
MA150 Algebra 2: Linear Algebra

Linear Algebra is one the most powerful and user-friendly parts of mathematics. It ties together
a host of calculations that you probably know in some form already, but refines and strengthens
them so they we may apply them across a huge range of different situations. Mathematics is about
solving equations. Linear Algebra takes the ideas that solve simultaneous linear equations and builds
a theoretical superstructure in which they are far more powerful and precise.

Perhaps the most difficult thing is merely that there are several starting points that are useful to have
at our fingertips before we discuss the bigger unifying ideas. You probably already know:

(i) basic arithmetic of column vectors: how to add them together v + w and multiply them by
scalars λv where v, w ∈ Rn and λ ∈ R.

(ii) how to multiply a column vector v ∈ Rn by an m × n matrix A to get a new column vector
Av ∈ Rm. We will get a lot of profit by treating v 7→ Av as a map Rn → Rm.

(iii) the dot product v · w ∈ R of two column vectors v, w ∈ Rn, and how to use it to compute the
length of a vector and the angle between two vectors, or to project one vector onto another.

(iv) how to solve a system of m linear equations in n unknowns (for example by forming combinations
of equations to eliminate variables, giving equations in fewer unknowns and then backsolving).

We will review all this briefly, but you should make sure whatever is already familiar is ready to roll.
Having said that, do not be tricked into thinking that this is all Linear Algebra is about: after we
have set the scene with these calculations, we will state general definitions and prove theorems with
a much more formal flavour: you need to stay en garde.

In broad terms, we will develop this collection of ideas in different ways:

(i) As a suite of basic calculations that, with care, we can perform algorithmically without error or
confusion again and again forever.

(ii) A formal structure that binds together a host of examples and particular cases we may encounter.

(iii) A collection of clean and simple proofs that tie calculations to general theoretical ideas.

If you can recognise the substance of the calculations even when things get more formal, then you will
have intuition for most results. It is important that you keep in touch with what you already know
well, and see clearly how it ties in with our new much broader and more powerful viewpoints.

You may ignore all side remarks (shaded in yellow) if they are distractions. The definitions (shaded
in red, including places that flag idiomatic use of language or conventions) will become part of your
DNA by overuse, if that’s how DNA works (which it isn’t). The real point is to recognise how the
theorems capture the essence of calculations in a general setting.

Linear Algebra in the formal way we present it is relatively new. Although a range of calculations
have been available for some centuries, the first formal modern treatment I know of is in Birkhoff and
Maclane’s 1942 book on Algebra. I have no idea whether at the time it seemed completely natural or
gratuitous hocus pocus, but today it reads like a standard, and only slightly dated, approach to the
subject. For a more applied view, Strang’s book is great.

Gavin Brown Mathematics Institute, University of Warwick
December 2023
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Chapter 1

Column vectors in Rn

We work very frequently in the plane, which we may also call 2-space,

R2 =

{(
a
b

) ∣∣∣∣ a, b ∈ R
}

and in 3-dimensional space, which we call 3-space,

R3 =


a1a2
a3

 ∣∣∣∣∣∣ a1, a2, a3 ∈ R


It is important that these are wholly familiar to you, and that you are very good at doing simple
calculations with vectors in them. We will review everything we need, but it will be useful if you can
revise this now and forever maintain your black belt ninja vector powers at all times.

Example

We usually draw R2 as a planar picture, with an x-axis and a y-axis, so that it is easy to visualise
a square grid and plot vectors (with real coordinates, not only integers) relative to that.

(
2
1

)

(
−2
−3

)

(
−2.5
−π/2

)

x-axis

y-axis

We also try to draw R3 as a 3-dimensional picture, with the x- and y-axes in the plane and an
optical illusion of the z-axis pointing out of the plane: I hope you can see the x-y plane lying
flat on the page (or blackboard), with the positive z-axis pointing out in our direction and its
negative part behind the page (which the dotted line tries to indicate). We have some intuition
for this picture, but it’s no help at all for the 17-eyed mathematicians who just landed from
some multi-dimensional interstellar void, and it won’t help with our formal proofs later either.
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 2
−3
1



x-axis

y-axis

z-axis

As this sketch illustrates, it is almost impossible to draw particular vectors in 3-space in this
picture: you have to watch the picture being drawn, think about and trust the labels, and listen
carefully to what the artist says they are trying to illustrate – and then draw it again for yourself.

More generally, it is important that we are just as comfortable working in the space

Rn =



a1
a2
...
an


∣∣∣∣∣∣∣∣∣ ai ∈ R for all i = 1, . . . , n


for any given n ≥ 1. This is called n-space. It is futile trying to imagine what it looks like, unless
n = 1, 2 or 3: you have to rely on the algebra and any intuition from 3-space that seems to help.

Language 1.1

We refer to each of the spaces Rn as a vector space (and we sometimes say ‘over the real
numbers’ if we wish to emphasise R). The elements of any of these spaces are called vectors.
We write elements of Rn as column vectors; being systematic about this helps us later. To
save space on the page, we may sometimes write (a1, a2, . . . , an)T to denote the column vector

(a1, a2, . . . , an)T =


a1
a2
...
an

 .

The entries, a1, a2, and so on, of a vector v = (a1, a2, . . . , an)T are called the components
of v, and we say that ai is the ith component of v. The components are real numbers.

Remark

You might wonder why we didn’t allow n = 0 to give us the vector space R0. In fact we do,
but in this notation it’s a bit confusing to contemplate. We will work it out properly later, but
for now if you need to think about it just treat R0 as the set {0} with just zero in it.
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For this module, vectors have some vital properties that we summarise as:

(i) We can add vectors together (and subtract them) and multiply them by real numbers.

(ii) We can multiply vectors by matrices.

(iii) We can define a notion of length of a vector and angle between vectors.

Those statements alone are just slogans and make no precise sense by themselves. We will work out
exactly what we mean by each one.

1.1 Linear combinations and the standard basis

We discuss the fundamental algebraic operations of the vector spaces Rn, and the basic substantial
problem that needs solving.

Add, subtract and multiply by scalars

Two vectors v, w ∈ Rn in the same space may be added together componentwise to make a third
vector in the same space: if v = (a1, a2, . . . , an)T and w = (b1, b2, . . . , bn)T then

v + w =


a1 + b1
a2 + b2

...
an + bn

 ∈ Rn

With this operation +, you easily see that Rn is an abelian group with

identity element 0 =


0
0
...
0

 ∈ Rn and inverse −


a1
a2
...
an

 =


−a1
−a2

...
−an


In particular

v − w =


a1 − b1
a2 − b2

...
an − bn

 ∈ Rn

We also refer to 0 ∈ Rn as the zero vector or the origin of Rn.

It is usual to think of this addition of vectors as completing a parallelogram with a vertex at the origin
and v and w as two adjacent sides there.

v

w

v + w

0
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You can do this with more complicated linear combinations too: for example v−w and v+2w appear
in the picture above as

v

w

−w

v − w

0

and

v

w

2w

v + 2w

0

Convention 1.2

When giving names to vectors in Rn we usually underline them, writing v ∈ Rn rather than
v ∈ Rn, to remind ourselves that these are column vectors of real numbers. Of course it doesn’t
really matter, and there may be exceptions, but it will help later if we fix this convention now.

When we write some vector v ∈ Rn explicitly as a column vector v = (a1, . . . , an)T , we often
say that we are writing v in coordinates.

Remark

When drawing pictures, it is very useful to draw vectors as arrows, as we have above. But
remember that the vector v = (a1, . . . , an)T ∈ Rn is really that single point of Rn that sits at
the tip of the arrow. Sometimes people refer to these as position vectors to distinguish them
from, for example, velocity vectors or force vectors. In this module we do not need to make the
distinction: we happily draw vectors as arrows and remember that they refer to the endpoints.

In particular, we won’t draw the kind of phase portrait pictures you might have seen in differential
equations, which have a vector based at every point of the picture and you imagine flowing along
those lines of velocity: our vectors are based at the origin (except on occasion when it’s clearer
in a picture to move them around a bit). I can explain the connection at the end.

That’s all fine, but Rn is more than just an abelian group with operation +. We can also multiply
vectors componentwise by real numbers: if λ ∈ R and v = (a1, a2, . . . , an)T ∈ Rn then

λv =


λa1
λa2

...
λan

 ∈ Rn

Lemma 1.3

Let v, w ∈ Rn be vectors and λ, µ ∈ R be scalars. Then

(i) v + w = w + v
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(ii) λ(v + w) = λv + λw and (λ+ µ)v = λv + µv

(iii) λ(µv) = (λµ)v

(iv) 0v = 0, 1v = v, (−1)v = −v, v + v = 2v and v − v = v + (−v) = 0.

The proof illustrates how useful it can be to consider each component of a vector separately: a vector
in Rn is nothing more or less than the data of its components in that order.

Proof. We prove (ii). Let ai be the ith component of v and bi be the ith component of w. Then
the ith component of λ(v + w) is, by definition, λ(ai + bi), while the ith component of λv + µv
is, by definition, λai + µbi. These are evidently equal, since all quantities are real numbers. Since
every component of the vectors λ(v + w) and λv + λv are the same, these two vectors are the
same. The other parts of the lemma are similar.

The calculations in part (iv) may look confusing at first, but they are clear if you unpick them carefully.
For example, in the first one, on the left there is a vector v multiplied by the scalar zero, 0 ∈ R, while
on the right is the zero vector 0 ∈ Rn. That’s just what you expect: if you scale a vector by zero,
you get the zero vector – but it does need checking (just this once) to confirm that our expectations
do indeed match the definitions, and so do the other points.

Convention 1.4

We refer to real numbers as scalars: they are used to scale vectors, after all. The point is that
later we may use other scalars (complex numbers, for example). So from here on we will refer to
‘multiplication by scalars’ or ‘scalar multiplication’ when we multiply a vector by a real number.

Linear combinations

For any nonzero vector v ∈ Rn, we may consider the straight line along it that passes through the
origin. This line consists exactly of all vectors of the form λv as λ varies through all elements of R.
In the picture below, this line is indicated by the dotted line (which you should imagine continuing
indefinitely in both directions): you can imagine drawing arrows for each of the vectors 3v, −2v, 3

2v,
π
7 v and so on (even including 0v = 0), and they would all lie along the dotted line.

v

With that in mind, we say that two vectors are collinear if they lie on the same line through the
origin. Of course the formal definition does not use the idea of the picture: it uses scalar multiples.
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Definition 1.5

Two vectors v and w ∈ Rn are collinear if either v = λw or w = λv for some λ ∈ R.

This definition is fine but a little clumsy. It has to cope with the fact that either v or w or both might
be the zero vector 0 ∈ Rn, which is why it offers the scaling by λ both ways round. Note again that
this notion of collinearity is referring only to lines that pass though the origin.

The ideas of addition and multiplication by scalars immediately produce more complicated expressions:
linear combinations of vectors. If v, w ∈ Rn and λ, µ ∈ R, then the expression (the vector)

λv + µw ∈ Rn

is called a linear combination of v and w, with (scalar) coefficients λ and µ respectively. The same
notion works with any finite number of vectors.

Language 1.6

For any vectors v1, v2, . . . , vs ∈ Rn and scalars λ1, λ2, . . . , λs ∈ R, the expression

λ1v1 + λ2v2 + . . .+ λsvs ∈ Rn.

is called a linear combination of v1, v2, . . . , vs ∈ Rn . As usual, we may use the summation
symbol to abbreviate this linear combination as

s∑
i=1

λivi

but it’s often worth continuing to write out such summations in the long form with + . . .+
until you’re wholly comfortable with the abbreviation.

We call such expressions a nontrivial linear combination if at least one of the λi is not zero,
and conversely when all the λi = 0 we call the expression the trivial linear combination.

This idea has a particularly simple but important case.

Definition 1.7

The standard basis of Rn is the collection of n vectors

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, . . . , en =



0
0
0
...
0
1


∈ Rn

That is ei is the vector whose components are all zero except the ith component which is 1.

You will use the standard basis all the time. The point is that any other vector may be written uniquely
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(up to the order in which you write the sum) as a linear combination of the standard basis:

if v =


a1
a2
...
an

 ∈ Rn then v = a1e1 + . . .+ anen =
n∑
i=1

aiei

The fundamental problem

The basic problem in the subject is this: given some vectors v1, . . . , vs ∈ Rn and a target vector
b ∈ Rn, can you find scalars λ1, . . . , λs ∈ R for which

λ1v1 + . . .+ λsvs = b

or can you prove that no such scalars exist? Furthermore, if you can find one solution, can you go on
to find all possible ways this can be done?

Example

Let v1 = (2, 1, 3)T and v2 = (1,−1, 1)T ∈ R3. We consider three different target vectors:
(1) b = 0 (2) b = (1, 5, 3)T (3) b = e1 = (1, 0, 0)T .

For (1), we look for λ1, λ2 ∈ R such that

λ1

2
1
3

+ λ2

 1
−1
1

 =

0
0
0


Considering the three components separately, this is exactly the same as solving the following
three linear equations simultaneously:

2λ1 + λ2 = 0

λ1 − λ2 = 0

3λ1 + λ2 = 0

You can be ad hoc or systematic or mysterious or magical about how you solve such equations –
you probably have your own favourite methods, and how you do it probably depends on exactly
what the equations are. In this case you could say that the second equation says that λ1 = λ2,
and then substituting into either of the other two equations shows that they are both zero.
Thus, there is exactly one solution λ1 = λ2 = 0. Later we will say that v1 and v2 are linearly
independent because of this.

For (2), we look for λ1, λ2 ∈ R such that

λ1

2
1
3

+ λ2

 1
−1
1

 =

1
5
3

 (1.1)

Considering the three components separately, this is exactly the same as solving

2λ1 + λ2 = 1

λ1 − λ2 = 5

3λ1 + λ2 = 3

The equations are a bit harder to solve, but not much. For example, adding the first and second
equations together gives 3λ1 = 6 so if there is any solution at all it must have λ1 = 2. Plugging
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that value of λ1 into the first equation gives 4 +λ2 = 1, so if there is any solution at all it must
have λ2 = −3. Finally we check that the pair of values (λ1, λ2) = (2,−3) satisfies all three
equations: it does, so again we have a unique solution – and the wise mathematician quickly
checks that this really does solve the original problem (1.1) to avoid any daft mistakes.

We approach (3) in the same way. After considering components, we get

2λ1 + λ2 = 1

λ1 − λ2 = 0

3λ1 + λ2 = 0

We attempt to solve them as before: adding the first and second equations together gives
3λ1 = 1 so if there is any solution at all it must have λ1 = 1/3. Plugging that value of λ1 into
the first equation gives 2/3 + λ2 = 1, so if there is any solution at all it must have λ2 = 1/3.
Finally we check whether the pair of values (λ1, λ2) = (1/3, 1/3) satisfies all three equations:
but now while it is a solution of the first two equations (necessarily, given the way we found it),
it is not a solution of the third. In this case there is no solution at all.

It is useful to think of this exercise in geometrical terms, without being too precise about things.
The collection of all possible vectors λ1v1 +λ2v2 describes a (flat, linear) plane W through the
origin in R3. The origin is clearly on the plane since we may choose λ1 = λ2 = 0, and this is
what happens in case (1): the only question is how many different solutions are there, and in
this example there was only one.

In case (2), the vector b = (1, 5, 3)T happens to lie on this plane W , which we reveal by finding
values for λ1 and λ2. The question is then how many different solutions are there, and the
answer is the same as in the previous case: there was precisely one solution then, and so there
is also precisely one solution in this case (necessarily, as we shall prove later).

In case (3), the vector e1 does not lie on W : we discover this when we find that there are no
solutions at all for the pair λ1, λ2. If we could have seen the picture and spotted that e1 /∈W ,
then we would not have had to do any work at all to say that there cannot be any solutions.

As you see, this problem is exactly the same problem as solving systems of simultaneous linear equa-
tions. We will build a powerful machine for solving all three of these problems in Chapter 2 below,
but for now it is useful practice to work out solutions with our bare hands.

Example

Consider v1 = (2,−1)T , v2 = (1, 1)T and v3 = (3, 1)T ∈ R2 and two different target vectors:
(1) b = 0 (2) b = (7,−1)T .

For (1), we look for λ1, λ2, λ3 ∈ R such that

λ1

(
2
−1

)
+ λ2

(
1
1

)
+ λ3

(
3
1

)
=

(
0
0

)
.

Considering the two components separately gives

2λ1 + λ2 + 3λ3 = 0

−λ1 + λ2 + λ3 = 0

To solve this, we might add twice the second equation to the first, eliminating λ1 from the
equations, to get 3λ2 + 5λ3 = 0. This has lots of solutions: for any value of λ3 ∈ R, simply
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choose λ2 = −(5/3)λ3. Then we could use the second equation to calculate

λ1 = λ2 + λ3 = −2

3
λ3

Finally we need to check whether these solutions also satisfy the first equation: they do, since

2λ1 + λ2 + 3λ3 = 2× −2

3
λ3 −

5

3
λ3 + 3λ3 = 0

Thus, there is a whole 1-dimensional set of solutions: we have one degree of freedom to choose
λ3 ∈ R just as we please, and then suitable values for λ1 and λ2 are determined by the equations.
For example, choosing λ3 = −3 gives λ1 = 2 and λ2 = 5. Later we will say that v1, v2 and v3
are linearly dependent: they satisfy a non-trivial linear relation 2v1 + 5v2 − 3v3 = 0, to use
the solution we just picked, or any (nonzero) multiple of that.

For (2), we proceed as before: after considering components we obtain the simultaneous linear
equations

2λ1 + λ2 + 3λ3 = 7

−λ1 + λ2 + λ3 = −1

which we solve as before to get λ2 = −(5/3)λ3 + (5/3) and then

λ1 = λ2 + λ3 + 1 = −(2/3)λ3 + (8/3)

for any value of λ3 ∈ R (please check this). Again we can get a particular solution by picking
any value of λ3. For example λ3 = 1 gives λ1 = 2 and λ2 = 0. Again there is a one degree of
freedom in the choice of solution λ3 ∈ R: given that we have a solution at all, the number of
solutions is the same as in the case b = 0.

The machine we build in Chapter 2 makes this kind of calculation efficient and systematic: it does
not break the problem down into components, but abstracts it to working on matrices.

1.2 Dot product: length, angle, orthonormal vectors

This section has a different flavour. The vector space Rn has another operation that you will know
well: the dot product. It’s good to note that this is an additional structure, beyond merely the linear
combinations that make Rn into a vector space, but for now we can safely bundle it all together.

Definition 1.8

For v = (a1, . . . , an)T , w = (b1, . . . , bn)T ∈ Rn, the dot product of v and w, denoted v ·w, is
the scalar

v · w = a1b1 + a2b2 + . . .+ anbn =

m∑
i=1

aibi ∈ R

This is also called the scalar product, and we will use the two terms interchangeably.
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Example

The scalar product in R2 of (1,−3)T and (5, 2)T is the scalar(
1
−3

)
·
(

5
2

)
= 1× 5 + (−3)× 2 = 5− 6 = −1

Proposition 1.9

The scalar product of vectors in Rn satisfies the following:

(i) v · w = w · v for any v, w ∈ Rn

(ii) (λ1v1 + λ2v2) · w = λ1(v1 · w) + λ2(v2 · w)

(iii) For any v ∈ Rn, v ·v ≥ 0, and furthermore v ·v = 0 if and only if v = 0 is the zero vector.

Properties (i) and (ii) are often referred to by saying that scalar product is bilinear: you can
expand out linear combinations in the first factor, and by switching the factors around using
the first property you can also expand out linear combinations in the second factor.

Proof. Write v = (a1, . . . , an)T and w = (c1, . . . , cn)T in coordinates. Part (i) is then immediate
since aici = ciai for each i.

In the same notation, part (iii) is also clear: v · v = a21 + . . . + a2n is a sum of squares, so cannot
be negative. Furthermore, the sum can only be zero if each a2i = 0, and that only happens if each
ai = 0, which is the claim.

Part (ii) is almost immediate too: write v1 = (a1, . . . , an)T and v2 = (b1, . . . , bn)T , with w as
before, and then the ith component on the left-hand side is

(λ1ai + λ2bi)ci = λ1aici + λ2bici

which equals the ith component of the right-hand side.

Lengths of vectors

Since by Proposition 1.9(iii) the dot product of any vector with itself is not negative, we may always
form the square root

√
v · v ∈ R as a real number. Therefore the following definition makes sense.

Definition 1.10 (Length of a vector)

We define the length of a vector v ∈ Rn, denoted ||v||, to be

||v|| = √v · v

which is a non-negative real number. (Notice the double lines in the notation.)
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Example 1.11

In R2, this definition of length of a vector is what you know from Pythagoras’s theorem: if
v = (a1, a2)

T , then

||v|| =
√
a21 + a22

is the length of the hypotenuse of a right-angled triangle:

v =

(
a1
a2

)
a2

a1

Proposition 1.12

The length of a vector determines a function Rn → R, given by v 7→ ||v||, that satisfies the
following properties: for any v ∈ Rn and any λ ∈ R,

(i) ||v|| ≥ 0, and equality holds if and only if v = 0 is the zero vector

(ii) ||λv|| = |λ|||v||

(iii) If v ∈ Rn \ {0} is a nonzero vector, then

v̂ =
1

||v||
v

is a vector of length 1 that is collinear with v.

Convention 1.13

The vector v̂ in part (iii) is often referred to as the unit vector in the direction of v. It is
characterised by having length 1 and being a positive multiple of v. The convention of putting
a hat (or circumflex if you prefer) over the vector to indicate this unit vector is standard.

Proof. (i) is Proposition 1.9(iii) expressed in the language of ||v||.

For (ii), write v = (a1, . . . , an) in coordinates. Then

||λv||2 = (λa1)
2 + . . .+ (λan)2 = λ2(a21 + . . .+ a2n) = λ2||v||2

and taking (positive) square roots (hence the modulus sign for |λ|) proves (ii). Finally (iii) follows
from (ii) by setting λ = 1/||v|| > 0.
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The angle between vectors

Most people find that definition of length acceptable – it agrees with what we already know, and has
the properties we expect of lengths (including the triangle inequality in Proposition 1.16 below).

The definition of angle between vectors takes more absorbing. Let’s just state it for now and think
about it afterwards – though you might ask yourself what your own definition of angle between vectors
is, and perhaps realise you don’t have one (you probably don’t even own a protractor any more).

Definition 1.14 (Angle between vectors)

Let v, w ∈ Rn \{0} be nonzero vectors. We define the angle between v and w, denoted ∠vw,
to be the real number

∠vw = cos−1
(
v · w
||v||||w||

)
where we take the principal preimage of cos, so that ∠vw lies in the interval [0, π].

It is sometimes simpler or comforting to write ϑ = ∠vw and express the complicated formula above
in rearranged form as

v · w = ||v||||w|| cos(ϑ) or even (assuming ||v||||w|| 6= 0) v̂ · ŵ = cos(ϑ)

but remember that this is not a formula we have derived from anything: it is the very definition of
the angle itself.

Example

Let v = (4,−2)T and w = (1, 2)T ∈ R2. First note that they are both nonzero vectors. We
calculate the angle ϑ between these vectors thus: v · w = 0, so we must have cos(ϑ) = 0, and
so ϑ = π/2 (or 90◦, if you prefer degrees to radians). That is, the vectors are at right angles
to one another, which matches what you see when you draw the picture.

This works in R3 too, indeed in any Rn. For example (1, 1, 1)T and (a, b, c)T ∈ R3 are at right
angles whenever their dot product is zero, that is whenever a+ b+ c = 0.

You will have noticed the terrible hole in our definition of angle: we need to know that the scalar
quantity (v ·w)/(||v||||w||) lies in the interval [−1, 1], otherwise it does not have a preimage under cos.
This is what the famous Cauchy–Schwartz inequality does for us: in absolute value, the numerator is
no bigger than the denominator – phew!

Proposition 1.15 (Cauchy–Schwartz inequality)

For any v, w ∈ Rn,
|v · w| ≤ ||v||||w||

and furthermore equality is achieved only when v and w are collinear (recall Definition 1.5).

Proof. It is enough to prove that
(v · w)2 ≤ ||v||2||w||2 (1.2)

since taking the (positive) square root gives the result (including the modulus sign on the left).
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Denoting the ith component of v as ai and that of w as bi, we calculate the right-hand side minus
the left-hand side:

||v||2||w||2 − (v · w)2 =

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
−

(
n∑
i=1

aibi

)2

=
n∑
i=1

n∑
j=i+1

(aibj − ajbi)2 (!!)

which is a sum of squares, so is clearly non-negative, as claimed.

We must check the last claim. If v = 0, then there is nothing to prove, so suppose without loss
of generality that a1 6= 0. In that case, since a1bj − ajb1 = 0, we have that each bj = aj(b1/a1):
that is, w = (b1/a1)v, and the vectors are collinear as claimed.

That’s fine, but hands up anyone who understood the line at (!!) in that proof: it is true, but you
have to be able to read summation signs like Shakespeare on steroids or prove the equality for yourself
somehow (by induction, say). At the very least, you should write out what it means when n = 2 and
n = 3. If you do wish to prove it by induction, in fact it’s not so bad:(

n∑
i=1

a2i

)(
n∑
i=1

b2i

)
−

(
n∑
i=1

aibi

)2

= terms involving only subscripts ≤ n− 1 that you handle by induction

+ a2n
(
b21 + . . .+ b2n−1

)
+
(
a21 + . . .+ a2n−1

)
bn +�

��a2nb
2
n

− 2 (a1b1 + . . .+ an−1bn−1) anbn −�
��a2nb
2
n

Now consider where we’re trying to get to: for each i = 1, . . . , n− 1,

(aibn − anbi)2 = a2i b
2
n + a2nb

2
i − 2(aibi)(anbn)

which accounts for all the terms in the big equation above that have a subscript i; so we are done.

If you don’t like (!!) or that inductive check, here’s another proof of the main point (1.2).

Proof. Certainly (1.2) holds if v = 0: both sides are zero, and v = 0w is collinear with w. So
suppose v 6= 0. Let v̂ = v/||v|| and define u = w − µv̂ where µ = v̂ · w. Then, since v̂ · v̂ = 1,

0 ≤ ||u||2 = u · u = w · w − w · µv̂ − µv̂ · w + µ2

= ||w||2 − 2µ(v̂ · w) + µ2

= ||w||2 − (v̂ · w)2

= ||w||2 − 1

||v||2
(v · w)2

and the result follows by multiplying through by ||v||2 > 0.

And here’s a more stylish proof of (1.2) if you don’t like that one.

Proof. Again it suffices to consider the case v 6= 0. Consider the polynomial (in a variable x)

f(x) := (a1x+ b1)
2 + . . .+ (anx+ bn)2 = Ax2 +Bx+ C

where A =
∑n

i=1 a
2
i = ||v||2 > 0, B = 2

∑n
i=1 aibi = 2v · w and C =

∑n
i=1 b

2
i = ||w||2.

For any x ∈ R, the value of f(x) is by definition a sum of squares, so it is zero if and only if each
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summand (aix + bi)
2 is zero. Thus f(x) can have at most one real root, namely x = −bi/ai if

ai 6= 0, and moreover all such values must agree (and moreover[-squared] we must have bi = 0
whenever ai = 0).

Now f(x) is a quadratic polynomial, so we know all about its real roots: it has two distinct real
roots unless B2 − 4AC ≤ 0. But (up to a redundant factor of 4) that inequality is exactly what
we need to prove – it is what (!!) does for us above – so we are done.

The Cauchy–Schwartz inequality rescues our definition of angle, and it also proves the triangle in-
equality for lengths.

Proposition 1.16 (Triangle inequality)

The length || || of a vector satisfies the triangle inequality: for any v, w ∈ Rn,

||v + w|| ≤ ||v||+ ||w||

and equality holds if and only if v and w are collinear.

This follows from the definition of length, the bilinearity of scalar product (Proposition 1.9(i–ii)) and
Cauchy–Schwartz: once you see the first line, you can follow your nose.

Proof. We compute the length-squared of v + w:

||v + w||2 = (v + w) · (v + w)

= v · v + v · w + w · v + w · w
≤ ||v||2 + |v · w|+ |w · v|+ ||w||2

≤ ||v||2 + 2||v||||w||+ ||w||2

= (||v||+ ||w||)2.

Thus ||v + w||2 = (||v||+ ||w||)2, and taking the (positive) square root gives the result.

Orthonormal sets of vectors and orthogonal projection

The ideas of length and angle give a first indication why the standard basis is so useful. (Later you
may think that this discussion is tautological, but for now let’s go with it.) First recall the standard
delta function.

Definition 1.17

The Kronecker delta function δij is defined by

δij =

{
1, if i = j

0, if i 6= j.

The definition is coy about what i and j actually are, but in our context they will always be integers
in some specified range such as i, j ∈ {1, . . . , s}.
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Definition 1.18

A set of vectors v1, . . . , vs ∈ Rn is orthonormal if and only vi ·vj = δij for each i, j = 1, . . . , s.

Spelling that definition out, v1, . . . , vs are orthonormal if and only if they all have length 1 and they
are pairwise at right angles to one another.

Example

The standard basis is the fundamental example of an orthonormal set of vectors.

As a more exotic example in R2, for any fixed ϑ ∈ R consider

v1 =

(
cosϑ
sinϑ

)
, v2 =

(
− sinϑ
cosϑ

)
It is useful to draw this picture: you will see the standard basis of R2 rotated by ϑ. Can you
persuade yourself that these are the only orthonormal sets of two vectors in R2 (not considering
the order in which you write them)?

There is a lot more to say about dot products and orthonormal vectors, but for now let’s consider just
one more point: the orthogonal projection of one vector onto another. First a seeming triviality.

Example 1.19

Although it seems ridiculous to say it in this context, dot product with the standard basis is a
formal way of finding the ith component of a vector: if v = (a1, . . . , an)T ∈ Rn and e1, . . . , en
is the standard basis of Rn, then

ai = ei · v for each i = 1, . . . , n

Put differently, even if nobody told you what the components ai of v were, you could still find
them out at once using this formula.

When we consider orthogonal vectors in Euclidean spaces more generally later, this idea will
seem more subtle, even though it is exactly the same.

Pictorially, we may regard the ith component of v as the length of the projection of v onto ei:
compare the picture in Example 1.11. The calculation in the example above then gives us a method
of calculating this length.

This idea works more generally. Consider the following picture: the vector λŵ is the orthogonal
projection of v onto the line through the unit vector ŵ, though the required scalar multiple λ is yet
to be calculated.
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0

ŵ

λŵ

v̂

n̂ = v − λŵ

To calculate λ, we define n̂ = v − λŵ and simply notice that

n · ŵ = v · ŵ − λ||ŵ||2 = v · ŵ − λ

since ||ŵ|| = 1. Therefore λŵ is orthogonal to n̂ (as in the picture) if and only if λ = v · ŵ.

Definition 1.20

Let v, w ∈ Rn with w 6= 0 and let ŵ = w/||w|| be the unit vector in the direction of w. Then the
scalar quantity v · ŵ is called component of v in the direction of w, and the vector (v · ŵ)ŵ
is the orthogonal projection of v in the direction of w.

Notice that the definition uses any nonzero vector w, while the calculation uses the unit vector ŵ:
they both serve the role of pinpointing the line that v is projected onto, but it is important that ŵ
has length 1 for the calculation – or you could write ((v · w)/||w||2)w instead, if you don’t like hats.

Since the vectors of the standard basis have length 1, the trivial calculation of Example 1.19 is
computing exactly the component of v in the directioin of each of the standard basis elements,
and it confirms that these are simply the usual components of v. The more general calculation in
Definition 1.20 is just as simple to use.

1.3 Geometry of lines and planes in R3

First warm up in the plane R2. Everyone knows that the equation of a line L ⊂ R2 in the plane (by
which we always mean a straight line, extending indefinitely in both directions) is of the form

L : (y = mx+ c) ⊂ R2

for suitable m, c ∈ R. Well, that’s not quite true, since it doesn’t cover vertical lines (x = a), so to
overcome this prejudice about y being better than x (and whatever it is that m and c are supposed
to stand for) let’s write it instead as

L : (ax+ by = c) ⊂ R2

where a, b, c ∈ R and we insist that (a, b) 6= (0, 0). It is clear that the line L passes through the origin
if and only if c = 0.
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Example

What is the equation of the line LPQ ⊂ R2 through the points P =

(
−2
1

)
and Q =

(
4
3

)
?

First a sanity check: these two points are distinct, so we know from geometry (or experience)
that there is indeed a unique straight line passing through them (though this will also follow
from the calculation below). The equation of that line must be ax+by = c for some a, b, c ∈ R,
and we note at once that these are not uniquely determined, so your answer may be different
from mine, since multiplying them all by a nonzero scalar λ 6= 0 does not change the line.

With that all in mind, we treat a, b, c as unknowns, substitute the two points into the unknown
equation and solve:

at P : −2a+ b = c
at Q : 4a+ 3b = c

which has solution a = −(1/5)λ, b = (3/5)λ and c = λ for any λ ∈ R (one degree of freedom,
as we observed above), and we simply choose any nonzero solution such as (a, b, c) = (−1, 3, 5)
(setting λ = 5), giving

LPQ : (−x+ 3y = 5) ⊂ R2.

Of course we check at once that P and Q really do lie on LPQ to avoid any daft error.

Remark

We worked out the example above having our usual presentation of linear equations in mind.
If you had to do this quickly on the bus, you’d probably say something more like this. The
equation of LPQ must be of the form

LPQ : λ(x− 4) = µ(y − 3)

for suitable λ, µ ∈ R (4 and 3 were chosen to ensure that Q lies on this line). Plugging in the
coordinates of P gives −6λ = −2µ, which has nontrivial solution λ = 1, µ = 3, so as before

LPQ : x− 4 = 3(y − 3) or −x+ 3y = 5, if you prefer.

Now to R3. The solution set of a single linear equation in R3 describes a plane.

Example

Find the plane ΠPQR ⊂ R3 through P =

1
1
1

, Q =

 1
−1
2

 and R =

0
2
3

.

Its equation is of the form

ax+ by + cz = d for a, b, c, d ∈ R with (a, b, c) 6= (0, 0, 0).

Treating a, b, c, d as unknowns and substituting the three points into this equation in turn gives
a system of simultaneous linear equations:

at P : a+ b+ c = d
at Q : a− b+ 2c = d
at R : 2b+ 3c = d
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You can solve this to find a nontrivial solution (a, b, c, d) = (5, 1, 2, 8) (there is one degree of
freedom, but we have chosen a particular solution), so that

ΠPQR : (5x+ y + 2z = 8) ⊂ R3

As a routine professional courtesy, of course you check that the three points really do satisfy
this equation.

Remark

Perhaps you know the vector calculus way of expressing a plane Π ⊂ R3. Suppose n̂ is a normal
vector to Π, then the equation of Π has the form

Π: n̂ ·

xy
z

 = d for some d ∈ R

and if n̂ is a unit vector, as the notation suggests, then d is the height of Π above the origin.

The equation we found in the example above is also of this form: it is simply

ΠPQR : n̂ ·

xy
z

 =
8√
30

with n̂ =
1√
30

5
1
2


where we divided through by the length of the vector (5, 1, 2)T to get the unit vector n̂. Nothing
much has changed, though we now see that the height of ΠPQR above the origin is 8/

√
30.

However, this point of view does give us a idea. Choosing a different value of d also defines a
plane, but a different one that is parallel to Π: the normal vector n̂ determines what we think
of as the slope of the plane, while the value of d determines its distance from the origin.

Now what about lines L ⊂ R3? These are defined by two independent linear equations. This makes
intuitive sense: we may consider the line as being the intersection of two distinct planes, each of those
is defined by a linear equation, and so we need both to define the line. Let’s do a typical calculation.

Example 1.21

What are the equations of the line LPQ ⊂ R3 through the points P =

−2
1
3

 and Q =

4
3
2

?

Again, first a sanity check: these are two distinct points, so we know from experience that there
is a unique line passing through them. As before, that doesn’t mean we expect the equations
to be unique: different equations may define the same line.

In the first place, let’s consider a single linear equation with unknown coefficients a, b, c, d ∈ R:

ax+ by + cz = d. (1.3)

Substituting the components of P and Q into this equation in turn gives the system of simul-
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taneous linear equations
at P : −2a+ b+ 3c = d
at Q : 4a+ 3b+ 2c = d

(1.4)

Adding twice the first to the second gives

5b+ 8c = 3d or, in other words, b = −8

5
c+

3

5
d

This equation by itself has lots of solutions: for any c, d ∈ R, we can use this to define b.
Plugging that expression for b back into the first equation gives

−2a+

(
−8

5
c+

3

5
d

)
+ 3c = d or, in other words, a =

7

10
c− 1

5
d

You can check that these expressions for a, b in terms of c, d really do satisfy both equations (1.4).

