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Introduction

0.1 Introduction

What is hyperbolic geometry and why study it?

Spaces of constant curvature Hyperbolic (also called non-Euclidean) ge-
ometry is the study of geometry on spaces of constant negative curva-
ture.

In dimension 2, surfaces of constant curvature are distinguished by
whether their curvature K is positive, zero or negative. Given such a
surface in R3, if K > 0 all points of such a surface X are on one side
of the tangent plane any the point; if K = 0 then there is always a line
in X contained in the tangent plane; and if K < 0 there are points of
X on both sides of any tangent plane. If the space is simply connected
and if K > 0, then it is a sphere (with K = 1/radius); if K = 0 it is
the Euclidean plane; and if K < 0 it is the hyperbolic plane, also called
2-dimensional hyperbolic space. Such surfaces look the same at every
point and in every direction and so ought to have lots of symmetries.

The geometry of the sphere and the plane are familiar; hyperbolic ge-
ometry is the geometry of the third case.

Hyperbolic space has many interesting features; some are similar to
those of Euclidean geometry but some are quite different. In partic-
ular it has a very rich group of isometries, allowing a huge variety of
crystallographic symmetry patterns. This makes the geometry both
rigid and flexible at the same time. Its properties and symmetries are
closely related to tree-like growth patterns and fractals, suggestive of
many natural biological objects like ferns and trees.

vi
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Historical importance Another way to describe hyperbolic geometry is to
say that is the geometry of space in which Euclid’s parallel axiom fails.
One way to state the parallel axiom is that for every line L, and point
P not on L, there is a unique line L′ through P which does not meet
L, even if extended infinitely far in both directions.

Historically, hyperbolic geometry had enormous importance. Attempts
to deduce the parallel axiom from Euclid’s other axioms led to many
developments within Euclidean geometry. Realisation slowly dawned
that the reason that all attempts to deduce the parallel axiom failed,
was that one could develop a consistent system of geometry which
was not Euclidean, in which the parallel axiom failed while the other
axioms remained true. This had enormous scientific and philosophical
importance because it showed that mathematically, there was nothing
absolute about Euclidean space.

Hyperbolic geometry and surfaces Any topological surface can be en-
dowed with a geometric structure. This means that one can find a
metric on the surface which in small regions looks like one of the three
above types of geometry, and such that the ‘overlap maps’ (c.f. the
definition of a manifold to understand this) are isometries of the ap-
propriate geometry. Thus a cylinder or a torus carries a Euclidean
structure while, as we shall see later in the course, every surface of neg-
ative Euler characteristic (in particular every closed surface of genus at
least 2) carries a hyperbolic structure. In fact, in all cases except the
sphere, the surfaces in question carry not one but many such metrics.

Being able to put a hyperbolic metric on a surface allows one to study
many features of the surface very precisely. This applies especially to
the study of diffeomorphisms on surfaces, where hyperbolic geometry
plays a crucial role.

Revolutionary work by William Thurston in the 1980’s opened up the
possiblity of a similar description of 3-manifolds. He showed that many
3-manifolds are endowed with a natural geometrical structures of one
of a few kinds, of which by far the most common is hyperbolic. He
conjectured that any topological 3-manifold could be cut into pieces on
the basis of topological information alone, such that each piece carries
one of 8 special geometries, among them hyperbolic. This geometrisa-
tion conjecture has now almost certainly been proved in consequence



INTRODUCTION viii

of the work of Perelman.

Thurston’s insights led to a great revolution in the study of hyperbolic
3-manifolds, making it a large and very active area of mathematics
in which spectacular progress has been made in recent years. Besides
Thurston, some of the leading names are: Agol, Bonahon, Brock, Ca-
nary, Gabai, Masur, Minsky, and Otal.

Connection with other parts of mathematics Hyperbolic geometry is
closely connected to many other parts of mathematics. Here are some:
differential geometry, complex analysis, topology, dynamical systems
including complex dynamics and ergodic theory, relativity, Diophantine
approximation and number theory, geometric group theory, Riemann
surfaces, Teichmüller theory.

In this course we will study two closely related models of hyperbolic
geometry, that is, spaces with constant curvature −1. These are the upper
half plane H = {z ∈ C : =z > 1} with the metric ds = |dz|/=z and the

unit disk D = {z ∈ C : |z| < 1} with the metric ds =
2|dz|

(1− |z|2)
. (Here

|dz| :=
√
dx2 + dy2.)

Exercise 0.1. From differential geometry, the curvature K of a Riemann
surface with metric ds2 = g1dx

2
1 + g2dx

2
2 is given by the formula

K = − 1√
g1g2

(
∂

∂x1

( 1√
g

1

∂
√
g

2

∂x1

)
+
( ∂

∂x2

1√
g

2

∂
√
g

1

∂x2

))
.

Verify that the curvature of the above metrics in both H and D is −1.

0.2 Models of hyperbolic geometry

Unlike the situation in spherical geometry, it is impossible to embed an in-
finite simply connected surface of constant negative curvature isometrically
into Euclidean 3-space. (This is a theorem of Hilbert, proved in 1901).1

Think of a kale leaf which crinkles up more and more as you go towards its
edge. Thus to visualize hyperbolic geometry, we have to resort to a model.

1Perhaps this is the reason for the historically late development of hyperbolic geometry.
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Figure 1: A crinkled kale
leaf

Figure 2: Stereographic
projection of the sphere to
the plane

You can think of this as similar to the projection of geometry on the
surface of a sphere by stereographic projection (or other map projection)
onto the plane. The projection introduces distortion so that either distance
or angles measurements, or both, do not look correct. Like stereographic
projection, the two models we will study preserve angles (are conformal) but
massively distort distance.

We are going to study two such projections or models which are in fact
almost equivalent: the upper half plane model H = {z ∈ C : =z > 1} with
the metric ds = |dz|/=z (also known as the Lobachevsky plane) and the unit

disk D = {z ∈ C : |z| < 1} with the metric ds =
2|dz|

(1− |z|2)
(also known as

the Poincaré disk). In both models:

Lines are arcs of circles (or lines) which meet ∂D or ∂H orthogonally. Notice
that in H such arcs must be semicircles with centres on R; in D such
an arc never has its centre on ∂D.

Angles The usual Euclidean angle.

Distance The infinitesimal form of the metric on H is ds = |dz|/=z and on
D is ds = 2|dz|/(1− |z|2).

The actual formula for distance between two points can be expressed
in terms of cross-ratio. If z1, z2, z3, z4 are distinct points in C then their
cross-ratio is defined as

[z1, z2, z3, z4] =
z1 − z2

z1 − z3

· z4 − z3

z4 − z2

.
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Now let P,Q be two points in D or H. You can prove by Euclidean
geometry that there is a unique (hyperbolic) line joining P to Q. Let
P ′, Q′ be the points where the extension of this line meets ∂D or ∂H,
so that the order along the line is P ′, P,Q,Q′. Then:

dD(P,Q) = log[P ′, Q, P,Q′] and dH(P,Q) = log[P ′, Q, P,Q′]

Isometries Poincaré (1881) realised that the isometries or distance pre-
serving bijections of these two models are exactly the linear fractional

transformations or Möbius maps z 7→ az + b

cz + d
(where a, b, c, d ∈ C)

which preserve D or H respectively. This makes it particularly easy to
study and compute with such maps. It turns out that they are also the
set of all conformal automorphisms of D or H. We shall review linear
fractional transformations in the next chapter.

Figure 3: A tiling of the hyperbolic plane, made by hyperbolically reflecting
in the sides of the white triangle whose sides are marked with red, blue and
green dots.

0.3 Other models of hyperbolic geometry

Here we just give very brief descriptions. Good references for this are [9, 14]

The hemisphere model Think of the unit disk D in R3 as contained in the
‘horizontal’ plane x0 = 0. Let S2 denote the unit sphere in R3. Stereo-
graphically project D from the south pole (−1, 0, 0) onto the northern
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hemisphere of S2. This transfers the geometry of D to geometry on
the hemisphere. The map is conformal or angle preserving (because
steroegraphic projection can be described as a product of inversions).
Geodesics are ‘vertical’ semicircles with centres on the plane x0 = 0
and orthogonal to ∂D.

The hyperboloid model In this model, hyperbolic space is geometry on a
‘sphere of radius i’. Consider R3 with the indefinite Lorentz metric

ds2 = −dx2
0 + dx2

1 + dx2
2,

associated to the quadratic form Q((x0, x1, x2)) = −x2
0 + x2

1 + x2
2. The

length of a vector x = (x0, x1, x2) is
√
Q(x).

The sphere of radius i about the origin is the set

H = {(x0, x1, x2) : Q(x) = −1}.

Restricted to H, the metric ds2 becomes a positive definite Riemanian
metric: you can check that any tangent vector to H has positive length.
(Suppose x ∈ H so that Q(x,x) = −1. Differentiating along any
path x(t) ∈ H gives Q(x, ẋ) = 0. In other words, a vector ẋ in
the tangent space at x is in the orthogonal complement of x with
respect to Q, and this orthogonal complement has signature +2.) H
is a hyperboloid with two components depending on the sign of x0.
Hyperbolic space is modelled on one sheet of this hyperboloid, usually
the upper sheet H+ where x0 > 0. (Thinking of the direction (1, 0, 0) as
‘vertical’.) The hyperbolic distance between two points x,y is given by
cosh d(x,y) = −Q(x,y). Geodesics in H+ are exactly the intersection
of planes through the origin with H+. There is a nice explanation of all
this in [9], starting with the easier case of ‘one dimensional hyperbolic
space’ and the Lorenz metric on R2.

