:9
Thus, there is a whole 1-dimensional set of solutions: we have one degree of freedom to choose
A3 € R just as we please, and then suitable values for A\; and A5 are determined by the equations.
For example, choosing A3 = —3 gives \; = 2 and A\ = 5. Later we will say that v;, v, and v4
are linearly dependent: they satisfy a non-trivial linear relation 2v; + 5v5 — 3us = 0, to use
the solution we just picked, or any (nonzero) multiple of that.

For (2), we proceed as before: after considering components we obtain the simultaneous linear
equations

201+ X +3X3 = 7
A1 t+X+A = -1

which we solve as before to get Ao = —(5/3)A3 + (5/3) and then
M =X+A3+1=—(2/3)\3+(8/3)

for any value of A3 € R (please check this). Again we can get a particular solution by picking
any value of A3. For example A3 = 1 gives A\; = 2 and Ay = 0. Again there is a one degree of
freedom in the choice of solution A3 € R: given that we have a solution at all, the number of
solutions is the same as in the case b = 0.

The machine we build in Chapter 2 makes this kind of calculation efficient and systematic: it does
not break the problem down into components, but abstracts it to working on matrices.

1.2 Dot product: length, angle, orthonormal vectors

This section has a different flavour. The vector space R™ has another operation that you will know
well: the dot product. It's good to note that this is an additional structure, beyond merely the linear
combinations that make R into a vector space, but for now we can safely bundle it all together.

Definition 1.8

For v = (ai,...,a,)", w= (by,...,b,)T € R", the dot product of v and w, denoted v - w, is
the scalar

m
y-w=a1b1+a2b2+...+anbnzzazbiER
=1l

This is also called the scalar product, and we will use the two terms interchangeably.




Example

The scalar product in R? of (1, —3)7 and (5,2)7 is the scalar

(_13>-<g>:1x5+(_3)x2:5_6:_1

Proposition 1.9

The scalar product of vectors in R™ satisfies the following:

() v-w=w-v forany v,w € R"
(i) (M1wg + Aowg) - w = A1(vg - w) + A2 (vy - w)
(iii) Foranyv € R™, v-v > 0, and furthermore v-v = 0 if and only if v = 0 is the zero vector.
Properties (i) and (ii) are often referred to by saying that scalar product is bilinear: you can

expand out linear combinations in the first factor, and by switching the factors around using
the first property you can also expand out linear combinations in the second factor.

Proof. Write v = (ay,...,a,)" and w = (c1,...,cn)T

since a;¢; = c¢;a; for each i.

in coordinates. Part (i) is then immediate

In the same notation, part (iii) is also clear: v-v = a% + ...+ a% is a sum of squares, so cannot
be negative. Furthermore, the sum can only be zero if each a? = 0, and that only happens if each
a; = 0, which is the claim.

Part (ii) is almost immediate too: write v; = (a1,...,a,)" and vy = (by,...,b,)", with w as
before, and then the ith component on the left-hand side is

(Alai + )\Qbi)cz‘ = \ia;c; + Aabic;

which equals the ith component of the right-hand side. O

Lengths of vectors

Since by Proposition 1.9(iii) the dot product of any vector with itself is not negative, we may always
form the square root /v -v € R as a real number. Therefore the following definition makes sense.

Definition 1.10 (Length of a vector)

We define the length of a vector v € R, denoted |v|, to be

lol = v -v

which is a non-negative real number. (Notice the double lines in the notation.)

10



Example 1.11

In R?, this definition of length of a vector is what you know from Pythagoras's theorem: if

v = (a1,as)T, then
lol = +/af + a3

is the length of the hypotenuse of a right-angled triangle:

A

aq
as F--------—-—-————--—--- 2 V=
a2

~

Proposition 1.12

The length of a vector determines a function R” — R, given by v — |uv|, that satisfies the
following properties: for any v € R™ and any A € R,

(i) Ju] > 0, and equality holds if and only if v = 0 is the zero vector
(i) e = Al

(iii) If v € R™\ {0} is a nonzero vector, then

>

= gU
ol

is a vector of length 1 that is collinear with v.

Convention 1.13

The vector v in part (iii) is often referred to as the unit vector in the direction of v. It is
characterised by having length 1 and being a positive multiple of v. The convention of putting
a hat (or circumflex if you prefer) over the vector to indicate this unit vector is standard.

Proof. (i) is Proposition 1.9(iii) expressed in the language of |v|.

For (ii), write v = (a1, ..., ay) in coordinates. Then
Mo = (Ma1)? + ...+ (Nan)? = N2(a? + ...+ a2) = A2 |u)?

and taking (positive) square roots (hence the modulus sign for |\|) proves (ii). Finally (iii) follows
from (ii) by setting A = 1/||v| > 0. O

11



The angle between vectors

Most people find that definition of length acceptable — it agrees with what we already know, and has
the properties we expect of lengths (including the triangle inequality in Proposition 1.16 below).

The definition of angle between vectors takes more absorbing. Let's just state it for now and think
about it afterwards — though you might ask yourself what your own definition of angle between vectors
is, and perhaps realise you don’t have one (you probably don't even own a protractor any more).

Definition 1.14 (Angle between vectors)

Let v,w € R™\ {0} be nonzero vectors. We define the angle between v and w, denoted Zvw,

to be the real number
Zvw = cos™ ( Lo )
lu| ]

where we take the principal preimage of cos, so that Zvw lies in the interval [0, 7].

It is sometimes simpler or comforting to write ¥ = Zvw and express the complicated formula above
in rearranged form as

v-w = Jv|fw] cos(9) or even (assuming JulJuw] # 0) &b = cos(¥)

but remember that this is not a formula we have derived from anything: it is the very definition of
the angle itself.

Example

Let v = (4,—-2)T and w = (1,2)” € R2. First note that they are both nonzero vectors. We
calculate the angle ¥ between these vectors thus: v - w = 0, so we must have cos(?) = 0, and
so ¥ = m/2 (or 90°, if you prefer degrees to radians). That is, the vectors are at right angles
to one another, which matches what you see when you draw the picture.

This works in R? too, indeed in any R™. For example (1,1,1)7 and (a,b,c)” € R3 are at right
angles whenever their dot product is zero, that is whenever a + b+ c = 0.

You will have noticed the terrible hole in our definition of angle: we need to know that the scalar
quantity (v-w)/(|u||w]|) lies in the interval [—1, 1], otherwise it does not have a preimage under cos.
This is what the famous Cauchy—Schwartz inequality does for us: in absolute value, the numerator is
no bigger than the denominator — phew!

Proposition 1.15 (Cauchy—Schwartz inequality)

For any v,w € R",
v wl < [of|w]

and furthermore equality is achieved only when v and w are collinear (recall Definition 1.5).

Proof. It is enough to prove that
(v w)® < fof*|w]? (12)

since taking the (positive) square root gives the result (including the modulus sign on the left).
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Denoting the ith component of v as a; and that of w as b;, we calculate the right-hand side minus
the left-hand side:

n n n 2
lollw]? - (v-w)* = <Z a?) (Z bf) - (Z ad)z)
=1 =1 =1
= Z Z (aibj — a;b;)* (M

i=1 j=i+1
which is a sum of squares, so is clearly non-negative, as claimed.

We must check the last claim. If v = 0, then there is nothing to prove, so suppose without loss
of generality that a; # 0. In that case, since a1b; — ajb; = 0, we have that each b; = a;(b1/a1):
that is, w = (b1/a1)v, and the vectors are collinear as claimed. O

That's fine, but hands up anyone who understood the line at (!!) in that proof: it is true, but you
have to be able to read summation signs like Shakespeare on steroids or prove the equality for yourself
somehow (by induction, say). At the very least, you should write out what it means when n = 2 and
n = 3. If you do wish to prove it by induction, in fact it's not so bad:

(&) (&) - (5

= terms involving only subscripts < n — 1 that you handle by induction
+a2 (B +. .+ 02 )+ (af+ ...+ a2 ) by + a2
—2(a1by + ...+ an_1bp_1) anb, — a262
Now consider where we're trying to get to: foreachi=1,...,n—1,
(aiby — anbi)?* = a2b? + a2b? — 2(a;b;)(anby)
which accounts for all the terms in the big equation above that have a subscript 7; so we are done.

If you don't like (!!) or that inductive check, here's another proof of the main point (1.2).

Proof. Certainly (1.2) holds if v = 0: both sides are zero, and v = Ow is collinear with w. So
suppose v # 0. Let © = v/|v| and define u = w — pu® where = v - w. Then, since ¥ -0 =1,

O<|uf=u-uv = ww—w- pd—pd- w+p’
= Jwl® = 2u(0 - w) + p?
= Juf® - (2 w)?
1

= Jw|*- W(y cw)?

and the result follows by multiplying through by |v]? > 0. O
And here's a more stylish proof of (1.2) if you don't like that one.

Proof. Again it suffices to consider the case v # 0. Consider the polynomial (in a variable )
f(@) = (a1 +b1)? + ...+ (apz + by)* = Az* + Bx + C
where A=5"" a?=|v|>>0, B=2Y" ab;=2v-wand C =" b7 = |w|

i=1 % =1

For any x € R, the value of f(x) is by definition a sum of squares, so it is zero if and only if each

13



summand (a;z + b;)? is zero. Thus f(z) can have at most one real root, namely z = —b;/a; if
a; # 0, and moreover all such values must agree (and moreover[-squared] we must have b; = 0
whenever a; = 0).

Now f(z) is a quadratic polynomial, so we know all about its real roots: it has two distinct real
roots unless B2 — 4AC < 0. But (up to a redundant factor of 4) that inequality is exactly what
we need to prove — it is what (!!) does for us above — so we are done. O

The Cauchy-Schwartz inequality rescues our definition of angle, and it also proves the triangle in-
equality for lengths.

Proposition 1.16 (Triangle inequality)
The length | | of a vector satisfies the triangle inequality: for any v, w € R",
lo +w| < o] + |l

and equality holds if and only if v and w are collinear.

This follows from the definition of length, the bilinearity of scalar product (Proposition 1.9(i—ii)) and
Cauchy—-Schwartz: once you see the first line, you can follow your nose.

Proof. We compute the length-squared of v + w:
lv+wl® = (+w) (v+w)
= vvtvwtw-vtww
< Jol® + o wl + w - o] + Jwl®
< Jof? + 2l fw] + fw)?
= (lul + Jul)®
Thus |v + w|? = (Ju| + |w|)?, and taking the (positive) square root gives the result. O

Orthonormal sets of vectors and orthogonal projection

The ideas of length and angle give a first indication why the standard basis is so useful. (Later you
may think that this discussion is tautological, but for now let's go with it.) First recall the standard
delta function.

Definition 1.17

The Kronecker delta function d;; is defined by
1, ifi=j
0ij = . ]
0, ifis#j.

The definition is coy about what ¢ and j actually are, but in our context they will always be integers
in some specified range such as ¢,5 € {1,...,s}.
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Spelling that definition out, vq,..

Definition 1.18

A set of vectors vy, ..., v, € R™ is orthonormal if and only v;-v; = 0;; foreach i,5 =1,...,s.

are pairwise at right angles to one another.

Example
The standard basis is the fundamental example of an orthonormal set of vectors.

As a more exotic example in R?, for any fixed ¢ € R consider

S cos v e — —sind
=L 7 \sing )’ 727\ cos®
It is useful to draw this picture: you will see the standard basis of R? rotated by ©. Can you

persuade yourself that these are the only orthonormal sets of two vectors in R? (not considering
the order in which you write them)?

There is a lot more to say about dot products and orthonormal vectors, but for now let's consider just

one more point: the orthogonal projection of one vector onto another. First a seeming triviality.

Example 1.19

Although it seems ridiculous to say it in this context, dot product with the standard basis is a
formal way of finding the ith component of a vector: if v = (ay,... ,ap)' €R” and ey, ... yEn
is the standard basis of R", then

a; =¢€; v foreachi=1,...,n

Put differently, even if nobody told you what the components a; of v were, you could still find
them out at once using this formula.

When we consider orthogonal vectors in Euclidean spaces more generally later, this idea will
seem more subtle, even though it is exactly the same.

Pictorially, we may regard the ith component of v as the length of the projection of v onto g;:
compare the picture in Example 1.11. The calculation in the example above then gives us a method

of calculating this length.

This idea works more generally. Consider the following picture: the vector A@w is the orthogonal
projection of v onto the line through the unit vector w, though the required scalar multiple X is yet

to be calculated.
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To calculate X, we define n = v — Aw and simply notice that

noi=v-w— o> =v-d— A\

since |w| = 1. Therefore Aw is orthogonal to 7 (as in the picture) if and only if A = v - w.

Definition 1.20

Let v, w € R™ with w # 0 and let @ = w/|w| be the unit vector in the direction of w. Then the
scalar quantity v - w is called component of v in the direction of w, and the vector (v - w)w
is the orthogonal projection of v in the direction of w.

Notice that the definition uses any nonzero vector w, while the calculation uses the unit vector w:
they both serve the role of pinpointing the line that v is projected onto, but it is important that w
has length 1 for the calculation — or you could write ((v - w)/|w|?)w instead, if you don't like hats.

Since the vectors of the standard basis have length 1, the trivial calculation of Example 1.19 is
computing exactly the component of v in the directioin of each of the standard basis elements,

and it confirms that these are simply the usual components of v. The more general calculation in
Definition 1.20 is just as simple to use.

1.3 Geometry of lines and planes in R?

First warm up in the plane R2?. Everyone knows that the equation of a line L C R? in the plane (by
which we always mean a straight line, extending indefinitely in both directions) is of the form

L: (y=mz +c) CR?

for suitable m,c € R. Well, that's not quite true, since it doesn't cover vertical lines (x = a), so to

overcome this prejudice about y being better than x (and whatever it is that m and ¢ are supposed
to stand for) let's write it instead as

L: (ax + by = ¢) C R?

where a, b, c € R and we insist that (a,b) # (0,0). It is clear that the line L passes through the origin
if and only if ¢ = 0.
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Example

What is the equation of the line Lpg C R? through the points P = <_12> and Q = <§>7

First a sanity check: these two points are distinct, so we know from geometry (or experience)
that there is indeed a unique straight line passing through them (though this will also follow
from the calculation below). The equation of that line must be az+by = ¢ for some a,b,c € R,
and we note at once that these are not uniquely determined, so your answer may be different
from mine, since multiplying them all by a nonzero scalar A # 0 does not change the line.

With that all in mind, we treat a, b, ¢ as unknowns, substitute the two points into the unknown
equation and solve:

at P: —2a+b =

at @Q: 4da+3b =

which has solution a = —(1/5)A, b = (3/5)\ and ¢ = X for any A € R (one degree of freedom,
as we observed above), and we simply choose any nonzero solution such as (a,b,c) = (-1, 3,5)
(setting A = 5), giving

Lpg: (—z+3y =5) CR%

Of course we check at once that P and @ really do lie on Lpg to avoid any daft error.

Remark

We worked out the example above having our usual presentation of linear equations in mind.
If you had to do this quickly on the bus, you'd probably say something more like this. The
equation of Lpg must be of the form

Lpg: Mz —4) = pu(y —3)

for suitable A, € R (4 and 3 were chosen to ensure that @ lies on this line). Plugging in the
coordinates of P gives —6\ = —2u, which has nontrivial solution A =1, u = 3, so as before

Lpg:xz—4=3(y—3) or —x + 3y = 5, if you prefer.

Now to R3. The solution set of a single linear equation in R? describes a plane.

Example
1 1 0
Find the plane IIpgr C R3 through P=|1], Q= -1 | and R= | 2
1 2 3

Its equation is of the form
ar +by+cz=d for a,b,c,d € R with (a,b,c) # (0,0,0).

Treating a, b, ¢, d as unknowns and substituting the three points into this equation in turn gives
a system of simultaneous linear equations:

at P: a+b+c = d
at@: a—b+2c = d
at R: 2b+3c = d
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You can solve this to find a nontrivial solution (a,b,c,d) = (5,1,2,8) (there is one degree of
freedom, but we have chosen a particular solution), so that

HPQRi (5x+y+2z:8) CRS

As a routine professional courtesy, of course you check that the three points really do satisfy
this equation.

Remark

Perhaps you know the vector calculus way of expressing a plane IT C R3. Suppose # is a normal
vector to II, then the equation of II has the form

II: n -

=d forsomede R

IS NSRS

and if f is a unit vector, as the notation suggests, then d is the height of I above the origin.

The equation we found in the example above is also of this form: it is simply

1

)
— |1
V30

z
II ‘- =— withn=
PQR: T ,Z /30 n

\)

where we divided through by the length of the vector (5,1,2)7 to get the unit vector 7. Nothing
much has changed, though we now see that the height of IIpgr above the origin is 8/+/30.

However, this point of view does give us a idea. Choosing a different value of d also defines a
plane, but a different one that is parallel to II: the normal vector n determines what we think
of as the slope of the plane, while the value of d determines its distance from the origin.

Now what about lines L C R3? These are defined by two independent linear equations. This makes
intuitive sense: we may consider the line as being the intersection of two distinct planes, each of those
is defined by a linear equation, and so we need both to define the line. Let's do a typical calculation.

Example 1.21
—2 4
What are the equations of the line Lpg C R3 through the points P=| 1 | and Q= |3 ]?
3 2

Again, first a sanity check: these are two distinct points, so we know from experience that there
is a unique line passing through them. As before, that doesn’t mean we expect the equations
to be unique: different equations may define the same line.

In the first place, let's consider a single linear equation with unknown coefficients a, b, ¢, d € R:
ar + by + cz = d. (1.3)

Substituting the components of P and () into this equation in turn gives the system of simul-
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taneous linear equations

at P: —2a+b+3c = d (1.4)
at @Q: 4a+3b+2c = d '
Adding twice the first to the second gives
. 8 3
5b + 8¢ = 3d or, in other words, b= —50 + 5d

This equation by itself has lots of solutions: for any ¢,d € R, we can use this to define b.
Plugging that expression for b back into the first equation gives
7 1

—2a + (—ic + §d> +3c=d or, in other words, a= 1—00 — gd

You can check that these expressions for a, b in terms of ¢, d really do satisfy both equations (1.4).

Now, with these expressions for a, b, for any values of ¢,d € R not both zero, equation (1.3) is

7 1 8 3
(mc—5d>x+ (—5c+5d>y+cz—d.

You could say that all of these (infinitely many) equations together define the line Lpg, and
you'd be right. But as we said at the outset, it is enough to choose two independent equations
from this huge collection. To do that, simply choose two different pairs (c,d) that are not
collinear (this last condition is to ensure that the equations are independent). For example,

choosing ¢ = 10, d = 0 gives: Tx — 16y + 10z =0
choosing ¢ =0, d =5 gives: —x+ 3y =5

and this pair of equations taken together defines Lpg C R3. (As ever, to minimise errors we
check again that P and @ really do lie on Lpg, that is, they really do satisfy both equations.)

Remark

Perhaps you know the vector calculus way of expressing a line L C R3. Suppose w € R3 is a
nonzero vector and P € R? is a point. (Remember that for us a point is the same thing as a
vector based at zero, so P is also a vector.) Then the line L through P that is parallel to w is
described as the set

L={P+X\w|XeR}.

This is a parametrised way of describing the line — it lists all the points of the line — whereas
our method above, writing down two equations and saying that the line is the solution set of
them, is an implicit way of describing the line. Both ways are useful, and it is good to be able
to translate between the two.

For problems such as the one in Example 1.21, we can choose w = ) — P, since after all this
choice of w is a vector along the line Lpg, so it is certainly parallel to it, and then

Lpg={P+ | AeR}={(1-AN)P+AQ | e R}.
With P, @ as in Example 1.21, the points of Lpg are then exactly the set

—2+ 6\
{1=XNP+XQ| )R} = 142\ | [AeR) CR?
3— X
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and you easily check that these points satisfy the two equations we derived earlier.
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Chapter 2

Linear systems and matrices

You probably already know how to solve systems of simultaneous linear equations in several unknowns.
In this chapter we review a basic naive approach with an example, and then describe a really effective
way to do this that you can use forever more in all but the most trivial situations. We discuss:

§2.1 Systems of linear equations: how to solve them naively, and also express them using matrices;
if you know this already, you only need to check the terminology we use.

§2.2 Algebra of matrices: addition and multiplication, including summation notation for the opera-
tions; you may wish only to skim this to be sure it accords with how you think of the material.

§2.3 Reduced row echelon form: this is the crucial section; it gives a systematic and efficient approach
to understand and solve systems of linear equations. Put most of your effort here.

§2.4 How to compute the inverse of a square matrix, if it has one, using reduced row echelon form.

2.1 Systems of linear equations

Example 2.1

Determine the solutions (if any) to the following equations:
3x+y—2z=-2 r+y+z=2 20 + 4y + 2z = 0.

We can substitute z = 2 — x — y from the second equation into the first and third equations to
find

3x+y—22—z—y)=5x+3y—4=-2 = bHr+3y=2
2e4+4y+ 2—xz—y)=xz+3y+2=0 = z+3y=-2

Subtracting the second of these equations from the first gives 4z = 4 and so we see:
z=1 y=(-2-1x)/3=-1 z=2—zx—y=2.

Thus there is a unique solution, (z,y,z) = (1,—1,2).
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Definition 2.2

A linear system of equations is a set of m simultaneous equations in n variables x1, x2, ...,y

which are of the form
a1171 + a12x2 + - + ATy, = by

a1 + aznrs + - + axnr, = b
(2.1)
Am1%1 + GmaZ2 + *° + GpnZn = by,
where the a;; and by are constants.
We can write the linear system of equations in matrix form:
ail a2 - aip x1 by
az azg - azp T ba
Gml Am2 - Qmn T, bm
Example 2.3
Returning to Example 2.1, we have:
3z + y — 2z = -2
T +y+z=2
20 +4y + z = 0
Written as matrices this becomes:
3 1 =2 0 -2
11 1] |yl=1-2
2 4 1 z 0
Definition 2.4
Any vector (1,29, . ..,2,)T € R™ which satisfies (2.1) is called a solution to the linear system.
If the linear system has one or more solutions then it is said to be consistent. The general
solution to the system is any description of all the solutions of the system.