Now, with these expressions for a, b, for any values of c, d ∈ R not both zero, equation (1.3) is(
7

10
c− 1

5
d

)
x+

(
−8

5
c+

3

5
d

)
y + cz = d.

You could say that all of these (infinitely many) equations together define the line LPQ, and
you’d be right. But as we said at the outset, it is enough to choose two independent equations
from this huge collection. To do that, simply choose two different pairs (c, d) that are not
collinear (this last condition is to ensure that the equations are independent). For example,

choosing c = 10, d = 0 gives : 7x− 16y + 10z = 0
choosing c = 0, d = 5 gives : −x+ 3y = 5

and this pair of equations taken together defines LPQ ⊂ R3. (As ever, to minimise errors we
check again that P and Q really do lie on LPQ, that is, they really do satisfy both equations.)

Remark

Perhaps you know the vector calculus way of expressing a line L ⊂ R3. Suppose w ∈ R3 is a
nonzero vector and P ∈ R3 is a point. (Remember that for us a point is the same thing as a
vector based at zero, so P is also a vector.) Then the line L through P that is parallel to w is
described as the set

L = {P + λw | λ ∈ R} .
This is a parametrised way of describing the line – it lists all the points of the line – whereas
our method above, writing down two equations and saying that the line is the solution set of
them, is an implicit way of describing the line. Both ways are useful, and it is good to be able
to translate between the two.

For problems such as the one in Example 1.21, we can choose w = Q− P , since after all this
choice of w is a vector along the line LPQ, so it is certainly parallel to it, and then

LPQ = {P + λw | λ ∈ R} = {(1− λ)P + λQ | λ ∈ R} .

With P,Q as in Example 1.21, the points of LPQ are then exactly the set

{(1− λ)P + λQ | λ ∈ R} =


−2 + 6λ

1 + 2λ
3− λ

 ∣∣∣∣∣∣ λ ∈ R

 ⊂ R3

19



and you easily check that these points satisfy the two equations we derived earlier.
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Chapter 2

Linear systems and matrices

You probably already know how to solve systems of simultaneous linear equations in several unknowns.
In this chapter we review a basic naive approach with an example, and then describe a really effective
way to do this that you can use forever more in all but the most trivial situations. We discuss:

§2.1 Systems of linear equations: how to solve them naively, and also express them using matrices;
if you know this already, you only need to check the terminology we use.

§2.2 Algebra of matrices: addition and multiplication, including summation notation for the opera-
tions; you may wish only to skim this to be sure it accords with how you think of the material.

§2.3 Reduced row echelon form: this is the crucial section; it gives a systematic and efficient approach
to understand and solve systems of linear equations. Put most of your effort here.

§2.4 How to compute the inverse of a square matrix, if it has one, using reduced row echelon form.

2.1 Systems of linear equations

Example 2.1

Determine the solutions (if any) to the following equations:

3x+ y − 2z = −2 x+ y + z = 2 2x+ 4y + z = 0.

We can substitute z = 2− x− y from the second equation into the first and third equations to
find

3x+ y − 2(2− x− y) = 5x+ 3y − 4 = −2 ⇒ 5x+ 3y = 2

2x+ 4y + (2− x− y) = x+ 3y + 2 = 0 ⇒ x+ 3y = −2

Subtracting the second of these equations from the first gives 4x = 4 and so we see:

x = 1 y = (−2− x)/3 = −1 z = 2− x− y = 2.

Thus there is a unique solution, (x, y, z) = (1,−1, 2).
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Definition 2.2

A linear system of equations is a set of m simultaneous equations in n variables x1, x2, . . . , xn
which are of the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

(2.1)

where the aij and bk are constants.

We can write the linear system of equations in matrix form:


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm



Example 2.3

Returning to Example 2.1, we have:

3x + y − 2z = −2
x + y + z = 2
2x + 4y + z = 0

Written as matrices this becomes:3 1 −2
1 1 1
2 4 1

xy
z

 =

−2
2
0



Definition 2.4

Any vector (x1, x2, . . . , xn)T ∈ Rn which satisfies (2.1) is called a solution to the linear system.
If the linear system has one or more solutions then it is said to be consistent. The general
solution to the system is any description of all the solutions of the system.

We will see later that any linear system will have either zero, one, or infinitely many solutions.

Example 2.5

Example 2.1 has a unique solution given by the vector (1,−1, 2)T . That this is a solution can be
easily verified (and you should do this!). That this solution is unique follows from our working
in Example 2.1, however this is not so simple to check without repeating the work we did above.
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Definition 2.6

We will often write the linear system (2.1) as the augmented matrix (A | b), where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 , b =


b1
b2
...
bm



Example 2.7

Again returning to Example 2.1, the augmented matrix is:3 1 −2 −2
1 1 1 2
2 4 1 0



The advantage of using the augmented matrix is that we will be able to progress systematically towards
a solution. This is a methodical approach, unlike our solution in Example 2.1. This process is called
row reduction. It relies on three types of operation, called elementary row operations (or EROs for
short). The important point is that EROs do not affect the set of solutions of a linear system.

Definition 2.8

Given a matrix, an elementary row operation (or ERO) is one of the following:

(i) Two rows may be swapped;

(ii) A row can be multiplied by a non-zero scalar;

(iii) A multiple of one row may be added to a second row.

These three elementary row operations can be understood in terms of operations on the linear equa-
tions:

(i) The order of two equations may be swapped; for example, rather than writing

3x+ y − 2z = −2

x+ y + z = 2

2x+ 4y + z = 0

we may change the order (for example, swapping the first and second equations) and write

x+ y + z = 2

3x+ y − 2z = −2

2x+ 4y + z = 0

(ii) An equation may be multiplied by a non-zero scalar; for example, we might replace the equation
3x+ y − 2z = −2 with x+ 1

3y −
2
3z = −2

3 (i.e. multiply by 1
3).
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(iii) A multiple of one equation may be added to another equation; for example, given the two
equations

3x+ y − 2z = −2

x+ y + z = 2

we can add −1
3 of the first equation to the second equation to get

3x+ y − 2z = −2

2

3
y +

5

3
z =

8

3

These three operations describe the steps a person would take when attempting to solve a linear
system of equations.

Example 2.9

Again returning to Example 2.1, we will solve the system slowly using the three elementary row
operations. First we do this by working directly with the equations:

3x + y − 2z = −2
x + y + z = 2
2x + 4y + z = 0

Swap the first and second equations to get:

x + y + z = 2
3x + y − 2z = −2
2x + 4y + z = 0

Add −3 times the first equation to the second equation to get:

x + y + z = 2
−2y − 5z = −8

2x + 4y + z = 0

Add −2 times the first equation to the third equation to get:

x + y + z = 2
−2y − 5z = −8
2y − z = −4

Add the second equation to the third equation to get:

x + y + z = 2
−2y − 5z = −8

−6z = −12

Multiply the second equation by −1
2 to get:

x + y + z = 2
y + 5

2z = 4
−6z = −12

Add −1 times the second equation to the first equation to get:

x − 3
2z = −2

y + 5
2z = 4
−6z = −12
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Multiply the third equation by −1
6 to get:

x − 3
2z = −2

y + 5
2z = 4
z = 2

Add 3
2 times the third equation to the first equation to get:

x = 1
y + 5

2z = 4
z = 2

Add −5
2 times the third equation to the second equation to get:

x = 1
y = −1
z = 2

Example 2.10

Again returning to Example 2.1, we will again solve the system slowly using the three elementary
row operations. This time we do this by working with the augmented matrix:3 1 −2 −2

1 1 1 2
2 4 1 0


Swap the first and second rows to get:1 1 1 2

3 1 −2 −2
2 4 1 0


Add −3 times the first row to the second row to get:1 1 1 2

0 −2 −5 −8
2 4 1 0


Add −2 times the first row to the third row to get:1 1 1 2

0 −2 −5 −8
0 2 −1 −4


Add the second row to the third row to get:1 1 1 2

0 −2 −5 −8
0 0 −6 −12


Multiply the second row by −1

2 to get:1 1 1 2
0 1 5

2 4
0 0 −6 −12


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Add −1 times the second row to the first row to get:1 0 −3
2 −2

0 1 5
2 4

0 0 −6 −12


Multiply the third row by −1

6 to get: 1 0 −3
2 −2

0 1 5
2 4

0 0 1 2


Add 3

2 times the third row to the first row to get:1 0 0 1
0 1 5

2 4
0 0 1 2


Add −5

2 times the third row to the second row to get:1 0 0 1
0 1 0 −1
0 0 1 2


From this we can read off the solution:

x = 1 y = −1 z = 2

Language 2.11

We introduce some notation to help us talk about elementary row operations. Note that this is
not standard notation, however it is convenient to have.

(i) Let Sij denote the elementary row operation which swaps rows i and j.

(ii) Let Mi(λ) denote the elementary row operation which multiples row i by λ 6= 0.

(iii) Let Aij(λ), where i 6= j, denote the elementary row operation which adds λ times row i
to row j.
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Example 2.12

We solve Example 2.1 once more:3 1 −2 −2
1 1 1 2
2 4 1 0

 S12−→

1 1 1 2
3 1 −2 −2
2 4 1 0

 A12(−3)−→

1 1 1 2
0 −2 −5 −8
2 4 1 0


A13(−2)−→

1 1 1 2
0 −2 −5 −8
0 2 −1 −4

 A23(1)−→

1 1 1 2
0 −2 −5 −8
0 0 −6 −12

M2(−1/2)−→

1 1 1 2
0 1 5

2 4
0 0 −6 −12


A21(−1)−→

1 0 −3
2 −2

0 1 5
2 4

0 0 −6 −12

M3(−1/6)−→

1 0 −3
2 −2

0 1 5
2 4

0 0 1 2

 A31(3/2)−→

1 0 0 1
0 1 5

2 4
0 0 1 2


A32(−5/2)−→

1 0 0 1
0 1 0 −1
0 0 1 2


We see that:

x = 1 y = −1 z = 2

Example 2.13

Consider the linear system of equations

x1 − x2 + x3 + 3x4 = 2

2x1 − x2 + x3 + 2x4 = 4

4x1 − 3x2 + 3x3 + 8x4 = 8

We solve this system by working with the augmented matrix:1 −1 1 3 2
2 −1 1 2 4
4 −3 3 8 8

 A12(−2),A13(−4)−→

1 −1 1 3 2
0 1 −1 −4 0
0 1 −1 −4 0


A21(1),A23(−1)−→

1 0 0 −1 2
0 1 −1 −4 0
0 0 0 0 0


The third row of the augmented matrix has become equal to zero. This indicates that there
was redundancy in the original system of equations: in this case notice that the third equation
4x1−3x2 + 3x3 + 8x4 = 8 can be deduced from the first two equations x1−x2 +x3 + 3x4 = 2
and 2x1 − x2 + x3 + 2x4 = 4 (add two times the first equation to the second equation) and so
provides no additional information.

Our sequence of elementary row operations above resulted in the two equations

x1 − x4 = 2 x2 − x3 − 4x4 = 0 (2.2)

However there are four variables x1, x2, x3, and x4. Thus it is impossible for this system to have
a unique solution. Instead we assign parameters to the two columns (equivalently, variables)
which fail to contain a leading entry: in this case, the third and forth columns representing x3
and x4. Setting x3 = s and x4 = t in (2.2) and rearranging slight gives a two-dimensional
family of solutions:

x1 = 2 + t x2 = s+ 4t x3 = s x4 = t
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Equivalently, we could write this as

(x1, x2, x3, x4) = (2 + t, s+ 4t, s, t)

= (2, 0, 0, 0) + s(0, 1, 1, 0) + t(1, 4, 0, 1)

We see that the solutions form a two-dimensional plane in R4 parameterised by s and t. This
plane is parallel to the vectors (0, 1, 1, 0) and (1, 4, 0, 1), and contains the point (2, 0, 0, 0).

Example 2.14

Consider the linear system of equations

x+ y + z + w = 4

2x+ 3y − 2z − 3w = 1

x+ 5z + 6w = 1

Applying elementary row operations to the augmented matrix we obtain:1 1 1 1 4
2 3 −2 −3 1
1 0 5 6 1

 A12(−2),A13(−1)−→

1 1 1 1 4
0 1 −4 −5 −7
0 −1 4 5 −3


A23(1)−→

1 1 1 1 4
0 1 −4 −5 −7
0 0 0 0 −10


Notice that the third row gives the equation

0x+ 0y + 0z + 0w = −10

There is clearly no solution to this equation; hence there are no solutions to the original system
of equations.

Remark

Examples 2.12, 2.13, and 2.14 illustrate the following important observation:

A linear system of equations can have no solution, one solution, or infinitely many solutions.

Example 2.15

Consider the linear system of equations in x, y, and z

x+ z = −5

2x+ αy + 3z = −9

−x− αy + αz = α2.
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Here α is a constant. We can apply elementary row operations to the augmented matrix: 1 0 1 −5
2 α 3 −9
−1 −α α α2

 A12(−2),A13(1)−→

1 0 1 −5
0 α 1 1
0 −α α+ 1 α2 − 5


A23(1)−→

1 0 1 −5
0 α 1 1
0 0 α+ 2 α2 − 4


How we proceed depends on the value of α. Ideally we would like to divide the second row by
α, and divide the third row by α+ 2. But the first of these operations requires α 6= 0, and the
second of these operations requires α 6= −2.

Let us assume for now that α 6= 0,−2. Then:1 0 1 −5
0 α 1 1
0 0 α+ 2 α2 − 4

 M2(1/α),M3(1/(α+2))−→

1 0 1 −5
0 1 1

α
1
α

0 0 1 α− 2


A31(−1),A32(−1/α)−→

1 0 0 −α− 3
0 1 0 3

α − 1
0 0 1 α− 2


We see that there is a unique solution

x = −α− 3 y =
3

α
− 1 z = α− 2

Now suppose that α = 0. We have:1 0 1 −5
0 0 1 1
0 0 2 −4

 A23(−2),M3(−1/6)−→

1 0 1 −5
0 0 1 1
0 0 0 1


We see that the system is inconsistent (because the final row gives 0x+ 0y + 0z = 1), and so
there is no solution.

Finally, suppose that α = 2. Then:1 0 1 −5
0 −2 1 1
0 0 0 0

 M2(−1/2)−→

1 0 1 −5
0 1 −1/2 −1/2
0 0 0 0


Since there is no leading entry in the third column, we assign a free parameter t to z and obtain
infinitely many solutions:

x = −5− t y =
t− 1

2
z = t
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2.2 Matrices and matrix algebra

A matrix is a two-dimensional array of numbers. We say that a matrix is an m×n matrix if it has m
rows and n columns. For example(

1 2 3
4 5 6

)  1
π√
2

 (
0 0
0 0

)
are all matrices. The first example is a 2 × 3 matrix, the second example is a 3 × 1 matrix, and the
third example is a 2× 2 matrix.

Definition 2.16

Let m and n be positive integers. An m× n matrix is an array of mn numbers arranged into
m rows and n columns. The numbers in a matrix are called its entries. In the contexts we use
matrices here, all entries are scalars, which for us means they lie in R.

Remark

We may treat a vector in Rm (meaning a column vector as usual) as an m × 1 matrix.
Conversely, if A is a m× n matrix, then we may regard each of its columns as a vector in Rm.

We may also consider row vectors: we write
(
c1 c2 . . . cn

)
∈ Rnrow, where the subscript

indicates that we mean row vectors. We may treat row vectors in Rnrow as 1× n matrices, and
conversely if A is a m× n matrix, then we may regard its rows as m row vectors in Rnrow. (We
will always be explicit when we mean row vectors by writing Rnrow.)

Example 2.17

Let

A =

(
1 −3 7
3 2 1

)
The second column of A is equal to the (column) vector(

−3
2

)
∈ R2

and the second row of A is equal to the row vector(
3 2 1

)
∈ R3

Python 2.18

Many of the calculations we perform in these notes can be replicated in Python by using the
NumPy package. All code cells in these notes will require you to have run the following line of
code beforehand to import the NumPy package. We give numpy the alias np.

1 import numpy as np

The basic data type in NumPy is the array object which has type ndarray. These are often
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used to simulate matrices. They are initialised using the function np.array, and by specifying
the matrix elements to be stored as a list in the function input. The following code stores the
matrix A from Example 2.17 in a variable.

1 A = np.array ([[1,-3,7],[3,2,1]])

2 print(A)

Individual elements in a NumPy array can be accessed using square brackets [ and ]. In
particular, for our matrix A above, the code A[m,n] will extract the element in the row indexed
by m, and the column indexed by n. Remember counting in Python starts from zero, so the
first row/column is indexed by 0, the second by 1, and so on. Line 1 below prints 7, and line 2
prints 2.

1 print(A[0,2])

2 print(A[1,1])

If you want to extract a row of our NumPy array, then we can use the notation A[m] where m

is the index of the row we want to extract. The following code prints the second row of A.

1 print(A[1])

If you want to extract a column of our NumPy array, then we can use the notation A[:,n]

where n is the index of the column we want to extract. The following code prints the third
column of A.

1 print(A[:,2])

Definition 2.19

The set of all real m × n matrices is denoted Matm×n(R), or by the abbreviation Matmn(R)
or just Matmn when it is clear.

As remarked after Definition 2.16, we may regard Matm1 = Rm and Mat1n = Rnrow.

Language 2.20

We frequently write let A = (aij) ∈ Matmn as shorthand for the matrix

n columns︷ ︸︸ ︷
m rows



a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 ∈ Matmn

with entry aij in the ith row and the jth column. Here the limits 1 ≤ i ≤ m and 1 ≤ j ≤ n
are implicit, since A ∈ Matmn. In particular the ith row of A is(

ai1 ai2 . . . ain
)
∈ Rnrow
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and the jth column of A is 
a1j
a2j

...
amj

 ∈ Rm

Example 2.21

Let

A =

(
1 3 5
0 2 4

)
∈ Mat23 .

Then a11 = 1, a12 = 3, and a23 = 4. In fact, in this example we have the formula aij = 2j− i.

The simple transpose operation on matrices explains our notation (a1, . . . , an)T for column vectors.

Definition 2.22

Let A = (aij) ∈ Matmn. Then the transpose of A, also referred to as A transposed and
denoted AT , is the matrix AT = (aji) ∈ Matnm.

That definition is nice and concise, but you have to notice carefully that the i and j have switched
roles to make the transpose: aij became aji.

Example 2.23

Let

A =

(
1 3 5
0 2 4

)
∈ Mat23 .

Then

AT =

1 0
3 2
5 4

 ∈ Mat32 .

In the transposed matrix the rows have become the columns, or equally the columns have
become the rows.

There are three important operations that can be performed with matrices:

(i) matrix addition,

(ii) scalar multiplication, and

(iii) matrix multiplication.

Two matrices can only be added together if they have the same number of rows, and the same number
of columns.
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Definition 2.24 (Matrix addition)

Let A = (aij) and B = (bij) be two m × n matrices. Then C = A + B is the m × n matrix
with entries

cij = aij + bij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2.25

Let

A =

(
1 2 −1
0 1 2

)
B =

(
1 0 1
0 1 0

)
.

Then

A+B =

(
2 2 0
0 2 2

)
= B +A.

Python 2.26

We can perform matrix addition in Python. The following code emulates the calculation of
Example 2.25.

1 A = np.array ([[1,2,-1],[0,1,2]])

2 B = np.array ([[1 ,0 ,1] ,[0 ,1 ,0]])

3 print(A+B)

If you attempt to add two NumPy arrays that are not of the same size you will receive an error
‘ValueError: operands could not be broadcast together with shapes’.

Remark

In general, matrix addition is commutative. That is, for A,B ∈ Matmn we have that

A+B = B +A.

Furthermore, matrix addition is associative. That is, for A,B,C ∈ Matmn we have that

A+ (B + C) = (A+B) + C.

Definition 2.27

The m × n matrix whose entries are all 0 is called the zero matrix, and is denoted by 0mn.
Given any A ∈ Matmn we have that

A+ 0mn = A.
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Example 2.28

Let

A =

(
1 2
3 4

)
022 =

(
0 0
0 0

)
.

It is trivial to check that A+ 022 = A.

Definition 2.29 (Scalar multiplication)

Let A = (aij) be an m × n matrix, and let k ∈ R. Then C = kA is the m × n matrix with
entries

cij = kaij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2.30

Let

A =

(
1 2
3 4

)
B =

(
−1 0
−3 0

)
We shall show that 3(A+B) = 3A+ 3B. First, notice that

A+B =

(
0 2
0 4

)
and hence 3(A+B) = 3

(
0 2
0 4

)
=

(
0 6
0 12

)
.

On the other hand,

3A =

(
3 6
9 12

)
and 3B =

(
−3 0
−9 0

)
, hence 3A+ 3B =

(
0 6
0 12

)
.

Python 2.31

We can perform scalar multiplication of a matrix in Python. The following code emulates the
calculation of Example 2.30.

1 A = np.array ([[1 ,2] ,[3 ,4]])

2 B = np.array ([[-1,0],[-3,0]])

3 print (3*A)

4 print (3*B)

5 print (3*A+3*B)

Definition 2.32

Scalar multiplication is distributive: for A,B ∈ Matmn and k ∈ R we have that

k(A+B) = kA+ kB.
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Remark

Let A,B,C ∈ Matmn and let k, s ∈ R be scalars. The following identities hold:

(i) A+ 0mn = A

(ii) A+B = B +A

(iii) 0A = 0mn

(iv) A+ (−A) = 0mn

(v) (A+B) + C = A+ (B + C)

(vi) 1A = A

(vii) (k + s)A = kA+ sA

(viii) k(A+B) = kA+ kB

(ix) k(sA) = (ks)A

(We shall see later that these identities show that Matmn is a vector space, giving a more exotic
example than the vector spaces Rn we have seen so far.)

Matrix multiplication is very different from matrix addition and scalar multiplication. At first the
definition may seem strange, however we shall see later that it is natural in the context of matrices
representing linear maps.

Definition 2.33 (Matrix multiplication)

Let A = (aij) be an m×n matrix, and let B = (bij) be an n× ` matrix. Then C = AB is the
m× ` matrix with entries

cij =
n∑
k=1

aikbkj for 1 ≤ i ≤ m and 1 ≤ j ≤ `.

Equivalently, let r1, . . . , rm denote the rows of A, and let c1, . . . , c` denote the columns of B.
Then

cij = rTi · cj for 1 ≤ i ≤ m and 1 ≤ j ≤ `,

where rTi · cj denotes the scalar product.

Example 2.34

Let

A =

(
1 2
−1 0

)
B =

(
1 −1
1 −1

)
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Let us work slowly through the calculation of the matrix product AB.(
1 2
−1 0

)(
1 −1

1 −1

)
=

(
1× 1 + 2× 1 ?

? ?

)
=

(
3 ?
? ?

)
(

1 2
−1 0

)(
1 −1

1 −1

)
=

(
3 1× (−1) + 2× (−1)

? ?

)
=

(
3 −3

? ?

)
(

1 2

−1 0

)(
1 −1

1 −1

)
=

(
3 −3

(−1)× 1 + 0× 1 ?

)
=

(
3 −3

−1 ?

)
(

1 2

−1 0

)(
1 −1

1 −1

)
=

(
3 −3

−1 (−1)× (−1) + 0× (−1)

)
=

(
3 −3

−1 1

)
Hence

AB =

(
1 2
−1 0

)(
1 −1
1 −1

)
=

(
3 −3
−1 1

)

Example 2.35

Let A and B be as in Example 2.34. We wil calculate the matrix product BA.(
1 −1

1 −1

)(
1 2

−1 0

)
=

(
1× 1 + (−1)× (−1) ?

? ?

)
=

(
2 ?
? ?

)
(

1 −1

1 −1

)(
1 2

−1 0

)
=

(
2 1× 2 + (−1)× 0

? ?

)
=

(
2 2
? ?

)
(

1 −1

1 −1

)(
1 2

−1 0

)
=

(
2 2

1× 1 + (−1)× (−1) ?

)
=

(
2 2

2 ?

)
(

1 −1

1 −1

)(
1 2

−1 0

)
=

(
2 2

2 1× 2 + (−1)× 0

)
=

(
2 2

2 2

)
Hence

BA =

(
1 −1
1 −1

)(
1 2
−1 0

)
=

(
2 2
2 2

)

Python 2.36

We can perform matrix multiplication in Python. The following code emulates the calculations
in Examples 2.34 and 2.35.

1 A = np.array ([[1 ,2] ,[ -1 ,0]])

2 B = np.array ([[1,-1],[1,-1]])

3 print(A.dot(B))

4 print(B.dot(A))

If you attempt to multiply two NumPy arrays that do not have compatible sizes – that is the
number of columns of the first matrix is not equal the number of rows of the second matrix –
you will receive an error ‘ValueError: shapes (*,*) and (*,*) not aligned’.
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Remark

Examples 2.34 and 2.35 show that, even when both the matrix multiplications AB and BA
make sense, we can have that

AB 6= BA

That is, matrix multiplication is not commutative.

Example 2.37

Let

A =

(
1 2 −1
0 1 2

)
∈ Mat23 B =

1 0
0 1
2 1

 ∈ Mat32

Then

AB =

(
1 2 −1
0 1 2

)1 0
0 1
2 1

 =

(
1− 2 2− 1
4 + 0 1 + 2

)
=

(
−1 1
4 3

)
∈ Mat22

We shall also calculate the matrix produce BA:

BA =

1 0
0 1
2 1

(1 2 −1
0 1 2

)
=

1 + 0 2 + 0 −1 + 0
0 + 0 0 + 1 0 + 2
2 + 0 4 + 1 −2 + 2

 =

1 2 −1
0 1 2
2 5 0

 ∈ Mat33

Example 2.38

Let

A =

(
2 4 6
1 0 0

)
B =

1 2 3
0 1 0
0 0 1


Then

AB =

(
2 4 6
1 0 0

)1 2 3
0 1 0
0 0 1

 =

(
2 + 0 + 0 4 + 4 + 0 6 + 0 + 6
1 + 0 + 0 2 + 0 + 0 3 + 0 + 0

)
=

(
2 8 12
1 2 3

)
∈ Mat23

Notice that in this example, asking for the matrix multiplication BA makes no sense – they are
of incompatible sizes.

BA =

1 2 3
0 1 0
0 0 1

(2 4 6
1 0 0

)
which makes no sense.

Example 2.39

Let

A =

(
1 −1
1 −1

)
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Then

AA =

(
1 −1
1 −1

)(
1 −1
1 −1

)
=

(
1− 1 −1 + 1
1− 1 −1 + 1

)
=

(
0 0
0 0

)
= 022

Remark

An important consequence of Example 2.39 is the following. Let A ∈ Matmn and B ∈ Matn`
be such that AB = 0m`. It does not follow that either A = 0mn or B = 0m`.

Definition 2.40

The n × n identity matrix In is the n × n matrix with 1s on the diagonal and 0s elsewhere.
That is,

In =


1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1

 ∈ Matnn

Equivalently, using Definition 1.17, the (i, j)th entry of In is given by δij , for 1 ≤ i, j ≤ n.

Example 2.41

I2 =

(
1 0
0 1

)
I3 =

1 0 0
0 1 0
0 0 1

 I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Remark

Let a1, . . . , an ∈ R, and fix 1 ≤ k ≤ n. Then

n∑
i=1

aiδik = ak (2.3)

since δik = 0 when i 6= k, and δkk = 1. Thus the sum (2.3) selects the kth element ak.

Proposition 2.42

(i) Let A ∈ Matmn and `, p ∈ Z>0. Then

A0np = 0mp 0`mA = 0`n AIn = A ImA = A

(ii) Matrix multiplication is associative: for matrices A ∈ Matmn, B ∈ Matn`, and C ∈ Mat`p
we have

A(BC) = (AB)C
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(iii) Matrix multiplication is distributive: whenever the following products and sums make
sense, we have

A(B + C) = AB +AC (A+B)C = AC +BC

Proof. (i): To find an entry of the produce A0np we dot a row of A with a zero column of 0np,
which will always give zero. Similarly for 0`mA. By (2.3) we have

the (i, j)th entry of AIn =
n∑
k=1

aikδkj = aij

the (i, j)th entry of ImA =
m∑
k=1

δikakj = aij .

(ii): Given 1 ≤ i ≤ m, 1 ≤ j ≤ p we have

the (i, j)th entry of (AB)C =
∑̀
r=1

(
n∑
s=1

aisbsr

)
crj

the (i, j)th entry of A(BC) =
n∑
s=1

ais

(∑̀
r=1

bsrcrj

)
.

These are equal since the order of finite sums may be swapped without changing the result.

(iii): Left as an exercise.

Because matrix multiplication is not commutative we need to be clear what we mean when we say
something like “multiply the matrix A by the matrix B”. Do we mean AB or BA? Sometimes we
can deduce which is meant from the sizes of A and B; sometimes the context makes this clear. But
sometimes we need to use more precise language.

Definition 2.43

Let A and B be matrices.

(i) To premultiply B by A is to perform the matrix multiplication AB, i.e. multiplication on
the left.

(ii) To ’postmultiply B by A is to perform the matrix multiplication BA, i.e. multiplication
on the right.

Definition 2.44

Let A ∈ Matmm be a square matrix. We write A2 for the product AA. Similarly, for any
n ∈ Z>0 we write An for the product

n times︷ ︸︸ ︷
AA · · ·A

We define A0 = Im.
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Remark

For any square matrix A and for any n,m ∈ Z≥0 we have AmAn = Am+n.

Example 2.45

Let

A =

(
cosϑ sinϑ
sinϑ − cosϑ

)
Then

A2 =

(
cos2 ϑ+ sin2 ϑ cosϑ sinϑ− sinϑ cosϑ

sinϑ cosϑ− cosϑ sinϑ sin2 ϑ+ cos2 ϑ

)
= I2

In particular, A2 = I2 for any choice of ϑ.

Example 2.46

Let

A =

(
0 1
0 0

)
Let us assume for a contradiction that there exists a matrix

B =

(
a b
c d

)
such that B2 = A. Then(

0 1
0 0

)
=

(
a b
c d

)2

=

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
Since c(a+d) = 0 we see that either c = 0 of a+d = 0. But if a+d = 0 then 1 = b(a+d) = 0,
which is a contradiction. Hence c = 0. But then 0 = a2 + bc = a2 and so a = 0, and
0 = d2 + bc = d2, and so d = 0. Once again we conclude that 1 = b(a + d) = 0, which is a
contradiction. Hence no such matrix B exists.

Remark

Examples 2.45 and 2.46 show that the idea of a square root of a square matrix is much more
complicated that for real or complex numbers. A square matrix may have no square roots, many
square roots, or even infinitely many square roots.

Example 2.47

Consider the system of equations

ax+ by = e cx+ dy = f (2.4)
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Rearranging to solve for x and y we obtain

x =
de− bf
ad− bc

y =
af − ce
ad− bc

(2.5)

This, however, assumes that ad− bc 6= 0 (otherwise we have divided through by zero).

We can represent this calculation using matrices. Equation (2.4) becomes(
a b
c d

)(
x
y

)
=

(
e
f

)
and equation (2.5) becomes (

x
y

)
=

1

ad− bc

(
d −b
−c a

)(
e
f

)
Notice that (

d −b
−c a

)(
a b
c d

)
= (ad− bc)I2 =

(
a b
c d

)(
d −b
−c a

)
(2.6)

If we have that ad− bc 6= 0 and we define

A =

(
a b
c d

)
B =

1

ad− bc

(
d −b
−c a

)
then we have just seen that BA = I2 = AB. In other words, B is the inverse of the matrix A.

Example 2.48

Let

A =

(
1 −2
3 0

)
Notice that 1× 0− (−2)× 3 = 6 6= 0. Write

B =
1

6

(
0 2
−3 1

)
Then

AB =
1

6

(
1 −2
3 0

)(
0 2
−3 1

)
=

1

6

(
0 + 6 2− 2
0 + 0 6 + 0

)
= I2

BA =
1

6

(
0 2
−3 1

)(
1 −2
3 0

)
=

1

6

(
0 + 6 0 + 0
−3 + 3 6 + 0

)
= I2

Definition 2.49

Let A ∈ Matnn be a square matrix. We say the B is an inverse of A if BA = In = AB. If A
has an inverse then we say that A is invertible, otherwise we say that A is singular.
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Proposition 2.50 (Properties of inverses)

(i) If A ∈ Matnn has an inverse, then it is unique. We write A−1 for this inverse.

(ii) If A,B ∈ Matnn are invertible then AB is invertible with (AB)−1 = B−1A−1.

(iii) If A ∈ Matnn is invertible then A−1 is invertible with (A−1)−1 = A.

Proof. (i): Suppose that B,C ∈ Matnn are inverses for A. Then

C = InC = (BA)C = B(AC) = BIn = B

Hence C = B.

(ii): Notice that

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In

and so (AB)−1 = B−1A−1 by uniqueness of inverses.

(iii): Note that
(A−1)A = A(A−1) = In

and so (A−1)−1 = A by uniqueness of inverses.

Definition 2.51

If A ∈ Matmn and BA = In then B is said to be a left inverse. If C satisfies AC = Im then
C is said to be a right inverse.

Proposition 2.52

The matrix

A =

(
a b
c d

)
has an inverse if and only if ad− bc 6= 0. If ad− bc 6= 0 then

A−1 =
1

ad− bc

(
d −b
−c a

)

Proof. We saw in (2.6) that if ad − bc 6= 0 then AA−1 = I2 = A−1A. If, however, ad − bc = 0
then

B =

(
d −b
−c a

)
satisfied BA = 022. If an inverse C for A exists, then

022 = 022C = (BA)C = B(AC) = BI2 = B

Hence a = b = c = d = 0 and so A = 022, which contradicts AC = I2.
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Remark

The scalar ad−bc is called the determinant of A, and denoted detA. There is a generalisation
of detA for square matrices A ∈ Matnn and, in general, A is invertible if and only if detA 6= 0.
We get to this later.

Python 2.53

We can calculate the determinant of matrices in Python. The following code prints the deter-
minant of the matrix A from Example 2.48.

1 A = np.array ([[1 , -2] ,[3 ,0]])

2 print(np.linalg.det(A))

Python also allows us to calculate the inverse of matrices using NumPy arrays. The following
code prints the inverse of A.

1 print(np.linalg.inv(A))

2.3 Reduced row echelon form

We will begin by showing that the set of solutions of a linear system of equations does not change
under the application of an elementary row operation. Applying an elementary row operation to a
linear system (A | b) is equivalent to premultiplying by an invertible elementary matrix E to obtain
(EA | Eb). It is precisely because E is invertible that the set of solutions remains unchanged.

Proposition 2.54

Let A ∈ Matmn. Applying any of the elementary row operations SIJ , MI(λ), or AIJ(λ) is
equivalent to premultiplying A by matrices which we also denote, respectively, by SIJ , MI(λ),
or AIJ(λ). These matrices are defined as follows:

the (i, j)th entry of SIJ =


1, i = j, i 6= I, i 6= J ;

1, i = J, j = I;

1, i = I, j = J ;

0, otherwise.

the (i, j)th entry of MI(λ) =


1, i = j, i 6= I;

λ, i = j = I;

0, otherwise.

the (i, j)th entry of AIJ(λ) =


1, i = j;

λ, i = J, j = I;

0, otherwise.

We call these the elementary matrices.
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Example 2.55

Set m = 3. Then

S21 =

0 1 0
1 0 0
0 0 1

 M3(5) =

1 0 0
0 1 0
0 0 5

 A31(5) =

1 0 5
0 1 0
0 0 1



Example 2.56

Set m = 4. Then

S14 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 M2(−2) =


1 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 1

 A24

(
1

2

)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 1

2 0 1



Remark

Notice that the elementary matrices are given by applying the corresponding elementary row
operation to the identity matrix Im.

Proposition 2.57

The elementary matrices are invertible.

Proof. Just observe that

(Sij)
−1 = Sji = Sij

(Mi(λ))−1 = Mi

(
1

λ

)
(Aij(λ))−1 = Aij(−λ)

Corollary 2.58

Let (A | b) be a linear system of m equations and let E ∈ Matmm be an elementary matrix.
Then x is a solution of (A | b) if and only if x is a solution of (EA | Eb).

Proof. If Ax = b then, by premultiplying by E, we have EAx = Eb. If EAx = Eb then, by
premultiplying by E−1, we have Ax = b.

Remark

Corollary 2.58 tells us that applying elementary row operations does not alter the set of solutions
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of a linear system of equations.

Definition 2.59

A matrix A is said to be in reduced row echelon form (or RREF) if:

(i) the first (i.e. leftmost) non-zero entry of any non-zero row is 1 (this is referred to as the
leading 1 of the row, or as a pivot);

(ii) the leading 1 of a non-zero row appears (strictly) to the right of the leading 1s of the
nonzero rows above it;

(iii) any zero rows appear below the non-zero rows;

(iv) in a column that contains the leading 1 of some row, all other entries of that column are
zero.