The set of linear maps which preserve Q, (ie maps A : R3 −→ R3 such
that Q(Ax) = Q(x) for all x ∈ R3) is called O(2, 1). The group of (not
necessarily orientation preserving) isometries of H+ is the index two
subgroup of O(2, 1) of maps which carry H+ to itself, called the Lorentz
group. To see why the Minkowski model agrees with the previous ones,
one way is to compare the isometries, see eg [14].
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The Klein model The Klein model (first however introduced by Beltrami!)
is also a model in the disk, but now geodesics are Euclidean straight
lines. It can be obtained from the hyperboloid model as follows. Any
line in R3 through the origin O intersects H+ in at most one point.
The line also intersects the horizontal plane x0 = 1 in one point. This
defines a projection from H+ to the unit disk. Since a geodesic in H+

is the intersection of H+ with a plane through O, the geodesic projects
to a straight line in the Klein disk K. Thus geodesics in K are straight
lines. Isometries of H+ (elements of the Lorenz group) also induce
isometries of K. This means that geodesics in K look straight, while
on the other hand angles are distorted.

If K is placed as the equatorial disk inside the unit sphere in R3, then
Euclidean orthogonal projection in the direction of the vertical vector
(1, 0, 0) sends K to the upper hemisphere, providing a map from K to
the hemisphere model above.
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0.4 Comparison between Euclidean, spheri-

cal and hyperbolic geometry

Euclidean Spherical Hyperbolic

Basic givens Points, lines,
planes

” ”

Model Euclidean plane Surface of sphere D or H.

Lines Euclidean lines arcs of great cir-
cles

arcs orthogonal
to boundary

Axioms. For ex-
ample:

Any two distinct
points lie on a
unique line

” ”

Parallel lines through any
P /∈ L there is a
unique line not
meeting L

through P /∈ L
there is no line
not meeting L

through P /∈ L
there are in-
finitely many
lines not meet-
ing L

Angle sum of tri-
angle

π > π < π

Similar triangles equal angles
doesn’t imply
congruence

triangles with
equal angles
congruent

triangles with
equal angles
congruent

Circumference
of circle

2πr 2π sin r 2π sinh r

Area of circle πr2 4π sin2 r/2 4π sinh2 r/2

0.5 A Potted History

Thales, c. 600 bc Started the formalised study of geometry.

Euclid, c. 300 bc The axiomatic formulation of geometry. ‘Givens’ were
points, lines, straight lines, right angles etc.

Postulates:
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1. Any two points lie on a unique line.

2. Any straight line can be continued indefinitely in either direction.

3. You can draw a circle of any centre and any radius.

4. All right angles are equal.

5. The parallel postulate: If a straight line, crossing another two
straight lines L,L′, makes angles α, β with L,L′ on one side, and
if α + β < π, then L,L′ if extended sufficiently far meet on that
same side.

Attempts to prove the parallel postulate Starting from Greek times,
many attempts were made to deduce the parallel postulate from the
other axioms. It was shown to be equivalent to various other facts, for
example:

1. Euclid. The angle sum of a triangle is π.

2. Proclus, 410-485 ad. Suppose L is a line and P is a point not on
L. Then there exists a unique line L′ through P and parallel to
(ie not meeting ) L. (Sometimes called Playfair’s axiom, as in the
1795 edition of Euclid.)

Exercise 0.2. Show (i) and (ii) are equivalent to the parallel pos-
tulate.

3. ibn al-Haytham, c. 1000 ad. The locus of points equidistant from
a line is a line. (Discussed by Omar Khayyam, Iran, c. 1077)

4. Wallis, 1663. There exist similar triangles of different sizes.

5. Saccheri c.1733 and Lambert c.1766 explored many consequences
of the falsity of the parallel postulate, in attempts to prove it by
reduction ad absurdum.

6. Legendre (1752-1833) made what was probably the last attempt to
prove it. Klügel (1763) expressed doubts that it could be proved.

The failure of the parallel postulate 1. By 1816, Gauss was express-
ing the conviction that the parallel postulate couldn’t be proved.
Gauss (c. 1822), Bolyai (1829) and Lobachevsky (1826) indepen-
dently saw that they could develop a consistent geometry, so-called
non-Euclidean geometry, in which the parallel postulate fails but
the rest of Euclid’s axioms remain true.
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2. This led to a huge controversy, but gradually formulae and the
structure of this new geometry were developed.

3. Beltrami (1868) settled the question by exhibiting (a) surfaces in
R3 on which the geometry is ‘non-Euclidean’ and (b) models of
the new geometry within Euclidean geometry (including the disk
model in lectures). The conclusion is that if Euclidean geometry
is consistent, then so is this new one.

4. Klein (1872) proposed a much broader view of geometry as the
study of properties of a set invariant under a transformation group.
He called the new geometry hyperbolic as its formulae can be ob-
tained from those of spherical geometry by replacing trigonomet-
ric functions (cos, tan etc) by the hyperbolic functions (cosh, tanh
etc.) Klein also entered the philosophical debate and partly through
his work, the arguments about the ‘existence’ of non-Euclidean ge-
ometry were finally laid to rest.

Poincaré (c.1881) extended and refined Beltrami’s model, realising that its
isometries are just the linear fractional transformations from the disk
D to itself. He also extended the model to 3 dimensions.

In 1904, Poincaré made the connection between symmetry groups of
tessellations of the disk and the universal covering space of a surface
with covering maps.

Hyperbolic geometry and surfaces Dehn (1912), Nielsen (1924), Koebe
(1920’s) developed Poincaré’s ideas to use the existence of hyperbolic
structures on surfaces to study the fundamental groups of surfaces and
dynamics on surfaces. Hyperbolic geometry ideas were used for exam-
ple by Artin (1924) prove existence of a dense geodesic on a surface,
and by Hedlund and Hopf (1930’s) to show ergodicity of geodesic flows.
Connections with number theory and Diophantine approximation were
also developed.

1920’s-1950’s Various special cases of hyperbolic 3-manifolds were studied.

1950’s-1960’s Ahlfors and Bers revived interest in the groups of isome-
tries of 3-dimensional hyperbolic space because of its relation to the
work of Teichmüller on complex (conformal) structures on surfaces in
the 1940’s.
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Early 1970’s Some remarkable examples of hyperbolic structures 3-manifolds
were studied by Jørgensen and Riley. Marden systematically intro-
duced the notions of 3-dimensional topology into the study of hyper-
bolic 3-manifolds.

1975-85 The Thurston revolution. Thurston showed that very many 3-
manifolds have hyperbolic structures. His famous geometrization con-
jecture states that any 3-manifold can be cut, using topological data
alone, into finitely many pieces, each of which carry one of eight spe-
cial geometries, the most common of which is hyperbolic. Thurston
introduced an enormous number of beautiful new ideas and vast devel-
opments followed.

2000-2006 Developments of Thurston’s ideas resulted in the proofs of many
old conjectures on hyperbolic 3-manifolds. Perleman’s work led to a
proof of Thurston’s geometrization conjecture. The upshot is a virtu-
ally complete classification of geometric structures on 3-manifolds.

Figure 4: An internal veiw tiling of hyperbolic 3-space. Picture from the
movie ‘Not knot’, courtesy Charlie Gunn.



Chapter 1

Linear Fractional
Transformations

1.1 Linear fractional transformations

Good references for this chapter are [1], [2], [3] and [4].

Definition 1.1. A linear fractional transformation or Möbius map

is a map f : Ĉ = C ∪ ∞ −→ C ∪ ∞ given by the formula f(z) =
az + b

cz + d
where a, b, c, d ∈ C and ad− bc 6= 0.

Here Ĉ is the Riemann sphere identified with a sphere in R3 by stere-
ographic projection, see Figure 2 in the Introduction. For more detailed
discussion, see for example [3], [1] or [2].

Define

f(∞) = lim
|z|−→∞

f(z) = lim
|z|−→∞

az + b

cz + d
= lim
|z|−→∞

a+ b/z

c+ d/z
=
a

c
.

Note also that cz+d = 0 ⇐⇒ z = −d
c

, in which case az+b = −ad
c

+b 6= 0.

So we can define f(−d
c

) =∞.

Remark 1.2. To be rigourous, you have to replace z by 1/w in a neighbour-
hood of ∞ and to study the behaviour as w −→ 0.

1
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Such f is invertible, hence it is a bijection Ĉ −→ Ĉ. One easily calculates
that the inverse map is given by

f−1(z) =
dz − b
−cz + a

.

We can represent the coefficients of a Möbius map by the matrix A =(
a b

c d

)
∈ GL(2,C). It is easy to check that you can compose Möbius maps

by multiplying the matrices.
Observe that for any λ 6= 0, the maps

z 7→ az + b

cz + d
and z 7→ λaz + λb

λcz + λd

are the same function on Ĉ, while

(
a b

c d

)(
λ 0

0 λ

)
=

(
λa λb

λc λd

)
with λ 6= 0.

To fix the ambiguity, we can require that ad − bc = 1 which is achieved by
dividing all coefficients by

√
detA =

√
ad− bc. This still gives an ambiguity

of multiplication by ±1. Notice that to invert the map f(z) above you don’t
need to divide all coefficients by

√
detA =

√
ad− bc, as you would to invert

A.

Definition 1.3. A map f : Ĉ −→ Ĉ is called conformal or angle pre-
serving if, whenever smooth (C1) curves C1 and C2 on Ĉ meet at a point P
with (signed) angle θ (measured from C1 to C2), then f (C1) and f (C2) meet
at f(P ) with the same angle θ from f (C1) to f (C2).

In particular, a conformal map is necessarily orientation preserving.

Definition 1.4. We denote the set of all conformal bijections Ĉ −→ Ĉ by
Aut(Ĉ).

Proposition 1.5. Möbius maps are conformal or angle preserving.

Proof. This is true of any complex analytic map at any point z0 at which
f ′(z0) 6= 0. (Locally, the map expands by |f ′(z0)| and rotates by Arg f ′(z0).)

By computing, we see that f ′(z) =
ad− bc

(cz + d)2
6= 0 except at z = ∞. By

writing in terms of w = 1/z, you can also verify that f is conformal at
∞.
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Exercise 1.6. Complete the missing cases in the above proposition: Suppose
that f is a Möbius map for which f(∞) 6= ∞. Let w = 1/z and F (w) =
f(1/z). Show that F ′(w) = −1/(c + dw)2 and hence that F ′(0) 6= 0 unless
c = 0. Deal with this last case by considering G(w) = 1/F (w).