We will see later that any linear system will have either zero, one, or infinitely many solutions.

Example 2.5

Example 2.1 has a unique solution given by the vector (1, —1,2)7". That this is a solution can be
easily verified (and you should do this!). That this solution is unique follows from our working
in Example 2.1, however this is not so simple to check without repeating the work we did above.
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Definition 2.6

We will often write the linear system (2.1) as the augmented matrix (A | b), where

a1 @12 o+ Qin b1

a1 az  --- Qg bo
A = . . . 5 b E=

Aml aAm2 - amn bm

Example 2.7

Again returning to Example 2.1, the augmented matrix is:

3 1 —-2| -2
1 1 1 2
2 4 1 0

The advantage of using the augmented matrix is that we will be able to progress systematically towards
a solution. This is a methodical approach, unlike our solution in Example 2.1. This process is called
row reduction. It relies on three types of operation, called elementary row operations (or EROs for
short). The important point is that EROs do not affect the set of solutions of a linear system.

Definition 2.8

Given a matrix, an elementary row operation (or ERO) is one of the following:

(i) Two rows may be swapped;
(i) A row can be multiplied by a non-zero scalar;

(iii) A multiple of one row may be added to a second row.

These three elementary row operations can be understood in terms of operations on the linear equa-
tions:

(i) The order of two equations may be swapped; for example, rather than writing

3r+y—2z2=-2
T+y+z=2
2044y +2=0

we may change the order (for example, swapping the first and second equations) and write

T+Y+z2=2
3r+y—2z=-2
2 4+4y+2=0

(i) An equation may be multiplied by a non-zero scalar; for example, we might replace the equation
3v+y—2z=—-2withx+ fy — 2z = —2 (i.e. multiply by ).
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(iii) A multiple of one equation may be added to another equation; for example, given the two
equations

3r+y—2z=-2
T+Y+z=2
we can add —% of the first equation to the second equation to get

3x+y—2z2=-2

2,.5,.8
3973573

These three operations describe the steps a person would take when attempting to solve a linear
system of equations.

Example 2.9

Again returning to Example 2.1, we will solve the system slowly using the three elementary row
operations. First we do this by working directly with the equations:

de A Yy = 2z==Z
z +y + z =2
2 +4y+ 2z = 0

Swap the first and second equations to get:

z+y + 2z =2
3z + y —2z2=-2
2¢0 +4y + z = 0

Add —3 times the first equation to the second equation to get:

T+ y + 2z =2
—2y — 5z = -8
20+ 4y + 2z =0

Add —2 times the first equation to the third equation to get:

Add the second equation to the third equation to get:

T+ y + z = 2
—2y — 5z = —8
—6z = —12

Multiply the second equation by —% to get:

r+y+ z = 2
Yy + %z: 4
—6z = —12

Add —1 times the second equation to the first equation to get:
3

75 —5,2:—2
y+ 3z = 4
—6z = —12
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Multiply the third equation by —% to get:

2
4
2

x —
Yy +

rolowoleo
NN
I

z

Add % times the third equation to the first equation to get:

T =1
y+%z:4
z =2

Add —g times the third equation to the second equation to get:

X

Example 2.10

1

Again returning to Example 2.1, we will again solve the system slowly using the three elementary
row operations. This time we do this by working with the augmented matrix:

3

(NI

Swap the first and second rows to get:

1
3
2

1
1
4

1
1
4

=2,
1
1

1
=2
1

—7)
2
0

Add —3 times the first row to the second row to get:

1
0
2

Add —2 times the first row to the third row to get:

1
0
0

1

=2

4

1

=2

2

Add the second row to the third row to get:

1 1
0 -2
0 0
Multiply the second row by —% to get:
11
0 1
0 0

1

-3

1

1

)
=1l

1
-5
—6

DOt =

—6
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Add —1 times the second row to the first row to get:

1 0 3| -2

01 3| 4

0 0 —6/|—12
Multiply the third row by —% to get:

1 0 —3]-2

01 5|4

0 0 1 2

Add % times the third row to the first row to get:

= ot O

2

Language 2.11

We introduce some notation to help us talk about elementary row operations. Note that this is

not standard notation, however it is convenient to have.

(i) Let Sj; denote the elementary row operation which swaps rows ¢ and j.

(ii) Let M;(X) denote the elementary row operation which multiples row ¢ by A # 0.

(iii) Let Aj;(X), where ¢ # j, denote the elementary row operation which adds A times row i

to row j.
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Example 2.12

We solve Example 2.1 once more:

31 —2|-2 11 112 1 1 1|2
11 12| 2 (31 —2|-2] 25V 2 5|3
2 4 1|0 2 4 1|0 2 4 10
anco) (2w (5L L 2 ey (LT 5] 2
=710 -2 —5|-8|] =" 10 -2 5| =8| =701 3| 4
0 2 -1|—4 0 0 —6|-12 00 —6|—12
mieny L0 -3 - g L0 -3 | -2 Ay (L0 0L
=7 lo1 5| 4 01 2|4 B 01 34
00—6—12 00 1|2 00 1|2
A325/2) (100
010
00 1
We see that:
rz=1 y=-—1 g=2
Example 2.13

Consider the linear system of equations

Ty — X2+ 23+ 314 =2
201 — 20 +x3+ 214 =4
4x1 — 3x0 + 3x3 + 8x4 = 8

We solve this system by working with the augmented matrix:

1 -1 1 32\ 1 -1 1 3|2
9 —1 1 24|24 [ 1 1 _4]o0
4 -3 3 88 0 1 -1 -4]0
pbann (L0 0 12

s 01 -1 —4/0

00 0 010

The third row of the augmented matrix has become equal to zero. This indicates that there
was redundancy in the original system of equations: in this case notice that the third equation
4x1 — 3z + 3x3 + 8x4 = 8 can be deduced from the first two equations x1 — x9 + x3 + 314 = 2
and 221 — 23 + 23 + 224 = 4 (add two times the first equation to the second equation) and so
provides no additional information.

Our sequence of elementary row operations above resulted in the two equations
$1—$4:2 1‘2—1‘3—4$4:0 (2.2)

However there are four variables x1, 2, x3, and x4. Thus it is impossible for this system to have
a unique solution. Instead we assign parameters to the two columns (equivalently, variables)
which fail to contain a leading entry: in this case, the third and forth columns representing x3
and x4. Setting 3 = s and x4 = t in (2.2) and rearranging slight gives a two-dimensional
family of solutions:

T1 =2+t To = s+ 4t T3 =S8 Ty =1
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Equivalently, we could write this as

(w1, T2, T3, 74) = (2 +t,5+ 4, 5, 1)
=(2,0,0,0) +5(0,1,1,0) 4 #(1,4,0,1)

We see that the solutions form a two-dimensional plane in R* parameterised by s and ¢. This
plane is parallel to the vectors (0,1,1,0) and (1,4,0, 1), and contains the point (2,0,0,0).

Example 2.14

Consider the linear system of equations

z+yt+z+w=4
20 +3y — 2z — 3w =1
T+5z+6w=1

Applying elementary row operations to the augmented matrix we obtain:

1101 1[4, 11 1 1|4
9 3 —2 —3|1| 424D g 1 4 _5|_7
10 5 6|1 0 -1 4 5 |-3
o (L 11 1] 4

W (o 1 -4 —5| =7

00 0 0 |-10

Notice that the third row gives the equation
0z + Oy + 0z + Ow = —10

There is clearly no solution to this equation; hence there are no solutions to the original system
of equations.

Remark

Examples 2.12, 2.13, and 2.14 illustrate the following important observation:

A linear system of equations can have no solution, one solution, or infinitely many solutions.

Example 2.15

Consider the linear system of equations in x,y, and z

T+2z=-5
20 +ay + 3z = -9

—r—ayt+oz=a".
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Here « is a constant. We can apply elementary row operations to the augmented matrix:

L 0 11-5 Ai12(-2),A13(1) L0 : -
2 o 3|-9 — 0 « 1 1
-1 —a o ad? 0 —a a+1|a®-5
Azs(1) Lo ! 5
—" [0 « 1 1
0 0 a+2|a®—-4

How we proceed depends on the value of . Ideally we would like to divide the second row by
«, and divide the third row by o + 2. But the first of these operations requires o # 0, and the
second of these operations requires o # —2.

Let us assume for now that o # 0, —2. Then:

Lo P\ sy (10 1] T
0 a 1 1 AT e 1 1| L
0 0 a+2|a®-14 00 1|a—2
1 0 0]—-a-3
A31(—1),A_>32(—1/a) 01 0 %Oz_l
00 1| a—2
We see that there is a unique solution
rT=—-a—3 y:§—1 z=a—2
o
Now suppose that o = 0. We have:
1 0 1|— Ans(—2), Ms(—1/6) 1 0 1|-5
00 1|1 | = 00 1|1
0 0 2|4 0 0 01

We see that the system is inconsistent (because the final row gives 0z + Oy + 0z = 1), and so
there is no solution.

Finally, suppose that @ = 2. Then:

1 0 B\ vy (101 -5
0 -2 1|1 Yo 1 -1/2]-1/2
0 0 0|0 00 0 0

Since there is no leading entry in the third column, we assign a free parameter ¢ to z and obtain
infinitely many solutions:

o t—-1
2

r=-5—-1 Y Z=1u
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2.2 Matrices and matrix algebra

A matrix is a two-dimensional array of numbers. We say that a matrix is an m x n matrix if it has m
rows and n columns. For example

<1 2 3> 71T (0 0>
4
5 6 V3 00
are all matrices. The first example is a 2 X 3 matrix, the second example is a 3 x 1 matrix, and the
third example is a 2 x 2 matrix.

Definition 2.16

Let m and n be positive integers. An m X n matrix is an array of mn numbers arranged into
m rows and n columns. The numbers in a matrix are called its entries. In the contexts we use
matrices here, all entries are scalars, which for us means they lie in R.

Remark

We may treat a vector in R™ (meaning a column vector as usual) as an m x 1 matrix.
Conversely, if A is a m x n matrix, then we may regard each of its columns as a vector in R™.

We may also consider row vectors: we write (01 c2 ... cn) € R}, where the subscript

indicates that we mean row vectors. We may treat row vectors in R} =~ as 1 X n matrices, and

conversely if A is a m x n matrix, then we may regard its rows as m row vectors in R . (We

will always be explicit when we mean row vectors by writing R )

Example 2.17

Let

1 -3 7
A_<3 2 1)

The second column of A is equal to the (column) vector

@ )
( ) ) R
and the second row of A is equal to the row vector

(3 2 1)eRr?

Python 2.18

Many of the calculations we perform in these notes can be replicated in Python by using the
NumPy package. All code cells in these notes will require you to have run the following line of
code beforehand to import the NumPy package. We give numpy the alias np.

1 import numpy as np

The basic data type in NumPy is the array object which has type ndarray. These are often
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used to simulate matrices. They are initialised using the function np.array, and by specifying
the matrix elements to be stored as a list in the function input. The following code stores the
matrix A from Example 2.17 in a variable.

1 A = np.array([[1,-3,7],[3,2,1]1])
2 print (A)

Individual elements in a NumPy array can be accessed using square brackets [ and 1. In
particular, for our matrix A above, the code A[m,n] will extract the element in the row indexed
by m, and the column indexed by n. Remember counting in Python starts from zero, so the
first row/column is indexed by 0, the second by 1, and so on. Line 1 below prints 7, and line 2
prints 2.

1 print (A[0,2])

2 print (A[1,1]1)

If you want to extract a row of our NumPy array, then we can use the notation A[m] where m
is the index of the row we want to extract. The following code prints the second row of A.

1 print (A[1])

If you want to extract a column of our NumPy array, then we can use the notation A[:,n]
where n is the index of the column we want to extract. The following code prints the third
column of A.

1 print(A[:,2])

Definition 2.19

The set of all real m x n matrices is denoted Mat,,x,,(R), or by the abbreviation Mat,,,(R)
or just Mat,,,, when it is clear.

As remarked after Definition 2.16, we may regard Mat,,,; = R™ and Maty, = R

TOW *

Language 2.20

We frequently write let A = (a;;) € Mat,,,, as shorthand for the matrix

n columns
ai; a2 ... QGip
asy a9 000 aon
™ rows ) ) ] € Mat,,n
Gml Am2 ... amn

with entry a;; in the ith row and the jth column. Here the limits 1 <7 <mand 1< j <n
are implicit, since A € Mat,,,,. In particular the ith row of A is

(ail a2 ... am) & R?ow

31



and the jth column of A is
a1j

ag;
7l erm

Example 2.21

Let

1 3 5
A_<0 9 4>€Mat23.

Then a1 = 1, a12 = 3, and az3 = 4. In fact, in this example we have the formula a;; = 25 —i.

The simple transpose operation on matrices explains our notation (a1, ..., an)T for column vectors.

Definition 2.22

Let A = (a;;) € Mat,,,. Then the transpose of A, also referred to as A transposed and
denoted AT, is the matrix AT = (aj;) € Matym,.

That definition is nice and concise, but you have to notice carefully that the ¢ and j have switched
roles to make the transpose: a;; became aj;.

Example 2.23
Let
1 3 5
A= (0 9 4> € Matog .
Then
10
AT =13 2 € Matso
5 4

In the transposed matrix the rows have become the columns, or equally the columns have
become the rows.

There are three important operations that can be performed with matrices:

(i) matrix addition,
(i) scalar multiplication, and

(iii) matrix multiplication.

Two matrices can only be added together if they have the same number of rows, and the same number
of columns.
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Definition 2.24 (Matrix addition)

Let A = (ai;) and B = (b;;) be two m x n matrices. Then C'= A + B is the m x n matrix
with entries
Cij:aij—l-bij forl1<i<mand1<j<n.

Example 2.25
- 1 2 1 1 01
AZ(O 1 _2> BZ(O 1 0)'
Then
A+B:(§§g>:B+A
Python 2.26

We can perform matrix addition in Python. The following code emulates the calculation of
Example 2.25.

A = np.array([[1,2,-1],[0,1,2]])
B = np.array([[1,0,1],[0,1,0]1])
print (A+B)

If you attempt to add two NumPy arrays that are not of the same size you will receive an error
‘ValueError: operands could not be broadcast together with shapes'.

Remark

In general, matrix addition is commutative. That is, for A, B € Mat,,,, we have that
A+ B=B+A.

Furthermore, matrix addition is associative. That is, for A, B, C € Mat,,,, we have that

A+(B+C)=(A+B)+C.

Definition 2.27

The m x n matrix whose entries are all 0 is called the zero matrix, and is denoted by 0,,,.
Given any A € Mat,,,, we have that

A+ 0 = A.
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Example 2.28

Let
1 2 0 0
4=(32) ==(5 o)

It is trivial to check that A + 099 = A.

Definition 2.29 (Scalar multiplication)

Let A = (ai;) be an m x n matrix, and let £ € R. Then C' = kA is the m x n matrix with
entries
cij =kaj; forl<i<mand1l<j<n.

Example 2.30

Let
1 2 -1 0
O

We shall show that 3(A + B) = 3A + 3B. First, notice that

0 2 0 2 0 6
A—I—B—(O 4) and hence 3(A+B)—3<O 4>—<0 12).

On the other hand,

3 6 -3 0 0 6
3A = <9 12) and 3B = <_ > , hence 3A+3B = <0 12) :

Python 2.31

We can perform scalar multiplication of a matrix in Python. The following code emulates the
calculation of Example 2.30.

A = np.array ([[1,2],[3,4]1]1)
B = np.array([[-1,0],[-3,011)
print (3%4)

print (3*B)

print (3xA+3%B)

Definition 2.32
Scalar multiplication is distributive: for A, B € Mat,,, and k € R we have that

k(A+ B) = kA + kB.
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Remark

Let A, B,C € Mat,,, and let k, s € R be scalars. The following identities hold:

(We shall see later that these identities show that Mat,,,,, is a vector space, giving a more exotic
example than the vector spaces R™ we have seen so far.)

Matrix multiplication is very different from matrix addition and scalar multiplication. At first the
definition may seem strange, however we shall see later that it is natural in the context of matrices
representing linear maps.

Definition 2.33 (Matrix multiplication)

Let A = (ai;) be an m x n matrix, and let B = (b;;) be an n x £ matrix. Then C'= AB is the
m X ¢ matrix with entries

n
cijzzaikbkj forl<i<mand1l<j </
k=1
Equivalently, let rq, ..., r,, denote the rows of A, and let cy,...,c, denote the columns of B.
Then
cij=T1] -¢j forl<i<mand1<j</,

where 1! - ¢; denotes the scalar product.

Example 2.34

Let

a=(4 5 B=(i 3

35




Let us work slowly through the calculation of the matrix product AB.

EHE Y- @

ED(E)-(EmEE) ¢

< )( D \(—1)xf+0x1\ _?3> :< _?3>

< 2)(1 j):<—31 \(—1>><<—1_>3+0><<—1>\) <—31 >
o= (4 D0 D-(5 D)

Let A and B be as in Example 2.34. We wil calculate the matrix product BA.

7O (E - ()@

1 =1 —1| 0 ? ? ? 7
1 2 [1x2+4(-1)x0 e
-1 ) \~1 |[0] ? 7 —\? 7

Hence

Python 2.36

We can perform matrix multiplication in Python. The following code emulates the calculations
in Examples 2.34 and 2.35.

1 A = np.array([[1,2],[-1,011)

2B = np.array ([[1,-1],[1,-111)

3 print (A.dot (B))
4 print(B.dot (A))

If you attempt to multiply two NumPy arrays that do not have compatible sizes — that is the

number of columns of the first matrix is not equal the number of rows of the second matrix —
you will receive an error ‘ValueError: shapes (*,*) and (*,*) not aligned'.
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Remark

Examples 2.34 and 2.35 show that, even when both the matrix multiplications AB and BA

make sense, we can have that
AB # BA

That is, matrix multiplication is not commutative.

Example 2.37
Let
1 2 -1 L0
A= € Matog B=10 1] € Matso
01 2
2 1
Then

10
12 -1 1-2 2-1\ (-1 1
AB:(O 1 2) - :(4+0 1+2>:(4 3)€Mat22

We shall also calculate the matrix produce BA:

L0\ 1y 140 2+0 —1+0 12 —1
BA=[0 1 <0 | 2): 0+0 041 042 |=({0 1 2 | eMatsy
2 1 240 4+1 —2+2 2 5 0

Example 2.38
Let
1 2 3
G aforo
0 0 1
Then

1 2 3
(246 (24040 44440 6+0+46) (2 8 12
AB_(l 0 o) 8 (1) ! _<1+0+o 2+0+0 3+0+o>_<1 2 3>€Mat23

Notice that in this example, asking for the matrix multiplication BA makes no sense — they are
of incompatible sizes.

1
BA=10
0

S =N
= O W

(2 . g) which makes no sense.

Example 2.39

Let



Then

(1 =1\ (1 -1\ _[1-1 —1+1\ _ (0 0\ _
AA<1 —1> (1 —1)(1—1 —1+1)<0 0)022

Remark

An important consequence of Example 2.39 is the following. Let A € Mat,,,, and B € Mat,,
be such that AB = 0,,¢4. It does not follow that either A = 0,,,,, or B = 0,,,¢.

Definition 2.40

The n x n identity matrix [,, is the n x n matrix with 1s on the diagonal and Os elsewhere.
That is,

10 ... 0
01 ... 0

I, = . € Mat,,,
00 ... 1

Equivalently, using Definition 1.17, the (i, j)th entry of I, is given by d;;, for 1 <i,j < n.

Example 2.41
1 0 0 0
1 00
10 0100
I2<01) 13*83(1) =10 010
00 01
Remark
Let ay,...,a, € R, and fix 1 < k <n. Then
n

=1

since d;; = 0 when i # k, and g = 1. Thus the sum (2.3) selects the kth element ay.

Proposition 2.42
(i) Let A € Maty,, and £,p € Z~¢. Then

AOpp =Omp  OpnA =04, Al,=A I,A=A

(ii) Matrix multiplication is associative: for matrices A € Mat,,,, B € Mat,,¢, and C' € Maty,

we have
A(BC) = (AB)C
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(iii) Matrix multiplication is distributive: whenever the following products and sums make
sense, we have

A(B+C)=AB+AC  (A+ B)C = AC + BC

Proof. (i): To find an entry of the produce A0,, we dot a row of A with a zero column of 0,
which will always give zero. Similarly for 0y, A. By (2.3) we have

the (7, j)th entry of AL, = Z aik0kj = Qij
k=1

m
the (4, 7)th entry of I,,A = Z SikQlj = Qij.
k=1

(ii): Given 1 <i<m, 1<j <pwe have

4 n
the (7, j)th entry of (AB)C = Z (Z aisbs,) Crj

r=1 \s=1
n 4
the (7, j)th entry of A(BC) = Zais (Z bsrcrj> .
s=1 r=1

These are equal since the order of finite sums may be swapped without changing the result.

(iii): Left as an exercise. O

Because matrix multiplication is not commutative we need to be clear what we mean when we say
something like “multiply the matrix A by the matrix B". Do we mean AB or BA? Sometimes we
can deduce which is meant from the sizes of A and B; sometimes the context makes this clear. But
sometimes we need to use more precise language.

Definition 2.43

Let A and B be matrices.

(i) To premultiply B by A is to perform the matrix multiplication AB, i.e. multiplication on
the left.

(ii) To 'postmultiply B by A is to perform the matrix multiplication BA, i.e. multiplication
on the right.