If only (i–iii) hold, we say the matrix is in row echelon form; this is also useful, but we will
always use the RREF here.

Example 2.60

The following three matrices are in reduced row echelon form0 1 2 0 −3
0 0 0 1 7
0 0 0 0 0

 1 0 1 0
0 1 2 0
0 0 0 1

 1 0
0 1
0 0



Example 2.61

The following two matrices are not in reduced row echelon form1 2
0 1
0 0

 1 0 0 3
0 1 0 0
0 0 2 1


The first matrix contains a leading 1 in the second column, but not all other entries of that
column are 0. The second matrix fails because the leading entry of the third row is not 1.

Example 2.62

Look once again at Example 2.12. Notice that we solved the linear system of equations by
placing the augmented matrix in reduced row echelon form.

Proposition 2.63

Let (A | b) be a matrix in reduced row echelon form which represents a linear system Ax = b
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of m equations in n variables. Then:

(i) The system has no solutions if and only if the last non-zero row of (A | b) is(
0 0 · · · 0 1

)
(ii) The system has a unique solution if and only if the non-zero rows of A form the identity

matrix In. In particular, this case is only possible if m ≥ n.

(iii) The system has infinitely many solutions if (A | b) has as many non-zero rows as A, and
not every column of A contains a pivot (i.e. a leading 1 of some nonzero row). The set
of solutions can be described with k parameters, where k is the number of columns not
containing a pivot.

Proof. If (A | b) contains the row (0 0 · · · 0 | 1) then the system is inconsistent as no x satisfies

0x1 + 0x2 + · · ·+ 0xn = 1.

Since (A | b) is in reduced row echelon form, this is the only way in which (A | b) can have more
non-zero rows than A. We will show that whenever (A | b) has as many non-zero rows as A then
the system (A | b) is consistent.

Suppose that both (A | b) and A have r non-zero rows, so that there are r leading 1s within
these rows and we have k = n− r columns without leading 1s. By reordering the numbers of the
variables x1, . . . , xn if necessary, we can assume that the leading 1s appear in the first r columns.
So, ignoring any zero rows and remembering that the system is in reduced row echelon form, the
system corresponds to the r equations

x1 + a1(r+1)xr+1 + · · ·+ a1nxn = b1

x2 + a2(r+1)xr+1 + · · ·+ a2nxn = b2
...

xr + ar(r+1)xr+1 + · · ·+ arnxn = br

We can see that if we assign xr+1, . . . , xn the k parameters sr+1, . . . , sn, then we can read off
from the r equations the values for x1, x2, . . . , xr:

x1 = b1 − a1(r+1)sr+1 − · · · − a1nsn
x2 = b2 − a2(r+1)sr+1 − · · · − a2nsn

...

xr = br − ar(r+1)sr+1 − · · · − arnsn

So, for any values of the parameters, we have a solution x. Conversely, if x = (x1, x2, . . . , xn)
is a solution, then it appears amongst the solutions we have just found when we assign values
sr+1 = xr+1, . . . , sn = xn to the parameters. Thus we see that we have an infinite set of solutions
associated with k = n− r independent parameters when n > r, and a unique solution when n = r
(in which case the non-zero rows of A are the identity matrix In).
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Remark

We have just shown that:

(i) a system (A | b) in reduced row echelon form is consistent if and only if (A | b) has as
many non-zero rows as A;

(ii) all the solutions of a consistent system can be found by assigning parameters to the
variables corresponding to the columns without pivots (leading 1s of each nonzero row).

Example 2.64

Consider the linear system of equations

2x+ 3y − z = 1

10x− z = 2

4x− 9y + 3z = 5

We will solve this system by first writing down the augmented matrix, and then placing it into
reduced row echelon form by performing elementary row operations. 2 3 −1 1

10 0 −1 2
4 −9 3 5

 A12(−5),A13(−2)−→

 2 3 −1 1
0 −15 4 −3
0 −15 5 3

 M1(1/2)−→

 1 3
2 −1

2
1
2

0 −15 4 −3
0 −15 5 3


A23(−1)−→

 1 3
2 −1

2
1
2

0 −15 4 −3
0 0 1 6

 M2(−1/15)−→

 1 3
2 −1

2
1
2

0 1 − 4
15

1
5

0 0 1 6

 A21(−3/2)−→

 1 0 − 1
10

1
5

0 1 − 4
15

1
5

0 0 1 6


A31(1/10),A32(4/15)−→

 1 0 0 4
5

0 1 0 9
5

0 0 1 6


Hence there is a unique solution given by

x =
4

5
y =

9

5
z = 6

Python 2.65

It is possible to solve a linear system of equations in Python using NumPy. The following code
verifies the solution of Example 2.64.

1 A = np.array ([[2,3,-1],[10,0,-1],[4,-9,3]])

2 b = np.array ([1,2,5])

3 print(np.linalg.solve(A,b))

Example 2.66

The following augmented matrices are in reduced row echelon form.
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(i) No solutions – notice the final row.1 −2 0 2 0
0 0 1 1 0
0 0 0 0 1


(ii) A unique solution given by x1 = 2, x2 = −1, and x3 = 3.

1 0 0 2
0 1 0 −1
0 0 1 3
0 0 0 0


(iii) A one-parameter family of solutions (assigning the parameter s to the second column)

given by x = (3− 2s, s, 2, 1). 1 2 0 0 3
0 0 1 0 2
0 0 0 1 1


(iv) A two-parameter family of solutions (assigning the parameter s to the second column and

the parameter t to the fourth column) given by x = (3 + 2s− 2t, s,−2− t, t).1 −2 0 2 3
0 0 1 1 −2
0 0 0 0 0



Theorem 2.67

Every matrix can be reduced by elementary row operations to a matrix in reduced row echelon
form.

Proof. Let A ∈ Matmn. We will proceed by induction on the number of rows, m.

First suppose m = 1. Notice that a 1 × n matrix is either zero, or can be put into reduced row
echelon form by dividing through by the leading entry.

Now suppose that the inductive hypothesis holds for any matrix with fewer than m rows. If
A = 0mn then it is already in reduced row echelon form. So suppose A is non-zero. Let cj be
first column in A containing a non-zero entry α. By using elementary row operations we can swap
the row containing α with the first row, and then divide the first row by α 6= 0. Thus the (1, j)th
entry now equals 1 and our matrix takes the form

0 · · · 0 1 a1(j+1) · · · a1n
0 · · · 0 a2j a2(j+1) · · · a2n
...

...
...

...
...

0 · · · 0 amj am(j+1) · · · amn


for some entries aIJ . Applying the row operations A12(−a2j), A13(−a3j), . . . , A1m(−amj) trans-
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forms column cj to eT1 . Thus our matrix becomes
0 · · · 0 1 a1(j+1) · · · a1n
0 · · · 0 0
...

...
... B

0 · · · 0 0


By induction, the (m−1)×(n−j) matrix B can be placed in reduced row echelon form by applying
elementary row operations. Applying those same elementary row operations to the bottom m− 1
rows of the above matrix would reduce A to

0 · · · 0 1 a1(j+1) · · · a1n
0 · · · 0 0
...

...
... RREF (B)

0 · · · 0 0


(Here RREF (B) denotes the reduced row echelon form of B.) To transform this matrix into
reduced row echelon form, we need to zero-out any of the a1(j+1), . . . , a1n which are above a
leading 1 in RREF (B). If a1k is the first entry to lie above a leading 1 in row ` then A`1(−a1k)
will transform the (1, k)th entry to 0. Thus we can place A in reduced row echelon form via
elementary row operation.

Definition 2.68

The process of applying elementary row operations to transform a matrix into reduced row
echelon form is called row reduction (or just reduction) or Gauss elimination or Gauss–
Jordan elimination or . . . (OK, maybe that’s all).

Corollary 2.69

If A ∈ Matmn and m < n, then there is a nontrivial solution v 6= 0 to Av = 0.

Proof. By Gauss elimination, Theorem 2.67, the matrix A has reduced row echelon form. Moreover,
the RREF of the (augmented) matrix (A | 0) is simply that of A augmented by a zero column,
since the final column remains 0 throughout the reduction process.

Thus the reduced row echelon form of (A | 0) has the same number of rows as that of A, and since
the number of pivots is at most m, not all of the n > m columns can contain a pivot. Therefore
there are infinitely many solutions by Proposition 2.63, and so there is a nontrivial one.

It was enough until now simply to perform row operations in some order, and record the matrix at
each stage. But we gain a lot next by recalling from Proposition 2.54 that each row operation may
be performed by premultiplying A by the corresponding elementary matrix SIJ , MI(λ) or AIJ(λ).

2.4 Inverse matrix

In Proposition 2.52 we saw a formula for the inverse of a 2 × 2 matrix. A similar formula holds for
the inverse of a 3× 3 matrix, but it is very messy. Instead, we will use elementary row operations to
efficiently determine wither an n× n matrix is invertible and, if so, how to find the inverse.
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Proposition 2.70

Let A ∈ Matnn. Form the augmented n × 2n matrix (A | In) given by placing A side-by-
side with the identity matrix In. There are elementary row operations that will reduce A to a
matrix R ∈ Matnn in reduced row echelon form. We simultaneously apply these elementary
row operations to both sides of (A | In) until we arrive at (R | P ), for some P ∈ Matnn. Then:

(i) if R = In then A is invertible with A−1 = P ;

(ii) if R 6= In then A is singular.

Proof. Let E1, E2 . . . , Ek be a sequence of elementary matrices that reduce A to R. So (A | In)
becomes

(EkEk−1 · · ·E1A | EkEk−1 · · ·E1) = (R | P )

Hence P = EkEk−1 · · ·E1 and R = PA. If R = In then

(EkEk−1 · · ·E1)A = In and so A−1 = EkEk−1 · · ·E1 = P

since by Proposition 2.57 elementary matrices are invertible. If R 6= In then, since R is in reduced
row echelon form and is square, R must have at least one zero row. It follows that (possibly after
reordering the rows of PA)

(1, 0, . . . , 0)(PA) = 0

Since P is invertible, if A were invertible then we could postmultiply by A−1P−1 to obtain

(1, 0, . . . , 0) = 0

which is a contradiction. Hence A is singular.

Remark

The proof of Proposition 2.70 tells us that as soon as a zero row appears when reducing A then
we know that A is singular.

It is best to treat the remaining examples in the rest of this chapter as a sequence of exercises that
come with worked solutions: try to compute the inverse in each case (or prove that it does not exist),
and don’t forget to check your answer at the end.

Example 2.71

Let

A =

1 2 1
2 1 0
1 3 1


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Compute A−1 – if it exists – using Proposition 2.70.

(A | I3) =

 1 2 1 1 0 0
2 1 0 0 1 0
1 3 1 0 0 1

 A12(−2),A13(−1)−→

 1 2 1 1 0 0
0 −3 −2 −2 1 0
0 1 0 −1 0 1


A31(−2),A32(3)−→

 1 0 1 3 0 −2
0 0 −2 −5 1 3
0 1 0 −1 0 1

 S23−→

 1 0 1 3 0 −2
0 1 0 −1 0 1
0 0 −2 −5 1 3


M3(−1/2)−→

 1 0 1 3 0 −2
0 1 0 −1 0 1
0 0 1 5

2 −1
2 −3

2

 A31(−1)−→

 1 0 0 1
2

1
2 −1

2
0 1 0 −1 0 1
0 0 1 5

2 −1
2 −3

2


We conclude that A−1 exists, and is equal to

A−1 =
1

2

 1 1 −1
−2 0 2
5 −1 −3


We can easily verify our result

AA−1 =
1

2

1 2 1
2 1 0
1 3 1

 1 1 −1
−2 0 2
5 −1 −3

 =
1

2

1− 4 + 5 1 + 0− 1 −1 + 4− 3
2− 2 + 0 2 + 0 + 0 −2 + 2 + 0
1− 6 + 5 1 + 0− 1 −1 + 6− 3

 = I3

Example 2.72

Let

A =

1 0 2
4 0 4
0 2 0


Calculate A−1, if it exists.

(A | I3) =

 1 0 2 1 0 0
4 0 4 0 1 0
0 2 0 0 0 1

 A12(−4)−→

 1 0 2 1 0 0
0 0 −4 −4 1 0
0 2 0 0 0 1


S23−→

 1 0 2 1 0 0
0 2 0 0 0 1
0 0 −4 −4 1 0

 M2(1/2),M3(−1/4)−→

 1 0 2 1 0 0
0 1 0 0 0 1

2
0 0 1 1 −1

4 0


A31(−2)−→

 1 0 0 −1 1
2 0

0 1 0 0 0 1
2

0 0 1 1 −1
4 0


We conclude that A is invertible, with inverse

A−1 =
1

4

−4 2 0
0 0 2
4 −1 0


We shall verify our calculation:

AA−1 =
1

4

1 0 2
4 0 4
0 2 0

−4 2 0
0 0 2
4 −1 0

 =
1

4

 −4 + 0 + 8 2 + 0− 2 0 + 0 + 0
−16 + 0 + 16 8 + 0− 4 0 + 0 + 0

0 + 0 + 0 0 + 0 + 0 0 + 4 + 0

 = I3
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Example 2.73

Let

A :=

 1 0 4
0 1 2
−1 2 0


Calculate A−1, or prove that A is singular.

(A | I3) =

 1 0 4 1 0 0
0 1 2 0 1 0
−1 2 0 0 0 1

 A13(1)−→

 1 0 4 1 0 0
0 1 2 0 1 0
0 2 4 1 0 1


A23(−2)−→

 1 0 4 1 0 0
0 1 2 0 1 0
0 0 0 1 −2 1


We stop at this step. Since the third row is zero, we conclude that A is singular and no inverse
exists.

Example 2.74

Let

A =


1 3 −1 0
0 2 1 1
3 1 2 1
0 1 5 3


Calculate A−1, if it exists.

(A | I4) =


1 3 −1 0 1 0 0 0
0 2 1 1 0 1 0 0
3 1 2 1 0 0 1 0
0 1 5 3 0 0 0 1

 A13(−3)−→


1 3 −1 0 1 0 0 0
0 2 1 1 0 1 0 0
0 −8 5 1 −3 0 1 0
0 1 5 3 0 0 0 1


S24−→


1 3 −1 0 1 0 0 0
0 1 5 3 0 0 0 1
0 −8 5 1 −3 0 1 0
0 2 1 1 0 1 0 0


A21(−3),A23(8),A24(−2)−→


1 0 −16 −9 1 0 0 −3
0 1 5 3 0 0 0 1
0 0 45 25 −3 0 1 8
0 0 −9 −5 0 1 0 −2


M3(1/45)→


1 0 −16 −9 1 0 0 −3
0 1 5 3 0 0 0 1
0 0 1 5

9 − 1
15 0 1

45
8
45

0 0 −9 −5 0 1 0 −2



A34(9)−→


1 0 −16 −9 1 0 0 −3
0 1 5 3 0 0 0 1
0 0 1 5

9 − 1
15 0 1

45
8
45

0 0 0 0 −3
5 1 1

5 −2
5


We stop here, noticing that the final row is zero. Hence A is singular.
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Example 2.75

Let

A =


1 1 2 0
0 0 1 2
2 1 1 0
2 0 2 0


Calculate A−1, if it exists.

(A | I4) =


1 1 2 0 1 0 0 0
0 0 1 2 0 1 0 0
2 1 1 0 0 0 1 0
2 0 2 0 0 0 0 1

 A12(−2),A13(−2)−→


1 1 2 0 1 0 0 0
0 0 1 2 0 1 0 0
0 −1 −3 0 −2 0 1 0
0 −2 −2 0 −2 0 0 1


S23−→


1 1 2 0 1 0 0 0
0 −1 −3 0 −2 0 1 0
0 0 1 2 0 1 0 0
0 −2 −2 0 −2 0 0 1

 A21(1),A24(−2)−→


1 0 −1 0 −1 0 1 0
0 −1 −3 0 −2 0 1 0
0 0 1 2 0 1 0 0
0 0 4 0 2 0 −2 1


M2(−1)−→


1 0 −1 0 −1 0 1 0
0 1 3 0 2 0 −1 0
0 0 1 2 0 1 0 0
0 0 4 0 2 0 −2 1



A31(1),A32(−3),A34(−4)−→


1 0 0 2 −1 1 1 0
0 1 0 −6 2 −3 −1 0
0 0 1 2 0 1 0 0
0 0 0 −8 2 −4 −2 1


M4(−1/8)−→


1 0 0 2 −1 1 1 0
0 1 0 −6 2 −3 −1 0
0 0 1 2 0 1 0 0
0 0 0 1 −1

4
1
2

1
4 −1

8


A41(−2),A42(6),A43(−2)−→


1 0 0 0 −1

2 0 1
2

1
4

0 1 0 0 1
2 0 1

2 −3
4

0 0 1 0 1
2 0 −1

2
1
4

0 0 0 1 −1
4

1
2

1
4 −1

8


We conclude that A is invertible, with

A−1 =
1

8


−4 0 4 2
4 0 4 −6
4 0 −4 2
−2 4 2 −1



Python 2.76

The following code verifies the result of Example 2.75.

1 A = np.array ([[1,1,2,0],[0,0,1,2],[2,1,1,0],[2,0,2,0]])

2 print(np.linalg.inv(A))
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Chapter 3

Subspaces and bases of Rn

3.1 Span and subspace

Suppose v, w ∈ R3 and consider the set of all possible linear combinations that we could make
using them: we call this set the span of {v, w} and we denote it synonymously by either 〈v, w〉 or
span {v, w}; that is

〈v, w〉 = span {v, w} = {λv + µw | λ, µ ∈ R}
Note that clearly 〈v, w〉 ⊂ R3. More importantly, if you pick any two elements of 〈v, w〉, then their
sum is also an element of it; indeed, so is any linear combination of them. After all, if we are given
two vectors λ1v + µ1w and λ2v + µ2w in the span, then their sum is

(λ1v + µ1w) + (λ2v + µ2w) = (λ1 + λ2)v + (µ1 + µ2)w

which is visibly also in the span. We say that 〈v, w〉 is a subspace of R3, as in the following definition.

Definition 3.1

A subspace of Rn is a nonempty W ⊂ Rn with the property that for any v, w ∈ W and any
λ ∈ R, we also have v + w ∈W and λv ∈W .

There are two particular subspaces that we refer to as trivial subspaces: {0} ⊂ Rn and Rn ⊂ Rn.
Thus to say a subspace W ⊂ Rn is nontrivial is to say W 6= {0} and W 6= Rn.

Example

In the situation 〈v, w〉 ⊂ R3 above, there are three different types of behaviour that may happen.

• If v and w are not collinear, then the span 〈v, w〉 is a 2-dimensional plane inside R3 (that
passes through the origin): it is exactly the same as the plane through v, w and 0. For
example, if v = e1 and w = e2 then

〈v, w〉 =


λµ

0

 ∣∣∣∣∣∣ λ, µ ∈ R


is the z = 0 coordinate plane. As another example, if v = (−2, 1, 5)T and w = (1, 1, 2)T

then by calculating as in §1.3, we can describe the span either parametrically (which is
essentially its definition) or implicitly by an equation

〈v, w〉 = {λv + µw | λ, µ ∈ R} = (x− 3y + z = 0) ⊂ R3
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• If v and w are collinear but not both 0, then the span 〈v, w〉 is a 1-dimensional line inside
R3 (that passes through the origin). For example, if v = e1 and w = −3e1 (or any other
multiple of v, including the zero multiple w = 0) then

〈v, w〉 =


λ0

0

 ∣∣∣∣∣∣ λ ∈ R

 = (y = z = 0) ⊂ R3

is the x-axis (described first parametrically and then implicitly by equations).

• If v = w = 0, then the span 〈v, w〉 = {0} is simply the zero vector.

It is true (as we shall see later, or you can persuade yourself now) that the only subspaces of R3,
apart from the trivial ones, are lines through the origin and planes through the origin. That’s
why we went to all the fuss of thinking about them in §1.3.

In R2, the only nontrivial subspaces are lines through the origin.

More generally, we may construct the span of any number of vectors, and the span is a subspace.

Definition 3.2

Let v1, . . . , vs ∈ Rn. Then their span is the set

〈v1, . . . , vs〉 =

{
s∑
i=1

λivi

∣∣∣∣∣ λi ∈ R for i = 1, . . . , s

}

consisting of all possible linear combinations of v1, . . . , vs ∈ Rn.

It is convenient to refer to the vectors v1, . . . , vs as the given generators of 〈v1, . . . , vs〉, but
note that this is not standard usage, and most subspaces have many alternative generators.

Remark

In fact, for any subset S ⊂ Rn you may define the span 〈S〉 ⊂ Rn in the same way, but be clear
that when taking linear combinations you are only permitted finite sums: there are no infinite
series here.

Proposition 3.3

For any v1, . . . , vs ∈ Rn, the span 〈v1, . . . , vs〉 ⊂ Rn is a subspace of Rn.

The proof is clear and routine: just check the rules of Definition 3.1: better to do this yourself, rather
than read it, and certainly don’t invest any effort to remember it.

Proof. Denote the span by W = 〈v1, . . . , vs〉. Suppose v, w ∈ W . That is, there are scalars
λi, µj ∈ R for which

v = λ1v1 + . . .+ λsvs and w = µ1v1 + . . .+ µsvs.
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Therefore, collecting coefficients together

v + w = (λ1 + µ1)v1 + . . .+ (λs + µs)vs

which is a linear combination of v1, . . . , vs and so lies in the span.

Similarly, if α ∈ R is any scalar, then

αv = (αλ1)v1 + . . .+ (αλs)vs

which is a linear combination of v1, . . . , vs and so also lies in the span, as required. Thus the span
is a subspace of Rn.

Any matrix A ∈ Matmn determines a particularly important subspace of Rm.

Definition 3.4

Let A = (aij) ∈ Matmn. The column span Colspan(A) of A is the span of the columns of A:
that is,

Colspan(A) = 〈v1, . . . , vn〉 ⊂ Rm

where vj =

a1j
...

amj

 is the jth column of A, for j = 1, . . . n.

Example

Let

A =

 2 −1 0
0 2 4
−1 0 −1


Then the column span Colspan(A) of A is

Colspan(A) =

〈 2
0
−1

 ,

−1
2
0

 ,

 0
4
−1

〉

Since the third column v3 is equal a linear combination v3 = v1 + 2v2 of the first two columns,
it can’t contribute anything to the span that those first two columns don’t already: if you ever
see v3 in some linear expression, you can get rid of it by replacing it by v1 + 2v2. Therefore
the third column can safely be omitted from the list of given generators. Doing so shows that
Colspan(A) is equal to the column span of a smaller matrix:

Colspan(A) =

〈 2
0
−1

 ,

−1
2
0

〉 = Colspan(B) where B =

 2 −1
0 2
−1 0



The idea we used in the example to remove the third column from the vectors generating the span in
the example above is called sifting, and it can be used to optimise the collection of given generators
in a span fairly generally. The key is the notion of linear (in)dependence, which we come to next.
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We say that a subset S ⊂ Rn spans if and only if every vector v ∈ Rn is a linear combination of (a
finite collection of) vectors of S.

Definition 3.5

A subset S ⊂ Rn spans Rn if and only if 〈S〉 = Rn. (It is also common to express this as S is
a spanning set of Rn.)

Remark

It is ridiculous, but true, to say that S = Rn is a spanning set for Rn. It is more interesting
to try to find small spanning sets – we may think of them as a more efficient way of describing
elements of Rn (without spelling out what efficient might mean). The question then becomes:
is there a lower bound on the size of a spanning set for Rn? Oh yes there is!

Proposition 3.6

Suppose S ⊂ Rn spans Rn. Then S contains at least n elements.

Proof. Suppose that S has m < n elements, say v1, . . . , vm.

Consider the standard basis e1, . . . , en ∈ Rn. Since S spans Rn, each ei is a linear combination of
elements of S; that is, there are scalars aij ∈ R so that for each i = 1, . . . , n

ei =

m∑
j=1

aijvj (3.1)

Assemble the coefficients into an n×m matrix A = (aij) and denote its rows by ri for i = 1, . . . , n.
The RREF of A is a product EA where E ∈ Matnn is an invertible matrix (in fact, E is a product
of elementary matrices). For example, to set up notation, the final row of EA is of the form

k1r1 + . . .+ knrn (3.2)

where k = (k1, . . . , kn) is the final row of E. If k = 0, then Ev = 0 for v = (0, . . . , 0, 1)T ∈ Rn;
but this immediately gives a contradiction: v = E−1Ev = E−10 = 0. Therefore k 6= 0.

Since n > m, the final row of EA must be zero 0 ∈ Rmrow. Therefore by (3.1) we also have that

k1e1 + . . .+ knen = k1

∑
j

a1jvj

+ . . .+ kn

∑
j

anjvj


=

(
n∑
i=1

kiai1

)
v1 + . . .+

(
n∑
i=1

kiaim

)
vm

= 0v1 + . . .+ 0vm = 0

since the coefficient
∑

i kiaij of vj is the jth entry of the last row of the product EA. But the

left-hand side of this expression is simply kT , so this says that k = 0, which is a contradiction.
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Remark

Were you able to see in your mind’s eye the equations (3.1) as an array of the form

e1 = a11v1 + a12v2 + . . .+ a1mvm

e2 = a21v1 + a22v2 + . . .+ a2mvm
...

en = an1v1 + an2v2 + . . .+ anmvm

The proof is saying that performing the row reduction of A is the same as what happens to the
coefficients when you form a certain collection of linear combinations of the right-hand sides of
these equations. After reducing, the right-hand sides of the final row (indeed any row after the
mth row) is necessarily zero. But the left-hand side of that row cannot be zero: the entries of
the different ei cannot cancel, since they lie in different components (though the proof uses the
power of the elementary matrices to demonstrate that point without having to imagine it).

3.2 Linear independence

The intuitive idea of linear independence of vectors is simple: vectors are called linearly independent
if they do not point in the same direction, or, more precisely, if none of them is a linear combination
of the others. Nevertheless, understanding the definition and its power properly needs a little care.

Definition 3.7

Vectors v1, . . . , vs ∈ Rn are called linearly independent if whenever

λ1v1 + . . .+ λsvs = 0 for scalars λ1, . . . , λs ∈ R

we necessarily have that
λ1 = . . . = λs = 0

In other words, v1, . . . , vs ∈ Rn are linearly independent if and only if the only linear combination
of them that is 0 is the trivial one.

This definition is sometimes phrased slightly informally as: v1, . . . , vs ∈ Rn are linearly independent
if and only if

λ1v1 + . . .+ λsvs = 0 =⇒ λ1 = . . . = λs = 0

Since this is so important, it is worth defining what it means not to be linearly independent separately.

Definition 3.8

Vectors v1, . . . , vs ∈ Rn are called linearly dependent if and only if there is an equation

λ1v1 + . . .+ λsvs = 0 (3.3)

for scalars λ1, . . . , λs ∈ R which are not all zero.

The equation (3.3) is referred to as a linear dependence relation for the vectors v1, . . . , vs.
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Clearly a set of vectors is either linearly independent or linearly dependent, and cannot be both.

Let’s take this slowly in R2.

Example 3.9

The vectors v = (1, 2)T and w = (−2, 3)T ∈ R2 are linearly independent. Indeed, suppose that
λv + µw = 0. Then (

0
0

)
= λ

(
1
2

)
+ µ

(
−2
3

)
=

(
λ− 2µ
2λ+ 3µ

)
Considering the components separately gives two simultaneous linear equations:

λ− 2µ = 0

2λ+ 3µ = 0

Solving these (for example by subtracting twice the top one from the bottom one) shows that
λ = µ = 0. That’s exactly what linear independence is asking for: the only linear combination
of v and w that equals the zero vector is the trivial linear combination.

In contrast, the vectors u1 = (2,−6) and u2 = (−3, 9) are not linearly independent. You may
see at once that 3u1 + 2u2 = 0, which is a nontrivial linear combination giving the zero vector.
Even if you don’t spot this at once, we may apply the definition to find this: if we write(

0
0

)
= λ

(
2
−6

)
+ µ

(
−3
9

)
=

(
2λ− 3µ
−6λ+ 9µ

)
which you solve (either by considering components, since this is such a small example, or by
row reduction, since it is such a formidable tool) to get µ = s and λ = 3s/2 for any s ∈ R. In
particular, you may choose a nonzero s ∈ R to find a linear dependence relation: for example
s = 2 gives the relation 3u1 + 2u2 = 0 that we spotted above.

The linearly dependent vectors u1, u2 in the example were collinear. (Recall from Definition 1.5 that
two vectors are collinear if and only if one of them is a multiple of the other.) This is a general fact.

Lemma 3.10

Consider v1, v2 ∈ Rn. Then v1, v2 are linearly dependent if and only if they are collinear.

This lemma is a criterion for two vectors being linearly dependent, not independent. Negating it gives:
v1, v2 are linearly independent if and only if neither is a multiple of the other – which is perfectly true,
but is so convoluted to pronounce that it’s not much help!

Proof. We check this using the definition. First, suppose there are λ1, λ2 ∈ R for which

λ1v1 + λ2v2 = 0

If λ1 6= 0, then v1 = −(λ2/λ1)v2 is a multiple of v2, while if λ2 6= 0, then v2 = −(λ1/λ2)v1 is
a multiple of v1. So far, that says: if v1, v2 are linearly dependent then one is a multiple of the
other, that is they are collinear. The converse is quicker: if v1 = µv2 then v1 + (−µ)v2 = 0 is a
linear dependence relation, since the coefficient 1 of v1 is nonzero, so it doesn’t matter what the
value of µ is. Similarly if v2 is a multiple of v1.
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Remark

Definitions 3.7 of linear independent and 3.8 of linearly dependent apply perfectly well to any
subset S ⊂ Rn, even if, for example, S is infinite: the only point is that linearly combinations
can only have finitely many nonzero coefficients.

From here on, we will happily use these definitions for any subset S, though in practice in almost
all situations S is finite and the definitions as stated above are ideal.

Example

Let S = {ke1 | k ∈ R} ⊂ Rn. Then S is linearly dependent. There are many linear dependence
relations, but we only need to exhibit one: for example 3× (2e1) + 2× (−3e1) = 0.

Example

At the other extreme, Definition 3.7 applies even if we are dealing with only s = 1 vector. If
v1 ∈ Rn, then it is linearly independent if and only if it is not the zero vector: if λ1v1 = 0, then
either λ1 = 0 or v1 = 0. (If you find that confusing, just ignore it – you’re merely confused by
its triviality.)a

aThis is a suitable point to remind ourselves of our favourite joke (The Puffin Joke Book, 1974). What’s
the difference between a duck? One of its legs are both the same! hahahahaha. . . [Aside for multi-dimensional
readers: jokes are always funniest when you have to explain them. Here, the joke is that it has the syntax of a
joke but not the semantics – the subject matter of the ‘joke’ is a piece of misdirection. Now it’s funny, right?]

Remark

It is natural to ask at this point, how big can a linearly independent subset of Rn be? Prima
facie we could imagine an infinite set of linearly independent vectors in Rn, but in fact the upper
limit is n. This fact is essentially a small piece of what we know about the solutions of systems
of linear equations, and perhaps therefore it feels intuitively correct to you: from the point of
view of linear equations, you already know the following important result. The key to its proof
is that we already know a spanning set, namely the standard basis, which has n elements.

Proposition 3.11

Suppose a subset S ⊂ Rn is linearly independent. Then in fact S is a finite set and #S ≤ n.

Proof. Suppose S has strictly more than n elements (it could even be infinite, for example). Choose
n+ 1 distinct elements v1, . . . , vn+1 ∈ S; these are certainly linearly independent.

Consider the vectors e1, . . . , en. Since they span Rn, there are scalars aij ∈ R so that

vj =

n∑
i=1

aijei

for each j = 1, . . . , n+ 1. (Equivalently, if you prefer, vj = (a1j , a2j , . . . , anj)
T .)
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Assemble the scalars aij into an n × (n + 1) matrix A = (aij): the vectors vj are the columns
of A. Since A has fewer rows than columns, Corollary 2.69 says there is a nonzero vector k =
(k1, . . . , kn+1) such that Ak = 0. Since the vj are the columns of A, this is exactly saying that

k1v1 + . . .+ kn+1vn+1 = 0

Since k 6= 0, says that v1, . . . , vn+1 are linearly dependent, which is a contradiction.

3.3 Bases of Rn

Definition 3.12

A sequence of vectors v1, . . . , vs ∈ Rn is a basis of Rn if and only if it is linearly independent
and spans Rn.

The first example is of course the standard basis e1, . . . , en ∈ Rn.

Propositions 3.6 and 3.11 prove the following important result at once.

Theorem 3.13

Let S ⊂ Rn be a basis. Then S is a finite set and #S = n.

Language 3.14

A tiny point: it will prove fantastically useful to us that any basis we consider is a collection of
vectors in some given fixed order – that’s why the definition referred to a sequence of vectors.
Of course the definitions of linear independence and spanning did not rely on the order: they
referred merely to a set of vectors. Let’s not fall out over this. In this module, let’s just agree
that whenever we have a (finite) basis it comes in some fixed order, and whether we call it a
sequence or a set is irrelevant.

The second important result about bases is a kind of existence and uniqueness statement.

Proposition 3.15

Let f
1
, . . . , f

n
be a basis of Rn. Then for any w ∈ Rn, there are unique scalars µ1, . . . , µn ∈ R

so that
w = µ1f1 + . . .+ µnfn

Of course we know the scalars µi in the proposition exist: since the vectors f
1
, . . . , f

n
span Rn, any

vector may be expressed as a linear combination of them. The point is that since f
1
, . . . , f

n
are also

linearly independent, there is exactly one way to do this for each vector w. Try it yourself – imagine
you had two expressions and then follow your nose – before comparing with the following proof.

Proof. As remarked above, since f
1
, . . . , f

n
spans Rn, there certainly is at least one expression

w = µ1f1 + . . .+ µnfn
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for some scalars µi ∈ R. Suppose we had two such expressions: that is, we also have

w = ν1f1 + . . .+ νnfn

for some (possibly different) scalars νi ∈ R. Then subtracting these two expressions gives

0 = (µ1 − ν1)f1 + . . .+ (µn − νn)f
n

But since the vectors f
1
, . . . , f

n
are linearly independent, it follows by Definition 3.7 that

µ1 − ν1 = . . . = µn − νn = 0

that is, that µi = νi for each i = 1, . . . , n, as required.

Remark

You probably noticed that Definition 3.12 only defined the notion of basis for a finite set of
vectors. Later we will allow infinite bases, and we will see lots of interesting examples, but in
our current context of Rn we know from Proposition 3.11 that any linearly independent set is
finite, so it is enough to define the notion for finite sets.

Example 3.16

Let f
1

= (1, 1)T and f
2

= (2, 1)T ∈ R2. Then f
1
, f

2
is a basis of R2: you can easily check

that it is linearly independent (by checking that the equation

λ1f1 + λ2f2 = 0

only has the solution λ1 = λ2 = 0) and that it spans (by checking that the equation

λ1f1 + λ2f2 = b

has a solution for any b ∈ R2). The notion of basis is entirely bound up with the existence and
uniqueness of solutions of systems of linear equations, as Propositon 3.15 says precisely.

Here’s another way to show that f
1
, f

2
spans. We already know that the standard basis e1, e2

spans, so if we can write those two vectors as a linear combination of f
1
, f

2
then we can write

any vector, as required for spanning. But that’s easy to see:

e1 = f
2
− f

1
and e2 = 2f

1
− f

2
(3.4)

We will see later in complete generality that if a vector space has a basis of size n, then any
linearly independent set of size n is a basis, and any spanning set of size n is a basis. Armed
with that, the equations (3.4) constitute a complete proof that f

1
, f

2
is a basis of R2.

Example 3.17

Continuing with Example 3.16, the following curious question arises, which turns out to be
important. Consider the vector w = (−3, 5)T ∈ R2. It is extremely useful to regard that
coordinate expression of w as the linear relation

w = −3e1 + 5e2
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That is, the components of w are really the coefficients of w when we write it with respect to
the basis e1, e2 of R2.

By Example 3.16, we know another basis of R2, namely f
1
, f

2
. Since this is a basis, we may

write w as a linear combination of these. What is that? Well, you could solve the equations

w = µ1f1 + µ2f2 (3.5)

You would find that w = 13f
1
− 8f

2
but there is a much quicker way.

Consider the matrix

Q =

(
1 2
1 1

)
whose columns are the vectors f

1
, f

2
(in that order). Then form the inverse matrix

Q−1 =

(
−1 2
1 −1

)
(and quickly multiply them together in your head to be sure it is the inverse!) and observe that

Q−1w =

(
−1 2
1 −1

)(
−3
5

)
=

(
13
−8

)
which, ta-dah!, are the coeffiicents of the expression of w with respect to the basis f

1
, f

2
.