Thus any Möbius map belongs to Aut(Ĉ). Clearly Aut(Ĉ) is a group
under composition. The results above can be formalized as:

Proposition 1.7. The map F : GL(2,C) −→ Aut(Ĉ) defined by

F :

(
a b

c d

)
7→
(
f(z) =

az + b

cz + d

)
is a homomorphism with kernel

KerF =

{(
λ 0

0 λ

)
: λ ∈ C∗

}
.

Proof. Saying that F is an homomorphism just means that we can compose
Möbius maps by multiplying matrices. (Exercise: Check this.)

To find the kernel:

az + b

cz + d
≡ z ⇐⇒ cz2 + (d− a)z + b ≡ 0 ⇐⇒ c = b = 0, d = a.

A much deeper fact is that the map F is surjective, that is, that every
conformal bijection of Ĉ can be represented by a Möbius map:

Theorem 1.8. The map F : GL(2,C) −→ Aut(Ĉ) defined above is a surjec-
tion.

Proof. This requires Liouville’s theorem and other results from complex anal-
ysis, see Example sheet 1, [3] (p. 9) or [4] (p. 5).

Usually, to avoid the ambiguities in of representation by matrices, we
normalise Möbius maps so their coefficients are in

SL(2,C) = {A ∈ GL(2,C) : det(A) = 1} .
As above, this can be achieved by dividing all coefficients by

√
det(A). This

still leaves the ambiguity of multiplication by ±1. Defining PSL(2,C) =
SL(2,C)/± I we have:
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Corollary 1.9 (Normalisation). (1) Any T ∈ Aut(Ĉ) can be represented by

a matrix

(
a b

c d

)
∈ SL(2,C).

(2) Aut(Ĉ) ∼= PSL(2,C).

Proof. (1) By Theorem 1.8, any T ∈ Aut(Ĉ) can be represented by M =(
a b

c d

)
∈ GL(2,C). Let ∆ = det(M) = ad − bc. The matrices M

and 1√
∆
M =

(
a√
∆

b√
∆

c√
∆

d√
∆

)
have the same image under F in Aut(Ĉ), and

det( M√
∆

) = 1.

(2) The obvious map SL(2,C) −→ Aut(Ĉ) has kernel SL(2,C) ∩ KerF =
±I.

1.1.1 Cross-ratio and transitivity of Aut(Ĉ)

The group Aut(Ĉ) includes some especially simple transformations:
(1) translations z 7→ z + t where t ∈ C;
(2) rotations around a ∈ C: z 7→ eiθ(z − a) + a;
(3) similarities z 7→ λz with λ > 0. (This is an expansion if λ > 1 and a
contraction if λ < 10.)

These transformations all fix ∞. It also includes:
(4) inversion z 7→ 1/z which interchanges 0 and ∞.

Exercise 1.10. By writing

T (z) =
az + b

cz + d
=
a

c
− 1

c(cz + d)
,

show that any T ∈ Aut(Ĉ) is a composition of the above four types.

Definition 1.11. A group G is said to act transitively on a space X if,
given two points x0 and x1 in X, there exists g ∈ G such that g(x0) = x1. It
acts freely if for all x0 ∈ X, g(x0) = x0 implies g = id for all x0 ∈ X.

Exercise 1.12. Use the above transformations to show that Aut(Ĉ) acts
transitively but not freely on Ĉ. Now do the same for ordered pairs of distinct
points (z1, z2) ∈ Ĉ.
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Proposition 1.13. Aut(Ĉ) acts transitively and freely on ordered triples of
distinct points in Ĉ. More precisely, given two ordered sets of distinct points
(z2, z3, z4) and (w2, w3, w4) in Ĉ3, there exists a unique T ∈ Aut(Ĉ) such that
T (zi) = wi for i = 2, 3, 4.

Proof. • Existence: First, we prove existence in the case (w2, w3, w4) =

(0,∞, 1). Denote by T(z2,z3,z4) the transformation T (z) =
z − z2

z − z3

· z4 − z3

z4 − z2

.

Check that T(z2,z3,z4) maps (z2, z3, z4) 7→ (0,∞, 1). In the general case the
transformation T we need is obtained by composing T(z2,z3,z4) and T−1

(w2,w3,w4),

that is T = T−1
(w2,w3,w4) ◦ T(z2,z3,z4).

• Uniqueness : First we prove that, given S ∈ Aut(Ĉ) such that S(0) =

0, S(∞) = ∞ and S(1) = 1, then S = id. Let S(z) =
az + b

cz + d
. If S(0) =

b/d = 0 and S(∞) = a/c = ∞, then b = c = 0. If S(1) =
a+ b

c+ d
=
a

d
= 1,

then a = d. Since we may assume that det

(
a b

c d

)
= 1, this gives ad = 1,

so S = id.
Now suppose there were two transformations T, T ′ such that (z2, z3, z4) 7→

(w2, w3, w4). Then T(w2,w3,w4)TT
−1
(z2,z3,z4), T(w2,w3,w4)T

′T−1
(z2,z3,z4) both fix (0,∞, 1)

and the result follows from the above.

Definition 1.14. Let z1, z2, z3, z4 be an ordered set of distinct points in Ĉ.
The cross-ratio of z1, z2, z3, z4 is defined by

[z1, z2, z3, z4] =
z1 − z2

z1 − z3

· z4 − z3

z4 − z2

∈ C.

(Why is [z1, z2, z3, z4] 6=∞ for any z1, z2, z3, z4?) The map T(z2,z3,z4) used
in the proof of Proposition 1.13 can be nicely expressed using the cross-ratio:

T(z2,z3,z4)(z) =
z − z2

z − z3

· z4 − z3

z4 − z2

= [z, z2, z3, z4].

Corollary 1.15. The cross-ratio is invariant under Aut(Ĉ), that is if T ∈
Aut(Ĉ), then [z1, z2, z3, z4] = [T (z1), T (z2), T (z3), T (z4)].

Proof. Method 1: Let T (z) =
az + b

cz + d
. The result follows by a direct calcula-

tion substituting in the two sides.
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Method 2: Define S ∈ Aut(Ĉ) by the formula S(z) = [z, z2, z3, z4]. Then
S sends z2 7→ 0, z3 7→ ∞, z4 7→ 1 and by Proposition 1.13, S is the unique
element of Aut(Ĉ) with this property.

Now write wi = T (zi) for i = 2, 3, 4 and let W (z) = [z, w2, w3, w4]. So W
sends w2 7→ 0, w3 7→ ∞, w4 7→ 1, hence W ◦T sends z2 7→ 0, z3 7→ ∞, z4 7→ 1,
so W ◦ T = S. Now W ◦ T (z1) = S(z1) = [z1, z2, z3, z4] while on the other
hand, W ◦ T (z1) = [T (z1), w2, w3, w4] = [T (z1), T (z2), T (z3), T (z4)].

Remark 1.16. This crucial property of invariance of cross-ratio will allow
us to define hyperbolic distance. Notice that the Euclidean distance between
2 points is invariant under translations or rotations and that the ratio of the
distances between 3 points is invariant under Euclidean similarities.

Lemma 1.17. Four distinct points z1, z2, z3, z4 ∈ Ĉ are concyclic if and only
if [z1, z2, z3, z4] ∈ R.

Remark 1.18. (i) Here “concyclic” includes “collinear”, since we can view
a line as a circle through ∞ ∈ Ĉ. (Lines through ∞ are exactly the stereo-
graphic projections of great circles through the north pole.)
(ii) Permuting the order of the points z1, z2, z3, z4 ∈ Ĉ may change [z1, z2, z3, z4],
but it will not change the fact that [z1, z2, z3, z4] ∈ R, see Exercise 1.20.

Proof of Lemma 1.17. Suppose that z1, z2, z3, z4 ∈ Ĉ are concyclic, then (up
to reflection) they must be arranged in one or other of the configurations
in Figure 1.1, in which the angles are found by using elementary geometry

in circles. For the configuration shown on the left: Arg
(z1 − z2

z1 − z3

)
= −θ =

Arg
(z4 − z2

z4 − z3

)
. Hence

Arg
(z1 − z2

z1 − z3

· z4 − z3

z4 − z2

)
= −θ + θ = 0⇒ [z1, z2, z3, z4] > 0.

For the configuration on the right: Arg
(z1 − z2

z1 − z3

)
= θ and Arg(

z4 − z2

z4 − z3

)
=

−(π − θ). Hence

Arg
(z1 − z2

z1 − z3

· z4 − z3

z4 − z2

)
= θ + (π − θ) = π

from which [z1, z2, z3, z4] < 0.
The converse is similar.
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z3z1

z4

z2

θ

θ
z3 z2

z1

z4

π − θ

θ

Figure 1.1: Concyclic points have real cross ratio.

Corollary 1.19. Suppose T ∈ Aut(Ĉ). The T maps circles and lines to
circles and lines.

Proof. Method 1: The result follows immediately from Corollary 1.15 and
Lemma 1.17.
Method 2: By direct calculation. The equation of a circle centre a radius r is
(z−a)(z̄−ā) = r2. Check that this can be rearranged as |z|2+Bz+B̄z̄+C = 0
where |B|2 − C > 0, and that conversely any equation in this second form
is a circle. Likewise show that a line can be written λ(z − a) = λ(z − a) or
equivalently Bz + B̄z̄ + C = 0. Using Exercise 1.10, show you have only to

check the calculation for the transformation z 7→ 1

z
, which is easy.

Exercise 1.20 (Effect of permutation on the cross-ratio). Check that if
χ = [z1, z2, z3, z4], then by permuting the zi we obtain exactly the six val-
ues χ, 1

χ
, 1− χ, 1

1−χ ,
χ
χ−1

, χ−1
χ

.

Exercise 1.21 (Orientation reversing (anticonformal) automorphisms of Ĉ).

One such map is z 7→ z̄. Check that the most general such map is z 7→ az̄ + b

cz̄ + d
.