Definition 2.44

Let A € Mat,,,, be a square matrix. We write A? for the product AA. Similarly, for any

n € Z~y we write A™ for the product
n times

—
We define A° = 1,,,.
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Remark

For any square matrix A and for any n,m € Z>( we have AT A" = A™+",

Example 2.45
Let
costy  sindd
A= <sin19 —cos19>
Then

9 ( cos? ¥ + sin? 9 cos ¥ sin ¥ — sin ¥ cos 19)
A = =1

sin 9 cos ¥ — cos 1 sin Y sin? ¥ + cos? ¢

In particular, A%2 = I, for any choice of .

Example 2.46

Let
0 1
1= (5 o)

Let us assume for a contradiction that there exists a matrix

a b
=0 1)
such that B2 = A. Then

(0 6)=( ) = (&% )

Since c(a+d) = 0 we see that either c =0 of a+d = 0. Butif a+d = 0then 1 = b(a+d) =0,
which is a contradiction. Hence ¢ = 0. But then 0 = a* + bc = a? and so a = 0, and
0 = d? + bc = d?, and so d = 0. Once again we conclude that 1 = b(a + d) = 0, which is a

contradiction. Hence no such matrix B exists.

Remark

Examples 2.45 and 2.46 show that the idea of a square root of a square matrix is much more
complicated that for real or complex numbers. A square matrix may have no square roots, many

square roots, or even infinitely many square roots.

Example 2.47

Consider the system of equations

ar +by=ce cx+dy=f
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Rearranging to solve for x and y we obtain

de — bf af — ce
p— pu— 2.
v ad — bc y ad — be (2.5)

This, however, assumes that ad — bc # 0 (otherwise we have divided through by zero).

We can represent this calculation using matrices. Equation (2.4) becomes

96)-0)
O -2 D06
(2 DYoo= (L F) oo

If we have that ad — bc # 0 and we define

a b 1 d -—b
A_<c d> B_adbc<—c a>

then we have just seen that BA = I = AB. In other words, B is the inverse of the matrix A.

and equation (2.5) becomes

Notice that

Example 2.48

Let

Notice that 1 x 0 — (—2) x 3 =6 # 0. Write

1/0 2
B_6<—3 1>

Then
C1/1 =2\ [0 2\ 1/0+6 2-2\
AB_6<3 0)(—3 1>_6<0+0 6+0>_I2
1/0 2\(1 =2\ _1/04+6 040
BA_6<—3 1) <3 O>_6<—3+3 6+0)_I2

Definition 2.49

Let A € Mat,,,, be a square matrix. We say the B is an inverse of Aif BA=1,=AB. If A
has an inverse then we say that A is invertible, otherwise we say that A is singular.
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Proposition 2.50 (Properties of inverses)

(i) If A € Mat,,, has an inverse, then it is unique. We write A~! for this inverse.
(i) If A, B € Mat,,, are invertible then AB is invertible with (AB)~! = B~1A~1.

(i) If A € Mat,,, is invertible then A~! is invertible with (A~1)~! = A.

Proof. (i): Suppose that B,C € Mat,,, are inverses for A. Then

C =1,C = (BA)C = B(AC) = BI, = B
Hence C' = B.
(ii): Notice that

(AB)(B'A ™YY = A(BB YA ' = AL A = AA7 ' =1,
(B'A™YY(4AB) =B (A'A)B=B"',B=B"'B=1,

and so (AB)™! = Bt A~! by uniqueness of inverses.

(iii): Note that
(A hHA=AAYH =1,

and so (A~1)~! = A by uniqueness of inverses. O

Definition 2.51

If A € Mat,,, and BA = I, then B is said to be a left inverse. If C' satisfies AC = I,,, then
C is said to be a right inverse.

Proposition 2.52

The matrix
a b
1= (2 )

has an inverse if and only if ad — bc # 0. If ad — be # 0 then
1 d —b
A7l =
ad — be (—c a )

Proof. We saw in (2.6) that if ad — bc # 0 then AA™! = I, = A~1A. If, however, ad — bc = 0

then
B < d —b)
—c a

satisfied BA = 099. If an inverse C for A exists, then

022 = 092C = (BA)C = B(AC) = Bl = B

Hence a = b=c=d =0 and so A = 099, which contradicts AC = I5. ]
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Remark

The scalar ad — bc is called the determinant of A, and denoted det A. There is a generalisation
of det A for square matrices A € Mat,,, and, in general, A is invertible if and only if det A £ 0.
We get to this later.

Python 2.53
We can calculate the determinant of matrices in Python. The following code prints the deter-
minant of the matrix A from Example 2.48.

1 A = np.array([[1,-2],[3,011)
2 print(np.linalg.det (A))

Python also allows us to calculate the inverse of matrices using NumPy arrays. The following
code prints the inverse of A.

1 print(np.linalg.inv(A))

2.3 Reduced row echelon form

We will begin by showing that the set of solutions of a linear system of equations does not change
under the application of an elementary row operation. Applying an elementary row operation to a
linear system (A | b) is equivalent to premultiplying by an invertible elementary matrix E to obtain
(EA | Eb). It is precisely because E is invertible that the set of solutions remains unchanged.

Proposition 2.54

Let A € Mat,,,,. Applying any of the elementary row operations Sry, My(A), or Arj(A) is
equivalent to premultiplying A by matrices which we also denote, respectively, by Sry, Mr()\),
or Arj(X). These matrices are defined as follows:

L, i=4i#Li#J;
the (4, j)th entry of S;; =
(4,7) M IJ 1, i=14=J;
0, otherwise.
1, i=j,i#1I;
the (7, 7)th entry of Mi(A) =<\, i=j=1;
0, otherwise.
I, i=7;
the (¢,7)th entry of Ar;(A) =<q N, i=J,j=1I;
{O, otherwise.

We call these the elementary matrices.
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Example 2.55
Set m = 3. Then

010 100 105
Soi={10 0 Ms(5)=10 1 0 Az(5)=10 1 0
00 1 005 00 1
Example 2.56
Set m = 4. Then
0001 1 0 00 1000
0100 0 -2 00 1 0100
S14= 10 0 1 0 M=2)=1y o 1 0 A24<2>_ 0010
1000 0 0 01 0401
Remark

Notice that the elementary matrices are given by applying the corresponding elementary row
operation to the identity matrix I,,.

Proposition 2.57

The elementary matrices are invertible.

Proof. Just observe that

Corollary 2.58

Let (A | b) be a linear system of m equations and let £ € Mat,,,, be an elementary matrix.
Then z is a solution of (A | b) if and only if z is a solution of (FA | Eb).

Proof. It Az = b then, by premultiplying by E, we have FAx = Eb. If EAxz = Eb then, by
premultiplying by E~!, we have Az = b. O

Remark

Corollary 2.58 tells us that applying elementary row operations does not alter the set of solutions
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of a linear system of equations.

Definition 2.59

A matrix A is said to be in reduced row echelon form (or RREF) if:

(i) the first (i.e. leftmost) non-zero entry of any non-zero row is 1 (this is referred to as the
leading 1 of the row, or as a pivot);

(ii) the leading 1 of a non-zero row appears (strictly) to the right of the leading 1s of the
nonzero rows above it;

(iii) any zero rows appear below the non-zero rows;

(iv) in a column that contains the leading 1 of some row, all other entries of that column are
zero.

If only (i—iii) hold, we say the matrix is in row echelon form; this is also useful, but we will

always use the RREF here.

Example 2.60

The following three matrices are in reduced row echelon form

0120 -3 1 010 10
0001 7 01 20 0 1
0000 O 0 0 01 0 0

Example 2.61
The following two matrices are not in reduced row echelon form
1 2 1 0 0 3
0 1 01 00
0 0 0 0 21
The first matrix contains a leading 1 in the second column, but not all other entries of that

column are 0. The second matrix fails because the leading entry of the third row is not 1.

Example 2.62

Look once again at Example 2.12. Notice that we solved the linear system of equations by
placing the augmented matrix in reduced row echelon form.

Proposition 2.63

Let (A | b) be a matrix in reduced row echelon form which represents a linear system A

=
Il
IS
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of m equations in n variables. Then:

(i) The system has no solutions if and only if the last non-zero row of (A | b) is

(00 - 0]1)

(ii) The system has a unique solution if and only if the non-zero rows of A form the identity
matrix I,,. In particular, this case is only possible if m > n.

(iii) The system has infinitely many solutions if (A | b) has as many non-zero rows as A, and
not every column of A contains a pivot (i.e. a leading 1 of some nonzero row). The set
of solutions can be described with k parameters, where k is the number of columns not
containing a pivot.

Proof. If (A | b) contains the row (0 0 --- 0| 1) then the system is inconsistent as no z satisfies
0z1 +O0x2 + -+ 0xp, = 1.

Since (A | b) is in reduced row echelon form, this is the only way in which (A | b) can have more
non-zero rows than A. We will show that whenever (A | b) has as many non-zero rows as A then
the system (A | b) is consistent.

Suppose that both (A | b) and A have r non-zero rows, so that there are r leading 1s within
these rows and we have k = n — r columns without leading 1s. By reordering the numbers of the
variables x1, ..., x, if necessary, we can assume that the leading 1s appear in the first r columns.
So, ignoring any zero rows and remembering that the system is in reduced row echelon form, the
system corresponds to the r equations

T1+ Q) Trp1 00+ ATy = by

T3 + Ag(pq1)Tr1 + -+ Q2pTn = b2

Tr + Qr(r41)Tr+1 + -+ appTn = by

We can see that if we assign x,4+1,...,2, the k parameters s,41,..., Sy, then we can read off
from the r equations the values for x1, 9, ..., x,:

1 =b1 — Q1(p41)Sr+1 — " — AInSn

o = by — A2(r41)Sr+1 — *** — G2nSn

Ty = by — Ar(r41)Sr+1 — " = ArnSp
So, for any values of the parameters, we have a solution x. Conversely, if x = (z1,29,...,2p)
is a solution, then it appears amongst the solutions we have just found when we assign values
Sp4+1 = Tpil,-- -, Sy = Tp, to the parameters. Thus we see that we have an infinite set of solutions
associated with £ = n —r independent parameters when n > 7, and a unique solution when n = r
(in which case the non-zero rows of A are the identity matrix I,). O

46



Remark

We have just shown that:

(i) a system (A | b) in reduced row echelon form is consistent if and only if (A | b) has as
many non-zero rows as A;

(ii) all the solutions of a consistent system can be found by assigning parameters to the
variables corresponding to the columns without pivots (leading 1s of each nonzero row).

Example 2.64
Consider the linear system of equations
20 +3y—z2=1

10z —2=2
dr — 9y +32 =5

We will solve this system by first writing down the augmented matrix, and then placing it into
reduced row echelon form by performing elementary row operations.

203 LIL\ ey (203 LN e ([ 3 -1 3
10 0 —1]2 | =7 0 -15 4 |-3 ] =710 -15 4 |-3
4 -9 3 |5 0 —15 5 3 0 —-15 5 3
1 3 _1|1 3 _1 1 1 0 —L1|1L
Azs(—1) - 42 Mo (—1/15) 2 7 1% ) Axu(-3/2) 015
257010 -15 4 | -3 01 —-Z2|1 01 —-&|:
0 0 1 6 0 0 1 6 0 0 1 6
1 00|43
An(1/10)422(4/15) [ o | 4 §
0 0 1|6
Hence there is a unique solution given by
4 9
= — = — _6
X 5 Yy 5 z

Python 2.65

It is possible to solve a linear system of equations in Python using NumPy. The following code
verifies the solution of Example 2.64.

A = np.array([[2,3,-1],[10,0,-11,[4,-9,311)
b = np.array([1,2,5])
print (np.linalg.solve(A,b))

Example 2.66

The following augmented matrices are in reduced row echelon form.

47



(i) No solutions — notice the final row.

1 -2 0 210

0O 0 1 1|0

0 0 0 O0]1

(i) A unique solution given by z; = 2, 29 = —1, and x3 = 3.

1 0 0| 2
01 0]-1
0 0 1] 3
0 0 0] O

(iii) A one-parameter family of solutions (assigning the parameter s to the second column)
given by = (3 — 2s,5,2,1).

03
012
1(1

S O N
=2 = @

1
0
0

(iv) A two-parameter family of solutions (assigning the parameter s to the second column and
the parameter t to the fourth column) given by x = (3 + 2s — 2,5, —2 — t, t).

0 2| 3
1 1|2
0 0] 0

1 =2
0 O
0 O

Theorem 2.67

Every matrix can be reduced by elementary row operations to a matrix in reduced row echelon
form.

Proof. Let A € Mat,,,,,. We will proceed by induction on the number of rows, m.

First suppose m = 1. Notice that a 1 X n matrix is either zero, or can be put into reduced row
echelon form by dividing through by the leading entry.

Now suppose that the inductive hypothesis holds for any matrix with fewer than m rows. If
A = Oy, then it is already in reduced row echelon form. So suppose A is non-zero. Let c; be
first column in A containing a non-zero entry a.. By using elementary row operations we can swap
the row containing « with the first row, and then divide the first row by a # 0. Thus the (1, j)th
entry now equals 1 and our matrix takes the form

0 -+ 0 1 @y - G
0 -+ 0 ay Qy(j41) -+ G2n
0O --- 0 Tpnj am(jJrl) coo Qmn

for some entries @y;. Applying the row operations Ai2(—a2;), A13(—asj), . .., Aim(—am;) trans-
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forms column ¢; to el Thus our matrix becomes

0 0 1 @y -+ din
0 0 0

: T B

0 --- 0 0

By induction, the (m—1) x (n—j) matrix B can be placed in reduced row echelon form by applying
elementary row operations. Applying those same elementary row operations to the bottom m — 1
rows of the above matrix would reduce A to

0 - 0 1 @y @1
: L RREF(B)

(Here RREF(B) denotes the reduced row echelon form of B.) To transform this matrix into
reduced row echelon form, we need to zero-out any of the @;(;41),...,@1, which are above a
leading 1 in RREF(B). If @y, is the first entry to lie above a leading 1 in row ¢ then Ay (—ayy)
will transform the (1, k)th entry to 0. Thus we can place A in reduced row echelon form via
elementary row operation. [

Definition 2.68

The process of applying elementary row operations to transform a matrix into reduced row
echelon form is called row reduction (or just reduction) or Gauss elimination or Gauss—
Jordan elimination or ... (OK, maybe that's all).

Corollary 2.69

If A € Mat,,,, and m < n, then there is a nontrivial solution v £ 0 to Av = 0.

Proof. By Gauss elimination, Theorem 2.67, the matrix A has reduced row echelon form. Moreover,
the RREF of the (augmented) matrix (A | 0) is simply that of A augmented by a zero column,
since the final column remains 0 throughout the reduction process.

Thus the reduced row echelon form of (A | 0) has the same number of rows as that of A, and since
the number of pivots is at most m, not all of the n > m columns can contain a pivot. Therefore
there are infinitely many solutions by Proposition 2.63, and so there is a nontrivial one. O

It was enough until now simply to perform row operations in some order, and record the matrix at
each stage. But we gain a lot next by recalling from Proposition 2.54 that each row operation may
be performed by premultiplying A by the corresponding elementary matrix Sry, M1(\) or Arj(A).

2.4 Inverse matrix

In Proposition 2.52 we saw a formula for the inverse of a 2 x 2 matrix. A similar formula holds for
the inverse of a 3 x 3 matrix, but it is very messy. Instead, we will use elementary row operations to
efficiently determine wither an n x n matrix is invertible and, if so, how to find the inverse.
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Proposition 2.70

Let A € Maty,,. Form the augmented n x 2n matrix (A | I,) given by placing A side-by-
side with the identity matrix I,,. There are elementary row operations that will reduce A to a
matrix R € Mat,, in reduced row echelon form. We simultaneously apply these elementary
row operations to both sides of (A | I,,) until we arrive at (R | P), for some P € Mat,,,. Then:

(i) if R = I, then A is invertible with A1 = P;
(ii) if R # I,, then A is singular.

Proof. Let E, Es ..., E) be a sequence of elementary matrices that reduce A to R. So (A | I,,)

becomes
(ExEg—1--EV\A| ExEx_1---E1) = (R | P)

Hence P = E.E),_1---E1 and R = PA. If R = I,, then
(ByEp_1---E)A=1, and so A Y=FE,_,---E;1=P

since by Proposition 2.57 elementary matrices are invertible. If R £ I, then, since R is in reduced
row echelon form and is square, R must have at least one zero row. It follows that (possibly after
reordering the rows of PA)

(1,0,...,0)(PA) =0

Since P is invertible, if A were invertible then we could postmultiply by A='P~! to obtain

(1,0,...,0) =0

which is a contradiction. Hence A is singular. O

Remark

The proof of Proposition 2.70 tells us that as soon as a zero row appears when reducing A then
we know that A is singular.

It is best to treat the remaining examples in the rest of this chapter as a sequence of exercises that
come with worked solutions: try to compute the inverse in each case (or prove that it does not exist),
and don't forget to check your answer at the end.

Example 2.71

Let

W = N
— O
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Compute A~! — if it exists — using Proposition 2.70.

121100A(_2)AK(_1) 2 11 00
(A|Iy=[2 1 0/0 1 0| > =5° 0 -3 —2|-2 10
1 3 1/0 01 0 1 0|-101
(o (L0 L3 0 =2 10 11]3 0 —2
w202@) [ g g 9|51 3 |01 0]-10 1
01 0|-10 1 00 —2|-51 3
v (1 O3 0 =2 o /100|5 5 -3
0 10/-1 0 1 |™5Y[01 0|1 0 1
5 1 3 5 1 3
0013 -3 —3 0013 -3 —3
We conclude that A~ exists, and is equal to
1 1 -1
Alt=21-2 0 2
5 -1 -3
We can easily verify our result
L (1 21 1 1 -1 L (1-4+5 140-1 —1+4-3
AA*1:§ 2100 (=2 0 2 )=c5{2-240 24040 —24240) =1
1 31 5 -1 -3 1-64+5 1+0—-1 —-1+6-3
Example 2.72
Let
1 0 2
A=|4 0 4
02 0
Calculate A1, if it exists.
102100A(74)102 1 00
3: —> — J—
AT 4 0 4/0 1 0|72 004410
02 0/0 01 02 0 0 1
10 21 00\, 14102100
S50l 2 0|0 o1 |MVREEY TG 1 0lo 0 L
00 —4]-4 10 00 1|1 =% 0
Aoy (L0 01 3 0
2“CP 1o 10/0 o0 1
0011 -3 0

We shall verify our calculation:

L1002\ /4 20 —4404+8 240—-2 04040
AA*1:Z 4 0 4 0 0 2|==|-164+0+16 84+0—4 04+0+0]| =13
020 4 -1 0 0+0+0 O0+0+0 0+440
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Example 2.73

Let

< O

S — AN

Calculate A=, or prove that A is singular.

|
|

SO —H OO
010010%
— O

— O
< &<

<t &N O
S~ AN

o —H O
—\ O O
N~ ~ — O O
— S~———
i
(\H =

|

A13
3(
AT

1 0 4|1 0 O

0O 1 2(0 1 O

-1 2 0(0 0 1
Az

(A | Is) = (
We stop at this step. Since the third row is zero, we conclude that A is singular and no inverse

exists.

Example 2.74

Let

0
1

-3 010
0

0
-3 010

Calculate A1, if it exists.

0
1
1
3

1
)
5

3
1

)
5

1
2
5)

—~

™

|

2]

=

<
—
oS O O
o O +H O
o —H O O
— O O O
S = — N
—
f

1 3
2
1
1

<AI4>(§
0

Q_uloo
S O -
oS O O
_I.OQ_u
S Yol
I
NeJ

— 0
|
o —H O
— O O

-9 5|0 1 0 -2
—16 0 0 -3

0 0

i 00

=%

0
<t
o —Ro

S O

-9 1
0
=g 5

0
1
0
0

1
0
0
0

A21(—3),Ai(§),A24(—2)

Ms g45) (

We stop here, noticing that the final row is zero. Hence A is singular.

Y

i

S

e}

— 8@2_,5

O —[G—no
S O

o —[2eono
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Example 2.75

Let
Calculate A~1, if it exists.
1120|100
0012|010
(4] L) = 2 11 0/0 0 1
202 0[/000
1 1 2 0|1 00
Ss [ 0 =1 =3 0] -2 0 1
= 0 0 1 2/0 10
0 -2 -2 0/-2 0 0

A31(1)7A32(_—5;>),A34(—4)

My(-1/8)

Ay1(—2),A42(6),A43(—2)

—

We conclude that A is invertible, with

Python 2.76

1120
001 2
A‘211o
2.0 2 0
0 1 1 2 0
0 A12(*2)_,A>13(*2) 0 O 1 2
0 0 -1 =3 0
1 0 -2 -2 0
0 1 0 -1 0
0 A21(1),_AQ>4(—2) 0O -1 -3 0
0 0 0 1 2
1 0 0 4 0
10 -1 0
Mx(-1) | 01 3 O
00 1 2
00 4 0
100 2|-1 1 1 0
010 —6|2 -3 -10
001 20 1 0 0
000 —8]2 -4 -2 1
100 2|-1 1 1 0
010 —-6|2 -3 -1 0
001 20 1 0 0
000 1|4 § § 4
1000[-%0 3 1
01003 0 3 -3
001041 o -1 1
R !
0ooo01|-1+ 1 1 .
-4 0 4 2
114 0 4 -6
8l 4 0 -4 2
-2 4 2 -1

The following code verifies the result of Example 2.75.

1A = np.array([[1,1,2,0],[0,0,1,2],[2,1,1,0],[2,0,2,0]1)

2 print(np.linalg.inv(A))
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Chapter 3

Subspaces and bases of R"

3.1 Span and subspace

Suppose v,w € R3 and consider the set of all possible linear combinations that we could make
using them: we call this set the span of {v,w} and we denote it synonymously by either (v, w) or
span {v, w}; that is

(v,w) = span {v,w} = {Av + pw | A\, p € R}
Note that clearly (v,w) C R3. More importantly, if you pick any two elements of (v, w), then their
sum is also an element of it; indeed, so is any linear combination of them. After all, if we are given
two vectors \jv + pyw and Aqu + pow in the span, then their sum is

(My + pw) + (Av + pow) = (M + A2)u + (1 + p2)w

which is visibly also in the span. We say that (v, w) is a subspace of R, as in the following definition.