Perhaps that doesn’t feel quicker, since you had to compute the inverse matrix Q−1. But if
you had a hundred vectors w1, . . . , w100 and needed to do this calculation for them all, you
still only have to compute Q−1 once and then simply multiply out Q−1wi for each of them,
whereas if you prefer to solve the system (3.5) for each one, then in practice you are repeating
the calculation over and over.

Remark

The calculation of Example 3.17 is no fluke: it always works in exactly this way, and is one of
the most powerful ideas of the whole theory. You should think of it as changing coordinates,
and it is important to regard it as a simple thing, even though we all find it fiddly at first.

For comparison, you know from elementary integration that many calculations seem impossible
in one set of coordinates but work easily if you change to some set of coordinates. When
integrating, you are brilliant at this: you write x = f(ϑ) and so dx = (df/dϑ)dϑ, and, if you
chose the change of coordinates f wisely, you then proceed with the calculation.

The point here is that if we get very good at expressing the same point w with respect to
different bases, then we can choose a basis to make a given problem simpler to solve. This idea
is referred to as ‘change of basis’. It may seem tricky the first time you see it, but it becomes
natural with practice. You may even realise that you’ve been doing it all along in all sorts of
contexts (including Chapter 2!), but for now let’s get to grips with how it works in Rn and why.

3.4 Change of basis is simplicity itself

Let’s state this a little bit formally. Suppose e1, . . . , en is the standard basis and f
1
, . . . , f

n
is any

basis of Rn.

Any vector w ∈ Rn has a unique expression with respect to either basis: that is, there are unique
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scalars λi and µi for which

w = λ1e1 + . . .+ λnen and

w = µ1f1 + . . .+ µnfn

Of course, the coefficients with respect to the basis {ei} are the components of w = (λ1, . . . , λn)T as
a column vector in Rn. The question is, if you know the scalars λ1, . . . , λn, can you find the scalars
µ1, . . . , µn with minimal work? Oh yes you can!

We have to do some preparatory work as a one-off investment: for each f
i
, find scalars aij for which

f
i

= a1ie1 + . . .+ anien

But that’s no work at all: the aij are the components of the column vector f
i
∈ Rn. (You have to

be careful about the i, j indexing of the coefficients aij .)

Now write the matrix
Q = (aij)

that is, the matrix whose columns are the vectors f
i

expressed in the standard ej coordinates. Compute

Q−1, and finally µ1...
µn

 = Q−1

λ1...
λn

 (3.6)

Let’s not think about why this works for a moment, but try it out.

Example

Consider the basis (you should check that it is indeed a basis)

f
1

= 0× e1 + 1× e2 + 2× e3 =

0
1
2


f
2

= 1× e1 + 2× e2 + 3× e3 =

1
2
3


f
3

= 2× e1 + 3× e2 + 0× e3 =

2
3
0


and some other vector

w = 5× e1 − 7× e2 + 11× e3 =

 5
−7
11


with all of them expressed in coordinates with respect to the standard basis e1, e2, e3.

The task is to find µ1, µ2, µ3 ∈ R for which

w = µ1f1 + µ2f2 + µ3f3

Since f
1
, f

2
, f

3
is a basis, we know from Proposition 3.15 that the µi exist and are unique. In

banal terms, we may say that the task is precisely to solve the system of equations0 1 2
1 2 3
2 3 0

µ1µ2
µ3

 =

 5
−7
11


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and that’s true, but let’s follow the method above.

We write the matrix

Q =

0 1 2
1 2 3
2 3 0


and compute its inverse 0 1 2 1 0 0

1 2 3 0 1 0
2 3 0 0 0 1

 which row reduces to

 1 0 0 −9
4

3
2 −1

4
0 1 0 3

2 −1 1
2

0 0 1 −1
4

1
2 −1

4


so that

Q−1 =
1

4

−9 6 −1
6 −4 2
−1 2 −1


and then µ1µ2

µ3

 = Q−1

 5
−7
11

 =
1

2

−49
40
−15


You can check at once that, yes indeed,

w = −49

2
f
1

+ 20f
2
− 15

2
f
3

The reason it works is simple. Write the vectors f
i

as linear combinations of the basis e1, . . . , en:

f
1

= a11e1 + a21e2 + . . .+ an1en

f
2

= a12e1 + a22e2 + . . .+ an2en
...

...

f
n

= a1ne1 + a2ne2 + . . .+ annen

(3.7)

for scalars aij ∈ R. Once more, notice the i, j subscripts on the coefficients aij : they ordered carefully
so that the coefficients are naturally column vectors.

Language 3.18

When writing the equations (3.7) above, we say that we are expressing f
i

with respect to
the basis e1, . . . , en, or simply expressing f

i
in the basis e1, . . . , en. We may also say, when

writing the coefficients as a column vector, that

f
i

=


a11
a21

...
an1


is a representation of f

i
in coordinates with respect to the basis e1, . . . , en.
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With the (square) matrix Q = (aij), we may express this formally as

f1...
f
n

 =


a11 a21 . . . an1
a12 a22 . . . an2

...
...

a1n a2n . . . ann


e1...
en

 = QT

e1...
en


where you note that we had to transpose the matrix Q to match the coefficients of (3.7). (By
‘formally’ we just mean that we are using matrix multiplication as a convenient short-hand notation
for the equations (3.7), and we are not trying to image a column vector whose entries are other column
vectors. You may continue to write in equation form as (3.7) if you prefer.)

On the other hand, f
1
, . . . , f

n
is a basis too, so we may write the vectors ej as linear combinations

of them:

e1 = b11f1 + b21f2 + . . .+ bn1fn
e2 = b12f1 + b22f2 + . . .+ bn2fn

...
...

en = b1nf1 + b2nf2 + . . .+ bnnfn

(3.8)

for scalars bij ∈ R. Assemble the coefficients as a matrix P = (bij), so we may write this ase1...
en

 = P T

f1...
f
n


Of course, substituting the expressions (3.7) for f

i
into (3.8) must result in equations ei = ei for

i = 1, . . . , n, since it amounts to expressing the ei in terms of the basis e1, . . . , en, and there is only
one such expression by Proposition 3.15. In other words,

P TQT = In

or after transposing both sides using (P TQT )T = (QT )T (P T )T = QP

QP = In

That is, Q is invertible and P = Q−1.

Now, since the ith column of Q is the vector f
i

in (the usual) coordinates, for any vector w ∈ Rn,
expressed with respect to each of the two bases as

w = λ1e1 + . . .+ λnen = µ1f1 + . . .+ µnfn

it follows at once that

Q

µ1...
µn

 = µ1f1 + . . .+ µnfn = w = λ1e1 + . . .+ λnen =

λ1...
λn


which, after multiplying by Q−1, is exactly the claim in (3.6).

This showed how to find the coefficients of a vector w ∈ Rn that you know as a column vector (in
other words, expressed in the standard basis e1 . . . , en) with respect to another basis f

1
, . . . , f

n
. It is

almost as simple to translate between any two bases, not just from the standard basis.
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Example

Consider two bases f
1

=

(
1
1

)
, f

2
=

(
1
−2

)
and g

1
=

(
−1
3

)
, g

2
=

(
2
−5

)
of R2. Suppose

w = −3f
1

+ 7f
2

What are the coefficients with respect to the basis g
1
, g

2
? That is, find µ1, µ2 so that

w = µ1g1 + µ2g2

The column vector expressions of f
i

and g
i

are their coefficients with respect to the standard
basis, so using these as the columns of two matrices gives

Qf =

(
1 1
1 −2

)
and Qg =

(
−1 2
3 −5

)
which (using the respective Q−1) translate the column vector w into its coefficients with respect
to each basis respectively. Therefore

Q−1g Qf

(
−3
7

)
=

(
5 2
3 1

)(
1 1
1 −2

)(
−3
7

)
=

(
5 2
3 1

)(
4
−17

)
=

(
−14
−5

)
first translates the coefficients of w with respect to the f

i
into its coefficients with respect

to the standard basis (that is, its normal representation as a column vector in Rn) and then
translates again to the coefficients with respect to the g

i
. The conclusion is that

w = −14g
1
− 5g

2

Of course we can check this in the usual standard coordinates, since

w =

(
4
−17

)
= −14

(
−1
3

)
− 5

(
2
−5

)

3.5 What about column operations?

Up to this point, given an m × n matrix A ∈ Matmn, we have used row operations to put A into
reduced row echelon form. We regard this a simplifying A, and in the context of augmented matrices
(A | b) it makes it almost trivial to read off everything we want to know about the solutions of the
corresponding system of linear equations. We implement row operations as premultiplying A by a
sequence of carefully chosen m×m elementary matrices, Sij , Mi(λ) (for λ 6= 0) and Aij(µ).

So what about column operations? Well, exactly the same ideas apply, but with a different goal.
Thus we may switch two columns, multiply a column by a nonzero scalar, or add any multiple of one
column to a different column. There are analogous elementary matrices that we denote respectively
by Sij , M i(λ) and Aij(µ). These are simply the transposes of the corresponding ‘row’ elementary
matrices, but note that now they are invertible n × n matrices, and that we postmultiply by them.
(The use of superscripts is barely necessary, but helps to remind us that they are being understood as
column operations.)
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Example

Consider the matrix A which is in RREF:

A =

1 −3 0 5
0 0 1 7
0 0 0 0


By swapping columns around, we can move all the pivot columns to the front (left) of the
matrix so we see an identity matrix (of suitable size) at the front: simply swap columns 2 and 3:

AS23 =

1 −3 0 5
0 0 1 7
0 0 0 0




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

1 0 −3 5
0 1 0 7
0 0 0 0


Now we may add (or subtract) suitable multiples of column 1 to cancel the−3 and 5 in columns 3
and 4, and also use column 2 to cancel the 7 in column 4:

AS23A13(3)A14(−5)A24(−7) =1 0 −3 5
0 1 0 7
0 0 0 0




1 0 3 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 −5
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 −7
0 0 1 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 0 0


Matrices in this form are said to be in Smith normal form, which we discuss below.

The whole theory works seamlessly: we may even define a reduced column echelon form. There is
nothing to prove: for A ∈ Matmn, we generate a reduced column echelon form

AF1 · · ·F` for elementary matrices Fi ∈ Matnn

where we choose (row) elementary matrices Ei so that

E` · · ·E1A
T

is in RREF, and Fi is defined to be Fi = ETi , giving

AF1 · · ·F` = (E` · · ·E1A
T )T

One value of column operations is that they find a basis of the column span Colspan(A) of a matrix A;
recall Definition 3.4.

Proposition 3.19

Let A ∈ Matmn. Then the nonzero columns of the reduced column echelon form of A form a
basis of the column span Colspan(A) of A.

Proof. Let c1, . . . , cn ∈ Rm be the columns of A, so that

Colspan(A) = 〈c1, . . . , cn〉 ⊂ Rm

Let d1, . . . , d` be the nonzero columns of the reduced column echelon form of A, where ` ≤ n. By
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construction
di ∈ Colspan(A)

for each i = 1, . . . , ` since they are linear combinations of the columns of A. In fact

〈d1, . . . , d`〉 = 〈c1, . . . , cn〉

since by reversing the column operations we recover the ci as linear combinations of d1, . . . , d`
(together with some zero columns, but of course those do not contribute anything to the linear
combination). Thus d1, . . . , d` span Colspan(A).

Finally d1, . . . , d` are linearly independent since each of them has a pivot entry 1 in some row where
all the others have a zero entry.

Using row and column operations in combination, we may transform any matrix into a particularly
simple form.

Definition 3.20

A matrix A ∈ Matmn is in Smith normal form if and only if it is in the form

A =

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)

=



1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1 0 · · · 0

0 0 0 · · · 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0 0 · · · 0


The rank of this Smith normal form is defined to be the integer r ≥ 0.

Theorem 3.21

Let A ∈ Matmn. Then there are elementary matrices Ei ∈ Matmm and elementary matrices
Fi ∈ Matnn so that

Ek · · ·E1AF1 · · ·F`
is in Smith normal form of some rank r ≥ 0.

We give a rather quick and dirty proof, that really relies on you drawing a sketch of the matrix after the
first row reduction so you can understand the care that the proof requires in the second row reduction
it employs; if you just say “row reduce A to B, and then row reduce BT and finally transpose back”
then you need to explain why the second (transposed) reduction didn’t destroy the first. It is fine, but
it is much more delicate than it pretends.

Proof. Choose elementary matrices Ei ∈ Matmm so that the matrix B = Ek · · ·E1A is in RREF.
Note the positions of the pivot entries aij = 1, for specific i, j. Now choose elementary matrices
Di ∈ Matnn so that D` · · ·D1B

T is in RREF, being careful to use the (previous) pivot entries
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aji = 1 (now in their transposed positions) as the leading 1s for those columns. (This happens
automatically if you always choose the top nonzero entry of any nonzero column as the pivot,
which in practice you probably do.) Then setting Fi = DT

i gives the result.

Remark

At this stage you could imagine choosing different Ei and Fj so that the resulting Smith normal
form has a different rank 6= r. In fact, that is not possible, whichever way you choose the Ei
and Fj , but it is not particularly clear yet why. The rank r ≥ 0 of the Smith normal form is a
crucial invariant of the matrix A, and we discuss it later in the context of linear maps.
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Chapter 4

Vector spaces

Finally we come to the general theory of vector spaces (over R). The main difference you will notice is
that we no longer underline elements v, w and so on, unless they happen to be column vectors in Rn.

4.1 Formal definition and examples

Definition 4.1

A vector space V is an abelian group under an operation + that also admits scalar multipli-
cation by elements of R: for any v ∈ V and any λ ∈ R, there is another element λv ∈ V , and
this multiplication satisfies the rules:

(i) λ(v + w) = λv + λw

(ii) (λ+ µ)v = λv + µv

(iii) λ(µv) = (λµ)v

(iv) 1v = v

for any λ, µ ∈ R and any v, w ∈ V . We usually denote the additive identity by 0V and for any
v ∈ V its additive inverse by −v.

Remark

You may prefer to spell out all the axioms, rather than use the abelian group to carry some of
the load. In that case, you define a vector space to be a set V that has, for any u, v, w ∈ V ,

(i) a binary operation (addition) V × V → V denoted (v, w) 7→ v + w which satisfies

(i) v + w = w + v (addition is commutative)

(ii) u+ (v + w) = (u+ v) + w (addition is associative)

(iii) there is an (additive) identity 0V ∈ V so that 0V + v = v

(iv) there is an (additive) inverse denoted −v so that v + (−v) = 0V , and

(ii) an operation (scalar multiplication) R× V → V denoted (λ, v) 7→ λv which satisfies

(i) λ(v + w) = λv + λw
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(ii) (λ+ µ)v = λv + µv

(iii) λ(µv) = (λµ)v

(iv) 1v = v

for any λ, µ ∈ R and any v, w ∈ V .

Example

Of course, V = Rn is an example of a vector space for any fixed n ≥ 0. We checked the points
that the definition requires in Lemma 1.3.

Example

We denote the ring of all polynomials (in a variable x and with real coefficients) by

R[x] =
{
a0 + a1x+ a2x

2 + . . .+ asx
s
∣∣ s ∈ N and all ai ∈ R

}
You are probably very familiar with polynomials (see the following remark, if not, but otherwise
ignore it). You can add them together by collecting the coefficients of each monomial xi

together, and you can multiply them by scalars simply by multiplying every coefficient, and it
is easy to check that all the axioms of a vector space hold.

Remark

You need to be a tiny bit careful about the definition of the ring of polynomials if you read it,
though you will surely be using it correctly already and it is simpler to work with this than to
worry about the formulation (you may compare with Bourbaki if you really care).

To state the obvious, for any f ∈ R[x], there is some integer s ≥ 0 and ai ∈ R so that
f = a0 + a1x + a2x

2 + . . . + asx
s. We refer to the ai as the coefficients of f , and it is

convenient for any power xj not written (for example when j > s) to treat aj as aj = 0 ∈ R.
We may write a polynomial briefly as

∑
aix

i, where it is understood that the sum is taken over
integers i ≥ 0 and, crucially, that only finitely many of the ai are nonzero: in some jargons one
may say almost all ai = 0. With that in mind, two polynomials f =

∑
aix

i and g =
∑
bix

i

are equal if and only if all their coefficients are identical: ai = bi for all i ≥ 0. The zero
polynomial is by definition the polynomial with all coefficients ai = 0.

For example, f = 2 + 3x − 5x3 + 0x7 is a polynomial with given coefficients a0 = 2, a1 = 3,
a3 = −5 and a7 = 0, and implicitly all other aj = 0. You see at once that the integer s ≥ 0 is
a bit of a red herring, since as written f has s = 7, but of course g = 2 + 3x − 5x3 is equal
to f . To mollify this trivial irritation, we define the degree of a polynomial f =

∑
aix

i to be
the largest i for which ai 6= 0: it is denoted

deg f =

{
−1 if f is the zero polynomial

max {i ≥ 0 | ai 6= 0} otherwise

where you notice the slight care taken to make a special convention for the zero polynomial.

We may add polynomials and multiply by scalars: if f =
∑
aix

i and g =
∑
bix

i then

f + g =
∑

(ai + bi)x
i and λf =

∑
(λai)x

i
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These operations make R[x] into a vector space; one must check all the details of Definition 4.1.

You know a great deal more about R[x], and being a vector space is perhaps the least interesting
thing about it. For example, we may multiply polynomials together in the usual way. (This
makes R[x] into an R-algebra; we don’t discuss those in this module.) Also you naturally think
of polynomials f ∈ R[x] as real functions f : R→ R by evaluating the variable x at any number
b ∈ R: the map is b 7→ f(b). This point of view is extremely useful, even though prima
facie it had nothing to do with the definition (but beware there are contexts where analogous
thinking can mislead). With this in mind, we may ask about roots of polynomials (solutions of
the equation f(x) = 0), local maxima and minima (perhaps employing derivatives), pictorial
representations as graphs, areas under graphs (perhaps using integrals), etc., etc. The only
one of these we will see again in this module is differentiation, even though the tools of Linear
Algebra are absolutely central to them all.

Example

A small variation on the previous example is, for any fixed d ∈ N, the vector space

R[x]≤d = {f ∈ R[x] | deg(f) ≤ d} =
{
a0 + a1x+ . . .+ adx

d
∣∣∣ a1, . . . , ad ∈ R

}
You can check that this is a vector space too under the same addition and scalar multiplication.

Example 4.2

The set of functions

V =

{
f : R→ R

∣∣∣∣ f is twice continuously differentiable and
d2f

dx2
+ 9f = 0

}
is a vector space: the zero function is certainly a solution of this differential equation, and by
the rules of differentiation if f, g ∈ V and λ, µ ∈ R then λf + µg is also in V .

This vector space V is defined in a rather subtle way, and we were able to check that it is a vector
space in abstract terms, applying the linearity of differentiation rather than any knowledge of
its elements. But in fact you probably already have a clear idea of the elements of V from your
knowledge of differential equations: they are precisely all the functions f : R→ R of the form

f = λ sin(3x) + µ cos(3x)

for any λ, µ ∈ R.

Remark

There are unknown infinities of vector spaces ready to be our friends. We have seen one tiny
corner of the tip of the iceberg. Just below that, but still a long way from getting our feet wet,
all of the following are perfectly respectable examples.

There are vector spaces of
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(i) bounded sequences: abbreviating the infinite sequence (a1, a2, . . .) by (an)n∈N

`∞ = {(an)n∈N | there is some N ∈ R such that |ai| < N for all i}

For example (1/n)n∈N lies in `1 but (n2)n∈N does not.

(ii) sequences that give absolutely convergent series:

`1 =

{
(an)n∈N

∣∣∣∣∣
∞∑
i=1

|ai| <∞

}

For example (1/n2)n∈N lies in `∞ but (1/n)n∈N does not.

and any number of variations such as square-summable sequences which have
∑
a2n <∞, and

so on. You can quickly check (using Analysis) that each of these is a vector space.

There are also vector spaces of

(iii) Continuous functions:

C(R) = {f : R→ R | f is continuous}

For example x 7→ |x| lies in this space.

(iv) Smooth functions:

C∞(R) = {f : R→ R | f may be differentiated as many times as you like}

For example x 7→ sin(x) lies in this space.

(v) Formal power series:

R[[x]] =
{
a0 + a1x+ a2x

2 + . . .
∣∣ ai ∈ R for all i ≥ 0

}
.

For example, 1+2x+4x2+ . . .+2nxn+ . . . lies in this space; it has radius of convergence
zero, and so you cannot evaluate x at any nonzero value to produce a number: it is not
a function on any ε-neighbourhood of the origin, however small ε > 0 you choose.

and any number of variations: power series with radius of convergence at least 1 (such as the
Taylor expansion of 1/(1 − x)), or power series with radius of convergence ∞ (such as the
Taylor expansion of exp(x)), and so on and so on. You can quickly check (using Analysis) that
each of these is a vector space, and that R[x] is a subset of all of them.

All of these vector spaces are different from our most familiar collection of examples, Rn for
n ∈ N. Vector spaces are ubiquitous in mathematics, and while Rn is vitally important, and
certainly is the central example in this module, we must never think that column vectors of
some fixed length n is the only example of a vector space.

Essentially you can forget all these examples for the rest of the module – I will only mention
them occasionally to illustrate particular points, and then most likely only to say that these
examples are too subtle for me to understand.

There are a whole bunch of things not listed in the axioms of a vector space that nevertheless hold
completely generally; compare Lemma 1.3. Their proof is usual routine fooling around, so you should
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do it and ignore my feeble efforts. (Recall from group theory that the additive identity 0V is unique:
after all, if you had another, 0′V say, then 0V = 0V + 0′V = 0′V , so it was the same all along.)

Lemma 4.3

Let V be a vector space. For any λ ∈ R and v ∈ V we have

(i) λ0V = 0V and 0v = 0V .

(ii) (−1)v = −v and more generally (−λ)v = −(λv) = λ(−v).

If you do accidentally find yourself reading the following drivel, please turn it into a useful exercise by
indicating at each equals sign which axiom(s) is being used, and why it’s right.

Proof. (i) The second claim first: 0v + 0v = (0 + 0)v = 0v, so adding −(0v) to both sides
shows that 0v = 0V . So we only need to check the first claim for λ 6= 0: for any v ∈ V ,
v + λ0V = λ( 1

λv + 0V ) = λ( 1
λv) = v, so adding −v to both sides shows that λ0V = 0V .

(ii) The additive inverse −v is characterised by what happens when it is added to v, so we
compute v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0V so −v = (−1)v. The general
case is the same: λv+ (−λ)v = (λ+ (−λ))v = 0v = 0V , so −(λv) = (−λ)v. And similarly:
λv + λ(−v) = λ(v − v) = 0V , so −(λv) = λ(−v). Please make it stop.

4.2 Spans and subspaces

We define the span of a subset of a vector space V exactly as for Rn.

Definition 4.4

Let S ⊂ V be a non-empty subset of a vector space V . The span of S, denoted 〈S〉, is

〈S〉 = {λ1v1 + . . .+ λsvs | v1, . . . , vs ∈ S and λ1, . . . , λs ∈ R}

By convention, we define the span of the empty subset S = ∅ ⊂ V to be 〈∅〉 = {0V }.

We define subspace of a vector space; compare with subspaces of Rn in Definition 3.1 – it is identical.

Definition 4.5

Let V be a vector space. A subspace of V is a nonempty W ⊂ V with the property that for
any v, w ∈W and any λ ∈ R, we also have v + w ∈W and λv ∈W .

There are two particular subspaces that we refer to as trivial subspaces: {0V } ⊂ V and V ⊂ V .
Thus to say a subspace W ⊂ V is nontrivial is to say W 6= {0V } and W 6= V .
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Example

For any d ∈ N, W = R[x]≤d is a subspace of V = R[x].

One detail to be sure about is that the two operations in W (addition and scalar multiplication)
are exactly the same as those in V . In Definition 4.5 the plus sign + was addition in V , but we
probably came into this example thinking that W had an addition defined all of its own.

Remark

To prove some W ⊂ V is a subspace of V , you just check the conditions of Definition 4.5. It is
common to amalgamate them into a single equivalent condition: W ⊂ V is a subspace if and
only if

λv + µw ∈W

for every v, w ∈W and all λ, µ ∈ R.

Proposition 4.6

Let V be a vector space.

(i) If S ⊂ V is any subset, then its span 〈S〉 is a subspace.

(ii) If W1,W2 ⊂ V are subspaces, then so is W1 ∩W2.

Another routine proof: best to do yourself.

Proof. (i) If v =
∑
αivi and w =

∑
βjwj for vi, wj ∈ S and αi, βj ∈ R, then for any λ, µ ∈ R

λv + µw =
∑

(λαi)vi +
∑

(µβj)wj

is a (finite) linear combination of elements of S, and so lies in 〈S〉

(ii) Suppose v, w ∈ W1 ∩W2. We must prove that for any λ, µ ∈ R also λv + µw ∈ W1 ∩W2.
But this is instant: v, w ∈W1 so λv+µw ∈W1 since W1 is a subspace, and similarly for W2.

Definition 4.7

If W1,W2 ⊂ V are subspaces of a vector space V , then we define their sum to be exactly the
same as their combined span:

W1 +W2 = 〈W1 ∪W2〉

That is, for any v ∈ V we have:

v ∈W1 +W2 ⇐⇒ there are w1 ∈W1 and w2 ∈W2 so that v = w1 + w2.
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Example

Let V = R3 and consider

W1 =


ab

0

 ∣∣∣∣∣∣ a, b ∈ R

 and W2 =


0
c
d

 ∣∣∣∣∣∣ c, d ∈ R


Then

W1 ∩W2 =


0
b
0

 ∣∣∣∣∣∣ b ∈ R

 and W1 +W2 = R3

Note that W1 +W2 6= W1 ∪W2 in this example. In fact, you can easily prove (so do!) that

W1 +W2 = W1 ∪W2 ⇐⇒ either W1 ⊂W2 or W2 ⊂W1.

The next definition is the key one that identifies the main subject area of this module. It is very
simple, but it is worth absorbing why it works in the context of the rest of the results of this section.

Definition 4.8

A vector space V is finite dimensional if and only if there is a finite subset {v1, . . . , vs} ⊂ V
that spans V : that is 〈v1, . . . , vs〉 = V .

Example

We know lots of examples of finite-dimensional vector spaces:

(i) Rn for any n ∈ N. The standard basis e1, . . . , en provides a finite spanning set.

(ii) R[x]≤d for any d ∈ N. The monomials 1, x, x2, . . . , xd provide a finite spanning set.

(iii) the space of solutions of the differential equation in Example 4.2. The two functions
sin(3x) and cos(3x) provide a finite spanning set.

By contrast, the ring of polynomials R[x] is not a finite-dimensional vector space. That needs
proof. Suppose f1, . . . , fs ∈ R[x] is a spanning set. Denote the degrees of these polynomials by
di = deg fi. Since the set {di | i = 1, . . . , ds} is a finite set of integers, it has a largest element:
without loss of generality ds ≥ di for all i = 1, . . . , s. But then xds+1 cannot be written as a
linear combination of f1, . . . , fs, and so they cannot have formed a spanning set.

Remark

The last example V = R[x] is a salutary: although it is not finite dimensional, it is a perfectly
lovely space, and we work in it without concern. The point to take from this is that, while our
module will focus on finite-dimensional vector spaces and will prove theorems in that context,
we should expect to work with infinite-(i.e. not finite-)dimensional vector spaces too.

(If you own a more philosophically constructivist view, you might object that nobody ever truly

79



works with the whole of R[x], but always with some approximation such as R[x]≤d. Fair enough,
but in that case you’re probably even more upset with R, so let’s just roll with it for now.)

4.3 Bases of vector spaces

We define linear (in)dependence for a set of elements of a vector space just as we did in Rn; compare
Definitions 3.7 and 3.8.

Definition 4.9

A subset L ⊂ V of a vector space V is linearly independent if and only if whenever

λ1v1 + . . .+ λsvs = 0V for v1, . . . , vs ∈ L and λ1, . . . , λs ∈ R

we necessarily have that
λ1 = . . . = λs = 0

A subset L ⊂ V is linearly dependent if and only if it is not linearly independent. That is, L
is linearly dependent if and only if there is a linear dependence relation among (finitely many
of) its elements, namely a relation of the form (for some s ≥ 1)

λ1v1 + . . .+ λsvs = 0V (4.1)

for v1, . . . , vs ∈ L and λ1, . . . , λs ∈ R which are not all zero.

Linearly independent subsets of finite-dimensional vector spaces are necessarily finite; compare the
statement and proof of the following proposition with Proposition 3.11.

Proposition 4.10

Suppose V is a finite-dimensional vector space and that L ⊂ V is linearly independent. Then
L is a finite set.

Proof. Since V is finite dimensional, there is a spanning set w1, . . . , wn ∈ V . Suppose there are
n+ 1 distinct elements v1, . . . , vn+1 ∈ L. Since w1, . . . , wn span, there are aij ∈ R so that

vj =

n∑
i=1

aijwi for each j = 1, . . . , n+ 1.

Consider the n× n+ 1 matrix A = (aij). Since A has fewer rows than columns, by Corollary 2.69
there is some k = (k1, . . . , kn+1)

T 6= 0 such that Ak = 0; note that the ith row of this equation is

ai1k1 + . . .+ ai,n+1kn+1 = 0 (4.2)

Thus

k1v1 + . . .+ kn+1vn+1 = k1

n∑
i=1

ai1wi + . . .+ kn+1

n∑
i=1

ai,n+1wi

=

n∑
i=1

(k1ai1 + . . .+ kn+1ai,n+1)wi

= 0V by (4.2)
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This is a linear dependence relation among v1, . . . , vn+1, since k 6= 0, and so L is not linearly
independent, which is a contradiction.

The next very simple lemma matches our intuition and proves useful several times.

Lemma 4.11

Let V be a vector space with B ⊂ V a linearly independent subset and v ∈ V an element. Then
exactly one of the following two cases occurs (and not both):

(i) v ∈ 〈B〉, or

(ii) B ∪ {v} is linearly independent.

The proof hinges on the triviality that if you have a linear expression involving v and elements of B,
then the coefficient of v is either zero or it isn’t. It’s a great first exercise, before reading on.

Proof. If v ∈ 〈B〉, then v = λ1w1 + . . .+λsws for some w1, . . . , ws ∈ B and λ1, . . . , λs ∈ R. This
is a nontrivial linear dependence relation among B ∪ {v}, since the coefficient of v is not zero, so
B ∪ {v} is not linearly independent.

If v /∈ 〈B〉, then we must prove that B∪{v} is linearly independent. Consider a linear combination

λv + µ1w1 + . . .+ µsws = 0V (4.3)

for some w1, . . . , ws ∈ B and λ, µ1, . . . , µs ∈ R. If λ 6= 0, then rearranging (4.3) gives

vj = −
(µ1
λ

)
w1 − . . .−

(µs
λ

)
ws ∈ 〈B〉

But vj /∈ 〈B〉, so we must have λ = 0. Therefore (4.3) reads
∑
µiwi = 0V . Since B is linearly

independent, it follows that all µi = 0, and so all coefficients of (4.3) are zero as required.

Corollary 4.12

Let V be a vector space. If V is not finite dimensional, then V contains an infinite set v1, v2, . . .
of linearly independent elements.

Note that there is no claim that the vi span V .

Proof. Certainly V 6= {0V } so choose any nonzero v1 ∈ V and set W = 〈v1〉. Since V is not
finite dimensional, W 6= V , so we may choose some element v2 /∈ W . The set {v1, v2} is linearly
independent by Lemma 4.11.

We proceed inductively: after m steps, v1, . . . , vm is a linearly independent set. Since V is not
finite dimensional, W = 〈v1, . . . , vm〉 6= V , so we may choose some element vm+1 /∈ W . The set
{v1, . . . , vm+1} is linearly independent by Lemma 4.11.

Thus we may continue the sequence v1, v2, . . . indefinitely so that any finite portion v1, . . . , vm of
the sequence is linearly independent. But that means that the whole sequence is linearly indepen-
dent, since any dependence relation would only involve finitely many of the vi.
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Example

For example V = R[x] is a vector space that is not finite dimensional, and the set of monomials
1, x, x2, . . . , xn, . . . is linearly independent: the zero polynomial is the additive identity 0V , and
by definition it is the polynomial whose coefficients are all zero.

The definition of basis of a vector space also mirrors that we used for Rn; compare Definition 3.12.

Definition 4.13

Let V be a vector space. A subset B ⊂ V is a basis of V if and only if B is linearly independent
and spans V .

We immediately state an equivalent criterion for being a basis, just as we did in the case of Rn in
Proposition 3.15.

Proposition 4.14

A subset B ⊂ V is a basis of V if and only if for any w ∈ V , there is an expression

w = µ1v1 + . . .+ µsvs

with distinct elements v1, . . . , vs ∈ B and scalars µ1, . . . , µs ∈ R, and furthermore the scalars
µ1, . . . , µs in this expression are uniquely determined.

Compare with the statement and proof of Proposition 3.15: this version is a little more precise (it is
‘if and only if’) but the proof is essentially identical. The faintly bizarre wording is to avoid saying
that the choice if v1, . . . , vs is unique: of course there may be some other vs+1 ∈ B, and then one
could write

w = µ1v1 + . . .+ µsvs + µs+1vs+1 with µs+1 = 0

and the wording is to stop that being regarded as a different way of expressing w as a linear combination
of elements of B. (This is ridiculous! Please ignore and correctly treat the expression as unique.)

Proof. Suppose B is a basis. Then for w ∈ V there certainly is such an expression, since B spans V .
If there were two such expressions, then we may assume they involve the same finite collection
v1, . . . , vs ∈ B (by setting µi = 0 or λi = 0 as required), so that they are

w = µ1v1 + . . .+ µsvs and

w = λ1v1 + . . .+ λsvs

for λi, µi ∈ R. Subtracting these two equations shows that

(µ1 − λ1)v1 + . . . (µs − λs)vs = 0V

so each µi − λi = 0 by linear independence of B, and so indeed the coefficients µi are uniquely
determined.

Conversely, the expression for w shows at once that B spans V , while if

λ1v1 + . . .+ λsvs = 0V
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for λi ∈ R and vi ∈ B, then each λi = 0, since the trivial linear combination is one expression
for 0V , and so by uniqueness must be the only one.

Example

It follows immediately that B =
{
xi
∣∣ i ≥ 0

}
= {1, x, x2, x3, . . .} is a basis for R[x]. The

uniqueness is simply the definition of equality for polynomials: two are equal if and only if all
their coefficients are equal.

Proposition 4.15 (Sifting Lemma)

Let V be a (finite-dimensional) vector space, and suppose V 6= {OV }. Suppose S = {v1, . . . , vs}
is a spanning set of V . Then there is a subset B ⊂ S that is a basis of V .

Moreover, if L ⊂ S is any linearly independent set, then we may choose B to contain L.

We give two proofs. The first is stylish but doesn’t help directly with finding a basis. We prove the
final statement, since this includes the first claim by setting L = ∅. Note that ‘maximal’ here means
maximal with respect to inclusion: there is no claim that there is a unique ‘biggest’ subset.

Proof. Let B ⊂ S be a maximal linearly independent subset that contains L. It certainly exists,
since L is linearly independent. The claim is that B is a basis.

We need only prove that B spans, as it is linearly independent by specification. Suppose not. Then
there must be some vj that is not in the span 〈B〉 of B. The set B ∪ {vj} is linearly independent
by Lemma 4.11, but it strictly contains B, which contradicts the maximality of B.

The second proof is by sifting; considers each of the elements of S in turn, and ‘sift out’ those that
are not needed for a basis. It is this proof that gives Proposition 4.15 its name.

Proof. Without loss of generality L = {v1, . . . , vr} for some r ≥ 0. We consider the elements
vr+1, . . . , vs in turn. Set B = L; we will adjust it as we go.

Suppose we are considering vj for r+1 ≤ j ≤ s. If vj lies in the span of B, then discard it. On the
other hand, if vj /∈ 〈B〉 then replace B by B ∪ {vj}, which is linearly independent by Lemma 4.11.
If j < s, continue with this new B and consider vj+1; if j = s then stop. Clearly this process stops
after finitely many steps, once we have considered vs.

The resulting B is linearly independent by construction, and it spans trivially: each vj that we
discarded was a linear combination of other vi ∈ B (in fact, with i < j), so in any linear combination
of the elements of S, we may substitute for vj by an expression involving only elements of B.

So every finite-dimensional vector space has a basis. Proposition 4.15 implies even more.

Corollary 4.16 (“You can extend a linearly independent set to a basis” Lemma)

Let V be a finite-dimensional vector space and v1, . . . , vs ∈ V a linearly independent subset.
Then there exist vs+1, . . . , vn ∈ V so that v1, . . . , vn is a basis of V .
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Proof. Since V is finite dimensional, there is a subset M = {w1, . . . , wr} that spans V . Apply
Proposition 4.15 with L = {v1, . . . , vs} and S = L ∪M.