Prove that any such map takes [z1, z2, z3, z4] to [z1, z2, z3, z4] and maps circles
to circles.
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1.2 Automorphisms of the unit disk D
Let D denote the unit disk {z ∈ C : |z| < 1} and set

Aut(D) =
{
T ∈ Aut(Ĉ) : T (D) = D

}
.

Notice that any T ∈ Aut(Ĉ) is automatically a bijection from D to itself. We
are interested in Aut(D) because, as we shall see in the next chapter, it can
be viewed as the set of orientation preserving rigid motions of the Poincaré
disk model of hyperbolic space D with the hyperbolic metric.

Theorem 1.22. The set Aut(D) is the subgroup of Aut(Ĉ) of Möbius maps
of the form

f(z) =
eiθ(z − a)

1− āz with eiθ ∈ S1, a ∈ D, (1.1)

or equivalently of the form

f(z) =
az + b

b̄z + ā
with |a|2 − |b|2 = 1. (1.2)

Exercise 1.23. Check that functions of type (1.1) form a group. Also explain
why the forms (1.1) and (1.2) are equivalent.

Remark 1.24. The set{(
a b

c d

)
∈ GL(2,C) : d = ā, c = d̄, |a|2 − |b|2 = 1

}

is called SU(1, 1).

Proof. Suppose that f is of the form (1.1). We check:

|f(z)| < 1 ⇐⇒ (z−a)(z̄− ā) < (1− āz)(1−az̄) ⇐⇒ (1− zz̄)(1−aā) > 0.

So if |a| < 1, then |f(z)| < 1 ⇐⇒ |z| < 1. Hence f restricts to a bijective
map D −→ D, that is f ∈ Aut(D).

Conversely, to show that any conformal automorphism g : D −→ D is

of this form, first let f(z) =
(z − a)

1− āz where a = g−1(0). Then f(a) = 0, so
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g ◦ f−1(0) = 0 and g ◦ f−1 is a conformal automorphism. By the Schwarz
Lemma from Complex Analysis, if h = g ◦ f−1 : D −→ D and h(0) = 0,
then |h(z)| 6 |z| and |z| = |h−1 ◦ h(z)| 6 |h(z)|. So |h(z)| = |z|. From
Schwarz’ Lemma again, it follows that h(z) = eiθz for some θ ∈ [0, 2π). Thus
g ◦ f−1(z) = eiθz and the result follows.

1.3 Automorphisms of the upper half plane

The upper half plane H is by definition {z ∈ C : =(z) > 0}. As we shall see

in Chapter 2, Aut(H) =
{
T ∈ Aut(Ĉ) : T (H) = H

}
is the set of orientation

preserving rigid motions of the upper half plane model of hyperbolic space.
To move from D to H we introduce the Cayley transformation

C : z 7→ z − i
z + i

= w.

Lemma 1.25. The Cayley transformation induces a conformal automor-
phism H −→ D.

Proof. We check easily that C(∞) = 1, C(1) = −i, C(0) = −1. It follows
that C maps the line R ∪∞ to the circle through 1,−i,−1, that is, to ∂D.
Thus C must map the two connected components of Ĉ \ R ∪∞ to the two
connected components of Ĉ \ ∂D. To see which goes to which, note that
C(i) = 0 so H must map to D as claimed.

Exercise 1.26. Check directly that if z = u + iv ∈ H and w = C(z) then
w ∈ D, and conversely.

Theorem 1.27. The set Aut(H) of analytic bijections H −→ H is the sub-
group of Aut(Ĉ) of Möbius maps of the form:

f(z) =
az + b

cz + d
with a, b, c, d ∈ R, ad− bc > 0. (1.3)

Normalising, this shows that Aut(H) = SL(2,R)/± I = PSL(2,R).

Proof. First we first check that any map f of the form (1.3) is a bijection

of H to H. We compute that =f(z) =
=z(ad− bc)

(cz + d)2
. Since by assumption

ad− bc > 0 this means that f(H) ⊂ H. Now since f is a bijection from Ĉ to
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itself, to see that it is also a bijection of H to H, we just have to check it is
surjective. This follows since by the same reasoning as before, f−1(H) ⊂ H.
So f ∈ Aut(H).

Now let us prove the final statement. Since ad − bc > 0, we have

√
ad− bc ∈ R. So if we normalise the matrix

(
a b

c d

)
∈ GL(2,R) by dividing

each coefficient by
√
ad− bc, we see that any map f of the form (1.27) is

the image of under F (see Theorem 1.8) of a map in SL(2,R). So Aut(H) ⊃
SL(2,R)/± I = PSL(2,R).

Finally we have to show that an arbitrary F ∈ Aut(H) is of the above

form. Defining h : z 7→ z −<F (i)

=F (i)
we find h ◦ F ∈ Aut(H) and h ◦ F (i) = i.

(Why is h ∈ Aut(H)?)

Now composing with a rotation g : z 7→ cos(θ)z + sin(θ)

− sin(θ)z + cos(θ)
, you obtain a

function T = g ◦ h ◦ F such that T (i) = i and T ′(i) = 1. Then check that
T̂ = C ◦T ◦C−1 ∈ Aut(D), T̂ (0) = 0, T̂ ′(0) = 1. Using form (1.1) of Theorem
1.22, that this implies that T̂ = id and so T = id. Thus F = h−1 ◦ g−1 and
you can now easily verify that F is of the form (1.3).

Remark 1.28. The above theorem can also be proved by conjugating to D
using the Cayley transform. The main point is to verify that any T ∈ Aut(D)
conjugates to some element in SL(2,R). Write

T =

(
a b

b̄ ā

)
with |a|2 − |b|2 = 1.

As a matrix the Cayley transform C : H −→ D is written

C =

(
1/
√

∆ −i/
√

∆

1/
√

∆ i/
√

∆

)
where ∆ = 2i is the normalising factor which gives detC = 1. Calculating
we find eventually that

C−1TC =

(
<a+ <b =a−=b
−=a−=b <a−<b

)
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which one easily sees (using |a|2 − |b|2 = 1) is in SL(2,R).
Now given any S ∈ Aut(H) we have CSC−1 ∈ Aut(D) so that CSC−1 can

be equated with some T as above. We have just calculated that C−1TC =
C−1CSC−1C = S ∈ SL(2,R) and we are done.



Chapter 2

Basics of hyperbolic geometry

2.1 Metrics, geodesics and isometries.

We shall study the upper half plane and unit disk models of hyperbolic space
at the same time. The models are:

(i) H = {z ∈ C : =(z) > 0} with the metric ds2 =
dx2 + dy2

y2
;

(ii) D = {z ∈ C : |z| < 1} with the metric ds2 =
4(dx2 + dy2)

(1− (x2 + y2))2
.

Proposition 2.1. With the above metrics, both H and D are spaces of con-
stant negative curvature −1.

Proof. We compute using basic formulae from differential geometry. If ds2 =
g1dx

2 + g2dy
2 is a Riemannian metric on a surface, then the curvature K is

given by the formula:

K =
−1√
g1g2

[
∂

∂x

(
1√
g1

∂

∂x

√
g2

)
+

∂

∂y

(
1√
g2

∂

∂y

√
g1

)]
.

Applying this to our metric on H we have g1 = g2 = g = 1/y2, so that

∂

∂x

√
g = 0,

∂

∂y

√
g = − 1

y2
,

1√
g

∂

∂y

√
g = −1

y

∂

∂y

(
1√
g

∂

∂y

√
g

)
=

1

y2

and finally

K = −1

g
· ∂
∂y

(
1√
g

∂

∂y

√
g

)
= −1.

Exercise: Make a similar computation in D.

12
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The expression for ds gives us the length of an arc γ in H by the formula
l(γ) =

∫
γ
ds. More precisely, if γ : [t0, t1] −→ H with γ(t) = x(t) + iy(t) ∈ H,

then

l(γ) :=

∫ t1

t0

1

y(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

For more details about this, see books on differential geometry or [6] Ch. 3.
We shall be doing some explicit examples below.

2.1.1 Geodesics and isometries

The distance dD or dH between two points P,Q is defined to be inf l(γ) where
the infimum is taken over all paths γ joining P to Q.

Definition 2.2. A path γ from z0 to z1 is a geodesic if it locally minimises
distances.

Notice that in general a path may locally minimise distance without ac-
tually giving the minimum. For example, there are in general two geodesics
joining any two points on a sphere (corresponding to the two different ways
of going round the great circle from one point to the other). Both routes are
geodesic but unless the points are diametrically opposite, one is shorter than
the other.

As we shall see, in hyperbolic space there is only one geodesic arc between
any two points, so geodesics do automatically minimise distance. First we
prove:

Proposition 2.3. (i) Vertical lines are geodesics in H. Moreover if b > a,
then dH(ai, bi) = log b/a.

(ii) Radial lines are geodesics in D. In particular dD(0, a) = log

(
1 + a

1− a

)
.

Proof. (i) Consider any path γ joining ai and bi on the imaginary axis iR.
(The proof is the same for any other vertical line.) Then

l(γ) =

∫ y=b

y=a

1

y(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt >
∫ b

a

1

y(t)

√(
dy

dt

)2

dt

=

∫ b

a

1

y

dy

dt
dt =

∫ b

a

dy

y
= [log y]ba = log

(
b

a

)
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bi

ai

0

γ

Figure 2.1: An arc γ joining two
points on the imaginary axis in H.

a b

γ

Figure 2.2: An arc γ joining two
points on the horizontal radius in
D.

with equality if and only if γ is the vertical line (Why?). This argument
shows that the vertical line from ia to ib actually minimises the distance,
both locally and globally, so we deduce that

dH(ai, bi) = log b/a.

(ii) Take polar coordinates (r, θ) in D and recall that dx2 + dy2 = dr2 +
r2dθ2. Then

l(γ) =

∫ b

a

2

1− r2

√(
dr

dt

)2

+ r

(
dθ

dt

)2

dt >
∫ b

a

2

1− r2
dr

=

∫ b

a

(
1

1− r +
1

1 + r

)
dr =

[
log

(
1 + r

1− r

)]b
a

.