Definition 3.1

A subspace of R" is a nonempty W C R" with the property that for any v,w € W and any
A €R, we also have v +w € W and Av € W.

There are two particular subspaces that we refer to as trivial subspaces: {0} C R” and R” C R".
Thus to say a subspace W C R"™ is nontrivial is to say W # {0} and W # R".

Example

In the situation (v, w) C R above, there are three different types of behaviour that may happen.

e If v and w are not collinear, then the span (v, w) is a 2-dimensional plane inside R3 (that
passes through the origin): it is exactly the same as the plane through v, w and 0. For
example, if v =e; and w = ey then

A
(w)y=4|p||peR
0
is the z = 0 coordinate plane. As another example, if v = (—2,1,5)T and w = (1,1,2)7
then by calculating as in §1.3, we can describe the span either parametrically (which is
essentially its definition) or implicitly by an equation

(w,w) = {Av+pw | A\, p €R} = (z—3y+2z=0) CR®
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e If v and w are collinear but not both 0, then the span (v, w) is a 1-dimensional line inside
R3 (that passes through the origin). For example, if v = e¢; and w = —3e; (or any other
multiple of v, including the zero multiple w = 0) then

A
(ww =2 [0] | NeR}=(y=2=0)CR?
0

is the x-axis (described first parametrically and then implicitly by equations).
e If u =w =0, then the span (v, w) = {0} is simply the zero vector.
It is true (as we shall see later, or you can persuade yourself now) that the only subspaces of R3,

apart from the trivial ones, are lines through the origin and planes through the origin. That's
why we went to all the fuss of thinking about them in §1.3.

In R?, the only nontrivial subspaces are lines through the origin.

More generally, we may construct the span of any number of vectors, and the span is a subspace.

Definition 3.2
Let vy,...,v, € R™ Then their span is the set
S
(V.- Ug) = {Z)‘ivi Ai €R fori= 1,...,5}
i=1
consisting of all possible linear combinations of v;,...,v, € R".
It is convenient to refer to the vectors vy, ..., v, as the given generators of (v;,...,v,), but

note that this is not standard usage, and most subspaces have many alternative generators.

Remark

In fact, for any subset S C R"™ you may define the span (S) C R™ in the same way, but be clear
that when taking linear combinations you are only permitted finite sums: there are no infinite
series here.

Proposition 3.3

For any vy, ...,v, € R", the span (v;,...,v,) C R" is a subspace of R".

The proof is clear and routine: just check the rules of Definition 3.1: better to do this yourself, rather
than read it, and certainly don't invest any effort to remember it.

Proof. Denote the span by W = (v;,...,v,). Suppose v,w € W. That is, there are scalars
Ais ij € R for which

v=MAu; +...+ v, and w =g+ F s
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Therefore, collecting coefficients together
vt+w= (A4 p1)vy + o (A )y

which is a linear combination of v;,...,v, and so lies in the span.

Similarly, if & € R is any scalar, then
av = (aA)vg + ...+ (aXs)y,

which is a linear combination of vy, ..., v, and so also lies in the span, as required. Thus the span
is a subspace of R". O

Any matrix A € Mat,,,,, determines a particularly important subspace of R™.

Definition 3.4

Let A = (a;;) € Mat,,,,. The column span Colspan(A) of A is the span of the columns of A:
that is,
Colspan(A) = (v;,...,v,) CR™
a1j
where v; = : is the jth column of A, for j =1,...n.

amj

Example

Let

Then the column span Colspan(A) of A is

2 =1l 0
Colspan(A):< 0 ],{2]|,]| 4 >

-1 0 -1

Since the third column v is equal a linear combination v3 = v; + 2v, of the first two columns,
it can't contribute anything to the span that those first two columns don't already: if you ever
see vz in some linear expression, you can get rid of it by replacing it by v; 4+ 2v,. Therefore
the third column can safely be omitted from the list of given generators. Doing so shows that
Colspan(A) is equal to the column span of a smaller matrix:

2 =1l 2 =l
Colspan(A) = < 01],( 2 > = Colspan(B) where B=| 0 2
-1 0 -1 0

The idea we used in the example to remove the third column from the vectors generating the span in
the example above is called sifting, and it can be used to optimise the collection of given generators
in a span fairly generally. The key is the notion of linear (in)dependence, which we come to next.
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We say that a subset S C R™ spans if and only if every vector v € R™ is a linear combination of (a
finite collection of) vectors of S.

Definition 3.5

A subset S C R"™ spans R" if and only if (S) = R™. (It is also common to express this as S is
a spanning set of R".)

Remark

It is ridiculous, but true, to say that S = R" is a spanning set for R™. It is more interesting
to try to find small spanning sets — we may think of them as a more efficient way of describing
elements of R™ (without spelling out what efficient might mean). The question then becomes:
is there a lower bound on the size of a spanning set for R”? Oh yes there is!

Proposition 3.6

Suppose S C R™ spans R™. Then S contains at least n elements.

Proof. Suppose that S has m < n elements, say v;,...,0,,.
Consider the standard basis ey, ..., e, € R™. Since S spans R", each g; is a linear combination of
elements of S; that is, there are scalars a;; € R so that foreach i =1,...,n
m
€ = Z a5V (3.1)
j=1
Assemble the coefficients into an n x m matrix A = (a;;) and denote its rows by r, fori =1,...,n.

The RREF of A is a product EA where E € Mat,,, is an invertible matrix (in fact, E is a product
of elementary matrices). For example, to set up notation, the final row of EA is of the form

kiry + ...+ knr, (3.2)

where k = (k1,...,ky,) is the final row of E. If £ =0, then Ev =0 for v = (0,...,0, nHT e Ry,
but this immediately gives a contradiction: v = E~'Ev = E~'0 = 0. Therefore k £ 0.

Since n > m, the final row of EA must be zero 0 € R]7 . Therefore by (3.1) we also have that

Tow "

J

= (i kiail) v+ + (i kiaim> Uy,
=1 =1

= 0y +...+0y, =0

kieg+ ...+ kne, = ki Zaljyj + ...+ ky Zanjgj
J

since the coefficient ), k;ja;; of v, is the jth entry of the last row of the product EA. But the
left-hand side of this expression is simply ET, so this says that k = 0, which is a contradiction. [
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Remark

Were you able to see in your mind’s eye the equations (3.1) as an array of the form

€ = a11¥; +a12Vs + ... + A1y,
€y = a21¥; + a22Vs + ...+ aaml,,
€, = QAplUy + Ap2Vg + ... + ¥y,

The proof is saying that performing the row reduction of A is the same as what happens to the
coefficients when you form a certain collection of linear combinations of the right-hand sides of
these equations. After reducing, the right-hand sides of the final row (indeed any row after the
mth row) is necessarily zero. But the left-hand side of that row cannot be zero: the entries of
the different e, cannot cancel, since they lie in different components (though the proof uses the
power of the elementary matrices to demonstrate that point without having to imagine it).

3.2 Linear independence

The intuitive idea of linear independence of vectors is simple: vectors are called linearly independent
if they do not point in the same direction, or, more precisely, if none of them is a linear combination
of the others. Nevertheless, understanding the definition and its power properly needs a little care.

Definition 3.7

Vectors vy, ...,v, € R" are called linearly independent if whenever
MUy + ...+ Asu, =0 for scalars A\j, ..., s € R

we necessarily have that

AM=...=X=0
In other words, vy, ...,v, € R" are linearly independent if and only if the only linear combination
of them that is 0 is the trivial one.
This definition is sometimes phrased slightly informally as: v,...,v, € R" are linearly independent
if and only if
Mo+ .o+ Au, =0 — AM=...= =0

Since this is so important, it is worth defining what it means not to be linearly independent separately.

Definition 3.8
Vectors vy, ...,v, € R™ are called linearly dependent if and only if there is an equation
Aoy + .+ Au, =0 (3:3)
for scalars A1, ..., As € R which are not all zero.
The equation (3.3) is referred to as a linear dependence relation for the vectors vy, ..., v,.
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Clearly a set of vectors is either linearly independent or linearly dependent, and cannot be both.

Let's take this slowly in R?.

Example 3.9

The vectors v = (1,2)” and w = (—2,3)” € R? are linearly independent. Indeed, suppose that

Av + pw = 0. Then
0\ 1 -2\ [ A=2pu
) =)+ (3) = (5:%)

Considering the components separately gives two simultaneous linear equations:

A—=2p = 0
22+3p =

Solving these (for example by subtracting twice the top one from the bottom one) shows that
A = p = 0. That's exactly what linear independence is asking for: the only linear combination
of v and w that equals the zero vector is the trivial linear combination.

In contrast, the vectors u; = (2, —6) and uy = (—3,9) are not linearly independent. You may
see at once that 3u; + 2uy = 0, which is a nontrivial linear combination giving the zero vector.
Even if you don't spot this at once, we may apply the definition to find this: if we write

(o) =2(%) + ()= (55

which you solve (either by considering components, since this is such a small example, or by
row reduction, since it is such a formidable tool) to get = s and A = 3s/2 for any s € R. In
particular, you may choose a nonzero s € R to find a linear dependence relation: for example
s = 2 gives the relation 3u; 4+ 2u, = 0 that we spotted above.

The linearly dependent vectors u;, u, in the example were collinear. (Recall from Definition 1.5 that
two vectors are collinear if and only if one of them is a multiple of the other.) This is a general fact.

Lemma 3.10

Consider v;,v, € R™. Then vy, v, are linearly dependent if and only if they are collinear.

This lemma is a criterion for two vectors being linearly dependent, not independent. Negating it gives:
V7, Uy are linearly independent if and only if neither is a multiple of the other — which is perfectly true,
but is so convoluted to pronounce that it's not much help!

Proof. We check this using the definition. First, suppose there are A1, Ao € R for which
)\121 + )\222 =0

If A1 # 0, then v; = —(A2/A1)vy is a multiple of vy, while if Ay # 0, then vy = —(A1/A2)v; is
a multiple of v;. So far, that says: if v;,vy are linearly dependent then one is a multiple of the
other, that is they are collinear. The converse is quicker: if v; = pw, then v; + (—p)vy =0 is a
linear dependence relation, since the coefficient 1 of v, is nonzero, so it doesn't matter what the
value of y is. Similarly if v, is a multiple of v;. O
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Remark

Definitions 3.7 of linear independent and 3.8 of linearly dependent apply perfectly well to any
subset S C R, even if, for example, S is infinite: the only point is that linearly combinations
can only have finitely many nonzero coefficients.

From here on, we will happily use these definitions for any subset .S, though in practice in almost
all situations S is finite and the definitions as stated above are ideal.

Example

Let S = {ke; | k € R} C R™ Then S is linearly dependent. There are many linear dependence
relations, but we only need to exhibit one: for example 3 x (2e;) +2 x (—3e;) = 0.

Example

At the other extreme, Definition 3.7 applies even if we are dealing with only s = 1 vector. If
v, € R”, then it is linearly independent if and only if it is not the zero vector: if A\jv; = 0, then
either A = 0 or v; = 0. (If you find that confusing, just ignore it — you're merely confused by
its triviality.)?

?This is a suitable point to remind ourselves of our favourite joke (The Puffin Joke Book, 1974). What's
the difference between a duck? One of its legs are both the same! hahahahaha. .. [Aside for multi-dimensional
readers: jokes are always funniest when you have to explain them. Here, the joke is that it has the syntax of a
joke but not the semantics — the subject matter of the ‘joke’ is a piece of misdirection. Now it's funny, right?]

Remark

It is natural to ask at this point, how big can a linearly independent subset of R™ be? Prima
facie we could imagine an infinite set of linearly independent vectors in R”, but in fact the upper
limit is n. This fact is essentially a small piece of what we know about the solutions of systems
of linear equations, and perhaps therefore it feels intuitively correct to you: from the point of
view of linear equations, you already know the following important result. The key to its proof
is that we already know a spanning set, namely the standard basis, which has n elements.

Proposition 3.11

Suppose a subset S C R" is linearly independent. Then in fact S is a finite set and #5 < n.

Proof. Suppose S has strictly more than n elements (it could even be infinite, for example). Choose

n + 1 distinct elements v,,...,v, ., € S; these are certainly linearly independent.
Consider the vectors e, ...,e,. Since they span R", there are scalars a;; € R so that
n
v; = Z ai;€;
i=1
for each j =1,...,n + 1. (Equivalently, if you prefer, v; = (a1;, as;, . . ani)T.)
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Assemble the scalars a;; into an n X (n + 1) matrix A = (a;;): the vectors v, are the columns
of A. Since A has fewer rows than columns, Corollary 2.69 says there is a nonzero vector k =

(k1,...,knt+1) such that Ak = 0. Since the v, are the columns of A, this is exactly saying that

kivy + ...+ kpy1v, =0

Since k # 0, says that vy,..., v, are linearly dependent, which is a contradiction. ]

3.3 Bases of R"

Definition 3.12

A sequence of vectors v;,...,v, € R" is a basis of R" if and only if it is linearly independent
and spans R".

The first example is of course the standard basis ey,...,¢e, € R™.

Propositions 3.6 and 3.11 prove the following important result at once.

Theorem 3.13

Let S C R"™ be a basis. Then S is a finite set and #S = n.

Language 3.14

A tiny point: it will prove fantastically useful to us that any basis we consider is a collection of
vectors in some given fixed order — that's why the definition referred to a sequence of vectors.
Of course the definitions of linear independence and spanning did not rely on the order: they
referred merely to a set of vectors. Let’s not fall out over this. In this module, let’s just agree
that whenever we have a (finite) basis it comes in some fixed order, and whether we call it a
sequence or a set is irrelevant.

The second important result about bases is a kind of existence and uniqueness statement.

Proposition 3.15

Let L, . ,in be a basis of R™. Then for any w € R", there are unique scalars pu1, ..., u, € R
so that

Of course we know the scalars p; in the proposition exist: since the vectors il, e 7in span R", any
vector may be expressed as a linear combination of them. The point is that since ip . ,in are also
linearly independent, there is exactly one way to do this for each vector w. Try it yourself — imagine
you had two expressions and then follow your nose — before comparing with the following proof.

Proof. As remarked above, since f1’ ey fn spans R"™, there certainly is at least one expression
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for some scalars p; € R. Suppose we had two such expressions: that is, we also have
wzulil—l—...—l—ynin

for some (possibly different) scalars v; € R. Then subtracting these two expressions gives

Q:(Ml_yl)i1+"'+(ﬂn_yn)in

But since the vectors il, ..., f are linearly independent, it follows by Definition 3.7 that

In
U1 —Vi=...= iy —vp =0

that is, that u; = v; for each i = 1,...,n, as required.

Remark

You probably noticed that Definition 3.12 only defined the notion of basis for a finite set of
vectors. Later we will allow infinite bases, and we will see lots of interesting examples, but in
our current context of R™ we know from Proposition 3.11 that any linearly independent set is
finite, so it is enough to define the notion for finite sets.

Example 3.16
Let f, = (1,1) and f,= (2,1)T € R2. Then f,, f, is a basis of R?: you can easily check
that it is linearly independent (by checking that the equation
AMf,+rf,=0
only has the solution A\; = A2 = 0) and that it spans (by checking that the equation

AMf,+Xef, =0

has a solution for any b € R?). The notion of basis is entirely bound up with the existence and
uniqueness of solutions of systems of linear equations, as Propositon 3.15 says precisely.

Here's another way to show that L,& spans. We already know that the standard basis e;, e,
spans, so if we can write those two vectors as a linear combination of il’iQ then we can write
any vector, as required for spanning. But that's easy to see:

e =f,—f, and e =2f —f, (3.4)

We will see later in complete generality that if a vector space has a basis of size n, then any
linearly independent set of size n is a basis, and any spanning set of size n is a basis. Armed
with that, the equations (3.4) constitute a complete proof that L,L is a basis of R2.

Example 3.17

Continuing with Example 3.16, the following curious question arises, which turns out to be
important. Consider the vector w = (—3,5)7 € R2. It is extremely useful to regard that
coordinate expression of w as the linear relation

w = —3e; + 5ey
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That is, the components of w are really the coefficients of w when we write it with respect to
the basis e, e; of R?.

By Example 3.16, we know another basis of RZ, namely L’iz' Since this is a basis, we may
write w as a linear combination of these. What is that? Well, you could solve the equations

w=pf +p2f, (3.5)

You would find that w = 13i1 — 8i2 but there is a much quicker way.

@=(i )

whose columns are the vectors f, f, (in that order). Then form the inverse matrix

o (-1 2
=(i 4)

(and quickly multiply them together in your head to be sure it is the inverse!) and observe that

eu- ()

which, ta-dah!, are the coeffiicents of the expression of w with respect to the basis L’i?

Consider the matrix

Perhaps that doesn't feel quicker, since you had to compute the inverse matrix Q~!. But if
you had a hundred vectors wy,...,w;o, and needed to do this calculation for them all, you
still only have to compute Q~! once and then simply multiply out Q~'w, for each of them,
whereas if you prefer to solve the system (3.5) for each one, then in practice you are repeating
the calculation over and over.

Remark

The calculation of Example 3.17 is no fluke: it always works in exactly this way, and is one of
the most powerful ideas of the whole theory. You should think of it as changing coordinates,
and it is important to regard it as a simple thing, even though we all find it fiddly at first.

For comparison, you know from elementary integration that many calculations seem impossible
in one set of coordinates but work easily if you change to some set of coordinates. When
integrating, you are brilliant at this: you write z = f(¢) and so dx = (df /d9)dv, and, if you
chose the change of coordinates f wisely, you then proceed with the calculation.

The point here is that if we get very good at expressing the same point w with respect to
different bases, then we can choose a basis to make a given problem simpler to solve. This idea
is referred to as ‘change of basis’. It may seem tricky the first time you see it, but it becomes
natural with practice. You may even realise that you've been doing it all along in all sorts of
contexts (including Chapter 2!), but for now let’s get to grips with how it works in R™ and why.

3.4 Change of basis is simplicity itself

Let's state this a little bit formally. Suppose ¢, ..., e

» is the standard basis and L, e ,in is any
basis of R".

Any vector w € R™ has a unique expression with respect to either basis: that is, there are unique
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scalars \; and p; for which

[S

Ae; + ..o+ e, and

Of course, the coefficients with respect to the basis {e;} are the components of w = (A1,...,\,)7 as
a column vector in R™. The question is, if you know the scalars Aq,..., A,, can you find the scalars
U1, - -« 5 by, With minimal work? Oh yes you can!

We have to do some preparatory work as a one-off investment: for each L find scalars a;; for which
L = ayie; + ...+ anie,

But that's no work at all: the a;; are the components of the column vector L € R™. (You have to
be careful about the 4, j indexing of the coefficients a;;.)

Now write the matrix

Q = (ai;)
that is, the matrix whose columns are the vectors L expressed in the standard ¢; coordinates. Compute
Q~', and finally

Q' : (3.6)
Hn An
Let’s not think about why this works for a moment, but try it out.

Example

Consider the basis (you should check that it is indeed a basis)

0
2
1
3
2
i3:2><§1+3><§2+0><23 = 3
0
and some other vector
5
w=95xXe —7TxXey+1l xeg = —7
11

with all of them expressed in coordinates with respect to the standard basis e, €5, €3.
The task is to find w1, p2, u3 € R for which
w=pf, +p2f,+psf,

Since L?iyig is a basis, we know from Proposition 3.15 that the u; exist and are unique. In
banal terms, we may say that the task is precisely to solve the system of equations

01 2\ /m 5
12 3| [p]|=|-7
2 3 0/ \us 11
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and that's true, but let's follow the method above.

We write the matrix

0 1 2
Q=1 2 3
2 30
and compute its inverse
012|100 100[-% 3 -1
1 2 3/0 1 0 | which rowreducesto [ 0 1 0 % -1 %
11 1
2 3 0|0 0 1 I = =
so that
1 -9 6 -1
Q!= a6 -4 2
-1 2 -1
and then
41 5 1 —49
po | =Q7 [ -7 =5 | 40
143 11 —15
You can check at once that, yes indeed,
49 15
w= *?L +20f, - ?is
The reason it works is simple. Write the vectors L as linear combinations of the basis e, ..., ¢e,:
il = aiie +aze + ... +anie,
[, = aioe; +axey+ ...+ ape
= ! ? e (3.7)
[ = ae +ames + ...+ anne,

T

for scalars a;; € R. Once more, notice the ¢, j subscripts on the coefficients a;;: they ordered carefully
so that the coefficients are naturally column vectors.

Language 3.18

When writing the equations (3.7) above, we say that we are expressing f, with respect to
the basis ¢, ..., ¢, or simply expressing L in the basis ¢,...,¢e,. We may also say, when
writing the coefficients as a column vector, that

I
&

is a representation of f. in coordinates with respect to the basis ¢y, .. .,
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With the (square) matrix Q = (a;;), we may express this formally as

aill a1 ... QApl
L &) €1
) alpa a22 ... Qp2 i QT ]
' ' e e
i”l Alp A2, ... Qpp =N =n

where you note that we had to transpose the matrix () to match the coefficients of (3.7). (By
‘formally” we just mean that we are using matrix multiplication as a convenient short-hand notation
for the equations (3.7), and we are not trying to image a column vector whose entries are other column
vectors. You may continue to write in equation form as (3.7) if you prefer.)