Example

Suppose v1 = (1,−2, 4)T and v2 = (0, 1,−2) ∈ R3. It is easy to check that L = {v1, v2} is
linearly independent, but it does not span: for example, e2 /∈ 〈v1, v2〉: if e2 = αv1 + βv2, then
we must have α = 0 to get the first component right, and then β = 0 for the third component,
but that does not give e2. If we set

S = {v1, v2, e1, e2, e3}

then Proposition 4.15 guarantees some subset of S is a basis that contains L. For example,
follow the second proof and sift S. We start with B = L. Note that e1 = v1 + 2v2, so we
discard it. We already observed that e2 /∈ 〈B〉, so we include e2 and consider B = {v1, v2, e2}.
Then e3 = −1

2v2 + 1
2e2 ∈ 〈B〉, and so we discard e3 and the basis is v1, v2, e2.

4.4 Dimension theory

The main result is the following.

Theorem 4.17

If V is a finite-dimensional vector space, then any two bases of V are finite and have the same
number of elements.

We give a famous proof: one by one, swap an element of one basis for an element of the other, and
think about when this process can stop. The lemma is stated in a slightly complicated way, that
essentially includes its proof. That is unusual, but the precise details are needed later.

Lemma 4.18 (Exchange Lemma)

Let V be a vector space and B = {v1, . . . , vs} be a basis of V . Suppose w ∈ V with w 6= 0V .
Since B is a basis, there are (unique) scalars λi ∈ R so that

w = λ1v1 + . . .+ λsvs

If λj 6= 0, then
{v1, . . . , vj−1, vj+1, . . . , vs} ∪ {w}

is also a basis of V , where the element vj has been removed from the first factor of the union
(though of course w = vj is perfectly possible in the second, in which case the union is B).

In other words, if vj appears in a nontrivial way in the expression for w, then you can remove vj from
the basis and replace it by w, and the result is still a basis. Let’s consider an example before the proof.
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Example

Let B = {e1, e2, e3} be the standard basis of R3 and consider

w = (2,−3, 0)T = 2e1 + (−3)e2

The Exchange Lemma says that B1 = {w, e2, e3} and B2 = {e1, w, e3} are both bases of R3.
Consider the first of these, B1.

Clearly B1 spans: any element of v ∈ R3 is of the form v =
∑
µiei, and so substituting for e1

using the relation e1 = 1
2w + 3

2e2, we can rewrite this as

v = µ1(
1
2w + 3

2e2) + µ2e2 + µ3e3

which is a linear combination of B1 (we could collect the terms together if we wished, but there
is no need).

Equally clearly B1 is linearly independent: if λw + λ2e2 + λ3e3 = 0, we must show that
λ = λ2 = λ3 = 0. Substituting for w gives

0 = λ(2e1 + (−3)e2) + λ2e2 + λ3e3 = 2λe1 + (−3λ+ λ2)e2 + λ3e3

But the original basis B is linearly independent, so we know that

2λ = −3λ+ λ2 = λ3 = 0

which implies what we want.

We may prove the basis B2 in a similar way. The Lemma makes no claim about {e1, e2, w},
where we have substituted w for e3, but clearly this is not a basis: every vector has zero as its
third component, so we can never express e3 as a linear combination.

The proof is nothing more than this example in general notation.

Proof. Suppose without loss of generality that j = 1, so that

w = λ1v1 + λ2v2 + . . .+ λsvs with λ1 6= 0. (4.4)

Write B′ = {w, v2, . . . , vs}. We must prove that B′ is a basis.

Note that w is not in the span of v2, . . . , vs, since the coefficients λi are unique by Proposition 4.14.
(To spell that out: any expression w = 0v1+µ2v2+. . .+µsvs clearly has a different coefficient of v1
than the one in (4.4), but that is impossible.) Therefore B′ is linearly independent by Lemma 4.11.

And B′ spans: any linear combination of B is equal to a linear combination of B′ by substituting
for v1 after rearranging (4.4).

It remains to prove Theorem 4.17. It is just a form of book-keeping now.

Proof. Since V is finite dimensional, by Proposition 4.15 or Corollary 4.16, it certainly has at least
one basis that is finite. Let B = {v1, . . . , vn} be such a basis of smallest size and let B′ ⊂ V be
any other basis; in particular, B′ has at least n elements.

Pick any element of B′; call it w1. By the Exchange Lemma 4.18, there is some vj ∈ B that we
may remove and replace by w1 so that the collection remains a basis. Without loss of generality
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(by renumbering the vi if necessary) j = 1 and

B1 = {w1, v2, . . . , vn}

is a basis of V .

Next pick any element of B′ \{w1}; call it w2. By the Exchange Lemma there is some vj ∈ B1 that
we may remove and replace by w2. (Note that we may insist, as we did, that the element we remove
from B1 is not w1: w1, w2 are linearly independent so when we write w2 = λ1w1+λ2v2+. . .+λnvn,
it could not be that λk = 0 for all k ≥ 2. Even though λ1 may be nonzero, we have deilberately
chosen not to replace w1, and we have just observed that there is indeed some other vector that
we may replace instead.) Without loss of generality j = 2 and

B2 = {w1, w2, v3, . . . , vn}

is a basis of V .

Proceeding inductively, after n such steps we reach the point where we have constructed a basis

Bn = {w1, w2, . . . , wn}

Now if B′ has strictly more than n elements, we may continue and pick an element wn+1 ∈ B′ \Bn.
But since Bn is a basis, there are scalars µi ∈ R so that

wn+1 = µ1w1 + . . .+ µnwn

But this is a contradiction: that equation, wn+1−
∑
µiwi = 0V is a nontrivial dependence relation

among some elements of B′ (the coefficient of wn+1 is not zero) but B′ is linearly independent.
Therefore B′ cannot have any more elements, and so #B′ = n = #B, as claimed.

The conclusion of all that work is that we may formulate a general definition of dimension, at least in
the finite-dimensional case.

Definition 4.19

Let V be a finite-dimensional vector space. The dimension of V is the number of elements of
any basis of V . It is denoted dimV , or dimR V when it is useful to emphasise that the scalars
are R. By definition dimV ∈ N.

We now have a theory of dimension for vector spaces – or for finite-dimensional ones at least. As a
first test of the flexibility of the theory we see that it accords with our idea that subspaces of vector
spaces have lower dimension.

Proposition 4.20

Let V be a finite-dimensional vector space and W ⊂ V a subspace. Then W is finite dimensional
and dimW ≤ dimV , with equality if and only if W = V .

Proof. We first prove that W is finite dimensional. Suppose not. Then there is an infinite set
v1, v2, . . . ∈ W of linearly independent elements of W by Corollary 4.12. But they are linearly
independent when considered as elements of V , which contradicts Proposition 4.10.
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Let v1, . . . , vs ∈ W be a basis of W . Considered as elements of V , they are linearly independent.
Therefore, by Corollary 4.16 there are elements vs+1, . . . , vn ∈ V so that v1, . . . , vn is a basis of V .
Thus

dimW = s ≤ n = dimV

with equality if and only if s = n, which is to say that v1, . . . , vs is a basis of V and so W = V .

This proposition is frequently useful in the following curious formulation: the point is that dimW ≥ s
by Corollary 4.16.

Corollary 4.21

Let W ⊂ V be a subspace of a finite-dimensional vector space. If w1, . . . , ws ∈ W are linearly
independent with s = dimV , then W = V .

The final corollary packages the main points into two simple criteria.

Corollary 4.22

Let V be a vector space with dimV = n.

(i) If v1, . . . , vn ∈ V are linearly independent, then they form a basis of V .

(ii) If v1, . . . , vn ∈ V span V , then they form a basis of V .

The first part follows at once from the previous corollary, while the second follows at once from the
Sifting Lemma 4.15.

4.5 Direct sum of vector spaces

One of the tropes of beginning algebra is the idea of constructing new spaces from old ones. Having
done that, you usually find that it moves quickly to the converse idea of breaking big spaces into
smaller pieces, but let’s not run before we can walk. This section merely provides yet another class of
examples of vector spaces.

Definition 4.23

Let V and W be vector spaces. The direct sum of V and W is the vector space

V ⊕W = {(v, w) | v ∈ V,w ∈W}

with vector space operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

λ(v, w) = (λv, λw)

where the left-hand side of each line is the operation in V ⊕W , and it is defined by the right-hand
side, which involves only operations in V and W .

The additive identity is 0V⊕W = (0V , 0W ), and the additive inverse is −(v, w) = (−v,−w).
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Of course one must check that the operations defined above on V ⊕W above really do make it into
a vector space: they do, but please check.

Example

Let V = R2 and W = R1. Then

V ⊕W =

{((
λ1
λ2

)
, (λ3)

) ∣∣∣∣ λ1, λ2, λ3 ∈ R
}

If we slightly cheekily treat the element ((λ1, λ2)
T , (λ3)) as a single column vector (λ1, λ2, λ3)

T ,
then we see that the operations defined in Definition 4.23 agree with the operations in R3.

In any case, we see a natural basis of V ⊕W :

v1 =

((
1
0

)
, (0)

)
, v2 =

((
0
1

)
, (0)

)
, v3 =

((
0
0

)
, (1)

)
It is easy to check that v1, v2, v3 are linearly independent and span. From this point of view,

V ⊕W = {λ1v1 + λ2v2 + λ3v3 | λ1, λ2, λ3 ∈ R}

which makes our little charade with R3 above completely watertight (since the operations defined
on V ⊕W are exactly componentwise sum of such linear expressions).

We can be even more precise about this later, once we have linear maps and isomorphisms, but
even now it is clear that we may, for example, build up Rn by direct sum of n copies of R, and
that larger direct sums Rn ⊕ Rm behave exactly like Rn+m.

Proposition 4.24

Suppose v1, . . . , vs is a basis of V and w1, . . . , wt is a basis of W . Then

B = {(v1, 0W ), . . . , (vs, 0W )} ∪ {(0V , w1), . . . , (0V , wt)}

is a basis of V ⊕W .

This is another routine proof for you to try: if you’d like to compare with my solution, here it is.

Proof. If (v, w) ∈ V ⊕W then since using the given basis there are scalars λi, µj ∈ R for which

v = λ1v1 + . . .+ λsvs and w = µ1w1 + . . .+ µtwt

and therefore B spans since

(v, w) = λ1(v1, 0W ) + . . .+ λs(vs, 0W ) + µ1(0V , w1) + . . .+ µt(0V , wt)

If for λi, µj ∈ R

λ1(v1, 0W ) + . . . λs(vs, 0W ) + µ1(0V , w1) + . . . µt(0V , wt) = 0V⊕W

then
λ1v1 + . . .+ λsvs = 0V and µ1w1 + . . .+ µtwt = 0W

and so all λi = µj = 0 since the given bases of V and W are linearly independent.
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Counting the size of the basis B computes the dimension of V ⊕W .

Corollary 4.25

If V and W are finite-dimensional vector spaces, then so is V ⊕W and moreover

dimV ⊕W = dimV + dimW

Example 4.26

Let V = R2 and W = R[x]≤2. Then

V ⊕W =

{((
λ1
λ2

)
, λ3 + λ4x+ λ5x

2

) ∣∣∣∣ λ1, . . . , λ5 ∈ R
}

Choosing bases of V and W provides a basis for V ⊕W : for example

v1 =

((
1
0

)
, 0

)
, v2 =

((
0
1

)
, 0

)
, v3 =

((
0
0

)
, 1

)
, v4 =

((
0
0

)
, x

)
, v5 =

((
0
0

)
, x2
)

so that
V ⊕W = {λ1v1 + . . .+ λ5v5 | λ1, . . . , λ5 ∈ R}

With this view, the key data that determines an element of V ⊕W is the vector of coefficients
(λ1, . . . , λ5)

T ∈ R5. As far as the vector space operations go, we may treat the vector space
V ⊕W essentially as the same as R5. Of course we must remember that if we ever need to use
properties of its elements then in fact it is very different from R5.

4.6 What does a finite basis do for me?

Example 4.26 illustrated how a finite basis boils down the elements of an n-dimensional vector space V
to a simple vector of coefficients that we may regard as an element of Rn. Put differently, when we
work with a finite-dimensional vector space together with a fixed choice of basis, then we may
often do some or all our work in Rn where we know exactly how to solve any linear problem.

Proposition 4.27

Let V be a vector space and B = {v1, . . . , vn} a basis. Then there is a bijection

χB : V −→ Rn

v 7→

λ1...
λn

 where v = λ1v1 + . . .+ λnvn

which respects the vector space operations: that is,

χB(v) + χB(w) = χB(v + w) and χB(λv) = λχB(v)

for all v, w ∈ V and λ ∈ R.
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Notice that it is crucial that we regard the basis as being v1, . . . , vn in that order, despite the
set-theoretic notation.

Proof. There is almost nothing to prove. The map χB both exists and is surjective because B
spans so every v ∈ V has an expression as indicated, and every such expression gives an element
of V . The map χB is both well defined and injective because B is linearly independent so the
indicated expression for v is unique by Proposition 4.14.

The map χB respects the vector space operations because those operations are carried out com-
ponentwise in both the domain and the codomain. In detail, suppose v =

∑
λivi and w =

∑
µivi

so that v+w =
∑

(λi +µi)vi and λv =
∑

(λλi)v. Then the ith component of the column vector
χB(v+w) is λi +µi, which equals the ith component of χB(v) +χB(w), and similarly for λv.

Definition 4.28

When V is a (finite-dimensional) vector space with a fixed choice of basis B = {v1, . . . , vn},
we refer to the bijection χB : V → Rn as the coordinate map with respect to the basis B.

Remark

This is the great trick, or the great con, of (finite-dimensional) linear algebra: faced with a
complicated and abstract situation V , we may simply choose a basis and do our calculations in
some Rn, and then use the basis to translate back to V .

This is almost exactly the same as being a forensic pathologist: we take samples v and w from
the messy and complicated real life crime scene V back to the clean lab Rn where we have all
our tools for cutting them into pieces and solving whatever linear equation mystery they may
be involved in.

We will see this pay off next when we finally consider linear maps between vector spaces explicitly
(and see that we have been using them implicitly all along).

That sounds great, but on the quiet down here, we can be honest about the problem: what happens
if we choose a different basis? how do our conclusions gleaned from one choice of basis compare to
the other? That is the change of basis question we saw in §3.4, and life is simplest if we keep thinking
of it as the simple matter it is (once we have discussed it slowly and precisely).
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Chapter 5

Linear Maps

Informally, a linear map ϕ : V → W between vector spaces V and W is a map of sets that respects
the two vector space operations: this simply means the following.

Definition 5.1

Let V and W be vector spaces. Then a map ϕ : V →W is a linear map if and only if

ϕ(v + w) = ϕ(v) + ϕ(w) and ϕ(λv) = λϕ(v)

for all v, w ∈ V and λ ∈ R. If you prefer an equivalent more concise version:

ϕ is a linear map⇐⇒ ϕ(λv + µw) = λϕ(v) + µϕ(w) for all v, w ∈ V and λ, µ ∈ R.

The linear map ϕ that is also a bijection is called an isomorphism (or an isomorphism of
vector spaces if the context is not clear). In this case we say V and W are isomorphic and
we write V ∼= W . (It is easy to see that in this case the inverse bijection ϕ−1 : W → V is also
a linear map; see Lemma 5.6.)

Linear maps are the natural maps to consider between vector spaces, just as group homomorphisms
(which respect the group operations) are the natural maps between groups, and ring homomorphisms
(which respect the ring operation) are the natural maps between rings, and differentiable maps (which
respect the differentiability of functions) are the natural maps between (differentiable) manifolds.

You are extremely familiar with the most famous linear map of them all: recall that C∞(R) is the
vector space of (infinitely) differentiable functions f : R→ R. Differentiation

C∞(R) → C∞(R)

f 7→ df

dx

is a linear map: you have known forever that whenever f and g are differentiable and λ ∈ R

d

dx
(f + g) =

df

dx
+
dg

dx
and

d(λf)

dx
= λ

df

dx

At first, though, we consider more mundane examples.

91



Example

The map ϕ : R2 → R2 given by (
x
y

)
7→
(

2x− 5y
−x+ 3y

)
is a linear map; you can check that it satisfies the conditions of Definition 5.1. In fact it is a
bijection, so it is an isomorphism. The inverse map ϕ−1 : R2 → R2 is(

u
v

)
7→
(

3x+ 5y
x+ 2y

)
which again is a linear map. You see at once the fingerprints of the matrix

A =

(
2 −5
−1 3

)
and its inverse A−1 =

(
3 5
1 2

)
all over this crime scene.

We will see that this is no coincidence: this is how a typical linear map appears (see §5.3), and
in fact the matrices are the good guys not the villains, so don’t read them their rights just yet.

Whenever you see maps defined by homogeneous linear expressions in some parameters, as
the map ϕ above is defined by the expressions 2x− 5y and −x+ 3y, you should expect there
is a vector space kicking around and that this is a linear map. If you see nonlinear terms such
as 3x+ y2 or 1− 2x+ y, then the map is surely not a linear map, nice as it may be. These are
not rules, but they are a good first approximation when you’re out in the wild.

Language 5.2

Whenever someone says that ϕ : V → W is a linear map, it is understood that V and W are
vector spaces in some way that they expect to be clear to you. Since in these notes we use the
same notation for addition and scalar multiplication in every vector space we consider, we may
omit the explicit mention that V and W are vector spaces. We will never deploy a linear map
without the domain and codomain being vector spaces in some way that is unambiguous in the
context.

This chapter studies the image and kernel of linear maps (mostly between finite-dimensional vector
spacess) and applies this to questions of invertibility and isomorphism. These are the key definitions,
so we give them next, even before looking at more examples.

5.1 Routine trivialities

Definition 5.3

Let ϕ : V →W be a linear map. The image of ϕ, denoted Im(ϕ), is the subset of W

Im(ϕ) = {w ∈W | w = ϕ(v) for some v ∈ V }

This is precisely the same as the usual set-theoretic image, and is also often denoted by ϕ(V ).

The kernel of ϕ, denoted ker(ϕ), is the subset of V

ker(ϕ) = {v ∈ V | ϕ(v) = 0W }
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This is precisely the same as the usual group-theoretic kernel if we consider V and W as abelian
groups under their respective addition operations.

Remark

Since any linear map ϕ : V → W is, in particular, a homomorphism of abelian groups, with
respective additive identities 0V and 0W , we already know the following lemma. I include a
proof in case you have forgotten it, and I use scalar multiplication whether I need to or not.

Lemma 5.4

Let ϕ : V →W be a linear map.

(i) ϕ(0V ) = 0W .

(ii) ϕ is injective if and only if kerϕ = {0V }.

Proof. (i) Cashing in one axiom at a time we have ϕ(0V ) + ϕ(0V ) = ϕ(0V + 0V ) = ϕ(0V ), so
adding −ϕ(0V ) to both sides (without caring in the slightest what it actually is) gives the result.

(ii) Suppose that kerϕ = {0V } and we have v1, v2 ∈ V with ϕ(v1) = ϕ(v2). We must prove that
v1 = v2. By linearity of ϕ,

ϕ(v1 − v2) = ϕ(v1) + ϕ((−1)v2) = ϕ(v1)− ϕ(v2) = 0W

so that v1 − v2 ∈ kerϕ. Therefore v1 − v2 = 0V , or in other words v1 = v2, as required.

The converse is quicker: if ϕ is injective, then at most one element may map to 0W , and since
ϕ(0V ) = 0W by (i), we have kerϕ = {0V }.

Remark

We should get on looking at examples, but there are a couple more useful yet routine results to
note in passing. They are slightly harder than the previous lemma, but similar in spirit, in that
they depend only on how the rules work at a fairly superficial level, so live in the mulch just one
inch above the axioms. They are good to try as an exercise in shunting the symbols around.

Proposition 5.5

Let ϕ : V →W be a linear map.Then

(i) kerϕ ⊂ V is a subspace of V .

(ii) Imϕ ⊂W is a subspace of W .

Proof. (i) We know 0V ∈ kerϕ by Lemma 5.4(i). Suppose v1, v2 ∈ kerϕ and λ1, λ2 ∈ R. Then
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by linearity of ϕ

ϕ(λ1v1 + λ2v2) = λ1ϕ(v1) + λ2ϕ(v2) = λ10V + λ20V = 0V

and so λ1v1 + λ2v2 ∈ kerϕ, as required.

(ii) We know 0W ∈ kerϕ by Lemma 5.4(i). Suppose w1, w2 ∈ Imϕ and µ1, µ2 ∈ R. Then by the
definition of the image, there exist v1, v2 ∈ V with w1 = ϕ(v1) and w2 = ϕ(v2). So by linearity
of ϕ

µ1w1 + µ2w2 = µ1ϕ(v1) + µ2ϕ(v2) = ϕ(µ1v1 + µ2v2)

is also in Imϕ, as required.

Lemma 5.6

If ϕ : V →W is a linear map that is a bijection, then its set-theoretic inverse map ϕ−1 : W → V
is also a linear map.

Proof. Oh blimey, how do you do these ones? We’d better start with some w1, w2 ∈ W and
µ1, µ2 ∈ R, and then we need somehow to deal with ϕ−1(µ1w1 + µ2w2). It pays to say out loud
“I do not yet know that ϕ−1 is linear” until you find you have proved that it is. Now try it.

The trick with this sort of thing is usually to say: since ϕ is a bijection, there are v1, v2 ∈ V so
that w1 = ϕ(v1), or equivalently v1 = ϕ−1(w1), and similarly w2. Then since we know that at
least ϕ is linear, we have

ϕ(µ1v1 + µ2v2) = µ1ϕ(v1) + µ2ϕ(v2)

= µ1ϕ(ϕ−1(w1)) + µ2ϕ(ϕ−1(w2))

= µ1w1 + µ2w2

and now applying ϕ−1 to both sides spells out exactly what we want. Miserable, but there it is.

Proposition 5.7

Let ϕ : V →W be an isomorphism. If B ⊂ V is a basis of V , then ϕ(B) = {ϕ(v) | v ∈ B} is a
basis of W .

Remark

During the proof we see a typical move when working with linear maps. If ϕ is linear, then by
applying the addition and scalar multiplication properties from Definition 5.1 one at a time, we
know for example that

ϕ(λ1v1 + λ2v2 + λ3v3) = ϕ(λ1v1) + ϕ(λ2v2 + λ3v3)

= ϕ(λ1v1) + ϕ(λ2v2) + ϕ(λ3v3)

= λ1ϕ(v1) + λ2ϕ(v2) + λ3ϕ(v3)

and more generally, by induction, that

ϕ(λ1v1 + . . .+ λsvs) = λ1ϕ(v1) + . . .+ λsϕ(vs)
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That is, when mapping any linear combination of vectors in V by ϕ, we may map all the
individual vectors by ϕ first, and then rebuild the linear combination in W . It is probably easier
simpler to do it than to say it in prose. You will see this manoeuvre many many times.

Good grief! here we go again. Note first that we are secretly given an inverse linear map ϕ−1 : W → V ,
so we can translate any question in W back to V to solve it. Right, deep breath . . .

Proof. We first show that ϕ(B) spans. Let w ∈W . Consider v = ϕ−1(w) ∈ V . Since B is a basis
of V , there are elements v1, . . . , vs ∈ B and scalars λ1, . . . , λs ∈ R so that

v = λ1v1 + . . .+ λsvs

(Problem solved in V , the wrong place, so hit that with ϕ to get into W .) So applying ϕ to both
sides we have

w = ϕ(v) = ϕ(λ1v1 + . . .+ λsvs)

= λ1ϕ(v1) + . . .+ λsϕ(vs)

which does indeed express w as a linear combination of elements of ϕ(B).

To finish, we show that ϕ(B) is linearly independent. Suppose

0W = λ1ϕ(v1) + . . .+ λsϕ(vs)

for elements ϕ(vi) ∈ ϕ(B) and scalars λi ∈ R. We must show that all λi = 0. (Strategy: hit this
with ϕ−1 to get into V and hope to solve it there.) So applying ϕ−1 to both sides we have

0V = ϕ−1(0W ) = ϕ−1(λ1ϕ(v1) + . . .+ λsϕ(vs))

= λ1ϕ
−1(ϕ(v1)) + . . .+ λsϕ

−1(ϕ(vs))

= λ1v1 + . . .+ λsvs

But v1, . . . , vs ∈ B, and B is linearly independent, so we conclude at once that λ1 = . . . = λs = 0,
which is what we were required to do. Game over.

Remark

You probably noticed that Proposition 5.7 did not assume that B is a finite set: the result holds
for bases of any size, and therefore for vector spaces of any dimension. The next result follows
at once in the case that V is finite dimensional.

Corollary 5.8

If V ∼= W and V is finite dimensional, then W is finite dimensional too and dimV = dimW .
In particular, Rn ∼= Rm if and only if n = m.

5.2 Writing elements in coordinates is a linear map

We can express Proposition 4.27 in the language of isomorphisms.
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Proposition 5.9

Let V be a vector space with a basis B = {v1, . . . , vn} (regarded as being in that fixed order).
Then the coordinate map χB of Proposition 4.27

χB : V −→ Rn

which takes v = λ1v1 + . . .+λnvn to the column vector (λ1, . . . , λn)T ∈ Rn is an isomorphism.

This has an immediate consequence that is slightly shocking at first sight.

Corollary 5.10

If V is a finite-dimensional vector space, then V ∼= Rn for some unique n ∈ N.

Proof. By Proposition 4.15 there is a basis B = {v1, . . . , vn} of V . The coordinate map χB then
gives an isomorphism to Rn. The uniqueness of n is by Corollary 5.8.

Remark

So why on earth do we bother with a fully tooled-up abstract theory of vector spaces if up to
isomorphism they are all just one of the Rn? The first thing to say is that of course those are
only the finite-dimensional ones. As we’ve seen, there are plenty of other vector spaces that we
use every day that are not finite dimensional.

Another thing to say, and perhaps more important, is that the isomorphism V ∼= Rn involved
a choice of basis, and so it is more data that the vector space V alone. We will get a lot of
profit from working with vector spaces without having to make that choice: as they say in the
jargon, we frequently work ‘coordinate free’.

Another thing worth saying is that, when vector spaces arise, they usually have personalities all
of their own, involving many other ideas that just add, subtract and multiply by scalars. Have
a look at the next example, and decide whether you like your old friend left as it is or would
rather think of it as R2.

Example

The complex numbers C is a vector space: indeed you can add and subtract complex numbers,
and you can certainly multiply them by real numbers (and if you review all the axioms and
properties of C, you will find that the vector space axioms do all hold). Of course you can do
a whole lot more, but as a vector space you are not asked about that.

Fine, so what is its dimension? You probably already have a favourite basis: I’m guessing it is
B = {1, i}, where i =

√
−1 (whatever that means), and that you write

C = {a+ ib | a, b ∈ R}

(where we usually quietly omit the 1: we usually write a+ ib rather than a1 + bi). Maybe that
is even your definition of C. In any case, it certainly satisfies all the axioms of a vector space,
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and since we have a basis we know that dimRC = 2 (where this seems like a wise time to
emphasise that we are using R as scalars, so we write dimR rather than simply dim to say so).

In this case we may write the coordinate map χB as

χB : C −→ R2

a+ ib 7→
(
a
b

)
and this map is an isomorphism. As a vector space we never have to think about multiplying
two complex numbers together, so the horrid mess we would see in coordinates in R2 if we did
is not an issue.

That’s all true, but it is pretty forgetful, ungrateful and uncouth. I’ll stick with C, thanks.

Incidentally, since C ∼= R2 as a vector space, it should be possible to draw C as a plane. That is
exactly what the Argand diagram is: you probably label the point (1, 0)T ∈ R2 as the complex
number 1 and (0, 1)T ∈ R2 as the complex number i, which is what χ−1B tells you to do.

5.3 Linear maps Rn → Rm

Any matrix A ∈ Matmn determines a linear map by left multiplication by A:

LA : Rn → Rm (5.1)

v 7→ Av

The linearity of LA follows immediately from the properties of matrix multiplication, Proposition 2.42.
Linear maps of this form are essential examples to understand.

We already understand the image and kernel of LA in concrete terms.

Lemma 5.11

Let A ∈ Matmn and let LA : Rn → Rm be the associated left multiplication linear map.

(i) The kernel of LA is equal to the set of solutions of the equations Av = 0:

ker(LA) = {v ∈ Rn | Av = 0} .

(ii) The image of LA is equal to the column span of A: Im(LA) = ColspanA.

Proof. (i) This is immediate: v ∈ kerLA means exactly that Av = 0.

(ii) Let e1, . . . , en be the standard basis of Rn. Note that LA(ei) = ci is the ith column ci of A
treated as a vector in Rm, so we have

ColspanA = 〈c1, . . . , cn〉 = 〈LA(e1), . . . , LA(en)〉

For any v ∈ Rm there are unique scalars λi ∈ R so that v = λ1e1 + . . .+ λnen. Since LA is linear

LA(v) = LA(λ1e1 + . . .+ λmen)

= λ1LA(e1) + . . .+ λmLA(en)

so that LA(v) lies in ColspanA. Thus Im(LA) ⊂ ColspanA.
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Conversely, if w ∈ Colspan(A) then there are scalars µi ∈ R so that

w = µ1c1 + . . .+ µncn

= µ1LA(e1) + . . .+ µnLA(en)

= LA(µ1e1 + . . .+ µnen)

so that w = LA(v) where v = µ1e1 + . . .+ µnen and so w ∈ Im(A). Thus ColspanA ⊂ Im(A),
and so they are equal.

Language 5.12

This connection between maps and matrices is so automatic that we frequently refer to the map
as A rather than LA. We will try to stick to LA, but even then everybody uses the shortcut

kerA = {v ∈ Rn | Av = 0}

The only teeny catch is that some people prefer to multiply by matrices on the right, and that
determines a linear map Rmrow → Rnrow, but we will be explicit about it whenever that happens.

Just to be sure, recall that for maps ϕ : X → Y and ψ : Y → Z, their composition is defined by

ψ ◦ ϕ : X −→ Z

x 7→ ψ(ϕ(x))

Lemma 5.13

Let A ∈ Matmn and B ∈ Mat`m. Then LBA = LB ◦ LA : Rn → R`. If m = n then

(i) LIn is the identity map Rn → Rn.

(ii) If A is an invertible matrix, then LA is an invertible map and (LA)−1 = LA−1 .

Proof. Let v ∈ Rn. Then by the associativity of matrix multiplication

LB(LA(v)) = B(Av) = BA(v) = LBA(v)

which is the first claim. The remaining claims hold because A−1A = AA−1 = In multiplies v to
itself, and so LA and LA−1 are mutual inverses, and so are inverse bijections.

This framework provides a nice clean environment in which to understand the technology of elementary
matrices and row and column operations.

Proposition 5.14

Let A ∈ Matmn. If E = Ek · · ·E1 is a product of elementary matrices Ei ∈ Matmm and
F = F1 · · ·F` is a product of elementary matrices Fj ∈ Matnn, then
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(i) LEA is the composition Rn LA−→ Rm LE−→ Rm and

kerLEA = kerLA and dim ImLEA = dim ImLA.

(ii) LAF is the composition Rn LF−→ Rn LA−→ Rm and

dim kerLAF = dim kerLA and ImLAF = ImLA.

(iii) LEAF is the composition Rn LF−→ Rn LA−→ Rm LE−→ Rm and

dim kerLEAF = dim kerLA and dim ImLEAF = dim ImLA.

You will notice the difference in the statements above: sometimes we show that two spaces are the
same, while sometimes we show only that they have the same dimension.

If you read it carefully, you will see that the spaces are the same only when they are both subsets of
the same vector space in the relevant diagram Ra → Rb → Rc. When instead the two spaces lie in
the domain and codomain respectively of some map L, we only discuss their dimension: we do not
know what L does, so it is not reasonable to expect them to be identical, but we may nevertheless
compare them using L and the following completely general statement.

Lemma 5.15

Suppose ϕ : V →W is an isomorphism and U ⊂ V is a subspace. Then ϕ gives an isomorphism
between U and the subspace ϕ(U) ⊂W .

In particular, if U is finite dimensional then dimU = dimϕ(U).

Proof. Regarding ϕ as a linear map U →W , it is still injective, and it is of course surjective onto
its image ϕ(U), therefore it is a bijection U → ϕ(U), and so is an isomorphism as claimed. The
final line follows from Corollary 5.8.

With that, we may proceed with the proof of Proposition 5.14.

Proof. The only point we use about the elementary matrices is that E and F are both invertible
matrices, so that in particular LE and LF are isomorphisms. The compositions of maps LE , LA
and LF all follow at once from Lemma 5.13 – we just need to check the equality claims.

(i) Since LE is injective, LE(LA(v)) = 0 if and only if LA(v) = 0, which is the first claim.
Now setting U = ImLA ⊂ Rm, we have ImLEA = LE(U), and these have equal dimension by
Lemma 5.15.

(ii) Since LF is surjective, LA(LF (Rn)) = LA(Rn), which is the second claim. Now setting
U = kerLA ⊂ Rn, we have kerLAF = L−1F (U), and these have equal dimension by Lemma 5.15.

(iii) This follows from the previous two. For example, setting B = EA, we know kerLB = kerLA
by (i) and dim kerLBF = dim kerLB by (ii) so

dim kerLEAF = dim kerLBF
(ii)
= dim kerLB

(i)
= dim kerLA

as claimed. Similarly the image.
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This contains all the results we know when solving systems of linear equations, and then some that
we did not yet know.

Corollary 5.16

Let A ∈ Matmn. We regard A as the matrix of coefficients of a system of m linear equations
in n unknowns.

(i) If EA is the RREF of A, then the solutions of EAx = 0 are identical to the solutions of
Ax = 0.

(ii) If AF is the RCEF of A, then ColspanAF = ColspanA.

(iii) The Smith normal form EAF of A is unique; in particular, its rank is well defined.

Proof. Each part follows from the corresponding part of Proposition 5.14. In particular, the solution
set of Ax = 0 is kerLA and the column span ColspanA is ImLA, so the proposition gives the
claimed equalities.

Finally, the rank of the Smith normal form EAF of A is equal to the number of nonzero columns,
which is the same as dim ImϕEAF , which equals dim ImLA by the proposition, and so is inde-
pendent of which elementary products E and F you used to compute it.

Geometry and maps

We consider the vector space R2 together with the dot product, so that we may speak of lengths and
angles, as in §1.2. You probably know that

A =

(
cosϑ − sinϑ
sinϑ cosϑ

)
is a rotation matrix, but in any case we discuss it precisely now. The corresponding linear map
LA : R2 → R2 takes the standard bases to

LA(e1) = Ae1 =

(
cosϑ
sinϑ

)
and LA(e2) = Ae2 =

(
− sinϑ
cosϑ

)
We calculate the angle between each ei and its image vi = LA(ei) using Definition 1.14. Suppose
that ϑ ∈ [0, π]. Then

∠e1v1 = cos−1(e1 · v1) = cos−1(cosϑ) = ϑ and ∠e2v2 = cos−1(cosϑ) = ϑ

and so we draw the familiar meaningful picture.

0

e1

e2 LA(e1)

LA(e2)

ϑ
ϑ
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The great thing about linear maps is that what we see with our eyes actually happens: we see the
standard coordinate vectors rotate by ϑ, and indeed every other vector does the same, as we naturally

imagine. Indeed, given v =

(
x
y

)
, the angle to w = LA(v) =

(
x cosϑ+ y sinϑ
−x sinϑ+ y cosϑ

)
is

∠vw = cos−1(v̂ · ŵ) = cos−1
(
x2 cosϑ+ y2 cosϑ

x2 + y2

)
= ϑ

(We see in Proposition 5.17 below that it is always enough to understand what a linear map does on
a basis, as we did here.)

In a similar spirit, the linear map LA : R2 → R2 corresponding to the reflection matrix

A =

(
cosϑ sinϑ
sinϑ − cosϑ

)
is the reflection in a line at angle ϑ/2 above the x-axis. Again, you see the geometry by drawing a
picture of how the corresponding linear map LA takes the standard basis to the two columns of A.
You can also check that A2 = I2, so that LA is an involution of the plane (which, by definition, simply
means that if you do it twice you get back to where you started).