In particular we deduce as in (i) that dD(0, a) = log

(
1 + a

1− a

)
.

The boundary at infinity

It follows from Proposition 2.3 that for any point x + i ∈ H on the same
horizontal level as i, we have dH(x+ i, x+ it) = − log t −→∞ as t −→ 0. In
other words, the distance from x+ i to the point x ∈ R vertically below it is
infinite. For this reason, R̂ = R ∪∞ is called the boundary at infinity of H,
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2i

i

i
2

i
4
i
8

0

d

d

d

d

Figure 2.3: Equally spaced horizontal lines in H appear to get exponentially
closer as we approach the real axis.

written ∂H. Point on ∂H are sometimes called ideal points. Figure 2.3, which
shows equally spaced horizontal levels in H, illustrates the infinite distance
from a point in H to the boundary.

In the disk D, set R = dD(0, r). From the formula in Proposition 2.3 we

get eR =
1 + r

1− r . Then

r =
eR − 1

eR + 1
= tanh

R

2
. (2.1)

Thus
R −→∞ ⇐⇒ r −→ 1

and we similarly call ∂D the boundary at infinity of D.

Exercise 2.4. Prove that concentric circles centre O ∈ D which are at equal
hyperbolic distance apart become exponentially clese together in the Euclidean
metric.

Isometries

Before we find the other geodesics in H and D, we first investigate isometries
in the two models. Formally, a map f : H −→ H is an orientation preserving
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isometry of H if it is differentiable (as a function R2 −→ R2), if detDf(z) >
0 ∀z ∈ H, and if

d(f(z1), f(z2)) = d(z1, z2) for all z1, z2 ∈ H.

The set of all orientation preserving isometries of H is denoted Isom+(H).
The set of orientation preserving isometries of D, Isom+(D), is defined simi-
larly.

Recall from Chapter 1 that Aut(H) ∼= PSL(2,R) and Aut(D) ∼= PSU(1, 1)
are the subgroups of linear fractional transformations which map H and D
to themselves respectively.

Proposition 2.5. The groups Aut(H) and Aut(D) act by isometries on H,D
respectively.

Proof. (i) By Theorem 1.27, if T ∈ Aut(H) then T (z) = w =
az + b

cz + d
with

a, b, c, d ∈ R, ad − bc = 1. Recall that =w =
=z

|cz + d|2 . (This means that

if z ∈ H, then T (z) ∈ H.) Now we also compute that dw =
dz

(cz + d)2
and

apply the change of variable formula. Let T : H −→ H defined by T (z) = w.
So

l (T (γ)) =

∫
T (γ)

|dw|
=w =

∫
γ

|cz + d|2
=z · |dz|

|cz + d|2 = l(γ).

See [6] or basic differential geometry books for more details.

(ii) By Theorem 1.22, if T ∈ Aut(D) then T (z) = w =
eiθ(z − a)

1− āz with

eiθ ∈ S1 and a ∈ D. Then

dw =
eiθ[1− |a|2]dz

(1− āz)2

and

1− |w|2 = 1−
∣∣∣∣(z − a)

1− āz

∣∣∣∣2 =
(1− |z|2)(1− |a|2)

|1− āz|2 .

So
dw

1− |w|2 =
dz

1− |z|2 .

Now you can use the change of variable formula as before.
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After we have discussed hyperbolic circles, we shall prove in Theorem 2.11
that in fact

Isom+(H) ∼= PSL(2,R) and Isom+(D) ∼= PSU(1, 1).

To avoid proving many different facts twice, as in the above theorem, we
can use the Cayley transform which we introduced at the end of Chapter 1.

Proposition 2.6. The Cayley transformation C : H −→ D, defined by

z 7→ z − i
z + i

,

is an isometry from H −→ D.

Proof. We already showed in Lemma 1.25 that C is a bijection between H

and D. Let z = C−1(w) =
i(w + 1)

1− w . Then

dz

dw
=

2i

(1− w)2
, =z = =

[
i(w + 1)

1− w

]
= =

[
i(w + 1)(1− w̄)

|1− w|2
]

=
1− |w|2
|1− w|2 .

So
|dz|
=z =

2|dw|
|1− w|2 ·

|1− w|2
1− |w|2 =

2|dw|
1− |w|2 .

The result follows using the change of variable formula as in the proof of
Proposition 2.5.

Exercise 2.7. Explain why Proposition 2.6 gives an alternative proof of
Proposition 2.5 (ii) above.

Geodesics

Now we are in a position to find all the other geodesics besides the vertical
lines and radii we discussed above. Geodesics are described in the following
proposition, illustrated in Figure 2.4.

Proposition 2.8. (i) Let P,Q ∈ H. If <P = <Q then the geodesic from P
to Q is the vertical line from P to Q, otherwise it is the arc of circle, with
centre on R ∪∞ = ∂H, joining P to Q.
(ii) Let P,Q ∈ D. If P,Q are on the same diameter then the geodesic from
P to Q is the Euclidean line segment joining them, otherwise it is the arc of
circle, orthogonal to S1, joining P to Q.
In all cases, the geodesic from P to Q is unique.
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Proof. The first thing to notice is that an isometry carries a geodesic to a
geodesic, so throughout the proof we use isometries to move objects into a
convenient position.

P
Q C

PQ

C

Figure 2.4: Geodesics joining points P,Q in H and D.

(i) Let η < ξ be the endpoints of the semicircle C, with centre on R = ∂H,

joining P to Q (as described in the figure) and let T : z 7→ z − ξ
z − η . Then

T ∈ Aut(H) because det

(
1 −ξ
1 −η

)
= ξ − η > 0. Moreover T carries the

semicircle C to the imaginary axis because T (ξ) = 0, T (η) =∞ and because
elements of Aut(H) preserve circles and angles. Hence, since the imaginary
axis T (C) is the unique geodesic from T (P ) to T (Q), C must be the unique
geodesic from P to Q.
(ii) One way to prove this is to use the Cayley transformation which maps
circle in circles and preserves angles. (Do this!) Alternatively one can make
an argument similar to the one just seen. To see there is a circle C as required,

consider the transformation T : z 7→ z − P
1− zP̄ ∈ Aut(D) which carries P to

O. Then let C ′ be the unique diameter joining O and T (Q) and define
C = T−1(C ′).

Proposition 2.9. (i) The group Isom+(H) (resp. Isom+(D)) acts transi-
tively on equidistant pairs of points in H (resp. ∂D).
(ii) The group Isom+(H) (resp. Isom+(D)) acts transitively on ordered triples
in ∂H (resp. ∂D).
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Proof. We will do the proof in H. To prove the result in D you can either
make direct calculations or apply the Cayley transformation.
(i) We have to show that if P, P ′, Q,Q′ ∈ H with dH(P, P ′) = dH(Q,Q′), then
there exists an isometry T ∈ Isom+(H) such that T (P ) = P ′ and T (Q) = Q′.

It will be sufficient to prove this for the case in which Q = i and Q′ =
i · edH(P,P ′). (Why?) Let S1 be the map used in the previous proposition
which maps the circle C to the imaginary axis.

Now let S2 be the map z 7→ z/a which maps the imaginary axis to itself
sending ai to i, so in particular S2S1(P ) = i. Since S2S1 is an isometry we
have dH(S2S1(P ), S2S1(P ′)) = dH(P, P ′), so that dH(i, S2S1(P ′)) = dH(P, P ′)
and hence S2S1(P ′) = ie±dH(P,P ′).

If S2S1(P ′) = i · edH(P,P ′) = Q′ we are done taking T = S2S1. Other-
wise, apply S3 : z 7→ −1/z which fixes Q = i and takes it to i/t for any

t > 0. (Note that S3 =

(
0 −1

1 0

)
∈ SL(2,R).) Then S3S2S1(P ) = Q and

S3S2S1(P ′) = Q′ so we are done.

(ii) Say ξ1, ξ2, ξ3 ∈ R ∪∞. The map

T : z 7→ [z, ξ1, ξ2, ξ3] =
z − ξ1

z − ξ2

· ξ3 − ξ2

ξ3 − ξ1

carries ξ1 7→ 0, ξ2 7→ ∞, ξ3 7→ 1. Now detT =
(ξ3 − ξ2)(ξ1 − ξ2)

(ξ3 − ξ1)
, so detT > 0

if and only if the two triples (0,∞, 1) and (ξ1, ξ2, ξ3) have the same cyclic order
on R̂. Then we can normalize to get T ∈ SL(2,R).

Hyperbolic circles

Let C(z0, ρ) be the hyperbolic circle in D with centre z0 ∈ D and hyperbolic
radius ρ. Since the formula for distance in D is clearly symmetric under
rotation about 0 ∈ D, it follows from the formula (2.1) that C(0, ρ) coincides
with the Euclidean circle with centre 0 and Euclidean radius r = tanh(ρ/2).

Now consider C(z0, ρ). The isometry T (z) =
z − z0

1− z̄0z
carries z0 to 0.

Since isometries preserves hyperbolic circles, it follows that T (C(z0, ρ)) =
C(0, ρ) and so C(z0, ρ) = T−1(C(0, ρ)). Since T carries Euclidean circles to
Euclidean circles, C(z0, ρ) is also a Euclidean circle. Notice however that the
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hyperbolic centre of C(z0, ρ) does not in general coincide with the Euclidean
centre.

Exercise 2.10. Prove that hyperbolic disks are hyperbolically convex. (To
say that a set X ⊂ H is hyperbolically convex means that given x, y ∈ X then
the geodesic from x, y is also in X.)

Armed with these facts about circles, we can now prove that Möbius maps
give all the orientation preserving isometries of D and H.

Theorem 2.11.

Isom+(H) = Aut(H) Isom(D) = Aut(D).

Proof. From Proposition 2.5 we already know that

Isom+(H) ⊃ Aut(H) Isom(D) ⊃ Aut(D).