On the other hand, L, o ,in is a basis too, so we may write the vectors €j as linear combinations
of them:

e = b11i1+621i2+...+bn1in
e = biaf +baf,+...+baf

€, = blni1+b2ni2+-~-+bnnin

for scalars b;; € R. Assemble the coefficients as a matrix P = (b;;), so we may write this as

€] i1
-l =pT| :
en f

n

it =1,...,n, since it amounts to expressing the ¢; in terms of the basis e;,...,¢,, and there is only
one such expression by Proposition 3.15. In other words,

Of course, substituting the expressions (3.7) for f into (3.8) must result in equations ¢; = ¢; for

PrQ" =1,
or after transposing both sides using (PTQ™T)T = (QT)T(PT)T = QP
QP =1I,

That is, Q is invertible and P = Q1.

Now, since the ith column of () is the vector L in (the usual) coordinates, for any vector w € R",
expressed with respect to each of the two bases as

M:)xlgl—i—...—l—)\ngn:,ulil—l—...—i—,unin
it follows at once that

H1 A1
Q| : :Mlil—i—...—kunin:w:)\lgl—i—...—i—)\ngn: :
Hn An
which, after multiplying by Q~!, is exactly the claim in (3.6).

This showed how to find the coefficients of a vector w € R™ that you know as a column vector (in
other words, expressed in the standard basis ¢, ..., e, ) with respect to another basis f ,...,f . Itis

21 <n
almost as simple to translate between any two bases, not just from the standard basis.
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Example

Consider two bases il = <1> 7i2 = <_12> and 9, = <_31> 19y = <_25) of R2. Suppose

w= —3L + 7i2
What are the coefficients with respect to the basis g ,g,? That is, find i1, uo so that

w = p1g, + p2g,

The column vector expressions of L and g, are their coefficients with respect to the standard
basis, so using these as the columns of two matrices gives

11 1 2
Qf—(l —2> and Qg‘<3 —5>

which (using the respective Q') translate the column vector w into its coefficients with respect
to each basis respectively. Therefore

wa (-6 90 -6 ()

first translates the coefficients of w with respect to the L into its coefficients with respect
to the standard basis (that is, its normal representation as a column vector in R™) and then
translates again to the coefficients with respect to the g, The conclusion is that

w = —14g1 — 5g2

Of course we can check this in the usual standard coordinates, since

= () ()-+)

3.5 What about column operations?

Up to this point, given an m x n matrix A € Mat,,,,, we have used row operations to put A into
reduced row echelon form. We regard this a simplifying A, and in the context of augmented matrices
(A | b) it makes it almost trivial to read off everything we want to know about the solutions of the
corresponding system of linear equations. We implement row operations as premultiplying A by a
sequence of carefully chosen m x m elementary matrices, S;;, M;(\) (for A # 0) and A;; ().

So what about column operations? Well, exactly the same ideas apply, but with a different goal.
Thus we may switch two columns, multiply a column by a nonzero scalar, or add any multiple of one
column to a different column. There are analogous elementary matrices that we denote respectively
by S, M*(\) and A¥(u). These are simply the transposes of the corresponding ‘row’ elementary
matrices, but note that now they are invertible n x n matrices, and that we postmultiply by them.
(The use of superscripts is barely necessary, but helps to remind us that they are being understood as
column operations.)
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Example

Consider the matrix A which is in RREF:
1 -3 0 5
A=10 0 1 7
0 0 0O
By swapping columns around, we can move all the pivot columns to the front (left) of the
matrix so we see an identity matrix (of suitable size) at the front: simply swap columns 2 and 3:

1 -3 0 5
ASZ = (0 1 7
0 0 0

S = O
o O
O 3 Ot

0
0

o O O
o = O O
O O = O
— o O O

Now we may add (or subtract) suitable multiples of column 1 to cancel the —3 and 5 in columns 3
and 4, and also use column 2 to cancel the 7 in column 4:

ASBAB(3) A1 (—5)A%(-T7) =

1 0 -3 5 1 0 3 0 1 00 =5 1 00 O 100 0
0100 010 O 010 -7

01 0 7 =0 1 0 0

00 0 0 0 010 001 O 001 O 00 0 0
0 0 01 0 00 1 0 00 1

Matrices in this form are said to be in Smith normal form, which we discuss below.

The whole theory works seamlessly: we may even define a reduced column echelon form. There is
nothing to prove: for A € Mat,,,, we generate a reduced column echelon form

AFy---F, for elementary matrices F; € Mat,,,
where we choose (row) elementary matrices E; so that
Eo---E AT
is in RREF, and F; is defined to be F; = EZT giving

AF,---Fy=(E;--- B, AD)T

One value of column operations is that they find a basis of the column span Colspan(A) of a matrix 4;
recall Definition 3.4.

Proposition 3.19

Let A € Mat,,,,. Then the nonzero columns of the reduced column echelon form of A form a
basis of the column span Colspan(A) of A.

Proof. Let ¢y,...,c, € R be the columns of A, so that

Colspan(A) = (¢y,...,¢,) CR™

Let d;,...,d, be the nonzero columns of the reduced column echelon form of A, where ¢/ < n. By
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construction

Finally 4, ...
all the others have a zero entry.

Using row and column operations in combination, we may transform any matrix into a particularly

simple form.

Definition 3.20

<d1’...

d; € Colspan(A)

for each ¢ =1,..., ¢ since they are linear combinations of the columns of A. In fact

7dg>: <Q17--~ C

since by reversing the column operations we recover the ¢; as linear combinations of d;,...,d
(together with some zero columns, but of course those do not contribute anything to the linear
combination). Thus d;,...,d, span Colspan(A).

,d, are linearly independent since each of them has a pivot entry 1 in some row where

A matrix A € Mat,,,, is in Smith normal form if and only if it is in the form

Theorem 3.21

F; € Mat,,, so that

We give a rather quick and dirty proof, that really relies on you drawing a sketch of the matrix after the
first row reduction so you can understand the care that the proof requires in the second row reduction
it employs; if you just say “row reduce A to B, and then row reduce BT and finally transpose back”
then you need to explain why the second (transposed) reduction didn't destroy the first. It is fine, but

it is much more delicate than it pretends.

Proof. Choose elementary matrices F; € Mat,,,, so that the matrix B = E}. --- F1 A is in RREF.
Note the positions of the pivot entries a;; = 1, for specific 7, 5. Now choose elementary matrices
D; € Maty, so that D;---D1B7” is in RREF, being careful to use the (previous) pivot entries

is in Smith normal form of some rank » > 0.
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Ey---ELAF -+ Fy

I, Or,n—r
A = <0mr,r Omr,nr)
1 00 0|0 0
010 00 0
= 0 00 110 0
0 00 0|0 0
0 00 0|0 0

The rank of this Smith normal form is defined to be the integer r > 0.

Let A € Mat,,,. Then there are elementary matrices F; € Mat,,,, and elementary matrices




aji = 1 (now in their transposed positions) as the leading 1s for those columns. (This happens
automatically if you always choose the top nonzero entry of any nonzero column as the pivot,
which in practice you probably do.) Then setting F; = DZ-T gives the result. O

Remark

At this stage you could imagine choosing different E; and F}; so that the resulting Smith normal
form has a different rank = r. In fact, that is not possible, whichever way you choose the E;
and Fj, but it is not particularly clear yet why. The rank r > 0 of the Smith normal form is a
crucial invariant of the matrix A, and we discuss it later in the context of linear maps.
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Chapter 4

Vector spaces

Finally we come to the general theory of vector spaces (over R). The main difference you will notice is
that we no longer underline elements v, w and so on, unless they happen to be column vectors in R™.

4.1 Formal definition and examples

Definition 4.1

A vector space V is an abelian group under an operation + that also admits scalar multipli-
cation by elements of R: for any v € V' and any A € R, there is another element Av € V, and
this multiplication satisfies the rules:

(i) Mv+w) = v+ Aw

(i

(ii)) A(pw) = (Ap)v
)

(iv

A+ p)v = v+ pv

1v =

for any A\, u € R and any v,w € V. We usually denote the additive identity by Oy and for any
v € V its additive inverse by —wv.

Remark

You may prefer to spell out all the axioms, rather than use the abelian group to carry some of
the load. In that case, you define a vector space to be a set V that has, for any u,v,w € V,

(i) a binary operation (addition) V' x V' — V denoted (v, w) — v + w which satisfies

(i) v+ w = w + v (addition is commutative)
(i) u+ (v +w) = (u+v) + w (addition is associative)
(iii) there is an (additive) identity Oy € V so that Oy +v =
(iv) there is an (additive) inverse denoted —v so that v + (—v) = Oy, and

(ii) an operation (scalar multiplication) R x V' — V denoted (A, v) — Av which satisfies

(i) Mv+w) = v+ w
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(i) A+ p)v=Av+ pv
(ii)) A(pw) = (Ap)v
(iv) lv=w

for any A\, x € R and any v,w € V.

Example

Of course, V=R is an example of a vector space for any fixed n > 0. We checked the points
that the definition requires in Lemma 1.3.

Example

We denote the ring of all polynomials (in a variable = and with real coefficients) by
Rlz] = {a0+a1w+a2x2+...+asx5 \ s € N and all g; e]R{}

You are probably very familiar with polynomials (see the following remark, if not, but otherwise
ignore it). You can add them together by collecting the coefficients of each monomial !
together, and you can multiply them by scalars simply by multiplying every coefficient, and it
is easy to check that all the axioms of a vector space hold.

Remark

You need to be a tiny bit careful about the definition of the ring of polynomials if you read it,
though you will surely be using it correctly already and it is simpler to work with this than to
worry about the formulation (you may compare with Bourbaki if you really care).

To state the obvious, for any f € Rz|, there is some integer s > 0 and a; € R so that
f = ag + a1z + agx® + ... + asx®. We refer to the a; as the coefficients of f, and it is
convenient for any power 2/ not written (for example when j > s) to treat ajas a; =0 € R.
We may write a polynomial briefly as 3" a;x?, where it is understood that the sum is taken over
integers ¢ > 0 and, crucially, that only finitely many of the a; are nonzero: in some jargons one
may say almost all a; = 0. With that in mind, two polynomials f = > a;z% and g = >_ b;!
are equal if and only if all their coefficients are identical: a; = b; for all ¢ > 0. The zero
polynomial is by definition the polynomial with all coefficients a; = 0.

For example, f = 2+ 3z — 523 + 027 is a polynomial with given coefficients ag = 2, a1 = 3,
a3 = —5 and a7 = 0, and implicitly all other a; = 0. You see at once that the integer s > 0 is
a bit of a red herring, since as written f has s = 7, but of course g = 2 + 3z — 522 is equal
to f. To mollify this trivial irritation, we define the degree of a polynomial f = 3" a;2" to be
the largest 4 for which a; # 0: it is denoted

-1 if f is the zero polynomial
deg f = 4 .
max {i > 0| a; # 0} otherwise

where you notice the slight care taken to make a special convention for the zero polynomial.

We may add polynomials and multiply by scalars: if f =" a;2* and g = > b;z’ then
frg=) (ait+b)a’ and A=) (Aa)a’
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These operations make R[z] into a vector space; one must check all the details of Definition 4.1.

You know a great deal more about R[z], and being a vector space is perhaps the least interesting
thing about it. For example, we may multiply polynomials together in the usual way. (This
makes R[z] into an R-algebra; we don't discuss those in this module.) Also you naturally think
of polynomials f € R[z| as real functions f: R — R by evaluating the variable = at any number
b € R: the map is b — f(b). This point of view is extremely useful, even though prima
facie it had nothing to do with the definition (but beware there are contexts where analogous
thinking can mislead). With this in mind, we may ask about roots of polynomials (solutions of
the equation f(x) = 0), local maxima and minima (perhaps employing derivatives), pictorial
representations as graphs, areas under graphs (perhaps using integrals), etc., etc. The only
one of these we will see again in this module is differentiation, even though the tools of Linear
Algebra are absolutely central to them all.

Example

A small variation on the previous example is, for any fixed d € N, the vector space
Rlz]<q = {f € R[z] | deg(f) < d} = {ao +a1x+...+aqx? | ay,... a4 € R}

You can check that this is a vector space too under the same addition and scalar multiplication.

Example 4.2

The set of functions
d2
V= {f: R—R ‘ f is twice continuously differentiable and 7o) +9f = 0}

is a vector space: the zero function is certainly a solution of this differential equation, and by
the rules of differentiation if f,g € V and A\, x € R then A\f 4+ pg is also in V.

This vector space V is defined in a rather subtle way, and we were able to check that it is a vector
space in abstract terms, applying the linearity of differentiation rather than any knowledge of
its elements. But in fact you probably already have a clear idea of the elements of V' from your
knowledge of differential equations: they are precisely all the functions f: R — R of the form

f = Asin(3z) + pcos(3z)

for any A\, u € R.

Remark

There are unknown infinities of vector spaces ready to be our friends. We have seen one tiny
corner of the tip of the iceberg. Just below that, but still a long way from getting our feet wet,
all of the following are perfectly respectable examples.

There are vector spaces of
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(i) bounded sequences: abbreviating the infinite sequence (a1, a9, ...) by (an)nen
0*° = {(an)nen | there is some N € R such that |a;| < N for all i}
For example (1/n),¢n lies in £ but (n?),cn does not.
(ii) sequences that give absolutely convergent series:

im < oo}

=1

0= { (an)nGN

For example (1/n2),cy lies in £>° but (1/n),cn does not.
and any number of variations such as square-summable sequences which have >~ a2 < oo, and
so on. You can quickly check (using Analysis) that each of these is a vector space.

There are also vector spaces of

(iii) Continuous functions:
C(R)={f: R —R| f is continuous}
For example x + |z| lies in this space.

(iv) Smooth functions:
C*(R) ={f: R — R | f may be differentiated as many times as you like}
For example x — sin(z) lies in this space.
(v) Formal power series:
R[z] = {ao—i—ala:—i—agacz—i—... ‘ a; € R for aIIiZO}.

For example, 142z +42%+...4+2"2" 4. .. lies in this space; it has radius of convergence
zero, and so you cannot evaluate x at any nonzero value to produce a number: it is not
a function on any e-neighbourhood of the origin, however small € > 0 you choose.

and any number of variations: power series with radius of convergence at least 1 (such as the
Taylor expansion of 1/(1 — x)), or power series with radius of convergence oo (such as the
Taylor expansion of exp(z)), and so on and so on. You can quickly check (using Analysis) that
each of these is a vector space, and that R[z] is a subset of all of them.

All of these vector spaces are different from our most familiar collection of examples, R™ for
n € N. Vector spaces are ubiquitous in mathematics, and while R" is vitally important, and
certainly is the central example in this module, we must never think that column vectors of
some fixed length n is the only example of a vector space.

Essentially you can forget all these examples for the rest of the module — | will only mention
them occasionally to illustrate particular points, and then most likely only to say that these
examples are too subtle for me to understand.

There are a whole bunch of things not listed in the axioms of a vector space that nevertheless hold
completely generally; compare Lemma 1.3. Their proof is usual routine fooling around, so you should
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do it and ignore my feeble efforts. (Recall from group theory that the additive identity Oy is unique:
after all, if you had another, 0, say, then Oy = Oy + 0y, = 0y, so it was the same all along.)

Lemma 4.3

Let V' be a vector space. For any A € R and v € V' we have

(i) /\OV = OV and Ov = Ov.

(i) (—=1)v = —v and more generally (—=A\)v = —(Av) = A(—v).

If you do accidentally find yourself reading the following drivel, please turn it into a useful exercise by
indicating at each equals sign which axiom(s) is being used, and why it's right.

Proof. (i) The second claim first: Ov 4+ 0v = (0 + 0)v = Ov, so adding —(0v) to both sides
shows that Ov = Oy. So we only need to check the first claim for A # 0: for any v € V,
v+ A0y = A(3v + Oy) = A(3v) = v, so adding —v to both sides shows that A0y = Oy.

(i) The additive inverse —v is characterised by what happens when it is added to v, so we
compute v + (—1)v = lv + (—1)v = (1 + (—1))v = 0v = Oy so —v = (—1)v. The general
case is the same: Av+ (=A)v = (A4 (=A))v = 0v = Oy, so —(Av) = (—A)v. And similarly:
A+ A(—v) = A(v —v) = 0y, so —(Av) = A(—v). Please make it stop.

O]

4.2 Spans and subspaces

We define the span of a subset of a vector space V exactly as for R".

Definition 4.4

Let S C V be a non-empty subset of a vector space V. The span of S, denoted (S5), is
(S)y ={A\v1 4+ ...+ Asvs | v1,...,us € S and A\q, ..., A\s € R}

By convention, we define the span of the empty subset S = @ C V to be (@) = {0y }.

We define subspace of a vector space; compare with subspaces of R™ in Definition 3.1 — it is identical.

Definition 4.5

Let V' be a vector space. A subspace of V is a nonempty W C V with the property that for
any v,w € W and any A € R, we also have v + w € W and Av € W.

There are two particular subspaces that we refer to as trivial subspaces: {0y} C Vand V C V.
Thus to say a subspace W C V is nontrivial is to say W # {0y} and W # V.
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Example
For any d € N, W = Rx]<4 is a subspace of V' = R]x].

One detail to be sure about is that the two operations in W (addition and scalar multiplication)
are exactly the same as those in V. In Definition 4.5 the plus sign + was addition in V, but we
probably came into this example thinking that W had an addition defined all of its own.

Remark

To prove some W C V is a subspace of V, you just check the conditions of Definition 4.5. It is
common to amalgamate them into a single equivalent condition: W C V is a subspace if and
only if

A+ pweW

for every v,w € W and all A\, u € R.

Proposition 4.6

Let V' be a vector space.

(i) If S C V is any subset, then its span (S) is a subspace.

(ii) If Wy, Wy C V are subspaces, then so is W N W,

Another routine proof: best to do yourself.

Proof. (i) If v =3 oyv; and w = ) Bjw; for v;, w; € S and oy, §; € R, then for any A\, p € R

Mo+ pw = Z(Aai)vi + Z(Nﬁj)wj

is a (finite) linear combination of elements of S, and so lies in (S)

(ii) Suppose v, w € Wi N Wy. We must prove that for any A\, u € R also Av + pw € Wi N Wa.
But this is instant: v, w € W7 so Av+ uw € Wy since Wy is a subspace, and similarly for Ws. [

Definition 4.7

If W1, Ws C V are subspaces of a vector space V/, then we define their sum to be exactly the

same as their combined span:
Wi+ Wy = <W1 U W2>

That is, for any v € V we have:

v € W1 + Wy <= there are wy € W7 and wy € W5 so that v = wy + ws.
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Example

Let V = R3 and consider

a
Wi = b a,beR » and Wy = c c,d eR
0 d
Then
0
WiNW, = bl |beR} and Wy + Wy =R3
0

Note that W1 + Wy # W1 U Wy in this example. In fact, you can easily prove (so do!) that

Wi + Wy = W1 U Wy <= either W7 C Wy or Wy C W7.

The next definition is the key one that identifies the main subject area of this module. It is very
simple, but it is worth absorbing why it works in the context of the rest of the results of this section.

Definition 4.8

A vector space V is finite dimensional if and only if there is a finite subset {vy,...,vs} CV
that spans V: that is (vy,...,v5) = V.

Example

We know lots of examples of finite-dimensional vector spaces:

(i) R™ for any n € N. The standard basis ¢;, ..., ¢, provides a finite spanning set.
(i) R[z]<q for any d € N. The monomials 1,x,22,..., 2% provide a finite spanning set.

(iii) the space of solutions of the differential equation in Example 4.2. The two functions
sin(3x) and cos(3z) provide a finite spanning set.

By contrast, the ring of polynomials R[z]| is not a finite-dimensional vector space. That needs
proof. Suppose f1,..., fs € R[z] is a spanning set. Denote the degrees of these polynomials by
d; = deg f;. Since the set {d; | i =1,...,ds} is a finite set of integers, it has a largest element:
without loss of generality dy > d; for all i = 1,...,s. But then 2%*! cannot be written as a
linear combination of fi,..., fs, and so they cannot have formed a spanning set.

Remark

The last example V' = R[z] is a salutary: although it is not finite dimensional, it is a perfectly
lovely space, and we work in it without concern. The point to take from this is that, while our
module will focus on finite-dimensional vector spaces and will prove theorems in that context,
we should expect to work with infinite-(i.e. not finite-)dimensional vector spaces too.

(If you own a more philosophically constructivist view, you might object that nobody ever truly
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works with the whole of R[z], but always with some approximation such as R[x]<,4. Fair enough,
but in that case you're probably even more upset with R, so let's just roll with it for now.)

4.3 Bases of vector spaces

We define linear (in)dependence for a set of elements of a vector space just as we did in R™; compare
Definitions 3.7 and 3.8.

Definition 4.9
A subset £ C V of a vector space V is linearly independent if and only if whenever
AMU1+ ...+ Avs =0y forvg,...,vs € Land A,..., A\; €R

we necessarily have that
AM=...= =0

A subset £ C V is linearly dependent if and only if it is not linearly independent. That is, £
is linearly dependent if and only if there is a linear dependence relation among (finitely many
of) its elements, namely a relation of the form (for some s > 1)

AU1 + ...+ Asvs = Oy (4.1)

for v1,...,vs € L and A1, ..., s € R which are not all zero.

Linearly independent subsets of finite-dimensional vector spaces are necessarily finite; compare the
statement and proof of the following proposition with Proposition 3.11.

Proposition 4.10

Suppose V is a finite-dimensional vector space and that £ C V is linearly independent. Then
L is a finite set.

Proof. Since V is finite dimensional, there is a spanning set wi,...,w, € V. Suppose there are
n + 1 distinct elements vy, ..., v,41 € L. Since wy,...,w, span, there are a;; € R so that

n
vj:Zaijwi foreach j=1,...,n+ 1.