The first two matrices were invertible. For a non-invertible example, consider the orthogonal projec-
tion from vectors in R2 onto the line ` = (2x− 3y = 0) ⊂ R2. We apply the formula for orthogonal
projection from Definition 1.20: let ŵ be a unit vector along the line ` and then map v 7→ (v · ŵ)ŵ.
The vector w = (3, 2)T lies on ` and the unit vector in that direction is

ŵ =
1√
13

(
3
2

)
so by Definition 1.20 the linear map is(

x
y

)
7→
((

x
y

)
· ŵ
)
ŵ =

1

13
(3x+ 2y)

(
3
2

)
= A

(
x
y

)
where A =

1

13

(
9 6
6 4

)
In other words, the orthogonal projection to the line ` is the linear map LA : R2 → R2 for this
matrix A. As ever, we have the power to check what we have calculated. You probably now see that
LA(v) ∈ ` for any v ∈ R2, simply because twice the first row of A equals 3 times the second row,
and furthermore Aŵ = ŵ. In other words, ImLA = `. Which v map to the origin? By definition,
any v ∈ kerA, and kerA is the line `⊥ = (3x + 2y = 0) ⊂ R2, which is indeed at right angles to `.
Furthermore, for any point P = (a, b)T ∈ `, the set of points that maps to P is simply P + `⊥.

P

P + `⊥

0

`

ŵ

`⊥
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5.4 Linear maps, bases and matrices

The essential point of this section is that a linear map is fully determined by how it maps a basis:
linearity is precisely the condition that guarantees it. Once we have established that point, we show
how to relate linear maps and matrices when you have chosen a basis in the domain and codomain.

Proposition 5.17

Let Let V be a vector space with basis v1, . . . , vn and W be any vector space (not necessarily
finite dimensional).

(i) Suppose ϕ1 : V →W and ϕ2 : V →W are two linear maps, and suppose that they agree
on the basis elements vi: that is, ϕ1(vi) = ϕ2(vi) for all i = 1, . . . , n. Then ϕ1 = ϕ2.

(ii) For any choice of vectors u1, . . . , un ∈W , there is a unique linear map ϕ : V →W with
ϕ(vi) = ui for i = 1, . . . , n.

Proof. (i) Consider any v ∈ V . We must simply show that ϕ1(v) = ϕ2(v). Expressing v in the
given basis, there are scalars λ1, . . . , λn for which v = λ1v1 + . . .+λnvn. Then, using the linearity
of the two maps, and the fact they agree on the basis elements vi,

ϕ1(v) = ϕ1(λ1v1 + . . .+ λnvn)

= λ1ϕ1(v1) + . . .+ λnϕ1(vn)

= λ1ϕ2(v1) + . . .+ λnϕ2(vn)

= ϕ2(λ1v1 + . . .+ λnvn)

= ϕ2(v)

as required.

(ii) Once again, consider any v = λ1v1 + . . .+ λnvn ∈ V . We must simply define a value for ϕ(v)
so that ϕ is linear and has the specified values on the basis elements vi. Thus we define

ϕ(v) = λ1u1 + . . .+ λnun ∈W

It is immediate that ϕ(vi) = ui for i = 1, . . . , n, and ϕ is linear since if w = µ1v1 + . . . + µnvn
and α, β ∈ R are scalars, then by collecting coefficients of the vi together we have

ϕ(αv + βw) = ϕ(α(λ1v1 + . . .+ λnvn) + β(µ1v1 + . . . , µnvn))

= ϕ((αλ1 + βµ1)v1 + . . .+ (αλn + βµn)vn)

= (αλ1 + βµ1)u1 + . . .+ (αλn + βµn)un

= α(λ1u1 + . . .+ λnun) + β(µ1u1 + . . .+ µnun)

= αϕ(v) + βϕ(w)

as required. The uniqueness of ϕ follows from part (i).

So from now on, if you wish to define a linear map, you can simply choose a basis of the domain and
specify any images in the codomain you would like those basis elements to have, and voilà there is a
unique linear map that does just that.
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Language 5.18

When we define a linear map ϕ by specifying the images of a basis v1, . . . , vn of V and applying
Proposition 5.17(ii), in the jargon we say that ϕ is a linear map defined on the basis v1, . . . , vn.
To know which linear map we have just defined on the basis, we must also specify the image
elements u1, . . . , un ∈W .

Remark

In fact, there was no need to require that V is finite dimensional in Proposition 5.17: the issue
is the existence of a basis B of V , not its size. In general, even if V has an infinite basis B,
any elements v, w ∈ V that you use involve only finitely many elements of B, and so the same
proof works. We won’t need this, but it is good to know the key point with no caveats: any
choice of images of a basis uniquely determines a linear map.

If in addition to a fixed chosen basis v1, . . . , vn of V we fix a basis w1, . . . , wm of W , then the
images ϕ(vi) ∈ W may be expressed in this basis of W . The key point is that we may assemble the
coefficients of those expressions into a matrix, or conversely read them from a matrix. Thus we will
see that matrices (of suitable size) and linear maps determine one another uniquely, as long as we
have fixed a basis of V and fixed a basis of W .

Notice how a matrix A ∈ Matmn is being used in two slightly different ways. In §5.3 the matrix A
determined a map Rn → Rm simply by multiplication (5.1). We use A next to define a map V →W
between two vector spaces of dimensions n and m respectively. Essentially this is the same map, but we
need to be careful to distinguish them as we do our first analysis. We only work with finite-dimensional
vector spaces from now on, because the matrices we use have finite size.

Proposition 5.19

Let V be a vector space with basis v1, . . . , vn and W be a vector space with basis w1, . . . , wm.
If A = (aij) ∈ Matmn is a matrix, then there is a linear map ϕA defined on the basis of V by

ϕA : V −→ W

vi 7→ a1iw1 + . . .+ amiwm

where the coefficients of ϕA(vi) with respect to the basis of W are the ith column of A.

Proof. There is nothing to prove. We have stated where we want the basis elements to map to,
and therefore the linear map exists by Proposition 5.17(ii).

Language 5.20

Fixing a basis of one or more vector spaces is an essential part of all of the calculations we are
discussing, and so not surprisingly there are many different ways of saying that the basis has
been fixed. We refer synonymously to a chosen basis or a given basis or a specified basis to
indicate that we are working with a fixed basis.
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Definition 5.21

This map is called the linear map of A with respect to the given bases of V and W . It
depends on the two given bases, v1, . . . , vn in the domain V and w1, . . . , wm in the codomain W ,
and it is not defined without explicit reference to them both.

The reason to be so insistent on saying given bases, is that if you choose different bases, either
in V or in W or in both, then the map ϕA will most likely be a very different map. This point
is so important that ϕA should probably have some complicated notation such as

ϕA;v1,...,vn;w1,...,wm

but you can see why I don’t do that. We just have to be very very careful that we all agree
which bases are in play at the time.

Example

If V = Rn and W = Rm, and if we choose the standard basis e1, . . . , en ∈ V and the (unusually
named) standard basis e′1, . . . , e

′
m ∈W , then ϕA = LA is just the map we studied in §5.3.

Indeed, by Proposition 5.17(i) it is enough to check that they agree on a basis, and

ϕA(ei) = a1ie
′
1 + . . .+ amie

′
m =

a1i
...
ami

 = Aei = LA(ei)

are both simply the ith column of A.

Remark

It is worth taking time to pick apart the relationship between the matrix A and the map ϕA.
In the notation of Proposition 5.19, if v = λ1v1 + . . .+ λnvn, then

ϕA(v) = µ1w1 + . . .+ µmwm

where the coefficients µj of the image are defined byµ1
...
µm

 = A

λ1...
λn


To see this, it is helpful to write out A fully (and when you write out particular examples for
yourself, you may find it clearer to consider a matrix that is not square, say 2× 3):

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn


Expanding out ϕA(v) = λ1ϕA(v1) + . . . + λnϕA(vn) using the definition of each ϕA(vi), we
see, for example, that the coefficient of w1 is

µ1 = a11λ1 + a12λ2 + . . .+ a1nλn
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where the coefficients aij of the λj are the entries of the 1st row of A.

With that established, the key is now to observe that the ith column of A comprises the
coefficients of the image ϕ(vi) of the ith element vi of the basis of V when expressed in the
basis w1, . . . , wm of W . With that view, we could imagine writing formally

ϕA

v1...
vn

 = AT

w1
...
wm

 where AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

a1n a2n · · · anm


meaning just that

ϕA(v1) = a11w1 + a21w2 + . . .+ am1wm (5.2)

and similarly for ϕA(v2), . . . , ϕA(vn).

In a sense, whether you use A or AT is a delicate matter, but of course it is not at all, since
one of the vectors has length n while the other has length m, so only one expression makes
sense. However, when you use this machine, it may happen that A is square, so this syntactic
assistance is missing and you need to be in total control of the coefficients.

Now the key result. It says that every linear map is of the form ϕA for any given choice of basis in
domain and codomain, and the proof is simply to observe that a formula of the shape of (5.2) must
hold for basis elements, and that that determines both the map on any element and also the matrix A.

Theorem 5.22

Let V be a vector space with basis v1, . . . , vn and W be a vector space with basis w1, . . . , wm.
If ϕ : V → W is a linear map, then there is a matrix A ∈ Matmn so that ϕ = ϕA is the linear
map of A with respect to these specified bases.

Definition 5.23

The matrix A in Theorem 5.22 is called the matrix of the linear map ϕ with respect to the
given bases of V and W , and we say that ϕ is represented by the matrix A with respect
to the given bases.

The matrix A of ϕ depends on the two specified bases and it is not defined without explicit
reference to them both. (Sounds repetitive? It is worth repeating.)

Proof. Define the entries aij of a matrix by expressing ϕ(vi) in the basis w1, . . . , wm:

ϕ(v1) = a11w1 + a21w2 + . . .+ am1wm

ϕ(v2) = a12w1 + a22w2 + . . .+ am2wm
...

ϕ(vn) = a1nw1 + a2nw2 + . . .+ amnwm

If we set A = (aij) ∈ Matmn, then ϕ(vi) = ϕA(vi), using the defining formula of ϕA(vi) from
Proposition 5.19. Therefore ϕ = ϕA, as claimed.
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Commutative squares

There is an extremely convenient technology that handles a lot of the bureaucracy of the kind of
results we have been proving. We can package up the previous statement into a statement about
equality of compositions of maps, as follows.

Definition 5.24

A commutative square is a collection of four vector spaces and four linear maps

U1 U2

V1 V2

ϕ1

χ1 χ2

ϕ2

so that χ2 ◦ ϕ1 = ϕ2 ◦ χ1.

That is, a commutative square records two different compositions U1 → U2 → V2 and U1 → V1 → V2
that give the same linear map U1 → V2.

We can package up all the results of this section in the following elegant corollary. It gives a nice
point of view of the situation: the thing we are interested in is the map ϕ : V →W , but to calculate
anything we choose bases in V and W and present ϕ in coordinates as LA : Rn → Rm. In this view,
LA is a kind of computable model of ϕ, and the (invertible) coordinate maps χB and χB′ translate
between the two.

Corollary 5.25

Let V be a vector space with basis B = {v1, . . . , vn} and W be a vector space with basis
B′ = {w1, . . . , wm}. If ϕ : V → W is a linear map, then ϕ = ϕA for some matrix A ∈ Matmn
and there is a commutative square of linear maps

V W

Rn Rm

ϕA

χB χB′

LA

Proof. The maps are all defined: ϕA is in Proposition 5.19, LA in (5.1) in §5.3, and χB and χB′

in Proposition 4.27. The claim is simply that χB′ ◦ ϕA = LA ◦ χB.

Let v = λ1v1 + . . .+ λnvn ∈ V . On the one hand,

χB(v) =

λ1...
λn

 and so LA(χB(v)) = A

λ1...
λn


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On the other hand,
ϕA(v) = µ1w1 + . . .+ µmwm

where the coefficients µj of the image are defined byµ1
...
µm

 = A

λ1...
λn

 and so χB′(ϕA(v)) =

µ1
...
µm

 = A

λ1...
λn


These two are equal, as claimed.

The real benefit of this book-keeping tool is that it packages up the proofs of many statements that
would be fiddly or repetitive to expand out in coordinates. For example, this association between a
linear map and a matrix is natural with respect to composition.

Corollary 5.26

Let ψ : U → V and ϕ : V → W be linear maps between vector spaces. Let B be a basis of U ,
B′ a basis of V , and B′′ a basis of W of sizes `, n,m respectively.

Suppose ψ is represented by a matrix A ∈ Matn` with respect to these bases and ϕ is represented
by A′ ∈ Matmn. Then there is a commutative square

U W

R` Rm

ϕ ◦ ψ

χB χB′′

LA′ ◦ LA = LA′A

That is, the composition ϕ ◦ψ is represented by the product A′A ∈ Matm` with respect to the
bases B of U and B′′ of W .

There is nothing to prove. The point is that you can glue commutative squares together whenever
they have a map in common, and then you can walk around the resulting diagram following the arrows
in any way you like and you always get the same answer. More precisely, it is immediate that if

U1 U2

V1 V2

ϕ1

χ1 χ2

ϕ2

U2 U3

V2 V3

ϕ3

χ2 χ3

ϕ4

are two commutative squares (with the visible coincidence χ2 : U2 → V2) then
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U1 U3

V1 V3

ϕ3 ◦ ϕ1

χ1 χ3

ϕ4 ◦ ϕ2

is also a commutative square.

5.5 The Rank–Nullity Formula

There are two basic counting theorems of linear algebra: the Rank–Nullity Formula and the Dimension
Formula. Their value throughout mathematics is impossible to overstate: they are used absolutely
everywhere to count the number of parameters in a problem (that is, the dimensions of subspaces).

Definition 5.27

Let ϕ : V → W be a linear map. The rank of ϕ is rkϕ = dim Imϕ. The nullity of ϕ is
nullityϕ = dim kerϕ.

Theorem 5.28 (Rank–Nullity formula)

Let ϕ : V →W be a linear map, and suppose that V is finite dimensional. Then

dim Imϕ+ dim kerϕ = dimV

The theorem gets its name, because this equation is rkϕ+ nullityϕ = dimV .

As this is so important, we give multiple proofs – though you might regard them as the same idea
cast into the various different languages we have developed for speaking about the solutions of linear
equations.

The first version is the vanilla one that only uses the technology of bases. You should think of it as
easy: adjoin a basis of the kernel to a set that maps bijectively to a basis of the image, and prove
that this is a basis of V . The work is all in the last clause, and it is easy once you are well practiced.

Proof. Both kerϕ ⊂ V and Imϕ ⊂W are finite dimensional because V is. Pick bases u1, . . . , us
of kerϕ and w1, . . . , wr of Imϕ. Since each wi lies in the image, there are v1, . . . , vr ∈ V which
satisfy ϕ(vi) = wi for i = 1, . . . , r.

We claim that B = {u1, . . . , us, v1, . . . , vr} is a basis of V . This will complete the proof since
s = dim kerϕ and r = dim Imϕ. (It is now quicker to do this yourself than to read the rest.)

To show that B spans V , consider any v ∈ V . Set w = ϕ(v) ∈ Imϕ. Since w1, . . . , wr is a basis
of Imϕ, there exist scalars µ1, . . . , µr so that

w = µ1w1 + . . .+ µrwr

The key is to note that v′ = µ1v1 + . . . + µrvr (using vi in place of wi) also maps to w, by the
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linearity of ϕ:

ϕ(v − v′) = ϕ(v)− µ1ϕ(v1)− . . .− µrϕ(vr)

= w − µ1w1 − . . .− µrwr
= 0W

so that v − v′ ∈ kerϕ. Therefore there exist scalars λ1, . . . , λs so that

v − v′ = λ1u1 + . . .+ λsus

Rearranging that gives v = λ1u1 + . . .+ λsus + µ1v1 + . . .+ µrvr so that v ∈ 〈B〉, as required.

To show that B is linearly independent, suppose there are scalars λi, µj such that

λ1u1 + . . .+ λsus + µ1v1 + . . .+ µrvr = 0V (5.3)

Applying ϕ, and noting that ϕ(ui) = 0W and ϕ(vj) = wj , we have

0W + µ1w1 + . . .+ µrwr = 0W

Since w1, . . . , wr are linearly independent, being a basis of Imϕ, we have µ1 = . . . = µr = 0.
Equation (5.3) now reads

λ1u1 + . . .+ λsus = 0V

Since u1, . . . , ur are linearly independent, being a basis of kerϕ, we have λ1 = . . . = λs = 0. So
all coefficients of (5.3) are necessarily zero, and so B is linearly independent.

Example

Consider LA : R3 → R2 where A is the matrix

A =

(
2 −3 5
−4 6 −10

)
Then

ImLA = ColspanA =

〈(
1
−2

)〉
has rkLA = dim ImLA = 1

and

kerLA =


3s− 5t

2s
2t

 ∣∣∣∣∣∣ s, t ∈ R

 has nullityLA = dim kerLA = 2

and indeed
rkLA + nullityLA = 1 + 2 = 3 = dimR3

The map LA squishes the whole of the 3-dimensional R3 down to a 1-dimensional line, and to
do so it must pay the price of killing the 2-dimensional kernel.

The Smith normal form S of A, which is computed as S = EAF for invertible matrices E
and F , is simply (

1 0 0
0 0 0

)
It is almost instant to calculate that

dim ImLS = dim

〈(
1
0

)〉
= 1 and dim kerLS = dim

〈0
1
0

 ,

0
0
1

〉 = 2
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and since the maps LE and LF provide isomorphisms between ImLA and ImLS , and kerLS
and kerLA, respectively, we could have used this calculation in place of the harder one using A.

The second proof of the Rank–Nullity Theorem is more elementary, in that it translates the problem
into what we know about matrices as hinted in the example above.

Proof. Let n = dimV and m = dimW . Pick bases for V and W , and consider the matrix
A ∈ Matmn that represents ϕ with respect to them. Compute the Smith normal form EAF of A,
where E ∈ Matmm and F ∈ Matnn are invertible matrices. Let r be the rank of the Smith normal
form. Then by Proposition 5.14(iii)

rkϕ = dim ImLA = dim ImLEAF = r

and
nullityϕ = dim kerLA = dim kerLEAF = n− r

and the result follows since r + (n− r) = n.

Some more examples.

Example

Let U =
{

(x, y, z)T ∈ R3
∣∣ 5x+ 3y − 7z = 0

}
. What is dimU? Until now, our method for

tackling this would probably have been to find a basis for U . That’s fine, but watch this instead.

We may use the equation that defines U to define a linear map:

ϕ : V → W where V = R3 and W = Rxy
z

 7→ 5x+ 3y − 7z

that is, ϕ = LA for the matrix A =
(
5 3 −7

)
. You notice at once that U = kerϕ.

The key is that it is easier to calculate Imϕ (or even just dim Imϕ) than kerϕ here. For
example, ColspanA = 〈1〉 = W , using the RCEF (1 0 0) of A, say. (Or, if you prefer, we
could observe that ϕ(e1) = 5, and 5 is a basis of W , albeit an unusual one, so again we see
Imϕ = W . Or you could say that Imϕ is a subspace of W , and since dimW = 1 it is either
{0W } or W , and it’s clearly not the former since you easily find a vector with nonzero image.)

In any case, a moment’s thought tells you that dim Imϕ = 1, and so by the rank–nullity formula

dimU = dim kerϕ = dimV − dim Imϕ = 3− 1 = 2

Of course you could have used the RREF of A to observe that the solution set of 5x+3y−7z = 0
has two parameters, λ, µ ∈ R, and that a general solution (clearing denominators) is (x, y, z)T =
(−3λ + 7µ, 5λ, 5µ)T . With that we quickly obtain a linearly independent pair (−3, 5, 0)T and
(7, 0, 5)T , so that dimU ≥ 2. Of course U 6= R3 (just find any (x, y, z)T that does not
satisfy the equation), so dimU < dimR3 = 3 by Proposition 4.20, and so we have proved that
dimU = 2, and moreover we have constructed a basis of U . But that feels like more work.
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Example

What is the dimension of U = {f ∈ R[x]≤100 | f(3) = 0 and df/dx(3) = 0}? Once again, we
do not immediately know a basis of U , but we can understand U as the kernel of a linear map
and apply the rank–nullity formula.

Let V = R[x]≤100. Of course dimV = 101, since we know a basis 1, x, . . . , x100. Consider the
linear map

ϕ : V → W where W = R2

f 7→
(

f(3)
df/dx(3)

)
This is rigged up so that U = kerϕ.

Clearly ϕ is surjective: for example, ϕ(1) =

(
1
0

)
and ϕ(x) =

(
3
1

)
form a basis of W . Therefore

dimU = dim kerϕ = dimV − dim Imϕ = 101− 2 = 99

That’s great: question answered. But what’s more is that, now that we know this dimension, it
is much easier to compute a basis of U if we need it: by the Sifting Lemma 4.15 or Corollary 4.22
we just need to find 99 linearly independent elements and do not need to check that they span.
Clearly f = (x− 3)2 lies in U , so the linearly independent set B =

{
xif

∣∣ i = 0, . . . , 98
}
⊂ U

is a basis of U . (Now try to imagine proving that B spans U without using rank–nullity.)

Once you appreciate this example, you see that more generally conditions on a vector space of
(suitably differentiable) functions f : R→ R such as

di

dxi
f(p) = 0 for some i ≥ 0 and some (fixed!) p ∈ R

are linear, and so imposing them tends to reduce the dimension of the space of functions by 1.
The only issue is that if you impose several such conditions you need to know that they are
linearly independent: in our example, that is equivalent to the surjectivity of ϕ. You should add
this idea to your set of ninja tools.

As a final thought, this gives you some intuition why (homogeneous) differential equations are
so powerful and so hard to solve: they impose conditions like that at every point p ∈ R: that
is, they impose uncountably many linear conditions!

5.6 The Dimension Formula and Complements

We could have done this sooner: the moment we learned we could extend a linearly independent set
to a basis, we owned this.

Theorem 5.29 (Dimension Formula)

Let U1, U2 ⊂ V be two finite-dimensional subspaces of a vector space V . Then

dimU1 + dimU2 = dim(U1 + U2) + dim(U1 ∩ U2).
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Proof. Let W = U1 ∩ U2, which is a finite-dimensional subspace of V . Pick a basis BW =
{w1, . . . wt} of W .

Since W ⊂ U1, by Corollary 4.16 we may extend BW to a basis {w1, . . . wt, u1, . . . , us} of U1.
Similarly, since W ⊂ U2, we may extend BW to a basis {w1, . . . wt, v1, . . . , vr} of U2.

We claim that B = {u1, . . . , us, v1, . . . , vr, w1, . . . , wt} is a basis of the span U1 + U2. This will
complete the proof since

s+ t = dimU1 r + t = dimU2 t = dimU1 ∩ U2 and r + s+ t = dimU1 + U2

(It is now quicker to do this yourself than to read the rest.)

It is immediate that B spans: any element of U1 + U2 is of the form p1 + p2 with pi ∈ Ui, and
each of these pi may be written as a linear combination of B.

To show B is linearly independent, suppose there are scalars λi, µj , νk such that

λ1u1 + . . .+ λsus + µ1v1 + . . .+ µrvr + ν1w1 + . . . νtwt = 0V (5.4)

Rearranging this determines an element p ∈ V defined by

p = λ1u1 + . . .+ λsus + ν1w1 + . . .+ νtwt = −(µ1v1 + . . .+ µrvr)

which the two equal expressions show lies in both U1 and U2. Thus p ∈ U1 ∩U2, and so there are
scalars τi so that

p = τ1w1 + . . .+ τtwt

Thus, subtracting two of the expressions for p, we have

λ1u1 + . . .+ λsus + (ν1 − τ1)w1 + . . .+ (νt − τt)wt = 0V

In particular, since the ui, wk form a basis of U1 all the λi = 0. Now since the vj , wk form a basis
of U2, the equation (5.4) with all λi = 0 shows that all µj = 0 and all νk = 0, as required.

Example

Let V = R4 and consider two subspaces U1 = 〈u1, u2, u3〉, where

u1 =


0
1
2
3

 , u2 =


−2
0
5
−3

 , u3 =


6
1
−4
3


which are clearly linearly independent, and U2 = 〈e1, e2〉, the span of the first two standard
basis elements.

It is quickly clear that U1 + U2 = V : for example e3 is u2 + u3 minus suitable multiples of
e1 and e2, and then it is easy to write e4 as a combination of u1, e2, e3. Therefore by the
Dimension Formula

dimU1 ∩ U2 = 3 + 2− 4 = 1

which is not immediately clear from the given vectors.

The idea of a complementary subspace to a given subspace, or complement, is natural, and gives
another point of view on the proof of the rank–nullity formula.
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Definition 5.30

Let V be a vector space and U ⊂ V a subspace. Then a subspace U ′ ⊂ V is called a
complement to U if and only if V = U + U ′ and U ∩ U ′ = {0V }.

Example

For example, the y-z plane is a complement to the x-axis in R3.

The following dimension count is immediate from the Dimension Formula 5.29 since dim{0V } = 0.

Corollary 5.31

If U ′ is a complement to U ⊂ V , then dimV = dimU + dimU ′.

Remark

In this case, people sometimes write V = U ⊕ U ′ and refer to it as an internal direct sum to
distinguish it from the direct sum of Definition 4.23. This is a slightly stronger notion: since
both U and U ′ lie inside V , the vector space V is equal to this sum, not merely isomorphic to
it, and any v ∈ V may be written as v = u + u′ for unique u ∈ U and u′ ∈ U ′. This is not
worth any fuss. Of course the two notions of U ⊕ U ′ are isomorphic to each other in any case.

Lemma 5.32

If U ′ is a complement to U ⊂ V , then for every v ∈ V there exist unique u ∈ U and u′ ∈ U ′
so that v = u+ u′.

Proof. There is such an expression since V = U +U ′. If v = u2 + u′2 with u2 ∈ U and u′2 ∈ U ′ is
another, then subtracting the two expressions gives

U 3 u− u2 = u′2 − u′ ∈ U ′

so u− u2 = u′2 − u′ = 0V , as U ∩ U ′ = {0V }, and the two expressions are the same.

Lemma 5.33

Let V be a finite-dimensional vector space and U ⊂ V a subspace. Then there exists a
complement U ′ ⊂ V to U .

Proof. Let u1, . . . , us be a basis of U . By Corollary 4.16, there are elements v1, . . . , vr of V so
that u1, . . . , us, v1, . . . , vr is a basis of V . Let U ′ = 〈v1, . . . , vr〉.

Clearly U + U ′ = V . If w ∈ U ∩ U ′, then

w = λ1u1 + . . .+ λsus and w = µ1v1 + . . .+ µrvr
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for scalars λi, µj . Subtracting these two expressions gives

λ1u1 + . . .+ λsus − µ1v1 − . . .− µrvr = 0V

so by linear independence all the coefficients are zero, and so w = 0V . Thus U ∩ U ′ = {0V } and
U ′ is a complement to U .

The third proof of the Rank–Nullity Theorem uses complements.

Proof. Since V is finite dimensional, so is U = kerϕ ⊂ V by Proposition 4.20 Let U ′ ⊂ V be a
complement to U . Define the (evidently linear) map

ψ : U ′ → Imϕ

u 7→ ϕ(u)

which is simply the restriction of the map ϕ to U ′.

We claim that ψ is an isomorphism U ′ → Imϕ. This will complete the proof since then by
Corollary 5.31 and Corollary 5.8

dimV = dimU + dimU ′ = dim kerϕ+ dim Imϕ

Firstly, ψ is injective since ψ(u) = 0W for u ∈ U ′ only if also u ∈ kerϕ; but U ′ ∩ kerϕ = {0V },
since U ′ is a complement to kerϕ, and so we have: ψ(u) = 0W if and only if u = 0V , as required.

It remains to show that ψ is surjective. Suppose w ∈ Imϕ. Then there is v ∈ V so that ϕ(v) = w.
Write v = u+ u′ with u ∈ U and u′ ∈ U ′. Then computing the image of u′ = v − u gives

ψ(u′) = ϕ(v − u) = ϕ(v)− ϕ(u) = w − 0V = w

so w ∈ Imψ, as required.

5.7 Change of basis and equivalent matrices

Recall the change of basis calculation of §3.4. The situation is this. We have an n-dimensional vector
space V . Any choice of basis A = {v1, . . . , vn} of V expresses any element v ∈ V as a unique linear
combination

v = λ1v1 + . . .+ λnvn

and by presenting the coefficients λi as a column vector we describe an isomorphism

χA : V → Rn

v = λ1v1 + . . .+ λnvn 7→

λ1...
λn


and which we call writing v in coordinates with respect to the basis v1, . . . , vn.

Remark

We may even turn this around. If you have an isomorphism χ : V → Rn, then you automatically
know a basis of V , viz. the preimage of the standard basis, A =

{
χ−1(e1), . . . , χ

−1(en)
}

.

In other words, whether somebody gives you a basis of V or they give you an isomorphism of
V with Rn are two sides of the same coin: they are exactly equivalent data.
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Note again that one of the features of Rn as a vector space is that is has a favoured basis,
namely the standard basis e1, . . . , en. For other vector spaces, you may need to do a lot of work
to find a basis at all, let alone one that is so natural that everyone would agree it’s the best.

The issue described in §3.4 is that if A′ is a different basis of V , then we have a different isomorphism
χA′ : V → Rn, and we may need to know how to translate between these two: if you know the column
vector χA(v), what is the column vector χA′(v)?

This is resolved by a straightforward procedure that you can simply learn: if

χA(v) =

λ1...
λn

 and χA′(v) =

µ1...
µn


then µ1...

µn

 = Q−1

λ1...
λn


where Q is the (invertible) matrix whose columns are the coefficients of the elements of A′ when
expressed in the basis A. We may express this idea using maps as χA′ = LQ−1 ◦ χA or, flipping LQ
to the other side, LQ ◦ χA′ = χA, and we may visualise this in either of the following diagrams

V

Rn Rn

χA χA′

LQ−1

or flipping it over

V

Rn Rn

χA′ χA

LQ

It may seem ridiculous, but using the identity map idV : V → V , we may express this as a commutative
square:

V V

Rn Rn

idV

χA χA′

LQ−1

or flipping it over

V V

Rn Rn

idV

χA′ χA

LQ

Now suppose we have a map ϕ : V →W and also two bases B and B′ of W : these two bases have a
change of basis matrix P that translates between the two coordinate maps by

W W

Rm Rm

idW

χB χB′

LP−1

Suppose that ϕ = ϕA for some A ∈ Matmn with respect to the bases A and B. In other words, we
have a commutative square
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V W

Rn Rm

ϕA

χA χB

LA

The question is, which matrix represents ϕ with respect to the bases A′ and B′? We may glue the
commutative squares above into one big diagram

V V W W

Rn Rn Rm Rm

ϕA

LA

idV

χA′ χA

LQ

idV

χB χB′

LP−1

Reading around the edge we see a commutative square

V W

Rn Rm

ϕA

χA′ χB′

LB

where the bottom map LB is represented by the matrix B ∈ Matmn that we seek. But of course by
reading the bottom line of the 3 squares we see that LB = LP−1 ◦LA ◦LQ = LP−1AQ so that so the
matrix is B = P−1AQ ∈ Matmn.

The crucial thing to remember is the formula we have just derived, and which we summarise as follows.

Theorem 5.34 (Change of basis formula for linear maps)

Suppose ϕ : V → W is a linear map between finite-dimensional vector spaces. Suppose we
have:

(i) bases A = {v1, . . . , vn} of V and B = {w1, . . . , wm} of W , so that with respect to these
bases ϕ = ϕA is represented by a matrix A ∈ Matmn.

(ii) an alternative basis A′ = {v′1, . . . , v′n} of V with change of basis matrix Q for which
χA = LQ ◦ χA′ .

(iii) an alternative basis B′ = {w′1, . . . , w′m} of W with change of basis matrix P for which
χB = LP ◦ χB′ .

Then with respect to the bases A′ of V and B′ of W , the map ϕ is represented by the matrix
B = P−1AQ.

This motivates the following definition.
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Definition 5.35

Two matrices A,B ∈ Matmn are called equivalent if and only if there exist invertible matrices
P ∈ Matmm and Q ∈ Matnn so that B = P−1AQ.

This is of course an equivalence relation on the set Matmn of all m× n matrices.

Example

Did you ever use the notation i, j, k for three elements of a basis A of V = R3? Let’s do it.
While we’re at it, let’s double up and use i, j for the elements of a basis B of W = R2. That
is, elements of V are quantities of the form ai+ bj + ck, and analogously for W .

Consider the linear map ϕ : V →W given by

ai+ bj + ck 7→ (a+ 2c)i+ (2a+ 3b+ c)j

The coordinate maps with respect to these bases are

χA(ai+ bj + ck) =

ab
c

 and χB(di+ ej) =

(
d
e

)

and the map ϕ has coefficients from the matrix

A =

(
1 0 2
2 3 1

)
Thus all together we have the commutative square

V W

R3 R2

ϕA

χA χB

LB

For a moment, just think about how you would calculate the Smith normal form of A. You
might start by subtracting twice the top row from the bottom, and then scaling the bottom row
by 1/3: that is, premultiply A by E = E2E1(

1 0
−2

3
1
3

)(
1 0 2
2 3 1

)
=

(
1 0
0 1

3

)(
1 0
−2 1

)(
1 0 2
2 3 1

)
=

(
1 0 2
0 1 −1

)
Then you might subtract twice the first column from the third and add the second to the third:
that is, postmultiply the matrix above by F = F1F2(

1 0 2
0 1 −1

)1 0 −2
0 1 1
0 0 1

 =

(
1 0 2
0 1 −1

)1 0 −2
0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

 =

(
1 0 0
0 1 0

)

The result is the Smith normal form S = EAF . We can picture those compositions in coordi-
nates on the bottom line of the picture above:
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V W

R3 R2R3 R2

ϕA

χA χB

LBLF LE

Now since χA and LF are isomorphisms (and similarly χB and LE) we may include another
isomorphism χ1 = LF−1 ◦ χA (and similarly χ2 = LE ◦ χB) in the picture

V W

R3 R2R3 R2

χ1 χ2

ϕA

χA χB

LBLF LE

or if you prefer your triangles to be square

V W

R3 R2R3 R2

V W
idV idW

χ1 χ2

ϕA

χA χB

LBLF LE

Of course χ1 and χ2 are the coordinate maps of some basis. Let’s work those out.

Let e1, . . . , e3 be the standard basis of R3. We compute its preimages under χ1, that is

χ−1A ◦ LF (e1) = i

χ−1A ◦ LF (e2) = j

χ−1A ◦ LF (e3) = −2i+ j + k ∈ V

and similarly for the standard basis of R2, whose preimages under χ2 are

i+ 2j and 3j ∈W using E−1 =

(
1 0
2 3

)

Now rewriting exactly the same map ϕ = idW ◦ϕ ◦ idV : V → W with respect to these two
bases gives

λ1i+ λ2j + λ3(−2i+ j + k) = (λ1 − 2λ3)i+ (λ2 + λ3)j + λ3k

7→ ((λ1 − 2λ3) + 2λ3)i+ (2(λ1 − 2λ3) + 3(λ2 + λ3) + λ3)k

= λ1i+ (2λ1 + 3λ2)j

= λ1(i+ 2j) + λ2(3j)

which, reading in one go (with respect to the two new bases) as

λ1i+ λ2j + λ3(−2i+ j + k) 7→ λ1(i+ 2j) + λ2(3j)

118



is the map in coordinates λ1λ2
λ3

 7→ (
λ1
λ2

)
that corresponds to the matrix (

1 0 0
0 1 0

)
Ta dah! The conceptually simple Smith normal form calculation that you are good at is in fact
computing smarter bases in which to present the linear map as a matrix.

We can express some of what we know about equivalence of matrices and row-and-column reduction
in a rather gratuitous way. Write A ∼ B for matrices A,B ∈ Matmn if and only if A is equivalent
to B.

Proposition 5.36

Equivalence of matrices A ∼ B is an equivalence relation on Matmn. Moreover, in each
equivalence class there is a unique matrix in Smith normal form.

Remark

It is absolutely brilliant that any linear map may be represented by a matrix. It is not a surprise
that if we choose a different basis in the domain or codomain or both, then we get a different
matrix. At first sight, we may regard this as a fiddly problem. But we derive more profit by
thinking of it the other way round: this opens up the possibility that we may choose bases in
domain and codomain so that the matrix is particularly useful or elegant or satisfies whatever
property we like.

This is the fundamental question when representing maps by matrices: can you choose bases
cleverly so that the matrix better suits your calculation. The Smith normal form is the first result
of this type: for any matrix A we may choose invertible matrices E and F so that S = EAF
is in Smith normal form, and we regard Q = F and P = E−1 as the change of basis matrices.

5.8 The vector space Hom(U, V )

We close this chapter by considering the set of all maps U → V for fixed finite-dimensional vector
spaces U and V . There is essentially nothing new here, except the language. This set is denoted

Hom(U, V ) = {ϕ : U → V | ϕ is a linear map}

In fact, this set is a vector space in its own right, as follows. For ϕ,ψ ∈ Hom(U, V ) and α ∈ R, we
have linear maps ϕ+ ψ and αϕ defined in the usual way: for any v ∈ V we have

(ϕ+ ψ)(u) = ϕ(u) + ψ(u)

(αϕ)(u) = αϕ(u)

It is easy to check that these are both linear maps. The zero map v 7→ 0V for all u ∈ U is the additive
identity, and so the additive inverse −ϕ is defined as you would expect: (−ϕ)(u) = −ϕ(u).
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Theorem 5.37

If U and V are vector spaces, then Hom(U, V ) is a vector space under the natural operations.