Suppose T ∈ Isom+ H. By composing with a suitable element of SL(2,R) as
in the proof of Proposition 2.9 (i), we may assume that T fixes two points
P, P ′ on the imaginary axis iR. Now let Q ∈ H. Since d(P,Q) = d(P, T (Q)),
the point T (Q) lies on the circle radius d(P,Q) centre P . Likewise T (Q)
lies on the circle radius d(P ′, Q) centre P ′. These two circles are also Eu-
clidean circles, they intersect in precisely two points, one on each side of the
imaginary axis. Clearly, one of these two points is Q. Since T preserves
orientation, T (Q) must be on the same side of the imaginary axis as Q and
so T (Q) = Q (why?) and hence T = id. The result in D is similar, or use
the Cayley transform.

Remark 2.12. From the above discussion it is easy to deduce:
(i) T ∈ Isom+(D) is differentiable.
(ii) Every orientation reversing element in Isom−(D) is the composition of a
reflection z 7→ z̄ with an element in Isom+(D).

More formulae for distance

There are several useful ways of writing down the distance between two points
without having to integrate along arcs.
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1. Cross-ratio form Recall from Chapter 1 that SL(2,R) preserves cross-
ratio. Now we shall see that it can be used to measure distance.

Proposition 2.13.

dH(P,Q) = log[P ′, Q, P,Q′] and dD(P,Q) = log[P ′, Q, P,Q′]

where P ′ and Q′ are the endpoints on ∂H or ∂D of the geodesic that joins P
to Q, as shown in Figures 2.5 and 2.6. [Note the importance of the order.]

Proof. Suppose that T ∈ Isom+(H). We know that T is an isometry of H and
preserves cross-ratio. This implies that it maps the geodesic through P,Q to
the geodesic through T (P ), T (Q), and also that it maps the two endpoints
of [P,Q] on R̂ = R ∪∞ to the endpoints of [T (P ), T (Q)] preserving order.
Thus it is enough to check for points P and Q on the axis iR. (Why?) If
P = i and Q = ai with a ∈ R, then P ′ = 0 and Q′ =∞. In that case

dH(P,Q) = log a

and

[P ′, Q, P,Q′] =
0− ai
0− i ·

∞ − i
∞− ai = a,

as we wanted to prove.
Now use the Cayley transformation to prove the formula in D.

2. A distance formula in H

A very useful formula for calculating distance in H is:

Proposition 2.14. Given two points z1, z2 ∈ H :

cosh dH(z1, z2) = 1 +
|z1 − z2|2
2=z1=z2

.

Proof. To prove this formula it is enough to check that both sides are in-
variant under isometries and then to check that the formula works when
z1, z2 ∈ R. All of these are easy to do.
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P Q

P ′ Q′

Figure 2.5: Cross ratio form of
the distance in H

Q

P

Q′

P ′

Figure 2.6: Cross ratio form of
the distance in D

This formula can be arranged in other ways which are sometimes useful:

dH(z1, z2) = ln
|z1 − z̄2|+ |z1 − z2|
|z1 − z̄2|+ |z1 − z2|

; sinh(dH(z1, z2)/2) =
|z1 − z2|

2(=z1=z2)
1
2

;

cosh(dH(z1, z2)/2) =
|z1 − z̄2|

2(=z1=z2)
1
2

; tanh(dH(z1, z2)/2) =
|z1 − z2|
|z1 − z̄2|

.

It is an easy exercise to prove that the four equations are equivalent to each
other and to the equations of Proposition 2.14. There are also analogous
formulae in D:

Corollary 2.15. Given two points z1, z2 ∈ D we have:

dD(z1, z2) = ln
|1− z1z̄2|+ |z1 − z2|
|1− z1z̄2| − |z1 − z2|

; cosh2(dD(z1, z2)/2) =
|1− z1z̄2|2

(1− |z1|2)(1− |z2|2)
;

sinh2(dD(z1, z2)/2) =
|z1 − z2|2

(1− |z1|2)(1− |z2|2)
; tanh(dD(z1, z2)/2) =

|z1 − z2|
|1− z1z̄2|

.

Proof. This is an exercise using the previous results and the fact that dD(z1, z2) =
dH(C−1(z1), C−1(z2)) where C : H −→ D is the Cayley transformation, which
follows from Proposition 2.6. For details, see [10] p. 131.
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2.2 Similarities and differences between hy-

perbolic and Euclidean geometry

2.2.1 Circles

As we saw above, hyperbolic circles are off-centre Euclidean circles. In par-
ticular, the hyperbolic circle centre O ∈ D and radius ρ coincides with the
Euclidean circle centre O ∈ D and Euclidean radius r = tanh ρ/2.

Lemma 2.16. The circumference of a hyperbolic circle of radius ρ is 2π sinh(ρ).

The area of a hyperbolic disc of radius ρ is 4π sinh2(
ρ

2
).

Proof. The hyperbolic length of the circumference of a circle with radius ρ is∫ 2π

0

2r

1− r2
dθ =

4πr

1− r2

where r = tanh(
ρ

2
). But 1− r2 = cosh−2(

ρ

2
), so

Circumference = 4π sinh(
ρ

2
) cosh(

ρ

2
) = 2π sinh(ρ).

The hyperbolic area of the disc with radius ρ is∫ r

t=0

∫ 2π

0

4t

(1− t2)2
dtdθ = 8π

[
1

2(1− t2)

]r
0

= 4π

(
1

1− r2
− 1

)
=

4πr2

1− r2
.

So
Area = 4π sinh2(

ρ

2
).

Remark 2.17. Observe the very important fact that both the circumference
and the area grow exponentially with the radius.

Exercise 2.18 (Circles in H). We know that a circle in H must be an off-
centre Euclidean circle. If the circle has radius ρ and centre i, you can
see easily that it meets imaginary axis at points ieρ and ie−ρ, as shown in
Figure 2.7 . Clearly it must be symmetric about the imaginary axis. What
are its Euclidean centre and radius?
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i

eρi

e−ρi

Figure 2.7: Hyperbolic circle centre i in H

2.2.2 Angle sum of a triangle

One of the most important differences between Euclidean and hyperbolic
geometry is the angle sum of a triangle:

Lemma 2.19. The angle sum of a hyperbolic triangle is strictly less than π.

Proof. Put the hyperbolic triangle ∆ in D with one vertex at the centre O.
The sides through O are radii. If P, P ′ are the other two vertices, it is easy to
see that the Euclidean triangle with vertices OPP ′ strictly contains ∆, and
in particular, that the ∠OPP ′,∠OP ′P in ∆ are less than the corresponding
Euclidean angles, from which the result follows.

Corollary 2.20. The angle sum of a hyperbolic polygon with at most n sides
is strictly less than (n− 2)π.

Notice that this includes the case of triangles (or polygons) with one or
more vertices on the boundary at infinity. At any such vertex, the angle
is zero, because if two lines meet at a point P ∈ ∂H, then they are both
orthogonal to ∂H and hence the angle between them is zero.

We shall find the precise relation between area and angle sum later.
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2.2.3 Perpendicular projection and the common per-
pendicular.

In Euclidean geometry, there is a unique perpendicular projection from a
point to a line. The same is true in hyperbolic space:

Theorem 2.21. There exists a unique perpendicular from a point P to a
line L. This perpendicular minimises the distance from P to L.

O = P

Q

Q′

L

Figure 2.8: The hyperbolic perpendicular from the point P to the line L.

Proof. Place P at O ∈ D. Referring to Figure 2.8, it is clear from Euclidean
geometry that there is a unique radial line PQ perpendicular to the hyper-
bolic line L. The relation dD(P,Q) < dD(P,Q′) follows since from Euclidean
geometry, any other point Q′ ∈ L lies outside the hyperbolic circle centre 0
and radius |PQ|.

Suppose that L and L′ are are parallel lines in Euclidean space. Then
they have infinitely many common perpendiculars, each of which minimises
the distance between them. By contrast, in hyperbolic space:

Theorem 2.22. Let L and L′ be disjoint lines which do not meet at∞. Then
L,L′ have a unique common perpendicular which minimizes the distance
between them.

Proof. • Existence: This time we arrange line L to be the imaginary axis in
H. We may suppose that L′ is a Euclidean semicircle as shown in Figure 2.9.
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O P Q

s

is

L L′

Figure 2.9: The circle centre O and radius s is the common perpendicular
from L to L′.

(Why?) It follows from Euclidean geometry that the circle with centre O and
radius s, where s2 = |OP | · |OQ|, cuts L′ orthogonally. • Uniqueness : Any
other common perpendicular would produce either a quadrilateral whose an-
gle sum is 2π or a triangle of angle sum larger then π, as shown in the figure.
Both of these cases are impossible by Lemma 2.19 and its corollary.
• The common perpendicular minimizes distance. Denote the common per-
pendicular by M and let X,X ′ be the points where M meets L,L′ respec-
tively. Let Y, Y ′ be any other two points on L,L′ respectively. The result
follows immediately from the next theorem, on noting that the perpendicular
projections from Y, Y ′ onto M are exactly the points X,X ′. Theorem 2.23
says that dH(Y, Y ′) > dH(X,X ′).

Theorem 2.23. Perpendicular projection onto a line M strictly decreases
distances. More precisely, suppose that P,Q /∈ M and let P ′, Q′ denote the
perpendicular projections of points P,Q onto M. Then d(P,Q) > d(P ′, Q′).

Proof. In H, moveM to the imaginary axis by sending the points P ′, Q′ to i
and eRi respectively, so that dH(P ′, Q′) = R. Let γ be the geodesic segment
from P to Q. The expression for the path integral for length of γ in polar
co-ordinates (r, θ) gives

dH(P ′, Q′) =

∫
γ

√
dr2 + r2dθ2

r sin θ
>

∫
γ

dr

r
= R
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P

Q

Q′

P ′

M

Figure 2.10: Perpendicular projection decreases distances: |P ′Q′| < |PQ|.

which proves the result.
[Why do we get strict inequality provided at least one of P,Q is not on

the imaginary axis?]