=1

Consider the n x n + 1 matrix A = (a;;). Since A has fewer rows than columns, by Corollary 2.69

there is some k = (ky,. .., kn+1)T # 0 such that Ak = 0; note that the ith row of this equation is
aitk1 + ...+ aini1knpr =0 (4.2)
Thus
n n
kivi + ...+ kpp1vne1 = ki Z A Wi + ... + kpg1 Z i n+1W;
i=1 i=1
n
= Z (kran + ... + knt1@ins1) wi
i=1
= 0Oy by (4.2)
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This is a linear dependence relation among w1, ...,v,41, Since k # 0, and so L is not linearly
independent, which is a contradiction. O

The next very simple lemma matches our intuition and proves useful several times.

Lemma 4.11

Let V' be a vector space with B C V a linearly independent subset and v € V' an element. Then
exactly one of the following two cases occurs (and not both):

(i) v e (B), or

(i) BU{v} is linearly independent.

The proof hinges on the triviality that if you have a linear expression involving v and elements of B,
then the coefficient of v is either zero or it isn't. It's a great first exercise, before reading on.

Proof. If v € (B), then v = A\jwy + ...+ A\sws for some wy,...,ws € Band Aq,..., s € R. This
is a nontrivial linear dependence relation among B U {v}, since the coefficient of v is not zero, so
B U {v} is not linearly independent.

If v ¢ (B), then we must prove that BU{v} is linearly independent. Consider a linear combination
AU+ prwi + ..+ psws = 0y (4.3)

for some wy,...,ws € B and A\, u1,...,us € R.If XA # 0, then rearranging (4.3) gives

vj:—<%)w1—...— (%)wsedi’)
But v; ¢ (B), so we must have A = 0. Therefore (4.3) reads ) pjw; = Oy. Since B is linearly
independent, it follows that all i; = 0, and so all coefficients of (4.3) are zero as required. t

Corollary 4.12

Let V' be a vector space. If V' is not finite dimensional, then V' contains an infinite set vy, vo, . ..
of linearly independent elements.

Note that there is no claim that the v; span V.

Proof. Certainly V' # {0y} so choose any nonzero v; € V and set W = (v;). Since V is not
finite dimensional, W # V, so we may choose some element vy ¢ W. The set {vi,v2} is linearly
independent by Lemma 4.11.

We proceed inductively: after m steps, v1,...,v,, is a linearly independent set. Since V is not
finite dimensional, W = (vy,...,v,) # V, so we may choose some element v, 11 ¢ W. The set
{v1,...,Um41} is linearly independent by Lemma 4.11.

Thus we may continue the sequence vy, vs, ... indefinitely so that any finite portion vy,...,v,, of
the sequence is linearly independent. But that means that the whole sequence is linearly indepen-
dent, since any dependence relation would only involve finitely many of the v;. O
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Example

For example V' = R[z] is a vector space that is not finite dimensional, and the set of monomials
1,z,2%,...,2", ... is linearly independent: the zero polynomial is the additive identity Oy, and

by definition it is the polynomial whose coefficients are all zero.

The definition of basis of a vector space also mirrors that we used for R™; compare Definition 3.12.

Definition 4.13

Let V' be a vector space. A subset B C V is a basis of V if and only if 5 is linearly independent
and spans V.

We immediately state an equivalent criterion for being a basis, just as we did in the case of R" in
Proposition 3.15.

Proposition 4.14
A subset B C V is a basis of V' if and only if for any w € V, there is an expression
W= QU1V1 + ...+ UsUs

with distinct elements vy, ...,vs € B and scalars u1,...,us € R, and furthermore the scalars
W41, .-, s in this expression are uniquely determined.

Compare with the statement and proof of Proposition 3.15: this version is a little more precise (it is
‘if and only if") but the proof is essentially identical. The faintly bizarre wording is to avoid saying
that the choice if v1,...,vs is unique: of course there may be some other vsy; € B, and then one
could write

W= V1 + ... + fsVs + fst1Vsy1  With pgr1 =0

and the wording is to stop that being regarded as a different way of expressing w as a linear combination
of elements of B. (This is ridiculous! Please ignore and correctly treat the expression as unique.)

Proof. Suppose B is a basis. Then for w € V there certainly is such an expression, since B spans V.
If there were two such expressions, then we may assume they involve the same finite collection
v1,...,0s € B (by setting u; = 0 or A\; = 0 as required), so that they are

w = v+ ...+ psvs and
w = MU+ ...+ AgUg

for \;, u; € R. Subtracting these two equations shows that
(1 — A)vr + ... (s — As)vs = Oy

so each u; — A; = 0 by linear independence of B, and so indeed the coefficients p; are uniquely
determined.

Conversely, the expression for w shows at once that B spans V, while if

Av1 + ..o+ Agvs = 0y
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for \; € R and v; € B, then each \; = 0, since the trivial linear combination is one expression
for Oy, and so by uniqueness must be the only one. O

Example

It follows immediately that B = {2’ |i >0} = {1,2,2% 2% ...} is a basis for R[z]. The
uniqueness is simply the definition of equality for polynomials: two are equal if and only if all
their coefficients are equal.

Proposition 4.15 (Sifting Lemma)

Let V be a (finite-dimensional) vector space, and suppose V' # {Oy }. Suppose S = {v1,...,vs}
is a spanning set of V. Then there is a subset B C S that is a basis of V.

Moreover, if £L C § is any linearly independent set, then we may choose B to contain L.

We give two proofs. The first is stylish but doesn't help directly with finding a basis. We prove the
final statement, since this includes the first claim by setting £ = &. Note that ‘maximal’ here means
maximal with respect to inclusion: there is no claim that there is a unique ‘biggest’ subset.

Proof. Let B C S be a maximal linearly independent subset that contains £. It certainly exists,
since L is linearly independent. The claim is that B is a basis.

We need only prove that B spans, as it is linearly independent by specification. Suppose not. Then
there must be some v; that is not in the span (B) of B. The set BU {v;} is linearly independent
by Lemma 4.11, but it strictly contains B, which contradicts the maximality of B. O

The second proof is by sifting; considers each of the elements of S in turn, and ‘sift out’ those that
are not needed for a basis. It is this proof that gives Proposition 4.15 its name.

Proof. Without loss of generality £ = {vy,...,v,} for some r > 0. We consider the elements
Uptl,- .-, Vs in turn. Set B = L; we will adjust it as we go.

Suppose we are considering v; for r4+1 < j < s. If v; lies in the span of B, then discard it. On the
other hand, if v; ¢ (B) then replace B by BU {v;}, which is linearly independent by Lemma 4.11.
If j < s, continue with this new B and consider v;1; if j = s then stop. Clearly this process stops
after finitely many steps, once we have considered v;.

The resulting B is linearly independent by construction, and it spans trivially: each v; that we
discarded was a linear combination of other v; € B (in fact, with i < j), so in any linear combination
of the elements of S, we may substitute for v; by an expression involving only elements of B. [J

So every finite-dimensional vector space has a basis. Proposition 4.15 implies even more.

Corollary 4.16 (“You can extend a linearly independent set to a basis” Lemma)

Let V be a finite-dimensional vector space and v1,...,vs € V a linearly independent subset.
Then there exist vsy1,...,v, € V so that vy,...,v, is a basis of V.
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Proof. Since V is finite dimensional, there is a subset M = {wy,...,w,} that spans V. Apply
Proposition 4.15 with £ = {v1,...,vs} and S = LU M. O

Example

Suppose v; = (1,-2,4)T and vy = (0,1,—2) € R3. It is easy to check that £ = {v;,v5} is
linearly independent, but it does not span: for example, ey ¢ (v, v5): if e5 = av; + vy, then
we must have o = 0 to get the first component right, and then 8 = 0 for the third component,
but that does not give e,. If we set

S = {217927§17§27§3}

then Proposition 4.15 guarantees some subset of S is a basis that contains £. For example,
follow the second proof and sift S. We start with B = L. Note that e; = v; + 2v,, so we
discard it. We already observed that e, ¢ (BB), so we include e, and consider B = {v,v,,€5}.
Then eg = —1v, + 3¢, € (B), and so we discard e; and the basis is vy, vy, €.

4.4 Dimension theory

The main result is the following.

Theorem 4.17

If V is a finite-dimensional vector space, then any two bases of V are finite and have the same
number of elements.

We give a famous proof: one by one, swap an element of one basis for an element of the other, and
think about when this process can stop. The lemma is stated in a slightly complicated way, that
essentially includes its proof. That is unusual, but the precise details are needed later.

Lemma 4.18 (Exchange Lemma)

Let V' be a vector space and B = {vy,...,vs} be a basis of V. Suppose w € V' with w # Oy
Since B is a basis, there are (unique) scalars A\; € R so that

W= AU+ ...+ AsUs

If \; #0, then

{1}1, ey U1, V541, - - ,Us} U {w}
is also a basis of 1/, where the element v; has been removed from the first factor of the union
(though of course w = v; is perfectly possible in the second, in which case the union is B).

In other words, if v; appears in a nontrivial way in the expression for w, then you can remove v; from
the basis and replace it by w, and the result is still a basis. Let's consider an example before the proof.
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Example

Let B = {e,es,€5} be the standard basis of R? and consider
w=(2,-3,0" =2¢, + (—3)e,

The Exchange Lemma says that By = {w, e,,e3} and By = {e;,w, e;} are both bases of R3.
Consider the first of these, B;.

Clearly B; spans: any element of v € R? is of the form v = > wie
using the relation e; = %w—{— %§2, we can rewrite this as

;» and so substituting for e;
— (L 3
v = (3w + 5e9) + paey + pes

which is a linear combination of B; (we could collect the terms together if we wished, but there
is no need).

Equally clearly Bj is linearly independent: if Aw + Aaey + A3es = 0, we must show that
A = Ay = A3 = 0. Substituting for w gives

0= X(2e; + (—3)es) + Aaey + Azes = 2Xeq + (—3X + A2)ey + Azeq
But the original basis B is linearly independent, so we know that
20 = -3 +X=X3=0

which implies what we want.

We may prove the basis B in a similar way. The Lemma makes no claim about {e;, ey, w},
where we have substituted w for e3, but clearly this is not a basis: every vector has zero as its
third component, so we can never express e3 as a linear combination.

The proof is nothing more than this example in general notation.

Proof. Suppose without loss of generality that j = 1, so that

w = Av1 + Aovg + ...+ Agus  with Ay #£ 0. (4.4)
Write B’ = {w, va,...,vs}. We must prove that B’ is a basis.
Note that w is not in the span of vo, . .., vs, since the coefficients A; are unique by Proposition 4.14.

(To spell that out: any expression w = Ovy 4 pava+. . .+ usvs clearly has a different coefficient of v;
than the one in (4.4), but that is impossible.) Therefore B’ is linearly independent by Lemma 4.11.

And B’ spans: any linear combination of B is equal to a linear combination of B’ by substituting
for vy after rearranging (4.4). O

It remains to prove Theorem 4.17. It is just a form of book-keeping now.

Proof. Since V is finite dimensional, by Proposition 4.15 or Corollary 4.16, it certainly has at least
one basis that is finite. Let B = {vy,...,v,} be such a basis of smallest size and let B’ C V be
any other basis; in particular, B’ has at least n elements.

Pick any element of B’; call it wy. By the Exchange Lemma 4.18, there is some v; € B that we
may remove and replace by w; so that the collection remains a basis. Without loss of generality
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(by renumbering the v; if necessary) j =1 and
By = {w1,ve,...,v,}

is a basis of V.

Next pick any element of B\ {w; }; call it wa. By the Exchange Lemma there is some v; € By that
we may remove and replace by ws. (Note that we may insist, as we did, that the element we remove
from By is not wy: w1, ws are linearly independent so when we write we = Ajwi+Aovo+. ..+ Ayvp,
it could not be that A\ = 0 for all £ > 2. Even though A; may be nonzero, we have deilberately
chosen not to replace wi, and we have just observed that there is indeed some other vector that
we may replace instead.) Without loss of generality j = 2 and

By = {w1, w2, vs3,...,0,}

is a basis of V.

Proceeding inductively, after n such steps we reach the point where we have constructed a basis
B, = {w,wa, ..., wy}

Now if B’ has strictly more than n elements, we may continue and pick an element w;,1 € B\ B,,.
But since B, is a basis, there are scalars u; € R so that

Wp41 = H1W1 + ... + tpwy

But this is a contradiction: that equation, w,+1 — Y p;w; = Oy is a nontrivial dependence relation
among some elements of B’ (the coefficient of w41 is not zero) but B’ is linearly independent.
Therefore B’ cannot have any more elements, and so #B' = n = #B, as claimed. O

The conclusion of all that work is that we may formulate a general definition of dimension, at least in
the finite-dimensional case.

Definition 4.19

Let V be a finite-dimensional vector space. The dimension of V is the number of elements of
any basis of V. It is denoted dim V', or dimg V' when it is useful to emphasise that the scalars
are R. By definition dim V' € N.

We now have a theory of dimension for vector spaces — or for finite-dimensional ones at least. As a
first test of the flexibility of the theory we see that it accords with our idea that subspaces of vector
spaces have lower dimension.

Proposition 4.20

Let V' be a finite-dimensional vector space and W C V a subspace. Then W is finite dimensional
and dim W < dim V', with equality if and only if W = V.

Proof. We first prove that W is finite dimensional. Suppose not. Then there is an infinite set
v1,V2,... € W of linearly independent elements of W by Corollary 4.12. But they are linearly
independent when considered as elements of V', which contradicts Proposition 4.10.
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Let vy,...,vs € W be a basis of W. Considered as elements of V, they are linearly independent.
Therefore, by Corollary 4.16 there are elements vsy1,...,v, € V so that vy,...,v, is a basis of V.
Thus

dimW =s<n=dimV

with equality if and only if s = n, which is to say that v1,...,vsisa basisof Vandso W =V. 0O

This proposition is frequently useful in the following curious formulation: the point is that dim W > s
by Corollary 4.16.

Corollary 4.21

Let W C V be a subspace of a finite-dimensional vector space. If wy,...,ws € W are linearly
independent with s = dimV, then W = V.

The final corollary packages the main points into two simple criteria.

Corollary 4.22

Let V' be a vector space with dim V' = n.

(i) If v1,...,v, € V are linearly independent, then they form a basis of V.

(ii) If v1,...,v, € V span V, then they form a basis of V.

The first part follows at once from the previous corollary, while the second follows at once from the
Sifting Lemma 4.15.

4.5 Direct sum of vector spaces

One of the tropes of beginning algebra is the idea of constructing new spaces from old ones. Having
done that, you usually find that it moves quickly to the converse idea of breaking big spaces into
smaller pieces, but let's not run before we can walk. This section merely provides yet another class of
examples of vector spaces.

Definition 4.23

Let V and W be vector spaces. The direct sum of VV and W is the vector space
VeWw={vw)|veV,we W}

with vector space operations

(vi,w1) + (v2,w2) = (v1+ v2, w1 + wa)
Av,w) = (Av, \w)

where the left-hand side of each line is the operation in V& W, and it is defined by the right-hand
side, which involves only operations in V' and W.

The additive identity is Oygw = (Ov, Ow ), and the additive inverse is —(v, w) = (—v, —w).
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Of course one must check that the operations defined above on V' @& W above really do make it into
a vector space: they do, but please check.

Example

Let V =R2 and W = R!. Then

Vow = {((i;) ,()\3)> ‘ AL, A2, A3 GR}

If we slightly cheekily treat the element ((A1, A2)T, (X3)) as a single column vector (A1, A2, A3)7,
then we see that the operations defined in Definition 4.23 agree with the operations in R3.

In any case, we see a natural basis of V & W:

=(()0):5=() 0): == (() )

It is easy to check that vy, va,v3 are linearly independent and span. From this point of view,
VeW= {)\17)1 + Aovg + A3v3 | A1, A2, Az € ]R}

which makes our little charade with R? above completely watertight (since the operations defined
on V@ W are exactly componentwise sum of such linear expressions).

We can be even more precise about this later, once we have linear maps and isomorphisms, but
even now it is clear that we may, for example, build up R™ by direct sum of n copies of R, and
that larger direct sums R™ @ R™ behave exactly like Rt

Proposition 4.24
Suppose v1, ..., Vs is a basis of V and wq, ..., w; is a basis of W. Then
B = {(Ul,Ow), RN (’L)S,Ow)} U {(Ov, wl), RN (Ov, wt)}

is a basis of V. W.

This is another routine proof for you to try: if you'd like to compare with my solution, here it is.

Proof. If (v,w) € V @ W then since using the given basis there are scalars \;, 11; € R for which
V=AUl + ...+ A0s and  w = pwy + ...+ prwy
and therefore B spans since
(v,w) = A1(v1, Ow) + ... + As(vs, O ) + 1 (Oy, wy) + . .. + e (Oy, wy)
If for i, nj € R
A1(v1, 0w) + - As(vs, Ow) + p1(Ov, wr) + . .. e (Ov, we) = Ovaw

then
Avr+ ...+ Avs =0y and  ppwi + ...+ prwy = Oy

and so all \; = p1; = 0 since the given bases of V' and W are linearly independent. ]
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Counting the size of the basis B computes the dimension of V & W.

Corollary 4.25

If V and W are finite-dimensional vector spaces, then so is V @& W and moreover

dimV oW =dimV +dim W

Example 4.26
Let V = R? and W = R[z]<2. Then

V@W={<<il>,>\3+>\4:€+>\5932> ‘)\1,---,>\5€R}
2

Choosing bases of V' and W provides a basis for V& W: for example

() (09 5 () - () - ())

so that

With this view, the key data that determines an element of V @& W is the vector of coefficients
(A1,...,25)T € R®. As far as the vector space operations go, we may treat the vector space
V @ W essentially as the same as R®. Of course we must remember that if we ever need to use
properties of its elements then in fact it is very different from R?.

4.6 What does a finite basis do for me?

Example 4.26 illustrated how a finite basis boils down the elements of an n-dimensional vector space V'
to a simple vector of coefficients that we may regard as an element of R™. Put differently, when we
work with a finite-dimensional vector space together with a fixed choice of basis, then we may
often do some or all our work in R™ where we know exactly how to solve any linear problem.

Proposition 4.27
Let V' be a vector space and B = {v1,...,v,} a basis. Then there is a bijection

xg: V. — R"
A1

v : where v = Avy + ... + Ay
An

which respects the vector space operations: that is,
xB(v) +x8(w) = xs(v+w) and  xp(Av) = Axs(v)

for all v,w € V and A € R.

89



Notice that it is crucial that we regard the basis as being vy,...,v, in that order, despite the
set-theoretic notation.

Proof. There is almost nothing to prove. The map xp both exists and is surjective because B
spans so every v € V has an expression as indicated, and every such expression gives an element
of V. The map xp is both well defined and injective because B is linearly independent so the
indicated expression for v is unique by Proposition 4.14.

The map xp respects the vector space operations because those operations are carried out com-
ponentwise in both the domain and the codomain. In detail, suppose v = > A\jv; and w = > p;v;
so that v +w = ) (A\; + pi)v; and Av = > (A\;)v. Then the ith component of the column vector
xB(v+w) is A; + ui, which equals the ith component of x5(v) + xg(w), and similarly for Av. [

Definition 4.28

When V is a (finite-dimensional) vector space with a fixed choice of basis B = {v1,...,v,},
we refer to the bijection xp: V' — R as the coordinate map with respect to the basis B.

Remark

This is the great trick, or the great con, of (finite-dimensional) linear algebra: faced with a
complicated and abstract situation V', we may simply choose a basis and do our calculations in
some R™, and then use the basis to translate back to V.

This is almost exactly the same as being a forensic pathologist: we take samples v and w from
the messy and complicated real life crime scene V back to the clean lab R™ where we have all
our tools for cutting them into pieces and solving whatever linear equation mystery they may
be involved in.

We will see this pay off next when we finally consider linear maps between vector spaces explicitly
(and see that we have been using them implicitly all along).

That sounds great, but on the quiet down here, we can be honest about the problem: what happens
if we choose a different basis? how do our conclusions gleaned from one choice of basis compare to
the other? That is the change of basis question we saw in §3.4, and life is simplest if we keep thinking
of it as the simple matter it is (once we have discussed it slowly and precisely).
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Chapter 5

Linear Maps

Informally, a linear map ¢: V' — W between vector spaces V' and W is a map of sets that respects
the two vector space operations: this simply means the following.

Definition 5.1

Let V and W be vector spaces. Then a map ¢: V — W is a linear map if and only if
p(v+w) =) +pw) and (lv) = Ap(v)

for all v,w € V and X € R. If you prefer an equivalent more concise version:

@ is a linear map <= p(A\v + pw) = Ap(v) + pp(w) for all v,w € V and A, u € R.

The linear map ¢ that is also a bijection is called an isomorphism (or an isomorphism of
vector spaces if the context is not clear). In this case we say V and W are isomorphic and
we write V 22 V. (It is easy to see that in this case the inverse bijection p=1: W — V is also
a linear map; see Lemma 5.6.)

Linear maps are the natural maps to consider between vector spaces, just as group homomorphisms
(which respect the group operations) are the natural maps between groups, and ring homomorphisms
(which respect the ring operation) are the natural maps between rings, and differentiable maps (which
respect the differentiability of functions) are the natural maps between (differentiable) manifolds.

You are extremely familiar with the most famous linear map of them all: recall that C*°(R) is the
vector space of (infinitely) differentiable functions f: R — R. Differentiation

C*(R) — C*(R)
df
P

is a linear map: you have known forever that whenever f and g are differentiable and A € R

d _df | dg dA\f) . df
da:(f+g)_d:c+da: and dx _)\daf

At first, though, we consider more mundane examples.

91



Example
The map ¢: R? — R? given by
x 2z — by
H
Y —x + 3y

is a linear map; you can check that it satisfies the conditions of Definition 5.1. In fact it is a
bijection, so it is an isomorphism. The inverse map ¢~ !: RZ = R? is

<u> <3x T 5y>
=
v T+ 2y

which again is a linear map. You see at once the fingerprints of the matrix

(2 -5 o 1 (3 5
A_<—1 3> and its inverse A —<1 2)

all over this crime scene.