If furthermore dimU = n and dimV = m, then for any choice of bases of U and V there is
an isomorphism of vector spaces

Hom(U, V ) → Matmn

ϕ 7→ A where ϕ = ϕA

that is, where A is the matrix that represents ϕ with respect to the two chosen bases.

In particular, dim Hom(U, V ) = mn.

Proof. It is routine to check that Hom(U, V ) is a vector space, and we omit it.

The map ϕ 7→ A, where A Is the matrix that represents ϕ with respect to the given choice of
bases, is certainly a well-defined bijection. We must check that it is a linear map. Suppose ϕ is
represented by a matrix A and ψ is represented by B. Then writing u ∈ U in coordinates as λ

(ϕ+ ψ)(u) = ϕ(u) + ψ(u) = Aλ+Bλ = (A+B)λ

and
(αϕ)(u) = αϕ(u) = αAλ = (αA)λ

so the map is linear as required, and is therefore an isomorphism.

This isomorphism means that dim Hom(U, V ) = dim Matmn. There is a further isomorphism

Matmn → Rmn

A = (aij) 7→ v

where v = (a11, a21, . . . , am1, a12, . . . , am2, a13, . . . , amn) is the column vector of all m×n entries
of A. This map clearly respects addition and scalar multiplication, since these operations are done
componentwise in both Matmn and Rmn, and it is a bijection simply because the entries aij of the
matrix may be any scalars.

Remark

We essentially knew all of this apart from the language of Hom, and in fact we know a lot more.
For example, given three vector spaces U , V and W , we may compose maps to give

Hom(U, V )×Hom(V,W ) → Hom(U,W )

(ϕ,ψ) 7→ ψ ◦ ϕ

We already checked that if ϕ = ϕA and ψ = ψB with respect to bases B,B′,B′′ of U ∼= R`,
V ∼= Rn and W ∼= Rm respectively, then ψ ◦ ϕ is represented by the product matrix BA, and
the map of Hom spaces agrees with

Matn`×Matmn → Matm`

(A,B) 7→ BA

after we represent each map by a matrix with respect to the given bases.
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It is worth saying a word about what “agrees with” actually means. It is saying precisely that
the diagram of maps

Hom(U, V )×Hom(V,W ) Hom(U,W )

Matn`×Matmn Matm`

composition

(ϕA, ϕB) 7→ ϕB ◦ ϕA

∼= ∼=

product

(A,B) 7→ BA

is a commutative diagram, where the downward maps are the natural ‘writing in coordinates’
maps (ϕA, ϕB) 7→ (A,B) and ϕC 7→ C which take linear maps to the bases that represent
them with respect to the chosen bases.
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Chapter 6

Euclidean structures on vector spaces

In Rn we have the familiar dot product that we have been referring to as the scalar product. It
is not part of the definition of vector space, but is an additional tool that is pretty much essential
for most applications and that we treat as an integrated part of Rn. Indeed we can’t help thinking
of the standard basis e1, . . . , en as consisting of vectors of length 1 that are mutually orthogonal to
one another (that is, at right angles to one another), whether we mentioned that we are using dot
product to say all that or not. Such bases are called orthonormal, and there are lots of advantages
to working with them rather than other bases.

The first thing we do is to prove that orthonormal bases exist. This is the famous Gram–Schmidt
orthogonalisation process. As a corollary, it gives us a method of calculating orthogonal complements
to subspaces.

A general n-dimensional vector space V has no natural given scalar product. We use the properties
listed in Proposition 1.9 to define the kind of gadget it should be, and then go on to show that these
so-called inner products or Euclidean forms exist on any V . They are intimately related to the
usual scalar product when we represent elements of V as column vectors with respect to a basis.

Curiously, we gain a lot of insight into the general case already in the case V = Rn. It turns out
that there are many functions that could serve as a scalar product, and they give different notions of
length and angle than our Euclidean geometry eyes are used to.

6.1 Gram–Schmidt orthogonalisation in Rn

We start by working in the vector space V = Rn equipped with the usual dot product v ·w. The key
new notion is orthonormal basis; compare Definition 1.18 and recall the Kronecker delta δij .

Definition 6.1

A set of vectors v1, . . . , vs ∈ Rn is orthonormal if and only vi ·vj = δij for each i, j = 1, . . . , s.

An orthonormal basis is a basis v1, . . . , vn of V that is orthonormal.

The key theoretical bonus of orthonormality is this: suppose v1, . . . , vs are orthonormal and consider

v = λ1v1 + . . .+ λsvs

Then since v1 · v1 = 1 and v1 · vi = 0 for i ≥ 2, we have

v1 · v = v1 · (λ1v1 + . . .+ λsvs) = λ1v1 · v1 + λ2v1 · v2 + . . .+ λsv1 · vs = λ1
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and similarly

λi = vi · v for all i = 1, . . . , s (6.1)

Remark

I think you already use this all the time: it is also part of the machine in §1.2 we refer to as
‘orthogonal projection’, though is simpler than that, and you routinely use it to extract the
coefficients of a vector. Even if it is not familiar, I hope you see it follows easily from the
properties of scalar product listed in Proposition 1.9.

The reason to mention this here, is that I bet that when we change notation later and write
〈vi, v〉 in place of vi · v, you will forget all about this and regard it as impossibly complicated.
Nooo. . . you wouldn’t do that, would you?

Let’s warm up by stating a couple of things formally that you know inside out intuitively and proving
them using that simple observation.

Proposition 6.2

(i) If v1, . . . , vs are orthonormal, then they are linearly independent.

(ii) If v1, . . . , vn is an orthonormal basis, then for any v we have

v = (v1 · v)v1 + . . .+ (vn · v)vn

Proof. (i) Suppose λ1v1 + . . .+ λsvs = 0V . We must prove that all λi = 0. By (6.1) we have

λi = vi · (λ1v1 + . . .+ λsvs) = vi · 0V = 0

as required.

(ii) Since v1, . . . , vn is a basis there are scalars λ1, . . . , λn so that

v = λ1v1 + . . .+ λnvn

By (6.1) we have λi = vi · v, which completes the proof.

Example

It is easy to see that the vectors

f
1

=
1√
2

(
1
1

)
, f

2
=

1√
2

(
1
−1

)
form an orthonormal basis of R2 (with respect to the usual dot product). Consider

v =

(
3
−8

)
∈ R2

What are the coefficients of v with respect to the given basis f
1
, f

2
? To answer that, we must

calculate λ1, λ2 in the expression v = λ1f1 + λ2f2. We do have methods for this already, but
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since the basis is orthnormal, there is a quick way using Proposition 6.2(ii):

λ1 = f
1
· v =

−5√
2
, λ2 = f

2
· v =

11√
2

It is easy now to check that λ1f1 + λ2f2 really does equal v.

The Gram–Schmidt process that we discuss next is very famous: it takes any basis of Rn and returns
an orthonormal basis. It seems a little involved, but once you try an example it is perfectly natural.
The first example is very simple, the next a little more fiddly, but by then the algorithm is becoming
clear, and stating and proving it formally turns out to be simpler than actually calculating an example.

Example

Consider

v1 =

(
1
2

)
, v2 =

(
0
1

)
This is a basis of R2, but it is not an orthonormal basis. Taking the vectors in turn, the first
problem is that v1 is not a unit vector: ||v1|| =

√
5. Well, that is easily fixed: define

w1 =
1

||v1||
v1 =

1√
5

(
1
2

)
and replace v1 in the basis by w1: the new set w1, v2 is of course still a basis.

The next problem is that w1 and v2 are not orthogonal: that is, w1 ·v2 = 2/
√

5 6= 0. Again, that
is easily fixed. Since w1 is a unit vector, the orthogonal projection of v2 onto w1 is, according
to Definition 1.20, the vector

(v2 · w1)w1 =
2√
5
× 1√

5

(
1
2

)
=

1

5

(
1
2

)
If we subtract that from v2, the result will necessarily be orthogonal to w1: that is, we define

u2 = v2 − (v2 · w1)w1 =

(
0
1

)
− 2

5

(
1
2

)
=

1

5

(
−2
1

)
You see at once that u2 · w1 = 0.

The only remaining problem is that u2 is not a unit vector, which again is easily fixed: define

w2 =
1

||u2||
u2 =

1√
5

(
−2
1

)
Now we have ||w1|| = ||w2|| = 1 and w1 · w2 = 0. In other words,

w1 =
1√
5

(
1
2

)
, w2 =

1√
5

(
−2
1

)
is orthonormal, and in fact it is an orthonormal basis: it is a basis because 〈w1, w2〉 = 〈v1, v2〉.
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Remark

If all you care about is finding an orthonormal basis and you don’t care about the order of the
vectors you were given, then you might run the algorithm in the example above on the vectors
in a different order. If we run the same sequence of ideas on the pair v2, v1, then the result is
an orthogonal basis w′2, w

′
1

w′2 =

(
0
1

)
, w′1 =

(
1
0

)
The calculations are easier, but the ideas are just the same. You might feel that this is a nicer
basis, but in any case the algorithm worked flawlessly to produce an orthonormal basis.

Example 6.3

Consider

v1 =

1
2
2

 , v2 =

 1
−2
2

 , v3 =

0
0
1


This is a basis of R3, but it is not an orthonormal basis. However, we can use these vectors
to find a different set of vectors w1, w2, w3 that do form an orthonormal basis. The process is
inductive: we define w1 first, then w2, then w3, making sure that the set of wi vectors we have
made so far are orthonormal at each step.

Start with v1. You see that v1 · v1 = 9, that is ||v1|| = 3. Consider the unit vector w1 in the
direction of v1. That is,

w1 =
1

||v1||
v1 =

1

3

1
2
2


Now consider v2. Don’t worry about its length for a moment, but instead find out whether it is
at right angles to w1: you can detect this by computing the component of v2 in the direction
of w1 as usual by the scalar product v2 ·w1. If this component was zero, then setting w2 to be
v2 divided by its length would give an orthonomal pair w1, w2.

But in general, even if as in this case v2 · w1 = 1
3 is not zero, we can make a vector at right

angles to w1 by subtracting from v2 its orthogonal projection onto w1. The formula from
Definition 1.20 for orthogonal projection is simple: since w1 is a unit vector, it is (v2 · w1)w1.
So the formula for defining w2 is in two steps: first subtract this projection, and then divide by
the length of the resulting vector to normalise it to length 1: that is, set

u2 = v2 − (v2 · w1)w1 and then w2 =
1

||u2||
u2

which in this example gives

u2 =

 1
−2
2

− 1

3
× 1

3

1
2
2

 =
4

9

 2
−5
4

 and then w2 =
1

3
√

5

 2
−5
4


(Of course, when going from u2 to w2 I simply ignored the 4

9 and just calculated the unit vector
in the direction of (2,−5, 4)T – it’s easier and gives the same answer.)

At this point you absolutely must check that w1 · w2 = 0 and that ||w1|| = ||w2|| = 1. If
you are wrong now, then any following calculations will be wasted. In fact I think those checks
work, and so the pair w1, w2 is orthonormal.
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Now continue with v3, but this time remove its orthogonal projection onto both w1 and w2.
That is, first define

u3 = v3 − (v3 · w1)w1 − (v3 · w2)w2

= v3 −
2

3
w1 −

4

3
√

5
w2

=

0
0
1

− 2

9

1
2
2

− 4

45

 2
−5
4


=

9

45

−2
0
1


(which by construction is at right angles to both w1 and w2) and then normalise it to be
length 1, giving

w3 =
1

||u3||
u3 =

1√
5

−2
0
1


Once more you absolutely must check that w1 ·w3 = w2 ·w3 = 0 and that ||w3|| = 1. In fact
those checks pass, and the result is an orthonormal basis w1, w2, w3, which in all its glory is

1

3

1
2
2

 ,
1

3
√

5

 2
−5
4

 ,
1√
5

−2
0
1



Remark

Once again, we may try the algorithm on the same vectors in a different order. For example, if
we put v3 first, then the result is an orthogonal basis w′3, w

′
1, w

′
2

w′3 =

0
0
1

 , w′1 =
1√
5

1
2
0

 , w′2 =
1√
5

 2
−1
0


The calculations are easier, but the ideas are just the same.

The examples above illustrate the general idea of Gram–Schmidt orthogonalisation follows.

Theorem 6.4 (Gram–Schmidt orthogonalisation)

Let V = Rn, equipped with the usual scalar (dot) product. If v1, . . . , vn is a basis of V , then
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the following algorithm determines an orthonormal basis w1, . . . , wn of V :

w1 =
1

||v1||
v1

u2 = v2 − (v2 · w1)w1 and w2 =
1

||u2||
u2

...

uj = vj −
j−1∑
k=1

(vj · wk)wk and wj =
1

||uj ||
uj

...

un = vn −
n−1∑
k=1

(vn · wk)wk and wn =
1

||un||
un

where at each step w1, . . . , wi is an orthonormal basis of its span 〈w1, . . . , wi〉 = 〈v1, . . . , vi〉.

Proof. This is an induction. Certainly v1 6= 0V so w1 is defined, and 〈w1〉 = 〈v1〉.

We proceed by induction. Suppose we have w1, . . . , wi−1 as claimed. Then ui is defined and lies
in 〈w1, . . . , wi−1, vi〉 = 〈v1, . . . , vi〉 (the equality by induction). Note that ui 6= 0V , otherwise
vi would be in the span of 〈w1, . . . , wi−1〉 = 〈v1, . . . , vi−1〉, contradicting linear independence of
v1, . . . , vn. So wi is defined, it has ||wi|| = 1, and by Lemma 4.11 it is linearly independent of
w1, . . . , wi−1.

If j < i then since by induction w1, . . . , wi−1 is orthonormal, then for the nonzero scalar α = 1
||ui|| ,

wi · wj = α

(
vi −

i−1∑
k=1

(vi · wk)wk)

)
· wj

= α (vi · wj − (vi · wj)wj · wj)
= 0

and so w1, . . . , wi are orthonormal as required.

Corollary 6.5 (Extend an orthonormal set to an orthonormal basis)

Let V = Rn, equipped with the usual scalar (dot) product. If v1, . . . , vs is an orthonormal set,
then there are vectors vs+1, . . . , vn ∈ V so that v1, . . . , vn is an orthonormal basis of V .

Proof. Let ws+1, . . . , wn be any vectors that extend v1, . . . , vs to a basis v1, . . . , vs, ws+1, . . . , wn,
and apply Gram–Schmidt process to this basis. Of course the initial elements v1, . . . , vs will be
unchanged by the process, since any orthogonal projection from one of these to the others is
zero.

Definition 6.6

Let V = Rn equipped with the usual scalar (dot) product, and let U ⊂ V be a subspace. We
define the orthogonal complement U⊥ of U in V to be the set of elements of V that are
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orthogonal to every element of U :

U⊥ = {v ∈ V | u · v = 0 for all u ∈ U}

Theorem 6.7 (Orthogonal complements)

Let V = Rn equipped with the usual scalar (dot) product and let U ⊂ V be a subspace. Then
U⊥ is a subspace of V , and moreover it is a complement to U in the sense of Definition 5.30:
that is, U ∩ U⊥ = {0V } and U and U⊥ together span V .

In particular V ∼= U ⊕ U⊥ and dimV = dimU + dimU⊥.

One could prove this directly, but the Gram-Schmidt process gives an elegant proof.

Proof. Choose any basis B of U and apply Gram–Schmidt. The result is an orthonormal basis
v1, . . . , vs of U : Theorem 6.4 guarantees both that it has the same span U as B and that it is a
basis of that span (or you may say that v1, . . . , vs is linearly independent by Proposition 6.2(i)).

By Corollary 6.5, extend this orthonormal set v1, . . . , vs to an orthonormal basis v1, . . . , vn of V .
Then we claim that

U⊥ = 〈vs+1, . . . , vn〉

which completes the proof. Clearly each vj for j ≥ s + 1 lies in U⊥, while conversely if v =
λ1v1 + . . .+ λnvn ∈ U⊥, then for all j = 1, . . . s

0 = vj · v = vj · (λ1v1 + . . .+ λnvn) = λj

so in fact v ∈ 〈vs+1, . . . , vn〉 as claimed.

Example

We calculate the orthogonal complement of

U =

〈1
2
2

〉 ⊂ V = R3

Following the proof, we first find a orthonormal basis of U : for example

w1 =
1

3

1
2
2


Then we extend it to a basis of R3: for example

w1 =
1

3

1
2
2

 , v2 =

 1
−2
2

 , v3 =

0
0
1


Then we apply Gram–Schmidt to this basis in this order. The result, by Example 6.3 is

w1 =
1

3

1
2
2

 , w2 =
1

3
√

5

 2
−5
4

 , w3 =
1√
5

−2
0
1


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The proof then shows that

U⊥ =

〈
1

3
√

5

 2
−5
4

 ,
1√
5

−2
0
1

〉

and the given vectors are an orthonormal basis of U⊥.

Of course, for the purposes of describing U⊥ we may not have needed to produce an orthonormal
basis of it, in which case we could equally well say, for example, that

U⊥ =

〈 2
−5
4

 ,

−2
0
1

〉 or U⊥ =

〈 0
−1
1

 ,

−2
0
1

〉

and so on, but Gram–Schmidt produced an orthonormal basis automatically.

6.2 Inner products, lengths and angles

Compare the following definition with Proposition 1.9.

Definition 6.8

An inner product on V associates a scalar, denoted 〈v, w〉, to any v, w ∈ V subject to the
following rules:

(i) 〈v, w〉 = 〈w, v〉 for any v, w ∈ V .

(ii) 〈(λ1v1 + λ2v2), w〉 = λ1 〈v1, w〉+ λ2 〈v2, w〉 for any v1, v2, w ∈ V and any λ1, λ2 ∈ R.

(iii) For any v ∈ V , 〈v, v〉 ≥ 0, and furthermore 〈v, v〉 = 0 if and only if v = 0V .

If you prefer, an inner product is a function V × V → R denoted (v, w) 7→ 〈v, w〉 that satisfies those
rules.

Example

If V = Rn then 〈v, w〉 = v · w is an inner product, but there are many others.

Let V = R2 and consider the matrix

A =

(
2 1
1 3

)
This is a symmetric matrix, meaning just that it equals its own transpose: A = AT . We may
use A to define an inner product:

〈v, w〉 = vTAw

or in coordinates v =

(
x1
y1

)
and w =

(
x2
y2

)
〈(

x1
y1

)
,

(
x2
y2

)〉
=
(
x1 y1

)(2 1
1 3

)(
x2
y2

)
= 2x1x2 + x1y2 + y1x2 + 3y1y2
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The first two properties of inner product follow from the fact that A is symmetric, and from
the properties of matrix multiplication.

The final point needs more care but is elementary. Suppose v = (x, y)T with |x| ≥ |y|. Then

〈v, v〉 = 2x2 + 2xy + 3y2 ≥ 3y2 ≥ 0

since the only issue is if either x < 0 or y < 0, and in that case x2 + xy ≥ x2 − |xy| ≥
|x|(|x| − |y|) ≥ 0. Moreover, this shows that if 〈v, v〉 = 0, then y2 = 0, so y = 0 and then also
x = 0. The case |x| ≤ |y| is similar, using 3y2 to absorb any negative contributions.

Example

Let a ≤ b and consider
V = {f : [a, b]→ R | f is continuous}

Then it is easy to check that

〈f, g〉 =

∫ b

a
fg

defines an inner product on V . (You need to use definition of continuity, the idea of integration
as area under the curve, and the standard properties of integrals.)

For example, on [a, b] = [−π, π] we have∫ π

−π
sin(x) cos(x)dx = 0

since sin is an odd function and cos is an even function. Therefore 〈sin(x), cos(x)〉 = 0 and
we see that sin(x) and cos(x) are orthogonal to one another. They are not quite orthonormal,
since ∫ π

−π
sin2(x)dx =

∫ π

−π
cos2(x)dx = π

but you can divide them by π if you need that, or start again and redefine the inner product
with a factor 1/π if you prefer.

Remark

You may be thinking that we could run through all the definitions, theorems and calculations
that we know for the usual dot product and try them with a general inner product 〈·, ·〉.

You’re right! We can use an inner product to define length and angle and orthogonal projection
and all the rest, and it all works out nicely. Here goes . . . simply replacing the dot product v ·w
by the inner product 〈v, w〉 wherever we see it.

Definition 6.9

A Euclidean space is a finite-dimensional vector space V (over R) equipped with a fixed choice
of inner product. (The inner product is denoted by 〈·, ·〉, even if it is not mentioned explicitly.)
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First we define lengths; compare Definition 1.10.

Definition 6.10 (Length of a vector)

Let V be a Euclidean space. We define the length of a vector v ∈ V to be

||v|| =
√
〈v, v〉

which is a non-negative real number. (Notice the double lines in the notation.)

Notice that the inner product is an essential part of the definition: it has to have been chosen and
fixed in advance, and everyone has to know which inner product we are using. (In that respect it’s a
bit like choosing a basis: it is some extra information that everyone is meant to know about.)

Now for angles; compare Definition 1.14

Definition 6.11 (Angle between vectors)

Let V be a Euclidean space and let v, w ∈ V \ {0V } be nonzero vectors. We define the angle
between v and w, denoted ∠vw, to be the real number

∠vw = cos−1
(
〈v, w〉
||v||||w||

)
where we take the principal preimage of cos, so that ∠vw lies in the interval [0, π].

As before, we often write ϑ = ∠vw so that the formula is

〈v, w〉 = ||v||||w|| cos(ϑ)

You know the issue: we need the following result so that cos has a preimage.

Proposition 6.12 (Cauchy–Schwartz inequality)

Let V be a Euclidean space. For any v, w ∈ V ,

| 〈v, w〉 | ≤ ||v||||w||

and furthermore equality is achieved only when v = λw for some λ ∈ R or w = 0V .

We omit the proof: both the second and third proofs we gave in §1.2 can be adapted easily to this
general situation.

We define orthonormal vectors as you expect.

Definition 6.13

Let V be a Euclidean space. A set of vectors v1, . . . , vs ∈ V is orthonormal if and only
〈vi, vj〉 = δij for each i, j = 1, . . . , s.
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An orthonormal basis is a basis v1, . . . , vn of V that is orthonormal.

Finally we consider orthogonal projection; compare Definition 1.20.

Definition 6.14

Let V be a Euclidean space. Let v, w ∈ V with w 6= 0V and let ŵ = w/||w|| be the unit
vector in the direction of w. Then the scalar quantity 〈v, ŵ〉 is called component of v in the
direction of w, and the vector 〈v, ŵ〉 ŵ is the orthogonal projection of v in the direction
of w or onto w.

Example

Let V = R2 with the usual dot product. Then

v1 =
1√
2

(
1
1

)
, v2 =

1√
2

(
1
−1

)
is an orthonormal basis. It is certainly a basis, and it is easy to see at once that vi · vj = δij .

But now consider a different inner product on V :

〈v, w〉 = vTAw where A =

(
2 1
1 3

)

or in coordinates v =

(
x1
y1

)
and w =

(
x2
y2

)
〈(

x1
y1

)
,

(
x2
y2

)〉
=
(
x1 y1

)(2 1
1 3

)(
x2
y2

)
= 2x1x2 + x1y2 + y1x2 + 3y1y2

For example, collecting the
√

2 factors and multiplying the row vector and matrix first,

〈v1, v2〉 =
1√
2

(
1 1

)(2 1
1 3

)
1√
2

(
1
−1

)
=

1

2

(
3 4

)( 1
−1

)
= −1

2

We can run the Gram–Schmidt process on the pair v1, v2 using this inner product to calculate
lengths and projections. We have

〈v1, v1〉 =
7

2
and ||v1|| =

√
7

2

so the unit vector in the direction of v1 is

w1 =
v1
||v1||

=
1√
7

(
1
1

)
The orthogonal projection of v2 onto w1 is

〈v2, w1〉w1 =
−1√
2
√

7
× 1√

7

(
1
1

)
= − 1

7
√

2

(
1
1

)
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so, as usual, we define

u2 = v2 − 〈v2, w1〉w1 =
1√
2

(
1
−1

)
+

1

7
√

2

(
1
1

)
=

√
2

7

(
4
−3

)
It is quick to see that 〈w1, u2〉 = 0, so it only remains to scale u2 to a unit vector and we have
the orthonormal basis

w1 =
1√
7

(
1
1

)
, w2 =

1√
5

(
4
−3

)
using the inner product 〈·, ·〉.

6.3 Gram–Schmidt orthogonalisation in general

The Gram–Schmidt orthogonalisation process described in Theorem 6.4 works in exactly the same
way if we replace the dot products v · w that arise by any other inner product 〈v, w〉. With that
change, the statement and proof are exactly analogous, and the corollaries follow as before with the
same change.

That is, given a basis v1, . . . , vn of any Euclidean space V , the Gram–Schmidt process works induc-
tively, constructing an orthonormal set w1, . . . , wi−1 (with the same span as v1, . . . , vi−1) and then
defines the (nonzero) vector

ui = vi −
i−1∑
k=1

〈vi, wk〉wk and sets wi =
1

||ui||
ui

Theorem 6.15

Let V be a Euclidean space. Then V has an orthonormal basis.

Proof. Let v1, . . . , vn be any basis of V . The Gram–Schmidt orthogonalisation process is a well-
defined terminating algorithm that produces an orthogonal basis.

Corollary 6.16 (Extend an orthonormal set to an orthonormal basis)

Let V be a Euclidean space. If v1, . . . , vs is an orthonormal set, then there are vectors
vs+1, . . . , vn ∈ V so that v1, . . . , vn is an orthonormal basis of V .

Corollary 6.17 (Orthogonal complements)

Let V be a Euclidean space and let U ⊂ V be a subspace. Then U⊥ is a subspace of V , and
moreover it is a complement to U in the sense of Definition 5.30: that is, U ∩U⊥ = {0V } and
U and U⊥ together span V .

In particular V ∼= U ⊕ U⊥ and dimV = dimU + dimU⊥.
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6.4 What does an orthonormal basis do for me?

Any basis gives an isomorphism of V with Rn. One way to think of an orthonormal basis is that this
isomorphism also matches the given inner product on V with the standard dot product on Rn.

Although we prove this precisely in a moment, I’m not sure it’s such a useful idea for us. It’s main
value is perhaps just that it explains that it is not such a jungle out there, and inner products (on
finite-dimensional vector spaces) are not such very bizarre beasts after all.

The important stuff is everything in the previous section: if you have an inner product and need to
work with a basis, then please make it an orthonormal basis unless you have a clear reason not to.

Theorem 6.18 (Isomorphism with Rn with the usual dot product)

Let V be a Euclidean space and let B be an orthonormal basis. Then the coordinate isomorphism

χB : V → Rn

matches the inner product of V with the usual dot product of Rn, in the sense that

〈v, w〉 = χB(v) · χB(w)

for all v, w ∈ V .

Proof. Let B = {w1, . . . , wn} so that by definition the coordinate isomorphism χB is determined
by χB(wi) = ei ∈ Rn. Observe first that therefore χB has the required property on the elements
of B: for any i, j ∈ {1, . . . , n}

〈wi, wj〉 = δij = ei · ej
Now by linearity, writing any v ∈ V with respect to B as v =

∑n
i=1 λiwi, we have

〈v, wj〉 =

〈
n∑
i=1

λiwi, wj

〉
=

n∑
i=1

λi 〈wi, wj〉

=

n∑
i=1

λi
(
ei · ej

)
=

(
n∑
i=1

λiei

)
· ej

= χB(v) · χB(wj)

and similarly in the right-hand factor of 〈·, ·〉.
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Chapter 7

Eigenvalues and eigenvectors

Throughout this chapter V is a finite-dimensional vector space. We consider linear maps ϕ : V → V
from V to itself. These are sometimes referred to as linear operators to emphasise that the domain
and codomain are the same.

Definition 7.1

Let V be a vector space. A linear operator on V is a linear map V → V .

In particular, whenever we choose a basis of V , such a map ϕ is represented by a square matrix with
respect to that basis in both the domain and the codomain. It is worth noting how the rank–nullity
formula works in this context, both for linear operators and the square matrices that represent them.

Remark

Let ϕ : V → V be a linear operator. Therefore ϕ is surjective if and only if rkϕ = dimV , and
for any linear map ϕ is injective if and only if nullityϕ = 0. Therefore the rank–nullity formula

rkϕ+ nullityϕ = dimV

shows that
ϕ is injective ⇐⇒ ϕ is surjective

We may express this for a square matrix A ∈ Matnn as

dim kerLA = 0 ⇐⇒ kerLA = {0} ⇐⇒ rkA = n ⇐⇒ dim ImLA = n

We define eigenvalues and eigenvectors for both linear operators and square matrices, so that the
definitions agree whenever we choose a basis.

Definition 7.2 (Eigenvalues and eigenvectors)

Consider a linear operator ϕ : V → V . We say that λ ∈ R is an eigenvalue of ϕ if there exists
some nonzero v ∈ V (re-emphasise: v 6= 0V ) such that

ϕ(v) = λv

We call v an eigenvector of ϕ corresponding to the eigenvalue λ.
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Let A ∈ Matnn. We say that λ ∈ R is an eigenvalue of A if there exists some nonzero v ∈ Rn
(re-emphasise: v 6= 0) such that

Av = λv

We call v an eigenvector of A corresponding to the eigenvalue λ.

In passing, we check that these definitions do indeed match. Let B = {v1, . . . , vn} be a basis for V
and let A = (aij) ∈ Matnn be the matrix such that ϕ = ϕA. Then writing v ∈ V in coordinates as
v = (α1, . . . , αn)T ∈ Rn we have

ϕ(v) = λv if and only if Av = λv

Therefore computing eigenvalues and eigenvectors of linear transformations is equivalent to computing
eigenvalues and eigenvectors of matrices, and we often deliberately conflate the two.

Example

Let V = R2 and consider the linear map LA : V → V for the matrix

A =

(
0 1
2 1

)
It is not immediately clear what LA does in geometric terms, but if you know to consider the
following vectors, you see that

A

(
1
−1

)
=

(
−1
1

)
= −

(
1
−1

)
and A

(
1
2

)
=

(
2
4

)
= 2

(
1
2

)
Giving names to these vectors, we may write

Av1 = λ1v1 where v1 =

(
1
−1

)
and λ1 = −1

and similarly

Av2 = λ2v2 where v2 =

(
1
2

)
and λ2 = 2

That is, LA is a reflection of the line `1 = 〈v1〉 through v1 onto itself, and it scales the line
`2 = 〈v2〉 through v2 by a factor of 2. Intuitively, you may think of the map LA as interpolating
between these two behaviours in the rest of the picture. In particular, if you consider any other
line through the origin in V , you will see that it is not mapped to itself at all. For example,

A

(
1
0

)
=

(
0
2

)

so that the line ` =

〈(
1
0

)〉
(also known as the y-axis) is mapped to the different line

〈(
0
2

)〉
(also known as the x-axis). You may easily check any other line through the origin similarly.

Remark

That example illustrates the key property of eigenvectors. If v ∈ V is an eigenvector (for any
eigenvalue λ), then the 1-dimensional subspace ` = 〈v〉 ⊂ V is mapped to itself by ϕ. Indeed,
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any element w ∈ ` is simply a scalar multiple w = αv of v, so that ϕ(w) = αϕ(v) ∈ 〈v〉. That
is, ϕ(`) ⊂ ` where ` = 〈v〉 for any eigenvector v.

There is a minor nuance: if λ = 0 then ϕ(〈v〉) = {0V }, while if λ 6= 0 then ϕ(〈v〉) = 〈v〉, and
in the latter case ϕ is an isomorphism of this 1-dimensional subspace with itself.

This nuance is worth a moment’s thought, since in prose we easily assume the wrong idea: if
U ⊂ V is a subspace of V , we say U is mapped to itself (by ϕ) to mean only that ϕ(U) ⊂ U .
There is no claim that ϕ(U) = U : we are not claiming that the map ϕ restricted to U is
surjective onto U .

Example 7.3

Alongside the previous remark, it is useful to have in mind various different types of geometric
behaviour that a linear map LA : R2 → R2 determined by a matrix A may have, and to notice
the effect on 1-dimensional subspaces (lines through the origin) in each case:

(i) The scalar matrix A = ( 2 0
0 2 ) stretches the whole plane by a factor of 2. In particular,

every 1-dimensional linear subspace is mapped to itself.

(ii) The diagonal matrix A = ( 2 0
0 3 ) stretches the x-axis by a factor of 2 and the y-axis by a

factor of 3. These two axes are the only 1-dimensional linear subspaces that are mapped
to themselves.

(iii) The shear matrix A = ( 1 1
0 1 ) fixes the x-axis and tilts the y-axis over by π/4. The x-axis

is the only 1-dimensional linear subspace that is mapped to itself.

(iv) The rotation matrix A = 1√
2
( 1 −1
1 1 ) that rotates the whole plane by an angle π/4 anti-

clockwise about the origin does not map any 1-dimensional linear subspace to itself.

(v) The projection matrix A = ( 1 0
0 0 ) that maps the whole plane onto the x-axis, with each

vertical line squished to the point where it meets the x-axis, certainly fixes the x-axis
pointwise. In disguise, there is exactly one other 1-dimensional subspace that is mapped
to itself: the y-axis is mapped to the origin, which is indeed a point of the y-axis. So the
y-axis is mapped to itself, although the map is not an isomorphism: it is the zero map.

(vi) OK then, let’s do the daft one: the zero matrix maps all 1-dimensional subspaces to
themselves, in the trivial sense that they all map to the origin. Daft it may be, but it is
an important part of the whole picture.

You are right to regard each of the claims above about 1-dimensional subspaces as an exercise
that you need to do.

The notions of eigenvalue and eigenvector work for linear operators on any vector space, not only
finite-dimensional ones, and some cases are very familiar.

Example 7.4

Differentiation is a linear operator on the vector space C∞(R) of infinitely differentiable func-
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tions:
C∞(R) → C∞(R)

f 7→ d

dx
f

Although C∞(R) is not a finite-dimensional vector space, the ideas of eigenvalue and eigenvector
still make sense, and you already know what they are. The exponential function eλx is an
eigenvector of d/dx with corresponding eigenvalue λ ∈ R, since

d

dx
eλx = λeλx

and of course any scalar multiple of eλx is also an eigenvector. Eigenvectors belonging to
function spaces are often called eigenfunctions.

7.1 Eigenvectors in R2

We consider linear maps R2 → R2, as in Example 7.3.

Example 7.5

Let

A =

(
−5 2
−7 4

)
∈ Mat22

We will show that λ = 2 is an eigenvalue of A. To do this, we need to find(
α
β

)
∈ R2

not equal to zero, such that (
−5 2
−7 4

)(
α
β

)
=

(
2α
2β

)
Equivalently, we need a non-trivial solution to the system of linear equations

−5α+ 2β = 2α

−7α+ 4β = 2β

Rearranging so that the right-hand side is zero we get two copies of the equation

−7α+ 2β = 0

Thus we see that there is a one-parameter family of possible eigenvectors given by(
2t
7t

)
∈ R2 for any t ∈ R, t 6= 0

Example 7.6

Consider the map
ϕ : R2 → R2

(x, y) 7→ (−5x+ 2y,−7x+ 4y)
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Then ϕ = ϕA, where A is the matrix in Example 7.5. Hence λ = 2 is an eigenvalue, and any
vector v ∈ {(2t, 7t) | t ∈ R, t 6= 0} an eigenvector for λ.

Consider a 2 × 2 matrix A with eigenvalue λ ∈ R and eigenvector v ∈ R2. That simply means that
Av = λv. We may rearrange this equation to say instead that, equivalently,

(A− λI2)v = 0

Since by definition eigenvectors are not zero, the matrix A− λI2 cannot be invertible: indeed there is
a non-zero vector v ∈ ker(A− λI2), and so nullity(A− λI2) = dim ker(A− λI2) ≥ 1.

Recall the notion of determinant of a 2× 2 matrix, viz.

det

(
a b
c d

)
= ad− bc

The crucial point is the necessary and sufficient condition for a 2× 2 matrix to be invertible:

A is invertible ⇐⇒ detA 6= 0

or equivalently the criterion for A to be singular, that is for nullityA ≥ 1:

A is singular ⇐⇒ detA = 0

We will come to this formally in the next section, but for now just keep those facts in mind.