2.2.4 Lines meeting on ∂H
Theorem 2.22 shows that if two lines L and L′ do not meet even at infinity,
then there is a non-zero shortest distance between them which is realised
by the unique common perpendicular. If the lines have the same endpoint
on ∂H or ∂D, however, then it is not hard to show that the infimum of the
distance between points on the two lines vanishes, in symbols:

inf{d(P, P ′) : P ∈ L, P ′ ∈ L′} = 0.

The calculation is done by arranging the common point of L and L′ to
be ∞ ∈ H, see Figure 2.11. If we take the two points P, P ′ to have the same
imaginary part h, then

dH(P, P ′) ≤
∫ 1

0

dx

h
=

1

h
−→ 0 as h −→∞.

Exercise 2.24. In fact dH(P, P ′) < 1/h. Why? Can you calculate the actual
value?

We say the lines L and L′ meet at infinity. Because both meet ∂H or-
thogonally, the angle between such lines is zero. Notice that in this case,
there is no geodesic which actually realises the infimum.
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P

L

P ′

L′

h

0 1

Figure 2.11: The lines L and L′ meet at ∞; dH(P, P ′) = 1/h.

If a ‘triangle’ or ‘polygon’ has two sides which meet at ∞ we call the
meeting point an ideal vertex. The vertex is not in H but we can still identify
it as a definite point on ∂H which can be transported around by SL(2,R).
If all vertices are ideal, the triangle (resp. polygon) is called an ideal triangle
(resp. polygon).

Exercise 2.25. Show that if ∆,∆′ are two ideal triangles in H, there is an
isometry carrying on onto the other. Is this isometry unique?

Let us summarize these results, contrasting with Euclidean geometry. In
Euclidean geometry, either two lines meet and they have no common per-
pendicular, or they are parallel and they have infinitely many common per-
pendiculars. In hyperbolic geometry, by contrast:
(a) if two lines meet, then as in Euclidean geometry they have no common
perpendicular, for this would give a triangle with angle sum > π.
(b) if two lines are “parallel”, that is they meet at ∞, there is still no com-
mon perpendicular because that would give a triangle with angle sum equal
to π, contradicting Lemma 2.19. The lines become asymptotically close as
they approach ∞ and the angle between them is zero.
(c) if the two lines are “ultra-parallel”, that is they don’t meet and they
aren’t parallel, then there exists a unique common perpendicular which min-
imizes the distance between them.

2.2.5 Points equidistant from a given line

In Euclidean geometry, the line parallel to L through the point P /∈ L consists
of all points Q such that d(Q,L) = d(P,L). What about the set of points
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P

Q

P ′

M

Q′

0

Figure 2.12: The set of points
equidistant from the imaginary
axis.

L

Figure 2.13: Points equidistant
from the line L. These lines
are sometimes called hyper-
cycles.

equidistant from a hyperbolic line?

Theorem 2.26. Let L be a hyperbolic line. The set of all points at a fixed
distance from L is a Euclidean circle with the same endpoints as L on ∂H
(or ∂D), making an angle θ with ∂H (or ∂D).

Proof. First consider the case when L is the imaginary axis in H. Let M
be a Euclidean line through 0, making an angle θ ∈ (0, π/2) with ∂H. The
1-parameter family of maps {z 7→ λz : λ ∈ R+} fixes M and L and acts
transitively on each by isometries. In particular, referring to Figure 2.12,
dH(P,Q) = dH(P ′, Q′).

In the general case, transporting the points 0, ∞ to the points ξ, η ∈ ∂H,
we see that the locus of points equidistant from a given line L consists of
points on a circle with the same endpoints ξ, η as L on ∂H and which meets
∂H at angle θ.

2.2.6 Horocycles

A horocycle is the limit of a circle as the centre approaches ∂H. In our
models, they are Euclidean circles tangent to the boundary at infinity. Thus
in H they are either horizontal lines if the tangency point ξ = ∞, or circles
tangent to the real axis if ξ ∈ R, see Figures 2.15 and 2.14. As we shall see
later, horocycles will play an important role.

Suppose that points P, P ′ lie on the same horocycle. It is useful to com-
pare the distance ` between P, P ′ measured along the horocycle and the
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d

s

t

d

Figure 2.14: Horocycles based
at ∞. Note the distance rela-
tionship s = te−d.

ξ

Figure 2.15: Horocycles based
at the point ξ ∈ R.

geodesic distance. To do this, as in Figure 2.11 we can arrange the horocycle
to be a horizontal line at Euclidean height h > 0 above the real axis in H
and by translating and scaling assume that P = ih, P ′ = ih+ 1. (Why?)

Integrating along the horocycle path from P to P ′ as above we have

` =

∫ 1

0

dx

h
= 1/h.

On the other hand, the distance formula for d = dH(P, P ′) gives

cosh d = 1 +
|ih− (ih+ 1)|2

2h2
= 1 +

1

2h2
.

Using cosh d = 1+2 sinh2 d/2 we find sinh d/2 =
1

2h
so that ` = 2 sinh d/2 <

ed/2. This shows that it is exponentially further to travel along the horocycle
than to go along the geodesic path (which penetrates inside the horoball).

We also remark that a horocycle can be thought of as the limit of a
circles of fixed radius R whose centres tend to∞. To see this, recall that the
hyperbolic circle centre ai ∈ H is the Euclidean circle whose diameter is the
interval between the points aeRi and ae−Ri. As a −→ 0 with R fixed, the
centre tends to ∂H and the circle tends to a horocycle tangent to ∂H at 0.

2.2.7 Angle of parallelism

If a point P is at (hyperbolic) distance d from a line L, there is a limiting
value θ to the angle made by lines L′ through P not meeting L? The angle
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d

Q

L

θ

L′

P

Figure 2.16: The angle of par-
allelism. Note that there only
two parameters: θ and d.

1−1 0

θ

L′ L′

PQ

i

d

Figure 2.17: Standard position
for the angle of parallelism

θ is classically called the “angle of parallelism” . The answer is given by the
following lemma, which describes the trigonometric relations in a triangle
with angles 0, π

2
, θ.

Lemma 2.27 (Angle of parallelism). In a triangle with angles 0, π
2
, θ we

have:
cosh d = csc θ; sinh d = cot θ; tanh d = cos θ.

Proof. Note that there only two parameters: θ and d, as shown in Figure 2.16.
Put the triangle in H so that L is the imaginary axis with the vertex Q at i,
see Figure 2.17. By the formula in Proposition 2.14, we have

cosh d = cosh dH(i, P ) = cosh dH(i, eiθ) = 1 +
|i− eiθ|2
2=i=eiθ =

1

sin θ
= csc θ,

so cosh d = csc θ. The other two formulae follow immediately by the relations
between hyperbolic trigonometric functions. In fact,

sinh d =
√

sin−2(θ)− 1 = cot θ

and

tanh d =
sinh d

cosh d
= cos θ.

Observe that this argument also shows also the existence of a perpendic-
ular segment from a point to a line.
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2.2.8 Schweikart’s constant

There is an upper bound to the length of the altitude of any hyperbolic isosce-
les right-angled triangle. This is called Schweikart’s constant. The fact
there is such a bound is one of the important differences between hyperbolic
and Euclidean geometry.

Let try to calculate the constant. As shown in Figure 2.18, put the
triangle with the right angled vertex at 0. The figure shows the case in which

0

a
x

Figure 2.18: Computing Schweikart’s constant.

the other two vertices are on ∂D. Any other right angled isoceles triangle is
contained inside the one shown, so this is the limiting case. (Why?) It is
an easy Euclidean calculation to find that |OX| =

√
2 − 1. (Check it as an

exercise!). So we obtain Schweikart’s constant:

dD(O,X) = log(1 +
√

2).

2.2.9 Pythagoras’ theorem

Suppose we have a right angled triangle with side lengths a, b, c where c is
the hypotenuese. What is the relation between a, b and c? Move the triangle
to the standard position shown in Figure 2.19. Using the calculations done

in Section 2.3.2, we have the relation cosh a =
1

sin θ
and, using the formula

proved in the Subsection 2.2.3, it is an easy calculation to show that

cosh c = 1 +
|ieb − eiθ|2
2=ieb=eiθ =

1

sin θ
·
(
eb + e−b

2

)
=

1

sin θ
cosh b = cosh a cosh b.
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1

ieb

a eb

c

b

Figure 2.19: Standard position for a right angled triangle in H.

So we obtain the hyperbolic version of Pythagoras’ theorem:

cosh c = cosh a cosh b.

This leads to another crucial difference with Euclidean geometry. In
hyperbolic geometry the above formula gives:

cosh(a+ b) = cosh a cosh b+ sinh a sinh b 6 2 cosh a cosh b = 2 cosh c =

cosh(arccosh2) cosh c 6 cosh(c+ arccosh2)

and so
a+ b < c+ arccosh2,

independently of a, b and c.
By contrast, in Euclidean geometry, the relation between the sides of a

right-angled triangle is:

a2 + b2 = c2 ⇒ (a+ b)2 = c2 + 2ab

giving
⇒ a+ b� c as a, b −→∞.

This says that while in Euclidean space, it is much quicker to cut across
the diagonal of a field, in hyperbolic geometry it makes almost no difference
if you stick to the edge.
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We can see another version of the same phenomenon referring back to
Theorem 2.23 about perpendicular projection onto a line. Suppose (see Fig-
ure 2.10) that points P,Q are equal distances d from a line M, let P ′, Q′

be their perpendicular projections onto M. We proved in Theorem 2.23
that sinh d(P,Q)/2 = sinh d(P ′, Q′)/2 cosh d. For reasonably large values
of d(P ′, Q′) this gives d(P,Q) ∼ d(P ′, Q′) + 2d, which can be interpreted
as saying that the geodesic path from P to Q roughly tracks the path
PP ′ ∪ P ′Q′ ∪Q′Q.

2.2.10 Area of a triangle

Theorem 2.28. The area of a triangle with angles α, β, γ is π− (α+β+γ).