We will see that this is no coincidence: this is how a typical linear map appears (see §5.3), and
in fact the matrices are the good guys not the villains, so don’t read them their rights just yet.

Whenever you see maps defined by homogeneous linear expressions in some parameters, as
the map ¢ above is defined by the expressions 2z — 5y and —x + 3y, you should expect there
is a vector space kicking around and that this is a linear map. If you see nonlinear terms such
as 3x 4+ y2 or 1 — 2x + v, then the map is surely not a linear map, nice as it may be. These are
not rules, but they are a good first approximation when you're out in the wild.

Language 5.2

Whenever someone says that ¢: V' — W is a linear map, it is understood that V' and W are
vector spaces in some way that they expect to be clear to you. Since in these notes we use the
same notation for addition and scalar multiplication in every vector space we consider, we may
omit the explicit mention that V' and W are vector spaces. We will never deploy a linear map
without the domain and codomain being vector spaces in some way that is unambiguous in the
context.

This chapter studies the image and kernel of linear maps (mostly between finite-dimensional vector
spacess) and applies this to questions of invertibility and isomorphism. These are the key definitions,
so we give them next, even before looking at more examples.

5.1 Routine trivialities

Definition 5.3
Let ¢: V' — W be a linear map. The image of ¢, denoted Im(¢y), is the subset of W
Im(p) ={w e W | w = p(v) for some v € V'}

This is precisely the same as the usual set-theoretic image, and is also often denoted by ¢(V).

The kernel of ¢, denoted ker(yp), is the subset of V'
ker(p) ={v eV | p(v) = Ow}
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This is precisely the same as the usual group-theoretic kernel if we consider V' and W as abelian
groups under their respective addition operations.

Remark

Since any linear map ¢: V. — W s, in particular, a homomorphism of abelian groups, with
respective additive identities Oy and Oy, we already know the following lemma. | include a
proof in case you have forgotten it, and | use scalar multiplication whether | need to or not.

Lemma 5.4

Let ¢: V — W be a linear map.

(i) ©(Oy) = Ow.

(ii) ¢ is injective if and only if ker p = {0y }.

Proof. (i) Cashing in one axiom at a time we have ¢(0y) + ¢(0y) = ¢(0y + 0y) = ¢(0y), so
adding —(0y) to both sides (without caring in the slightest what it actually is) gives the result.

(ii) Suppose that ker ¢ = {0y } and we have v, vy € V with p(v1) = p(v2). We must prove that
vy = vg. By linearity of ¢,

p(v1 —v2) = p(v1) + p((=1)v2) = p(v1) — p(v2) = Ow
so that v — v9 € ker . Therefore v1 — v9 = Oy, or in other words v; = w9, as required.

The converse is quicker: if ¢ is injective, then at most one element may map to Oy, and since
©(0y) = Oy by (i), we have ker ¢ = {0y }. O

Remark

We should get on looking at examples, but there are a couple more useful yet routine results to
note in passing. They are slightly harder than the previous lemma, but similar in spirit, in that
they depend only on how the rules work at a fairly superficial level, so live in the mulch just one
inch above the axioms. They are good to try as an exercise in shunting the symbols around.

Proposition 5.5

Let ¢: V — W be a linear map.Then

(i) kerp C V is a subspace of V.

(i) Ime C W is a subspace of W.

Proof. (i) We know 0Oy € ker ¢ by Lemma 5.4(i). Suppose vy, vy € ker ¢ and A1, Ay € R. Then
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by linearity of ¢
©(A1v1 + Aav2) = A1p(v1) + Aap(v2) = A0y + A0y = Oy

and so A\jv1 + Agvy € ker ¢, as required.

(i) We know Oy € ker ¢ by Lemma 5.4(i). Suppose wi, w2 € Im ¢ and 1, p2 € R. Then by the
definition of the image, there exist v1,vy € V with w1 = p(v1) and we = @(v2). So by linearity
of ¢

prwr + powz = p1p(vr) + pop(v2) = e(pavr + p2v2)

is also in Im ¢, as required. O

Lemma 5.6

If o: V — W is a linear map that is a bijection, then its set-theoretic inverse map o~ 1: W — V
is also a linear map.

Proof. Oh blimey, how do you do these ones? We'd better start with some wy,ws € W and
1, o € R, and then we need somehow to deal with o~ !(u1wy + pows). It pays to say out loud
“I do not yet know that ¢! is linear" until you find you have proved that it is. Now try it.

The trick with this sort of thing is usually to say: since ¢ is a bijection, there are v1,v5 € V so
that w1 = p(v1), or equivalently v; = ¢~ !(w1), and similarly ws. Then since we know that at
least ¢ is linear, we have

o(prvr + pgve) = prp(vi) + p2e(v2)
= (e (w1)) + pap(p™H(ws))
= Hiwi + pows

and now applying ¢! to both sides spells out exactly what we want. Miserable, but there it is. []

Proposition 5.7

Let p: V' — W be an isomorphism. If B C V is a basis of V, then p(B) = {p(v) | v € B} is a
basis of W.

Remark

During the proof we see a typical move when working with linear maps. If ¢ is linear, then by
applying the addition and scalar multiplication properties from Definition 5.1 one at a time, we
know for example that

go(/\lvl + Aovg + /\32)3) = (p()\11)1) =F 90()\21)2 -+ )\31)3)
= (A1) + p(A2v2) + ©(A3v3)
= Ap(v1) + Aop(v2) + Azp(vs)

and more generally, by induction, that

go(/\lvl + ...+ )\SUS) = )\190(711) FoooTF /\SQO(US)
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That is, when mapping any linear combination of vectors in V' by ¢, we may map all the
individual vectors by ¢ first, and then rebuild the linear combination in W. It is probably easier
simpler to do it than to say it in prose. You will see this manoeuvre many many times.

Good grief! here we go again. Note first that we are secretly given an inverse linear map o=': W — V,
so we can translate any question in W back to V' to solve it. Right, deep breath ...

Proof. We first show that ¢(B) spans. Let w € W. Consider v = ¢~ !(w) € V. Since B is a basis
of V, there are elements v1,...,v5 € B and scalars A1,..., \s € R so that

V=AU + ...+ AsUs

(Problem solved in V', the wrong place, so hit that with ¢ to get into W.) So applying ¢ to both
sides we have

w = @) = eAvr+ ...+ Avs)
= Mp(vr) + ...+ Asp(vs)

which does indeed express w as a linear combination of elements of p(B5).

To finish, we show that ¢(B) is linearly independent. Suppose

Ow = )\14,0(1}1) + ...+ )\s<p(vs)

for elements ¢(v;) € ¢(B) and scalars \; € R. We must show that all A; = 0. (Strategy: hit this
with =1 to get into V and hope to solve it there.) So applying ¢! to both sides we have

Ov = ¢ '0w) = ¢ (A1) + ...+ Asp(vs))
A~ (e(v1) + -+ A (ip(vs))
= MU+ ...+ AsUs

But vy,...,vs € B, and B is linearly independent, so we conclude at once that Ay = ... = A; =0
which is what we were required to do. Game over. O
Remark

You probably noticed that Proposition 5.7 did not assume that B is a finite set: the result holds
for bases of any size, and therefore for vector spaces of any dimension. The next result follows
at once in the case that V is finite dimensional.

Corollary 5.8

If V=W and V is finite dimensional, then W is finite dimensional too and dim V = dim W.
In particular, R™” 22 R™ if and only if n = m.

5.2 Writing elements in coordinates is a linear map

We can express Proposition 4.27 in the language of isomorphisms.
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Proposition 5.9

Let V' be a vector space with a basis B = {vi,...,v,} (regarded as being in that fixed order).
Then the coordinate map xp of Proposition 4.27

XB: V — R"

which takes v = A\jv1 +. ..+ A\yv, to the column vector (Aq, ... ,)\n)T € R"™ is an isomorphism.

This has an immediate consequence that is slightly shocking at first sight.

Corollary 5.10

If V is a finite-dimensional vector space, then V' = R"™ for some unique n € N.

Proof. By Proposition 4.15 there is a basis B = {v1,...,v,} of V. The coordinate map x5 then
gives an isomorphism to R™. The uniqueness of n is by Corollary 5.8. O

Remark

So why on earth do we bother with a fully tooled-up abstract theory of vector spaces if up to
isomorphism they are all just one of the R™? The first thing to say is that of course those are
only the finite-dimensional ones. As we've seen, there are plenty of other vector spaces that we
use every day that are not finite dimensional.

Another thing to say, and perhaps more important, is that the isomorphism V =2 R" involved
a choice of basis, and so it is more data that the vector space V' alone. We will get a lot of
profit from working with vector spaces without having to make that choice: as they say in the
jargon, we frequently work ‘coordinate free'.

Another thing worth saying is that, when vector spaces arise, they usually have personalities all
of their own, involving many other ideas that just add, subtract and multiply by scalars. Have
a look at the next example, and decide whether you like your old friend left as it is or would
rather think of it as R2.

Example

The complex numbers C is a vector space: indeed you can add and subtract complex numbers,
and you can certainly multiply them by real numbers (and if you review all the axioms and
properties of C, you will find that the vector space axioms do all hold). Of course you can do
a whole lot more, but as a vector space you are not asked about that.

Fine, so what is its dimension? You probably already have a favourite basis: I'm guessing it is
B ={1,i}, where i = \/—1 (whatever that means), and that you write

C={a+ib|abeR}

(where we usually quietly omit the 1: we usually write a + ib rather than al + bi). Maybe that
is even your definition of C. In any case, it certainly satisfies all the axioms of a vector space,
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and since we have a basis we know that dimg C = 2 (where this seems like a wise time to
emphasise that we are using R as scalars, so we write dimg rather than simply dim to say so).

In this case we may write the coordinate map xz as

XB:(C — R?

a+ib — (Z)

and this map is an isomorphism. As a vector space we never have to think about multiplying
two complex numbers together, so the horrid mess we would see in coordinates in R? if we did
is not an issue.

That's all true, but it is pretty forgetful, ungrateful and uncouth. I'll stick with C, thanks.

Incidentally, since C =2 R? as a vector space, it should be possible to draw C as a plane. That is
exactly what the Argand diagram is: you probably label the point (1,0)7 € R? as the complex
number 1 and (0,1)” € R? as the complex number i, which is what Xgl tells you to do.

5.3 Linear maps R" — R™

Any matrix A € Mat,,,,, determines a linear map by left multiplication by A:
Ls:R* — R™ (5.1)

The linearity of L 4 follows immediately from the properties of matrix multiplication, Proposition 2.42.
Linear maps of this form are essential examples to understand.

We already understand the image and kernel of L4 in concrete terms.

Lemma 5.11

Let A € Mat,,,,, and let L4: R™ — R™ be the associated left multiplication linear map.

(i) The kernel of L, is equal to the set of solutions of the equations Av = 0:

ker(Ls) ={v e R" | Av=0}.

(i) The image of L4 is equal to the column span of A: Im(Ly4) = Colspan A.

Proof. (i) This is immediate: v € ker L4 means exactly that Av = 0.

(ii) Let ey, ...,e, be the standard basis of R™. Note that L4(e;) = ¢; is the ith column ¢; of A
treated as a vector in R™, so we have

ColspanA = <Qla cee agn> = (LA(§1)7 cee 7LA(§7L)>
For any v € R™ there are unique scalars \; € R so that v = Aje; + ...+ \pe,. Since Ly is linear

Li(v) = Laheg+...4+ Aney,)
= MLa(ey) + ...+ AnLale,)

so that L4 (v) lies in Colspan A. Thus Im(L 4) C Colspan A.
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Conversely, if w € Colspan(A) then there are scalars y; € R so that

w = p1C] + ...+ pnCy
= wLa(e)+ ...+ pnLale,)
= La(ue + ..+ pingy)

so that w = L4 (v) where v = p1e; + ... + pine,, and so w € Im(A). Thus Colspan A C Im(A),
and so they are equal. O

Language 5.12

This connection between maps and matrices is so automatic that we frequently refer to the map
as A rather than L 4. We will try to stick to L4, but even then everybody uses the shortcut

ker A ={v e R" | Av = 0}

The only teeny catch is that some people prefer to multiply by matrices on the right, and that

determines a linear map R7%, — R, but we will be explicit about it whenever that happens.

Just to be sure, recall that for maps ¢: X — Y and ¥: Y — Z, their composition is defined by

Yvop: X — Z
r = Ple(z))

Lemma 5.13

Let A € Mat,,,, and B € Maty,,. Then Lgs = Lg o L4: R" — R:. If m = n then

(i) Ly, is the identity map R" — R™,

1] IS an Invertible matrix, then L 4 1s an invertible map an A) T = Lyg-1.
(ii) If A'is an invertibl ix, then L 4 is an invertibl d(La) =L

Proof. Let v € R™. Then by the associativity of matrix multiplication
Lp(La(v)) = B(Av) = BA(v) = Lpa(v)

which is the first claim. The remaining claims hold because A~'A4 = AA~! = I,, multiplies v to
itself, and so L4 and L 41 are mutual inverses, and so are inverse bijections. O

This framework provides a nice clean environment in which to understand the technology of elementary
matrices and row and column operations.

Proposition 5.14

Let A € Mat,,,. If E = Ep---Fj is a product of elementary matrices F; € Mat,,,, and
F = Fy---Fyis a product of elementary matrices F; € Mat,,,, then
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(i) Lpa is the composition R" 24 R™ L2 Rm and

ker Lpga =kerL, and dimImLgs =dimIm Ly4.

(i) Lap is the composition R" Lr gn L4, gm gng
dimker Lap =dimkerLy and ImL p =ImLy4.
(iii) Lgar is the composition R™ Lry gn Lay gm LB, gm 5ng

dimker Lgap = dimker Ly and dimImLgsp =dimIm L4.

You will notice the difference in the statements above: sometimes we show that two spaces are the
same, while sometimes we show only that they have the same dimension.

If you read it carefully, you will see that the spaces are the same only when they are both subsets of
the same vector space in the relevant diagram R® — R® — R®. When instead the two spaces lie in
the domain and codomain respectively of some map L, we only discuss their dimension: we do not
know what L does, so it is not reasonable to expect them to be identical, but we may nevertheless
compare them using L and the following completely general statement.

Lemma 5.15

Suppose ¢: V' — W is an isomorphism and U C V' is a subspace. Then ¢ gives an isomorphism
between U and the subspace p(U) C W.

In particular, if U is finite dimensional then dim U = dim ¢(U).

Proof. Regarding ¢ as a linear map U — W, it is still injective, and it is of course surjective onto
its image ¢(U), therefore it is a bijection U — ¢(U), and so is an isomorphism as claimed. The
final line follows from Corollary 5.8. O

With that, we may proceed with the proof of Proposition 5.14.

Proof. The only point we use about the elementary matrices is that £ and F' are both invertible
matrices, so that in particular Lg and Ly are isomorphisms. The compositions of maps Lg, La
and L all follow at once from Lemma 5.13 — we just need to check the equality claims.

(i) Since L is injective, Lg(La(v)) = 0 if and only if La(v) = 0, which is the first claim.
Now setting U = Im L4 C R™, we have ImLgy = Lg(U), and these have equal dimension by
Lemma 5.15.

(ii) Since Lp is surjective, Lao(Lrp(R™)) = La(R™), which is the second claim. Now setting
U=ker Ly CR" we have ker L = L;l U), and these have equal dimension by Lemma 5.15.

(iii) This follows from the previous two. For example, setting B = E'A, we know ker Lp = ker L 4
by (i) and dimker Lpp = dimker Lp by (ii) so

dimker Lgap = dimker Lpp (I:I) dimker Lp Q dimker L 4

as claimed. Similarly the image. O
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This contains all the results we know when solving systems of linear equations, and then some that
we did not yet know.

Corollary 5.16

Let A € Mat,,,,. We regard A as the matrix of coefficients of a system of m linear equations
in n unknowns.

(i) If EA is the RREF of A, then the solutions of FAz = 0 are identical to the solutions of
Az = 0.

(ii) If AF is the RCEF of A, then Colspan AF' = Colspan A.

(iii) The Smith normal form EAF of A is unique; in particular, its rank is well defined.

Proof. Each part follows from the corresponding part of Proposition 5.14. In particular, the solution
set of Az = 0 is ker L4 and the column span Colspan A is Im L 4, so the proposition gives the
claimed equalities.

Finally, the rank of the Smith normal form EAF of A is equal to the number of nonzero columns,
which is the same as dim Im g4, which equals dimIm L4 by the proposition, and so is inde-
pendent of which elementary products E and F' you used to compute it. O

Geometry and maps

We consider the vector space R? together with the dot product, so that we may speak of lengths and
angles, as in §1.2. You probably know that

cost?d —sind
A_<sin19 cosz?)

is a rotation matrix, but in any case we discuss it precisely now. The corresponding linear map
L4: R? — R? takes the standard bases to

cos v —sin?
Lale)) = Ae, = (sinﬁ) and - La(ey) = Aep = ( cos )

We calculate the angle between each ¢; and its image v; = La(e;) using Definition 1.14. Suppose
that ¥ € [0, 7]. Then

Zeqwy = cos ey -vy) =cos t(cos?¥) =0 and Leyv, = cos (cos) =0

and so we draw the familiar meaningful picture.

C24 La(e;)
Ly (22)
9
9 N
Q >
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The great thing about linear maps is that what we see with our eyes actually happens: we see the
standard coordinate vectors rotate by ¥, and indeed every other vector does the same, as we naturally
xcos? + ysindd ) i<

imagine. Indeed, given v = (y> the angle to w = L4(v) = (—x sind +  cos

2 cosv + y% cos ¥
éw: COS*I(@.@) — COSil (l‘ COSV + y“ cos > -9

.’E2—|—y2

(We see in Proposition 5.17 below that it is always enough to understand what a linear map does on
a basis, as we did here.)

In a similar spirit, the linear map L4: R? — R? corresponding to the reflection matrix
A Cf)Sl? sin
sin® — cos?
is the reflection in a line at angle /2 above the z-axis. Again, you see the geometry by drawing a
picture of how the corresponding linear map L4 takes the standard basis to the two columns of A.

You can also check that A2 = I, so that L4 is an involution of the plane (which, by definition, simply
means that if you do it twice you get back to where you started).

The first two matrices were invertible. For a non-invertible example, consider the orthogonal projec-
tion from vectors in R? onto the line £ = (22 — 3y = 0) C R?. We apply the formula for orthogonal
projection from Definition 1.20: let @ be a unit vector along the line ¢ and then map v — (v - W)w.
The vector w = (3,2)7 lies on ¢ and the unit vector in that direction is

so by Definition 1.20 the linear map is

() (C) w)amsomean (5) =a(G) whee 2= %)

In other words, the orthogonal projection to the line ¢ is the linear map L4: R?> — R2? for this
matrix A. As ever, we have the power to check what we have calculated. You probably now see that
La(v) € ¢ for any v € R?, simply because twice the first row of A equals 3 times the second row,
and furthermore Aw = w. In other words, Im L, = ¢. Which v map to the origin? By definition,
any v € ker A, and ker A is the line ¢+ = (3 + 2y = 0) C R?, which is indeed at right angles to .
Furthermore, for any point P = (a,b)” € /, the set of points that maps to P is simply P + ¢+

A . 1
P4/
\
N \
\ \\ -
-
\
\ N -7
\ -
\ -
\ \./
fJ‘\ PN
/P
- \
\ . N
\
\ \\
N N
\ w \
\ \\
\
N \
N \
N \
~ 7
- \
-
270
- =
-
. \
- \
-
. \
\




5.4 Linear maps, bases and matrices

The essential point of this section is that a linear map is fully determined by how it maps a basis:
linearity is precisely the condition that guarantees it. Once we have established that point, we show
how to relate linear maps and matrices when you have chosen a basis in the domain and codomain.

Proposition 5.17

Let Let V' be a vector space with basis vy, ..., v, and W be any vector space (not necessarily
finite dimensional).

(i) Suppose ¢1: V — W and po: V — W are two linear maps, and suppose that they agree
on the basis elements v;: that is, ¢1(v;) = @2(v;) for all i =1,...,n. Then p; = po.

(ii) For any choice of vectors uy,...,u, € W, there is a unique linear map ¢: V" — W with
o(v;) =wu; fori=1,... n.

Proof. (i) Consider any v € V. We must simply show that ¢1(v) = @2(v). Expressing v in the
given basis, there are scalars A1,..., A, for which v = A\jv1 +...+ A,v,. Then, using the linearity
of the two maps, and the fact they agree on the basis elements v;,

e1(v) = iAo+ ..o+ o)

= Api(v1) + ...+ Anpr(vn)

= Aip2(v1) + ...+ Anpa(vn)

= (,02()\1111 4+ ...+ )\nvn)

= 2(v)
as required.
(ii) Once again, consider any v = A\v; + ...+ Av, € V. We must simply define a value for ¢(v)
so that ¢ is linear and has the specified values on the basis elements v;. Thus we define

o) = Mus + ...+ A\u, €W

It is immediate that p(v;) = u; for i = 1,...,n, and @ is linear since if w = p1v1 + ... + ppvy
and «, 8 € R are scalars, then by collecting coefficients of the v; together we have

olav+ pw) = @la(Mor + ...+ A\pop) + B(Hav1 + - . ., lnVn))
= (@A + Bua)vi + ... + (@dn + Bun)vn)
= (aA1+ Bu)ur + ...+ (aXy + Bun)uy
= a(Mur+ ...+ Mup) + B(paur + ..o+ pruy)
= ap(v) + Bp(w)

as required. The uniqueness of ¢ follows from part (i). O

So from now on, if you wish to define a linear map, you can simply choose a basis of the domain and
specify any images in the codomain you would like those basis elements to have, and voila there is a
unique linear map that does just that.