Eigenvectors with eigenvalue λ are the nonzero elements of ker(A − λI2), and so given A as above
we consider the equation

det(A− λI2) = 0

In detail, writing

A =

(
a b
c d

)
∈ Mat22

we have

A− λI2 =

(
a− λ b
c d− λ

)
which has determinant

det(A− λI2) = (a− λ)(d− λ)− bc
= λ2 − λ(a+ d) + ad− bc

By the criterion for A to be singular, the eigenvalues of A are precisely the (real) roots of this
polynomial. This is a quadratic in λ, so we can find the roots via the quadratic equation, viz.

λ =
a+ d±

√
(a− d)2 + 4bc

2
(7.1)

Remark

Equation (7.1) raises an important point. The value (a − d)2 + 4bc can be negative, giving
complex eigenvalues λ ∈ C. We will address this point later. Strictly speaking, the definition
of eigenvalue we have only considers those roots λ that lie in R. That’s fine and simple, but of
course it would be uncouth simply to ignore what a complex eigenvalue is trying to tell you.

141



Example 7.7

Consider the matrix

A =

(
−5 2
−7 4

)
We could simply use equation (7.1) to compute the eigenvalues

λ =
−1±

√
81− 56

2
=
−1± 5

2
= 2 and −3

Fine, but in fact it is usually just as easy to compute them from first principles. We need to
compute the roots of

det(A− λI2) = det

(
−5− λ 2
−7 4− λ

)
= (λ+ 5)(λ− 4) + 14

= λ2 + λ− 6

= (λ+ 3)(λ− 2)

and once again we obtain the two eigenvalues λ = 2 and −3.

We computed the eigenvectors for the eigenvalue λ = 2 in Example 7.5. Let’s do the case when
λ = −3. We want (

α
β

)
∈ R2

such that (
−5 2
−7 4

)(
α
β

)
=

(
−3α
−3β

)
Thus we need to solve the linear system of equations

−5α+ 2β = −3α

−7α+ 4β = −3β

Notice (after a little rearranging) that once again this reduces to a single equation

α− β = 0

Hence there is a one-parameter family of eigenvectors:(
t
t

)
∈ R2 for any t ∈ R, t 6= 0

There is a very simple calculation we can do with the eigenvectors we calculated so far, and it is the
key to the main result at this stage of the theory (which in turn invites the next questions that are the
basis of the next development in the theory next year). Watch closely: you’re going to be impressed!

Example 7.8

Let

A =

(
−5 2
−7 4

)

142



In Example 7.5 we saw that an eigenvalue when λ = 2 is

v1 =

(
2
7

)
and in Example 7.7 we saw that an eigenvalue when λ = −3 is

v2 =

(
1
1

)
Notice that {v1, v2} is a linearly independent set, and hence a basis for R2. Write

P =

(
2 1
7 1

)
We can easily calculate the inverse matrix

P−1 =
1

5

(
−1 1
7 −2

)
and

P−1AP =
1

5

(
−1 1
7 −2

)(
−5 2
−7 4

)(
2 1
7 1

)
=

1

5

(
−1 1
7 −2

)(
4 −3
14 −3

)
=

(
2 0
0 −3

)
where the entries on the diagonal are the eigenvalues of A.

What makes the example work? Of course, we may regard P as a change of basis matrix, in which
case the example is saying that if we choose the basis carefully, then the linear map is represented
by a diagonal matrix with the eigenvalues down the diagonal. The key technical point is already
evident: this works if you can use a basis of eigenvectors. We need to pronounce all this carefully and
precisely, and in particular we need to determine whether we can find a basis of eigenvectors or not.
The striking point is that this is not always possible, and this is already evident from the collection
of different geometric behaviours listed at the beginning of the chapter. But first we need to address
the determinant in the room.

7.2 Determinants of square matrices

Determinants are a very powerful tool but notoriously fiddly. The first rule of Determinant Club is:
you probably already know all you need to know about determinants and you must not forget that.

The key point about determinants, the thing they determine, is that for A ∈ Matnn

detA = 0 ⇐⇒ there is a nontrivial solution to Av = 0

(which is Theorem 7.12 below) so that using the definition of kernel and the rank–nullity formula you
may also say

detA = 0 ⇐⇒ dim kerA ≥ 1 ⇐⇒ rkA < n

We work out the essential parts of the theory. We take a curious approach that you might not have
seen before, but that is fairly routine in higher mathematics: we will simply list all the properties we
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would like determinant to have, and then prove all the results we need using those, and only then will
we answer the question of whether the determinant exists.

Definition 7.9

For any (square) matrix A ∈ Matnn, the determinant of A is scalar, denoted detA, which,
regarded as a function,

Matnn −→ R
A 7→ detA

has the following properties with respect to the elementary row operations

(i) det(SijA) = −detA (swapping two rows changes the sign of detA)

(ii) det(Mj(λ)A) = λ detA (multiplying a row by λ multiples detA by λ, even for λ = 0)

(iii) det(Aij(λ)A) = detA (adding a multiple of one row to another does not change detA)

(iv) det In = 1

For now, we simply assume that such a function exists (and also that it is unique). With that,
we can derive almost everything we ever use at once, including techniques for computing detA, and
in the process we get a clue about why it should exist at all. First a load of immediate observations
from the properties of determinant above.

Proposition 7.10

The determinant detA of a matrix A satisfies the following properties:

(i) If a row of A is zero, then detA = 0.

(ii) If two rows of A are identical, then detA = 0.

(iii) If A is a diagonal matrix, that is Aij = 0 whenever i 6= j, then detA = a11a22 · · · ann.

(iv) If A is an upper triangular matrix, that is Aij = 0 whenever i > j, then detA =
a11a22 · · · ann.

(v) If A is a lower triangular matrix, that is Aij = 0 whenever i < j, then detA =
a11a22 · · · ann.

Proof. (i) Multiplying that row by, say, 2 does not change A but doubles the determinant, so
detA = 0. (ii) Subtract one row from the other (without changing the determinant) to make a
zero row and apply (i) (or swap them to pick up a minus sign but without changing the determinant).
(iii) A may be constructed by performing a series of row multiplications Mi(aii) for i = 1, . . . , n
starting with the identity matrix In. The result follows since det In = 1 and the ith row operation
multiplies this by aii. (iv–v) Use row addition operations (which do not change the diagonal entries
nor detA) to replace A by a diagonal matrix, and apply (iii).

Second, we prove two structural results about determinants: the key point mentioned above is one,
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and the multiplicativity of determinant is the other. Both rely on the following observation that was
clear to us when we worked on RREF in Chapter 2.

Remark

The RREF of A is the matrix EA which arises by premultiplying A by a product E of (invertible)
elementary matrices (with λ 6= 0 in Mi(λ)). Therefore, detEA and detA differ by a nonzero
factor (a product of −1s and nonzero λs), and so detA = 0 if and only if detEA = 0.

Theorem 7.11

Let A ∈ Matnn. Then detA = 0 if and only if kerLA 6= {0}.

Proof. Let the RREF of A be EA, where E is a product of invertible elementary matrices. Either
EA = In (and detEA = 1) or EA has at least one zero row (and detEA = 0). In the first
case kerLEA = {0}, while in the second case dim kerLEA ≥ 1. Therefore detEA = 0 if and
only if dim kerLEA ≥ 1. The proof is completed by recalling that kerLEA = kerLA, either by
Proposition 5.14 or by recalling how row operations correspond to solving linear equations.

Theorem 7.12

Let A,B ∈ Matnn. Then det(AB) = det(A) det(B).

Proof. Notice first that by Definition 7.9 applied with A being an elementary matrix, we have

detSij = −1, detMj(λ) = λ, detAij(λ) = 1

(for example A = Sij gives 1 = det In = det(SijSij) = −detSij) so Definition 7.9 shows that

det(FA) = det(F ) det(A) where F is any of Sij , Mj(λ) or Aij(λ)

That is the statement for elementary matrices; the proof is almost complete.

Now let EA be the RREF of A where E = Ek · · ·E1 is a product of invertible elementary matrices.
Suppose first that detA 6= 0, so that EA = In. Rewriting that as A = F1 · · ·Fk, where Fi = E−1i ,
and applying the previous result repeatedly gives

det(AB) = det(F1 · · ·FkB)

= det(F1) det(F2 · · ·FkB)

= det(F1) det(F2) det(F3 · · ·FkB)
...

= det(F1) det(F2) · · · det(Fk−1) det(Fk) det(B)

= det(F1) det(F2) · · · det(Fk−1Fk) det(B)
...

= det(F1 · · ·Fk) det(B)

= det(A) det(B)

where you notice that first we break up the product AB = F1 · · ·FkB and then we reassemble the
product A = F1 · · ·Fk.
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Now suppose detA = 0. Therefore nullityLA > 0 by Theorem 7.12, so rkLA < n by rank–nullity,
and so LA is not surjective. But therefore LAB = LA ◦LB is not surjective either, and running the
argument back again shows that rkLAB < n so nullityLAB > 0 so det(AB) = 0, as required.

Remark

What we’ve seen so far makes it clear that if there really is a well-defined function det(A) of
square matrices A ∈ Matnn that satisfies all the properties of Definition 7.9, then it is uniquely
defined: indeed Definition 7.9 gives enough tools to calculate det(A) uniquely from its RREF.

So we turn now to the question of showing that there really is such a function at all. It’s worth
noting that very often the properties we’ve seen above are all that we need both to calculate
det(A) and to use it theoretically in proofs, but still we need to show somehow that there really
is a well-defined function there at all.

Proof of existence for n = 2, 3

Consider the 2× 2 matrix

A =

(
a11 a12
a21 a22

)
We define

detA = a11a22 − a12a21 =
∑
σ∈S2

sgn(σ)a1σ(1)a2σ(2) (7.2)

where the first expression is probably familiar, while the second curious expression needs a little
explanation.

Recall that the symmetric (or permutation) group on 2 symbols is S2 = {id, (1, 2)}, where σ = (1, 2)
denotes the transposition 1 ↔ 2, or more formally the map σ(1) = 2 and σ(2) = 1. The sign of a
permutation sgnσ ∈ {1,−1} satisfies sgnσ = −1 if σ is a product of an odd number of transpositions,
and sgnσ = +1 is σ is a product of an even number of transpositions. Thus we have

sgn(σ)a1σ(1)a2σ(2) = +a11a12 for σ = id

and
sgn(σ)a1σ(1)a2σ(2) = −a12a21 for σ = (1, 2)

and so the two expressions in (7.2) are the same.

We check that the four properties (i–iv) required by Definition 7.9 are satisfied.

Point (i) holds because swapping rows 1 and 2 amounts to replacing σ by the permutation (1, 2)σ in
the curious formula, which multiplies the sign by −1. Notice that the formula is linear in the entries
of the first row

(
a11 a12

)
of A and also in the entries of the second row

(
a21 a22

)
of A, so that

(ii) is automatic by linearity.

Linearity also helps (iii). To be concrete, let’s add λ times row 2 to row 1, that is, let’s work
out A12(λ)A – the other case A21(λ) works by an identical argument. The 1st row of A12(λ)A is(
a11 + λa21 a12 + λa22

)
, so by linearity of the formula in the rows of A

det(A12(λ)A) = detA+ λ detA′ where A′ =

(
a21 a22
a21 a22

)
that is, A′ has two equal rows. But then detA′ = 0 by Proposition 7.10, so det(Aij(λ)A) = detA
as Definition 7.9 requires. Finally point (iv): det I2 = since the formula has only one term (which in
the curious formula of (7.2) corresponds to σ = id).

This is good: the formula (7.2) defines a function that has the properties that Definition 7.9 demands.
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Remark

The determinant is called a multilinear function of the rows of A, since it is separately linear
in each row. It is extremely useful to be able to recognise this and use it, as we saw above (and
more significantly in a moment).

Such multilinearity phenomena occur in lots of places: for example, an inner product is linear
in each of its arguments, so is multilinear in 2 arguments, or bilinear, as we put it at the time.

The determinant is also called an alternating function in the rows of A, since swapping them
introduces a factor −1, so that if two rows are equal then the result is zero.

People sometimes even say that determinant is normalised as 1 on the identity to say that
det In = 1. (We need this, since any scalar multiple of the determinant also satisfies conditions
(i–iii) of Definition 7.9.)

With this jargon, the determinant function is the unique alternating multilinear function in the
rows of a square matrix, normalised as 1 on the identity – well, it is once we show that it exists!

Let’s do the same for a 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


We use the curious formula to define

detA =
∑
σ∈S3

sgn(σ)a1σ(1)a2σ(2)a3σ(3) (7.3)

and then work out what that means using a little knowledge of the permutation group on 3 symbols

S3 = {id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}

(where of course (1, 2, 3) = (1, 2)(2, 3) and (1, 3, 2) = (1, 3)(2, 3) both have sign +1) so that working
through S3 in that order we have

detA = a11a22a33 − a12a21a33 − a13a22a31 − a11a23a32 + a12a23a31 + a13a21a32

in which you notice the individual terms each contain exactly one entry from each row and on entry from
each column, and there are exactly 6 = 3! ways to do this. Although the expression is complicated,
you can easily parse it as the perhaps more familiar expression

detA = a11 det

(
a22 a23
a32 a33

)
− a12 det

(
a21 a23
a31 a33

)
+ a13 det

(
a21 a22
a31 a32

)
The great thing about the crazy formula (7.3) is that the properties of Definition 7.9 follow formally
just as they did in the 2 × 2 case, and so once again we have shown the existence of a determinant
function: (i) and (iv) are immediate, while (ii) and (iii) follow from multilinearity.

Proof of existence in the general case (non-examinable)

Finally, for any A ∈ Matnn, we define a scalar detA by the crazy formula

detA =
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n) (7.4)

where Sn is the symmetric (permutation) group on n symbols, and sgn(σ) ∈ {+1,−1} is the usual
permutation representation. This sum is a form of madness: it has n! terms.
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Proposition 7.13

The formula (7.4) defines a function det(A) that satisfies the properties of Definition 7.9 for a
determinant function.

We omit further proof: the discussions in the cases n = 2 and 3 above contain all the ideas: we just
check the four properties of Definiion 7.9: (i) and (iv) are immediate, while (ii) and (iii) follow from
multilinearity.

One thing we have only discussed in the 2×2 cases so far is how to expand a determinant out along a
row (or a column). We cover that next briefly, explaining the expansion along the first row; all other
cases are similar (after taking care about the sign). This is most useful as another proof that a matrix
with a zero row (or column) has determinant zero, or when calculating in small cases when a row has
almost all entries zero.

Definition 7.14

Let A ∈ Matnn and i, j ∈ {1, . . . , n}. Then the i, j minor of A is the matrix Aij ∈ Matn−1,n−1
which is constructed by removing the ith row and the jth column from A.

The i, j cofactor of A is the scalar detAij .

Proposition 7.15

Let A ∈ Matnn. Then
detA = a11 detA11 + . . .+ a1n detA1n

Proof. Consider the crazy formula (7.4). Every term has exactly one factor a1j for some j; indeed
j = σ(1) for some σ ∈ Sn in the crazy formula (7.4). Consider all the terms that have a11 as a
factor. As a summand of the right-hand side of (7.4) they are

a11 ×
∑

σ∈Sn,σ(1)=1

sgn(σ)a2σ(2) · · · anσ(n)

which is a11 detA11, since the sum is over all permutations of 2, . . . , n. The terms with factors
a12, . . . , a1n are exactly analogous.

Remark

Throughout this section we have worked with row operations. All analogous results work for
column operations. One can either work through them repeating the arguments, or instead
apply the following result.

Proposition 7.16

Let A ∈ Matnn. Then detAT = detA.
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Proof. (non-examinable) Let A = (aij) and set bij = aji so that AT = (bij). Then

detAT =
∑
σ∈Sn

sgn(σ)b1σ(1) · · · bnσ(n) =
∑
σ∈Sn

sgn(σ)aσ(1)1 · · · aσ(n)n =
∑
σ∈Sn

sgn(σ)a1τ(1) · · · anτ(n)

where τ = σ−1. Note that sgn(τ) = sgn(σ) so that continuing the calculation gives

detAT =
∑
τ∈Sn

sgn(τ)a1τ(1) · · · bnτ(n) = detA

as required.

7.3 The characteristic polynomial, eigenspaces and multiplicity

We work here with square matrices A ∈ Matnn and column vectors v ∈ Rn, rather than with linear
operators ϕ : V → V .

Recall that if A ∈ Matnn then an eigenvector v 6= 0 corresponding to the eigenvalue λ satisfies

Av = λv

Rearranging the equation, this is equivalent to saying

v ∈ ker(A− λIn) and so in particular nullity(A− λIn) > 0

This motivates the following definition.

Definition 7.17

Let A ∈ Matnn. The characteristic polynomial of A is the polynomial cA(x) defined by

cA(x) = det(A− xIn)

By the discussion above, the eigenvalues of A are the roots of the characteristic polynomial cA.
These roots need not be distinct: the multiplicity of a root λ is called the algebraic multiplicity
of the eigenvalue λ.

(Incidentally, you may see alternative notation for cA(x), such as pA(x) or χA(x). Do ask if
it’s ever not clear, since there are other polynomials related to matrices that crop up.)

Remark

For an n×n matrix A ∈ Matnn, the characteristic polynomial cA(x) is a polynomial of degree n:
indeed the coefficient of xn is (−1)n. Hence by the Fundamental Theorem of Algebra, A has
exactly n complex eigenvalues, counted with multiplicity.

Example 7.18

Consider

A =

(
2 3
3 −6

)
∈ Mat22
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The characteristic polynomial is (using the variable λ in place of x)

cA(λ) = det(A− λI2)

= det

(
2− λ 3

3 −6− λ

)
= (λ− 2)(λ+ 6)− 9

= λ2 + 4λ− 21

= (λ+ 7)(λ− 3)

The eigenvalues are the roots of cA: namely, λ = 3 and −7. Both eigenvalues have algebraic
multiplicity one.

Example 7.19

Consider

A =


1 3 5 6
0 2 1 0
0 0 1 7
0 0 0 5

 ∈ Mat44

Then

A− λI4 =


1− λ 3 5 6

0 2− λ 1 0
0 0 1− λ 7
0 0 0 5− λ


By Proposition 7.10(iv), the determinant of an upper triangular matrix is simply the product of
the diagonal entries, so

cA(λ) = det(A− λI4) = (1− λ)2(2− λ)(5− λ)

and the eigenvalues are

λ = 1 with algebraic multiplicity 2
λ = 2 with algebraic multiplicity 1
λ = 5 with algebraic multiplicity 1

Recall that the kernel of any linear map, including those represented by matrices such as A− λIn, is
a subspace of Rn.

Definition 7.20

Let A ∈Mnn and let λ be an eigenvalue of A. The subspace

Eλ = {v ∈ Rn | Av = λv}

is called the eigenspace of A corresponding to λ. It is simply the set of all eigenvectors
associated to the eigenvalue λ together with the zero vector 0.

The dimension dimEλ is called the geometric multiplicity of the eigenvalue.
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Remark

Let A ∈ Matnn and λ be an eigenvalue of A. By definition an eigenvalue cannot be zero, and
so the eigenspace Eλ will always contain a non-zero vector. In particular, dimEλ ≥ 1.

In fact, there is also an upper bound on dim(Eλ): if λ has algebraic multiplicity sλ, then

dimEλ ≤ sλ

That is, the geometric multiplicity of λ is less than or equal to the algebraic multiplicity of λ.
We do not need that here, so we omit the proof, though you have all the tools you need if you
wish to prove it yourself.

Example 7.21

Consider the matrix

A =

(
2 3
3 −6

)
∈ Mat22

From Example 7.18 we know this has eigenvalues 3 and −7. We will compute the eigenspace
in each case.

λ = 3: We need to find the solutions to the system of linear equations

2α+ 3β = 3α

3α− 6β = 3β

or, equivalently,
α− 3β = 0

Hence

Eλ =

{(
3t
t

) ∣∣∣ t ∈ R
}

=

〈(
3
1

)〉
Therefore the geometric multiplicity of λ is dimEλ = 1.

λ = −7: Proceeding similarly, we have the system of linear equations

2α+ 3β = −7α

3α− 6β = −7β

which reduces to the single equation
3α+ β = 0

Hence

Eλ =

{(
t
−3t

) ∣∣∣ t ∈ R
}

=

〈(
1
−3

)〉
Therefore the geometric multiplicity of λ is dimEλ = 1.

Notice that the two eigenvectors (
3
1

)
and

(
1
−3

)
are linearly independent.
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Proposition 7.22

Let A ∈ Matnn and let v1, . . . , vr ∈ Rn be eigenvectors corresponding to distinct eigenvalues
λ1, . . . , λr of A. Then v1, . . . , vr are linearly independent.

Proof. Suppose for a contradiction that {v1, . . . , vr} is linearly dependent. Let k be the smallest
positive integer such that

vk ∈
〈
v1, . . . , vk−1

〉
(7.5)

Then there exists µ1, . . . , µk−1 ∈ R such that

vk = µ1v1 + · · ·+ µk−1vk−1 (7.6)

Left-multiplying by A gives

Avk = A(µ1v1 + · · ·+ µk−1vk−1)

= µ1Av1 + · · ·+ µk−1Avk−1

so that, since each vi is an eigenvector of A corresponding to the eigenvalue λi, we have

λkvk = µ1λ1v1 + · · ·+ µk−1λk−1vk−1 (7.7)

Multiplying both sides of (7.6) by λk and then subtracting (7.7) gives

0 = µ1(λk − λ1)v1 + · · ·+ µk−1(λk − λk−1)vk−1

Now v1, . . . , vk−1 are linearly independent since k was chosen to be the smallest positive integer
satisfying (7.5), so µ1 = · · · = µk−1 = 0. Substituting these values for µi in (7.6) gives vk = 0.
But this is a contradiction: vk is an eigenvector, so vi 6= 0.

7.4 Diagonalisation of square matrices

We now see one of the main theoretical uses of eigenvalues: transforming a matrix to a diagonal
matrix.

Definition 7.23

We say that matrices A,B ∈ Matnn are similar if and only if

B = P−1AP

where P ∈ Matnn is invertible. It is easy to prove that being similar is an equivalence relation
on Matnn.

Remark

Compare this definition with that of equivalence of matrices, Definition 5.35. Thinking in terms
of the linear map LA : Rn → Rn, the point is that the domain and codomain of LA are equal,
so rather than permitting different changes of basis in the domain and codomain, this definition
requires that we use the same change of basis Q = P in both.
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Theorem 7.24

Similar matrixes have the same eigenvalues.

Proof. Let A,B ∈ Matnn be two similar matrices. Then there exists an invertible matrix P ∈
Matnn such that B = P−1AP . Then A = PBP−1. We have that

det(A− λIn) = det(PBP−1 − λPP−1)
= det(P (B − λIn)P−1)

= det(P ) det(B − λIn) det(P−1)

= det(P ) det(P−1) det(B − λIn)

= det(B − λIn)

Definition 7.25

A matrix A ∈ Matnn is said to be diagonalisable if it is similar to a diagonal matrix.

Example 7.26

Let

A =

(
2 3
3 −6

)
∈ Mat22

We saw in Example 7.21 that two linearly independent choices of eigenvectors for A are

v1 =

(
3
1

)
and v2

(
1
−3

)
Let

P =

(
3 1
1 −3

)
∈ Mat22

be the matrix whose columns are given by v1 and v2. The matrix P is invertible since {v1, v2}
is a basis for R2 (a set of two linearly independent vectors in a two-dimensional vector space
must form a basis). We can quickly calculate P−1, which is

P−1 =
1

10

(
3 1
1 −3

)
Let us calculate

P−1AP =
1

10

(
3 1
1 −3

)(
2 3
3 −6

)(
3 1
1 −3

)
=

1

10

(
3 1
1 −3

)((
2 3
3 −6

)(
3 1
1 −3

))
=

1

10

(
3 1
1 −3

)(
9 −7
3 21

)
=

(
3 0
0 −7

)
Hence A is diagonalisable.
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The main theorem is this.

Theorem 7.27 (The Diagonalisation Theorem)

A matrix A ∈ Matnn is diagonalisable if and only if A has n linearly independent eigenvectors,
that is, if and only if there is a basis of eigenvectors of A.

More precisely, P−1AP = B where B is a diagonal matrix if and only if the columns of P are
linearly independent eigenvectors of A. In this case, the diagonal entries of B are eigenvalues
of A that correspond, respectively, to the eigenvectors in P .

Proof. Suppose that v1, v2, . . . , vn ∈ Rn are n linearly independent eigenvectors of A corresponding
to eigenvalues λ1, λ2, . . . , λn (which are not necessarily distinct). Let

P =
(
v1 v2 . . . vn

)
∈ Matnn

be the matrix whose columns are equal to the vi. Then

AP =
(
Av1 Av2 . . . Avn

)
=
(
λ1v1 λ2v2 . . . λnvn

)
=
(
v1 v2 . . . vn

)

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn


= PB

where

B =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 = diag(λ1, λ2, . . . , λn)

Note that P is invertible, since Colspan(B) = Rn. Hence

AP = PB =⇒ P−1AP = B

as required.

Conversely, suppose there is an invertible matrix P so that P−1AP = B, where B is a diagonal
matrix, B = diag(λ1, . . . , λn).

Define vi = Pei, the ith column of P , for each i = 1, . . . , n. Note that vi 6= 0, since P is
invertible, so detP 6= 0 and so its ith column is not 0. In fact, more strongly, v1, . . . , vn is a basis
since LP : Rn → Rn is an isomorphism, so it maps any basis to another basis, in this case the
standard basis e1, . . . , en to the claimed basis.

Then since AP = PB, we have

Avi = APei

= PBei

= Pλiei

= λivi

and so vi is an eigenvector of A for λi, and therefore v1, . . . , vn is a basis of eigenvectors.

154



It is not true that every matrix has a basis of eigenvectors, but there is a simple situation where it
does hold: namely if it has n distinct eigenvalues.

Corollary 7.28

If A ∈ Matnn has n distinct eigenvalues, then A is diagonalisable. More precisely, we can write
P−1AP = B where the columns of P are eigenvectors of A, and B is a diagonal matrix whose
diagonal entries are eigenvalues of A that correspond, respectively, to the eigenvectors in P .

Proof. Suppose that A has n distinct eigenvalues λ1, λ2, . . . , λn, with corresponding choices of
eigenvectors v1, v2, . . . , vn ∈ Rn. By Proposition 7.22 we have that these eigenvectors are linearly
independent, and hence form a basis for Rn. The result follows from the theorem.

Example 7.29

Let

A =

1 0 0
0 1 0
0 1 2


This matrix is lower-triangular, so we see immediately that the eigenvalues are

λ = 1 with algebraic multiplicity 2
λ = 2 with algebraic multiplicity 1

Let us compute some eigenvectors.

λ = 1: We need to solve the system of linear equations

α = α

β = β

β + 2γ = γ

Hence the eigenvectors are of the form s
t
−t

 where s, t ∈ R, s and t not both zero

We can write down two linearly independent eigenvectors

v1 =

1
0
0

 and v2 =

 0
1
−1


λ = 2: We need to solve the system of linear equations

α = 2α

β = 2β

β + 2γ = 2γ

We immediately see that the eigenvectors are of the form(
0 0 t

)
where t ∈ R, t 6= 0
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Hence an eigenvector is

v3 =

0
0
1


The set {v1, v2, v3} is linearly independent, hence by Theorem 7.27 we have that A is diago-
nalisable. More specifically, let

P =

1 0 0
0 1 0
0 −1 1


Then

P−1AP = diag(1, 1, 2)

We shall verify this via direct calculation. We can quickly compute

P−1 =

1 0 0
0 1 0
0 1 1


Then

P−1AP =

1 0 0
0 1 0
0 1 1

1 0 0
0 1 0
0 1 2

1 0 0
0 1 0
0 −1 1


=

1 0 0
0 1 0
0 1 1

1 0 0
0 1 0
0 −1 2


=

1 0 0
0 1 0
0 0 2



Example 7.30

We shall show that the matrix

A =

(
2 1
0 2

)
∈ Mat22

is not diagonalisable. In this case we immediately see that there is only one eigenvalue, λ = 2,
with algebraic multiplicity sλ = 2. In order to compute the eigenspace Eλ we need to solve the
system of linear equations

2α+ β = 2α

2β = 2β

We have that

Eλ =

{(
t
0

) ∣∣∣ t ∈ R
}

=

〈(
1
0

)〉
Hence the geometric multiplicity dimEλ = 1 does not equal the algebraic multiplicity sλ = 2.
So by Theorem 7.27 we conclude that A is not diagonalisable.
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Corollary 7.31

Let A ∈ Matnn be a diagonalisable matrix with eigenvalues λ1, λ2, . . . , λn, counted with mul-
tiplicity. Then

det(A) = λ1λ2 · · ·λn

Proof. We know by Theorem 7.27 that there exists an invertible matrix P ∈ Matnn such that

P−1AP = diag(λ1, λ2, . . . , λn)

Writing B = diag(λ1, λ2, . . . , λn), we have that A = PBP−1. Hence

det(A) = det(PBP−1)

= det(P ) det(B) det(P−1)

= det(P ) det(P−1) det(B)

= det(B)

= λ1λ2 · · ·λn
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Chapter 8

Orthogonal and symmetric matrices

Chapter 7 considered matrices up to similarity. One of the main results, the Diagonalisation Theo-
rem 7.27, proved that if a matrix A has a basis of eigenvectors then it is similar to a diagonal matrix
P−1AP . In other words, there is (possibly) new basis with respect to which the linear map LA is
represented by a diagonal matrix – indeed, the new basis is simply any basis of eigenvectors, and the
matrix P simply has that basis as its columns.

If we now include dot product on Rn, we may ask whether the new basis can be chosen to be
orthonormal? This is a reasonable request: the initial standard basis is orthonormal, and we may
regard it as a good idea to preserve that. We prove such orthogonal diagonalisability in the special case
of symmetric matrices with distinct eigenvalues. The proofs in this chapter are not examinable.

8.1 Orthogonal matrices and orthonormal bases

We work in Rn with the usual scalar (dot) product as inner product.

Definition 8.1

A matrix P ∈ Matnn is orthogonal if and only if P T = P−1.

Remark

Observe that detP = 1 or −1 for an orthogonal matrix:

1 = det In = det(P−1P ) = det(P TP ) = det(P T ) det(P ) = det(P )2

since P−1 = P T and det(P T ) = det(P ).

Remark

Orthogonal matrices are really about geometry: for example, rotation and reflection matrices
are orthogonal. More precisely, the simple observation that for v, w ∈ Rn

Pv · Pw = vTP TPw = vTw = v · w

or, in words, that orthogonal matrices preserve dot product, implies at once that both lengths

||Pv|| = ||v||
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and the angle between vectors
∠PvPw = ∠vw

are preserved by orthogonal P .

In terms of the associated linear map LP : Rn → Rn preserves lengths and angles and so is a
Euclidean isometry.

Proposition 8.2

A matrix ∈ Matnn is orthogonal if and only if its rows r1, . . . , rn form an orthonormal basis.

Equivalently, P is orthogonal if and only if its columns c1, . . . , cn form an orthonormal basis.

Proof. The equation −1 = In with −1 =T is exactly the claim for rows, given that we are using
the usual dot product. (For columns, −1 = In proves the claim.)

Remark

Note that since (PQ)T = QTP T , we have that orthogonal matrices form a group. the Orthog-
onal group:

O(n) = {P ∈ Matnn | P is orthogonal}

By the observation that detP is 1 or −1 we have that

O(n) ⊂ SL(n) = {P ∈ Matnn | detP = 1 or − 1}

is a subgroup of the Special Linear group. They are evidently not equal, since there are shear
matrices (

1 2
0 1

)
∈ SL(n) \O(n)

8.2 Symmetric matrices

Definition 8.3

A matrix A ∈ Matnn is symmetric if and only if AT = A.

Proposition 8.4

Let A ∈ Matnn be a symmetric matrix. If λ, µ are distinct eigenvalues of A and v, w are
corresponding eigenvectors, then v · w = 0.

Proof. Since Av = λv and Aw = µw, we have

vTAw = vT (Aw) = vT (µw) = µvTw

Similarly we have wTAv = λwT v, which after transposing and using A = AT gives

vTAw = (wTAT v)T = (wTAv)T = (λwT v)T = λvTw
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Subtracting these two expressions gives

0 = (µ− λ)vTw

Since λ 6= µ and v · w = vTw, the result follows.

Corollary 8.5

Let A ∈ Matnn be a symmetric matrix. If A has n distinct eigenvalues λ1, . . . , λn ∈ R, then
there is an orthonormal matrix P such that P−1AP is diagonal.

Proof. Let v1, . . . , vn be eigenvectors for λ1, . . . , λn respectively. Without loss of generality, each
vi has length ||vi|| = 1: indeed the unit vector in the direction vi is still an eigenvector for λi. By
the proposition, v1, . . . , vn are mutually orthogonal, and so they form an orthonormal basis. Let
P be the matrix which has v1, . . . , vn as its columns. By Proposition 8.2, P is an orthonormal
matrix. The product P−1AP is diagonal by (the proof of) the Diagonalisation Theorem 7.27.

It is evidently not true that every symmetric matrix has a set of n distinct real eigenvalues (you can
write down diagonal matrices that do not have distinct diagonal entries, after all) but we can at least
show that all of its eigenvalues are real.

Example

The 2× 2 case is already familiar. If

A =

(
a b
b c

)
is a symmetric matrix, then cA(x) = x2 − (a + c)x − b2. This quadratic has discriminant
(a+ c)2 + 4b2 ≥ 0, so all its roots are real.

Proposition 8.6

Let A ∈ Matnn be a symmetric matrix. Then all the (complex) eigenvalues A lie in R.

The proof is a nice example of the value of working in vector spaces more generally. We work in the
vector space Cn of complex column vectors with scalars C (rather than R as we have throughout the
module). Note that RREF works for matrices with entries in C (or any other field) in exactly the same
way as it does for matrices with real entries.

Proof. Let λ ∈ C be any root of the characteristic polynomial cA(x) = det(A − xIn) (which is
the same polynomial whether we are thinking of Rn or Cn). If all such λ are real, then the proof
is complete, so suppose λ is not real.

As λ is not real, we would not usually look for an eigenvalue, since λ is not a scalar. The novelty
is that if we consider vectors in Cn, then there is a corresponding eigenvector v ∈ Cn: we simply
find any nonzero v ∈ ker(A − λIn), and we may calculate that kernel using RREF as ever. That
is, we have an equation

Av = λv (8.1)
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where the entries of A are real but λ and the entries of v may be complex. The result follows by
comparing the transpose of equation (8.1) with its complex conjugate.

First, if we transpose both sides of equation (8.1) we get vTAT = λvT , which is the same as

vTA = λvT

since A = AT is a symmetric matrix.

Second, if we take complex conjugate of every complex number in equation (8.1) (writing v for
the column vector of the complex conjugates of the entries of v), we have another equation

Av = λv

where A = A since A has real entries.

Combining these two equations gives

λvT v = (vTA)v = vT (Av) = vT (λv) = λvT v

Certainly vT v 6= 0. (To check: if v = (a1, . . . , an)T ∈ Cn then vT v = a1a1 + . . . + anan =
|a1|2 + . . . + |an|2 can only be zero if v = 0, which it is not as it is an eigenvector.) Therefore
cancelling vT v gives λ = λ, as required.

Example

Let

A =

(
0 1
1 0

)
which is a symmetric matrix. The eigenvalues λ = 1 and −1 are indeed real, and in fact are
distinct. We choose length 1 eigenvectors

1√
2

(
1
1

)
and

1√
2

(
1
−1

)
respectively. They are clearly orthonormal. Using these as the columns of the change of basis
matrix P gives

P =
1√
2

(
1 1
1 −1

)
which is orthogonal since P TP = I2, and we quickly check that

P−1AP =

(
1 0
0 −1

)
as the theorem claims.

Example

Let

A =

2 0 0
0 3 1
0 1 3


which is a symmetric matrix. The eigenvalues are λ = 2 (with multiplicity 2) and λ = −1 (with
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multiplicity 1). The key is that in this case there is a basis of eigenvectors. We can of course
make them length 1, and those corresponding to different eigenvalues are orthogonal, but the
key is that in the 2-dimensional eigenspace we may choose the two vectors orthonormal: in
general terms this is what Gram–Schmidt does for us, but in a simple concrete situation like
this we may work by bare hands as follows.

The eigenspaces are

ker

−2 0 0
0 −1 1
0 1 −1

 =

〈
1√
2

0
1
1

〉

and

ker

0 0 0
0 1 1
0 1 1

 =

〈1
0
0

 ,
1√
2

 0
1
−1

〉

Using those three vectors as the columns of a matrix P (in that order), you see at once that

P−1AP =

4 0 0
0 2 0
0 0 2


as the proof of the theorem shows.

Remark

In fact, symmetric matrices are diagonalisable by orthogonal matrices, but we need a little more
technology to prove this in complete generality.
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