102



Language 5.18

When we define a linear map ¢ by specifying the images of a basis vy, ..., v, of V' and applying
Proposition 5.17(ii), in the jargon we say that ¢ is a linear map defined on the basis vy, . . ., v,.
To know which linear map we have just defined on the basis, we must also specify the image
elements uy,...,u, € W.

Remark

In fact, there was no need to require that V is finite dimensional in Proposition 5.17: the issue
is the existence of a basis B of V/, not its size. In general, even if V' has an infinite basis B,
any elements v, w € V that you use involve only finitely many elements of B, and so the same
proof works. We won't need this, but it is good to know the key point with no caveats: any
choice of images of a basis uniquely determines a linear map.

If in addition to a fixed chosen basis vq,...,v, of V we fix a basis w1,...,w,, of W, then the
images ¢(v;) € W may be expressed in this basis of W. The key point is that we may assemble the
coefficients of those expressions into a matrix, or conversely read them from a matrix. Thus we will
see that matrices (of suitable size) and linear maps determine one another uniquely, as long as we
have fixed a basis of V' and fixed a basis of .

Notice how a matrix A € Mat,,,, is being used in two slightly different ways. In §5.3 the matrix A
determined a map R — R™ simply by multiplication (5.1). We use A next to defineamap V. — W
between two vector spaces of dimensions n and m respectively. Essentially this is the same map, but we
need to be careful to distinguish them as we do our first analysis. We only work with finite-dimensional
vector spaces from now on, because the matrices we use have finite size.

Proposition 5.19

Let V' be a vector space with basis vy, ...,v, and W be a vector space with basis wi, ..., wy.
If A= (aij) € Maty,, is a matrix, then there is a linear map ¢4 defined on the basis of V' by

pa: V. — W

v; o G1W1 e QWi

where the coefficients of ¢4 (v;) with respect to the basis of W are the ith column of A.

Proof. There is nothing to prove. We have stated where we want the basis elements to map to,
and therefore the linear map exists by Proposition 5.17(ii). O

Language 5.20

Fixing a basis of one or more vector spaces is an essential part of all of the calculations we are
discussing, and so not surprisingly there are many different ways of saying that the basis has
been fixed. We refer synonymously to a chosen basis or a given basis or a specified basis to
indicate that we are working with a fixed basis.
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Definition 5.21

This map is called the linear map of A with respect to the given bases of VV and W. It
depends on the two given bases, v1, ..., v, in the domain V" and w1, ..., w;, in the codomain W,
and it is not defined without explicit reference to them both.

The reason to be so insistent on saying given bases, is that if you choose different bases, either
in V orin W or in both, then the map ¢4 will most likely be a very different map. This point
is so important that ¢4 should probably have some complicated notation such as

P AL,V WT e Wi

but you can see why | don't do that. We just have to be very very careful that we all agree
which bases are in play at the time.

Example

If V. =R" and W = R™, and if we choose the standard basis ¢, ...,¢e, € V and the (unusually

named) standard basis €, ...,¢e/, € W, then p4 = L4 is just the map we studied in §5.3.

)’ =m

Indeed, by Proposition 5.17(i) it is enough to check that they agree on a basis, and

ai;
oale) =anel +... tamiel, = | | = Ae; = La(e;)

Ami

are both simply the ith column of A.

Remark

It is worth taking time to pick apart the relationship between the matrix A and the map 4.
In the notation of Proposition 5.19, if v = Ajv1 + ... 4+ A\,v,, then

0a(v) = prwi + ... + ppWn,

where the coefficients p; of the image are defined by

To see this, it is helpful to write out A fully (and when you write out particular examples for
yourself, you may find it clearer to consider a matrix that is not square, say 2 x 3):

aii ai2 o QAln

a21 a2 cct A2p
A=

am1l Am2 ° Omnp

Expanding out w4 (v) = Apa(vi) + ... + Aupa(vy) using the definition of each p4(v;), we
see, for example, that the coefficient of w; is

H1 = @111 + a12A2 + ...+ ap Ay
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where the coefficients a;; of the \; are the entries of the 1st row of A.

With that established, the key is now to observe that the ith column of A comprises the
coefficients of the image ¢(v;) of the ith element v; of the basis of V' when expressed in the

basis w1, ..., w, of W. With that view, we could imagine writing formally
a1 @21 -t Gml
U1 w1
ai2 G2 - Gm2
oal | =47 where AT =]
Un, Wm
Aln A2n " OGnm

meaning just that
vaA(v1) = arqwy + az1we + ... + Ap1Wy (5.2)

and similarly for ¢ 4(v2), ..., pa(vy).

In a sense, whether you use A or AT is a delicate matter, but of course it is not at all, since
one of the vectors has length n while the other has length m, so only one expression makes
sense. However, when you use this machine, it may happen that A is square, so this syntactic
assistance is missing and you need to be in total control of the coefficients.

Now the key result. It says that every linear map is of the form ¢4 for any given choice of basis in
domain and codomain, and the proof is simply to observe that a formula of the shape of (5.2) must
hold for basis elements, and that that determines both the map on any element and also the matrix A.

Theorem 5.22

Let V be a vector space with basis vy, ...,v, and W be a vector space with basis wq, ..., wy,.
If o: V — W is a linear map, then there is a matrix A € Mat,,,, so that ¢ = ¢4 is the linear
map of A with respect to these specified bases.

Definition 5.23

The matrix A in Theorem 5.22 is called the matrix of the linear map ¢ with respect to the
given bases of VV and W, and we say that ¢ is represented by the matrix A with respect
to the given bases.

The matrix A of ¢ depends on the two specified bases and it is not defined without explicit
reference to them both. (Sounds repetitive? It is worth repeating.)

Proof. Define the entries a;; of a matrix by expressing ¢(v;) in the basis wy, ..., wp:
e(v) = anwi+ awa+ ...+ Gp1Wn,
e(va) = ajpwi + aws + ...+ aGmaWn
o(vp) = apwi + agwa + ...+ GppWm

If we set A = (a;5) € Maty,p, then ©(v;) = @a(v;), using the defining formula of w4 (v;) from
Proposition 5.19. Therefore ¢ = 4, as claimed. O
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Commutative squares

There is an extremely convenient technology that handles a lot of the bureaucracy of the kind of
results we have been proving. We can package up the previous statement into a statement about
equality of compositions of maps, as follows.

Definition 5.24

A commutative square is a collection of four vector spaces and four linear maps

U1L>U2

Vi——W

so that x2 0 1 = 2 0 X1.

That is, a commutative square records two different compositions Uy — Us — Vo and Uy — V7 — V5
that give the same linear map U; — V5.

We can package up all the results of this section in the following elegant corollary. It gives a nice
point of view of the situation: the thing we are interested in is the map ¢: V' — W, but to calculate
anything we choose bases in V and W and present ¢ in coordinates as L 4: R™ — R™. In this view,
Ly is a kind of computable model of ¢, and the (invertible) coordinate maps x5 and xp translate
between the two.

Corollary 5.25

Let V' be a vector space with basis B = {v1,...,v,} and W be a vector space with basis
B ={wi,...,wn}. If o: V. — W is a linear map, then ¢ = 4 for some matrix A € Mat,,,
and there is a commutative square of linear maps

PA
V—W

Proof. The maps are all defined: ¢4 is in Proposition 5.19, L4 in (5.1) in §5.3, and x5 and xp
in Proposition 4.27. The claim is simply that xp 0o w4 = L4 o xB.

Let v = AMv1 + ...+ Av, € V. On the one hand,
)\1 )\1
xs(v) = | : andso  La(xs(v))=A]| :
An An
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On the other hand,
pa(v) = pwi + ... + W,

where the coefficients yi; of the image are defined by

p1 A1 G} Al
| =A] andso xp(pa(v))=| 1 | =41 :
Hm An Hm An
These two are equal, as claimed. ]

The real benefit of this book-keeping tool is that it packages up the proofs of many statements that
would be fiddly or repetitive to expand out in coordinates. For example, this association between a
linear map and a matrix is natural with respect to composition.

Corollary 5.26

Let : U — V and ¢: V — W be linear maps between vector spaces. Let B be a basis of U,
B’ a basis of V, and B” a basis of W of sizes £, n, m respectively.

Suppose 1) is represented by a matrix A € Mat,,» with respect to these bases and ¢ is represented
by A" € Mat,,,,. Then there is a commutative square

UO———

XB!"
LA’ OLAfLA’A

R ————

That is, the composition ¢ o 1) is represented by the product A’A € Mat,,, with respect to the
bases B of U and B” of W.

There is nothing to prove. The point is that you can glue commutative squares together whenever
they have a map in common, and then you can walk around the resulting diagram following the arrows
in any way you like and you always get the same answer. More precisely, it is immediate that if

©®1 ®3

U1 _— UQ U2 E—— U3
X1 X2 X2 X3
P2 P4
i——V; Vo —— V3

are two commutative squares (with the visible coincidence y2: Uy — V3) then
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30 Y1
U ——— Us

P4 0 Y2
Vi————— V3

is also a commutative square.

5.5 The Rank—Nullity Formula

There are two basic counting theorems of linear algebra: the Rank—Nullity Formula and the Dimension
Formula. Their value throughout mathematics is impossible to overstate: they are used absolutely
everywhere to count the number of parameters in a problem (that is, the dimensions of subspaces).

Definition 5.27

Let p: V — W be a linear map. The rank of ¢ is Tk = dimIm . The nullity of ¢ is
nullity ¢ = dim ker ¢.

Theorem 5.28 (Rank—Nullity formula)
Let ¢: V — W be a linear map, and suppose that V is finite dimensional. Then
dim Im ¢ + dimker o = dim V'

The theorem gets its name, because this equation is rk ¢ + nullity ¢ = dim V..

As this is so important, we give multiple proofs — though you might regard them as the same idea
cast into the various different languages we have developed for speaking about the solutions of linear
equations.

The first version is the vanilla one that only uses the technology of bases. You should think of it as
easy: adjoin a basis of the kernel to a set that maps bijectively to a basis of the image, and prove
that this is a basis of V. The work is all in the last clause, and it is easy once you are well practiced.

Proof. Both ker ¢ C V and Im ¢ C W are finite dimensional because V' is. Pick bases u1,...,us
of ker ¢ and wy, ..., w, of Imy. Since each w; lies in the image, there are vy,...,v, € V which
satisfy p(v;) = w; fori=1,...,7r.

We claim that B = {ui,...,us,v1,...,v,} is a basis of V. This will complete the proof since
s = dimker ¢ and r = dim Im ¢. (It is now quicker to do this yourself than to read the rest.)

To show that B spans V, consider any v € V. Set w = ¢(v) € Im¢. Since wi,...,w, is a basis
of Im ¢, there exist scalars p1, ..., f, so that

W= w1 + ...+ prwy

The key is to note that v' = pjvy + ... + p,v,. (using v; in place of w;) also maps to w, by the
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linearity of ¢:

plv—2") = @)= mp(v1) — ... — pre(or)
= W— 1wy — ... — UpWyp
= Ow
so that v — v’ € ker ¢. Therefore there exist scalars Aq, ..., As so that

v—0v = ANup+ ...+ Asusg

Rearranging that gives v = A\juj + ... + Agus + p1v1 + ... + prv, so that v € (B), as required.

To show that B is linearly independent, suppose there are scalars A;, i1; such that
AUy + ..+ Asts + pivr + .o+ g = 0y (5.3)
Applying ¢, and noting that ¢(u;) = Ow and ¢(v;) = w;, we have
Ow + prwi + ... + prw, = O

Since wy, ..., w, are linearly independent, being a basis of Im ¢, we have 1 = ... = u, = 0.
Equation (5.3) now reads
AUl + ...+ Asus = 0y

Since uq, ..., u, are linearly independent, being a basis of ker ¢, we have Ay = ... = X\, = 0. So
all coefficients of (5.3) are necessarily zero, and so B is linearly independent. O
Example

Consider L 4: R3 — R2 where A is the matrix

2 -3 5
A‘<—4 6 —10)

Then
ImL 4 = Colspan A = <<_12>> has rkLjp=dimImLy =1
and
3s — bt
ker Ly = 2s s,teR has nullity L4 = dimker L4 = 2
2t
and indeed

rk L4 4+ nullity Ly =1+ 2 = 3 = dimR3

The map L 4 squishes the whole of the 3-dimensional R? down to a 1-dimensional line, and to
do so it must pay the price of killing the 2-dimensional kernel.

The Smith normal form S of A, which is computed as S = EAF for invertible matrices

and F', is simply
1 00
0 00
It is almost instant to calculate that

0 0
dimImLS:dim<<é>>:1 and dimkerLS:dim< 11,10 >:2
0 1
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and since the maps Lr and Ly provide isomorphisms between Im L4 and Im Lg, and ker Lg
and ker L 4, respectively, we could have used this calculation in place of the harder one using A.

The second proof of the Rank—Nullity Theorem is more elementary, in that it translates the problem
into what we know about matrices as hinted in the example above.

Proof. Let n = dimV and m = dimW. Pick bases for V and W, and consider the matrix
A € Mat,y,, that represents ¢ with respect to them. Compute the Smith normal form EAF of A,
where E& € Mat,,,,, and F' € Mat,,,, are invertible matrices. Let r be the rank of the Smith normal
form. Then by Proposition 5.14(iii)

rtkog=dimIm Ly =dimIm Lpar =17

and
nullity ¢ = dimker L4 = dimker Lparp =n — 17

and the result follows since r 4+ (n —r) = n. O

Some more examples.

Example

Let U = {(z,y,2)" € R? | 5z + 3y — 7z =0}. What is dimU? Until now, our method for
tackling this would probably have been to find a basis for U. That's fine, but watch this instead.

We may use the equation that defines U to define a linear map:

0V = W where V =R3 and W =R
xr

Y = bz + 3y — Tz

z

that is, ¢ = L4 for the matrix A= (5 3 —7). You notice at once that U = ker ¢.

The key is that it is easier to calculate Im ¢ (or even just dimIm ¢) than ker ¢ here. For
example, Colspan A = (1) = W, using the RCEF (1 0 0) of A, say. (Or, if you prefer, we
could observe that ¢(e;) = 5, and 5 is a basis of W, albeit an unusual one, so again we see
Imy = W. Or you could say that Im ¢ is a subspace of W, and since dim W =1 it is either
{Ow } or W, and it's clearly not the former since you easily find a vector with nonzero image.)

In any case, a moment's thought tells you that dim Im ¢ = 1, and so by the rank—nullity formula
dimU = dimkerp =dimV —dimImp=3—-1=2

Of course you could have used the RREF of A to observe that the solution set of 52+3y—7z = 0
has two parameters, ),z € R, and that a general solution (clearing denominators) is (z,y, 2)7 =
(—3X + 7,5\, 51)T. With that we quickly obtain a linearly independent pair (—3,5,0)” and
(7,0,5)T, so that dimU > 2. Of course U # R? (just find any (x,y,2)T that does not
satisfy the equation), so dim U < dim R? = 3 by Proposition 4.20, and so we have proved that
dim U = 2, and moreover we have constructed a basis of U. But that feels like more work.
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Example

What is the dimension of U = {f € R[z]<100 | f(3) = 0 and df /dz(3) = 0}? Once again, we
do not immediately know a basis of U, but we can understand U as the kernel of a linear map
and apply the rank—nullity formula.

Let V = R[z]<100. Of course dim V' = 101, since we know a basis 1, z, ..., 2190 Consider the
linear map

p:V = W where W = R?
f(3)
foe (df/d:E(B))

This is rigged up so that U = ker ¢.

Clearly ¢ is surjective: for example, p(1) = <(1]> and p(z) = (i’) form a basis of W. Therefore

dimU = dimker ¢y = dimV — dimIm ¢ = 101 — 2 = 99

That's great: question answered. But what's more is that, now that we know this dimension, it
is much easier to compute a basis of U if we need it: by the Sifting Lemma 4.15 or Corollary 4.22
we just need to find 99 linearly independent elements and do not need to check that they span.
Clearly f = (z — 3)? lies in U, so the linearly independent set B = {xif ‘ i=0,... ,98} cU
is a basis of U. (Now try to imagine proving that B spans U without using rank—nullity.)

Once you appreciate this example, you see that more generally conditions on a vector space of
(suitably differentiable) functions f: R — R such as
di
dzt

f(p) =0  for some i > 0 and some (fixed!) p € R

are linear, and so imposing them tends to reduce the dimension of the space of functions by 1.
The only issue is that if you impose several such conditions you need to know that they are
linearly independent: in our example, that is equivalent to the surjectivity of . You should add
this idea to your set of ninja tools.

As a final thought, this gives you some intuition why (homogeneous) differential equations are
so powerful and so hard to solve: they impose conditions like that at every point p € R: that
is, they impose uncountably many linear conditions!

5.6 The Dimension Formula and Complements

We could have done this sooner: the moment we learned we could extend a linearly independent set
to a basis, we owned this.

Theorem 5.29 (Dimension Formula)
Let U;,Uy C V be two finite-dimensional subspaces of a vector space V. Then

dim Uy + dim Uy = dim(U1 + Ug) + dim(U1 N Ug).
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Proof. Let W = Uj N Uy, which is a finite-dimensional subspace of V. Pick a basis By =
{wy,...w} of W,

Since W C Uy, by Corollary 4.16 we may extend By to a basis {wi,...w,u1,...,us} of Uj.
Similarly, since W C Us, we may extend By to a basis {w;, ... ws,v1,..., v} of Us.

We claim that B = {u1,...,us,v1,...,0p,W1,...,w;} is a basis of the span Uy + Us. This will
complete the proof since

s+t=dimU; r+t=dimU, t=dimU;NU; and r+s+t=dimU; + U,

(It is now quicker to do this yourself than to read the rest.)

It is immediate that B spans: any element of Uy + Us is of the form p; + po with p; € U;, and
each of these p; may be written as a linear combination of B.

To show B is linearly independent, suppose there are scalars A;, 1, 1 such that
AUt + -+ Asus + pavr + -+ ppve F 1wy + ..oy = Oy (5.4)
Rearranging this determines an element p € V' defined by
p=ANui+ ...+ Asus + 1wy + ... + vpwp = —(pvr + - .-+ ppoy)

which the two equal expressions show lies in both Uy and Us. Thus p € Uy N Us,, and so there are
scalars 7; so that
p=TiW1 + ...+ TWy

Thus, subtracting two of the expressions for p, we have
Aug 4.+ Asus + (v — w4 (v — ) wy = Oy

In particular, since the u;, w;, form a basis of Uy all the A; = 0. Now since the v;, w;, form a basis
of Us, the equation (5.4) with all \; = 0 shows that all ;z; = 0 and all v, = 0, as required. O

Example

Let V = R* and consider two subspaces U; = (u1, uz, u3), where

0 —2 6
1 0 1
3 -3 3

which are clearly linearly independent, and Uy = (e;,e5), the span of the first two standard
basis elements.

It is quickly clear that U; + Uz = V: for example e3 is ug 4+ u3 minus suitable multiples of
e; and ey, and then it is easy to write e, as a combination of w1, ey, e3. Therefore by the
Dimension Formula

dimUiNU;=3+2—-4=1

which is not immediately clear from the given vectors.

The idea of a complementary subspace to a given subspace, or complement, is natural, and gives
another point of view on the proof of the rank—nullity formula.
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Definition 5.30

Let V be a vector space and U C V a subspace. Then a subspace U’ C V is called a
complement to U if and only if V=U + U and UNU’ = {0y }.

Example

For example, the y-z plane is a complement to the z-axis in R3.

The following dimension count is immediate from the Dimension Formula 5.29 since dim{0y } = 0.

Corollary 5.31

If U’ is a complement to U C V, then dimV = dim U + dim U".

Remark

In this case, people sometimes write V = U @ U’ and refer to it as an internal direct sum to
distinguish it from the direct sum of Definition 4.23. This is a slightly stronger notion: since
both U and U’ lie inside V, the vector space V is equal to this sum, not merely isomorphic to
it, and any v € V may be written as v = u + u’ for unique v € U and v/ € U’. This is not
worth any fuss. Of course the two notions of U @& U’ are isomorphic to each other in any case.

Lemma 5.32

If U’ is a complement to U C V, then for every v € V there exist unique v € U and v’ € U’
so that v = u + '

Proof. There is such an expression since V.= U + U’. If v = ug + u5 with up € U and u, € U’ is
another, then subtracting the two expressions gives

Usu—up=ub—u €U’

sou—us =uyh—u =0y, as UNU" = {0y}, and the two expressions are the same. O

Lemma 5.33

Let V be a finite-dimensional vector space and U C V a subspace. Then there exists a
complement U’ C V to U.

Proof. Let uq,...,us be a basis of U. By Corollary 4.16, there are elements vy,...,v, of V so
that wy,...,us,v1,...,0, is a basis of V. Let U’ = (vy,...,v).

Cleary U+ U'=V. If we UNU’, then

w=Au; + ...+ Asus and  w = p1v1 + ...+ U
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for scalars \;, ;5. Subtracting these two expressions gives
AUl 4 oo Asus — p1v1 — oo — et = Oy

so by linear independence all the coefficients are zero, and so w = 0y. Thus UNU’ = {0y} and
U’ is a complement to U. O

The third proof of the Rank—Nullity Theorem uses complements.

Proof. Since V is finite dimensional, so is U = ker o C V by Proposition 4.20 Let U’ C V be a
complement to U. Define the (evidently linear) map

U — Ime
u = p(u)
which is simply the restriction of the map ¢ to U’.

We claim that v is an isomorphism U’ — Im. This will complete the proof since then by
Corollary 5.31 and Corollary 5.8

dimV = dimU + dim U’ = dim ker ¢ + dim Im ¢

Firstly, 1 is injective since 1(u) = Oy for u € U’ only if also u € ker ¢; but U’ Nker p = {0y },
since U’ is a complement to ker ¢, and so we have: ¢(u) = Oy if and only if u = Oy, as required.
It remains to show that v is surjective.