Remark 2.29. The area formula agrees with the Gauss-Bonnet Formula
which says that for any surface M with Riemannian metric,∫

M

KdA+

∫
∂M

kgds = 2πχ(M)

where K is the curvature, kg is the geodesic curvature along the boundary
∂M and χ(M) is the Euler characteristic. In our case we know K ≡ −1.
Since the boundary is piecewise geodesic, the curvature is concentrated at
the vertices and the term

∫
∂M

kgds reduces to the sum of the exterior angles
as we travel round ∂M . Finally, M is topologically a disk, so χ(M) = 1.
This gives ∫

(−1)dA+
∑

(π − αi) = 2π

which reduces to the area formula above.

Proof. Method 1 :
• We first compute area of an “ideal triangle” with all vertices at ∞ (hence
all angles are 0). Since Aut(H) acts transitively on ordered triples of points
on R̂, we may assume that the vertices are -1, 1 and ∞, see Figure 2.20.
Then the area is:

Area = 2

∫ 1

0

(∫ ∞
√

1−x2

dy

y2

)
dx = 2

∫ 1

0

dx√
1− x2

= 2 [arcsinx]10 = 2 · π
2

= π.

• We can equally compute area of a triangle with angles π/2, α and 0. As
can be checked from Figure 2.21, this triangle can be placed with vertices at
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1−1 0 x

Figure 2.20: Standard position
to compute the area of an ideal
triangle.

i α

0

α

Figure 2.21: Area of a triangle
with angles α, π/2, 0.

∞, i, eiα.

Area =

∫ cosα

0

(∫ ∞
√

1−x2

dy

y2

)
dx = [arcsinx]cosα

0 =
π

2
− α.

• To compute area of a triangle with angles α, β and 0, we juxtapose two
triangles of angles π/2, α and 0 and π/2, β and 0 as shown in Figure 2.22.
(If α > π/2, then we can find the area by noting that a triangles of angle
α, 0, π/2 and π − α, 0, π/2 can be juxtaposed to give a triangle of angles
0, π/2, 0.)

βα

Figure 2.22: Area of a triangle with angles α, β, 0.

Area =
(π

2
− α

)
+
(π

2
− β

)
= π − (α + β).

• Finally we find the area of a triangle with angles α, β and γ at vertices
A,B,C as follows. Extend the side through AC to meet ∂H at X. Then

Area ABC = Area ABX − Area BCX.
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Let δ = ∠CBX. Then

AreaABX−AreaBCX = (π − (α + β + δ))−(π − (δ + (π − γ))) = π−(α+β+γ)

and the result follows.
Method 2 :
• It follows from the fact that Isom(H) acts transitively on ordered triples
of points on ∂H, that all the ideal triangles (ie triangles with all vertices on
∂H) are congruent. The first part of Method 1 gives that the area of such a
triangle is π.
• Let the area of a triangle with angles θ, 0 and 0 be π− f(θ). We have that

f(0) = 0, f(π) = π

and
π − f(θ) + π − f(φ) = π − f(θ + φ) + π.

Hence
f(θ) + f(φ) = f(θ + φ),

ie f is linear.
• Assuming the continuity of f , this gives

f(θ) = k · θ

for some k ∈ R. Since f(π) = π, we obtain k = 1. Hence the area of a
triangle with angles θ, 0 and 0 is (π − θ).
• Given a general triangle with vertices ABC, extend the oriented sides AB,
BC, CA to meet ∂H in points X, Y, Z say. Then

Area ABC = Area XY Z − Area AXZ − Area BXY − Area CY Z.

Check that the result follows.

2.2.11 Congruent triangles

Definition 2.30. Two triangles ABC and A′B′C ′ are congruent if there
exists a T ∈ Isom(H) such that T (A) = A′, T (B) = B′ and T (C) = C ′.
(Notice that in this definition, T may or may not preserve orientation.)
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Recall the conditions for Euclidean congruence between two triangles:
(a) SAS (side-angle-side) means the two triangles have two sides of the same
length together with the included angle;
(b) SSS; (three sides of equal length)
(c) SAA; (one side and two angles equal)
(d) RHS (right angle-hypotenuese-side).

Let us try these conditions in the hyperbolic case. Let’s work in D.
Without loss of generality, we can put one vertex at O and make one side a
horizontal diameter. (Why?) Then:
(a) SAS works as in Euclidean geometry;
(b) SSS: the hyperbolic circles with centres A and B and radius |AC| and
|BC| where |AC| > |BC| are also Euclidean circles, so they intersect in
exactly two points. Thus the triangle is determined uniquely up to an orien-
tation preserving isometry, as in the Euclidean case.
(c) SAA works as in Euclidean geometry. (d) RHS: works as in Euclidean
geometry. (Check as an exercise using the fact that there exists a unique
perpendicular from a point to a line).

In hyperbolic geometry we have also a fourth condition for triangles to
be congruent: AAA. In fact we have:

Theorem 2.31. (i) Any two triangles with the same internal angles are
congruent.
(ii) For any α, β, γ with α+β+γ < π and α, β, γ > 0, there exists a triangle
with these angles. (Recall that an angle is 0 ⇐⇒ the vertex is an “ideal
vertex” at ∞)

Proof. (i) Consider two triangles of angles α, β, γ at vertices A,B,C and
A′, B′, C ′. Applying an isometry, we may arrange the triangles so that A = A′

and so that the sides AB, AB′ are contained in a common line through A,
as are AC, AC ′.

Suppose without loss of generality that |AB| ≤ |AB′|. If |AC| ≤ |AC ′|
then either triangle ABC is strictly contained inside triangle AB′C ′, which
is impossible because they have the same area, or B = B′, C = C ′.

If |AC| > |AC ′| then the lines BC and B′C ′ cross at a point X say. Then
the angle sum of triangle BXB′ is at least β + (π − β), which is impossible.

(ii) We already constructed an α, β, 0 triangle in the proof of Theorem 2.28
above, see also Figure 2.21. We can construct an α, β, γ triangle using a
continuity argument as follows. Place the vertex A at O ∈ D and let B be
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the other finite vertex. If B′ is any point between A and B, the line through
B′ making an angle β with AB (on the same side as BC) cuts the third side
AC in a point C ′ say. Let θ be the internal angle at C ′.

As B′ moves towards A, the area of triangle AB′C ′ decreases. Hence since
the angles at A,B′ are fixed by construction, θ must be strictly increasing.
When B′ = B then C ′ = C and θ = 0; when B′ −→ A we have C ′ −→ A
also. (Why?) In this case the triangle AB′C ′ becomes almost Euclidean so
that θ −→ π − (α + β). Thus by continuity, there must be a position of B′

for which θ takes any value in [0, π − (α + β)).

Remark 2.32. Another way to see this is to use the second cosine rule:

cosh c =
cos γ + cosα cos β

sinα sin β
,

see Examples sheet 4. This gives the length of one side given the three angles,
and we can now construct the triangle using ASA.

2.2.12 Polygons

Recall that for an N -sided Euclidean polygon, the sum of the internal angles
αi is

∑N
i=1 αi = (N − 2)π.

Theorem 2.33. The area of an N-sided polygon is (N − 2)π −∑N
i=1 αi.

Proof. Divide the polygon into N − 2 triangles by joining one vertex to all
of the others. The sum of their internal angles is exactly

∑N
i=1 αi.

Example 2.34. Observe that the angle of a regular octagon in the Euclidean
geometry is 3π/4. (Why?) By contrast, there exists a regular octagon all of
whose interior angles are π/4.

• Method 1 : Construct a triangle with angles π/4, π/8, π/8 (How?) and put
8 of these together round the central vertex π/4.
• Method 2 : Use a continuity argument. In the disk D consider the ideal
octagon whose vertices are at 8 equally spaced points round D. Move the
vertices inward symmetrically along the radii. It is not hard to see that the
vertex angles increase from the initial value 0 to the limiting value of a Eu-
clidean polygon, namely 3π/4. This value is never reached but is approached
as the distance from O to the vertices tends to zero. Since the angle is
clearly continuous, there must be a point at which it takes on any value in
the interval (0, 3π/4), in particular, at which it has the value π/4.
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2.2.13 Hyperbolic trigonometry

There are formulae in hyperbolic geometry analogous to those in Euclidean
geometry. For elegant proofs using the Minkowski model, se [9] or [14]. here
we sketch the proofs in the disc and upper half plane models; for more details
see [10].

Right angled triangles The trigonometric formulae for a right angled
triangle ABC, with sides of hyperbolic lengths a, b, c opposite angles α, β, π

2

at vertices A,B,C respectively are:

cos β = tanh a/ tanh c, sin β = sinh b/ sinh c, tan β = tanh b/ sinh a.

Here are steps to verify this:

1. The hyperbolic line which meets the horizontal radius at a point hy-
perbolic distance a > 0 from O ∈ D orthogonally is an arc of circle
orthogonal to ∂D. Prove that the (Euclidean) radius of this circle is
(sinh a)−1.

2. Put the vertex B with angle β at O ∈ D so that vertex C is at distance
a from O along a horizontal diameter. Let X be the centre of the
(Euclidean) circle through A orthogonal to ∂D. Use the Euclidean
cosine formula in triangle OAX to prove that cos β = tanh a/ tanh c.

3. Use the hyperbolic Pythagoras theorem to prove the other two identi-
ties.

The hyperbolic sine and cosine laws Notice that there are two co-
sine rules, one analogous to the Euclidean cosine rule, and one which gives
the length of a side of a triangle in terms of its angles, which is of course
impossible in the Euclidean case.

Consider a general hyperbolic triangle with angles α, β, γ and opposite
sides of lengths a, b, c. Use the above formulae in for a right angled triangle
to prove:

The hyperbolic sine law

sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
.

Hint: drop the perpendicular from one vertex to the opposite side.
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The first hyperbolic cosine law

cos γ =
cosh a cosh b− cosh c

sinh a sinh b
.

The second hyperbolic cosine law

cos c =
cos γ + cosα cos β

sinα sin β
.

Hint: Let the perpendicular from C to AB meet AB in D. Let CD
have length h and let the angle at C in triangle CAD be γ1. First
verify the identity sin γ1 coshh = cosα.

Exercise 2.35. Research the corresponding formulae for spherical trigonom-
etry.



Chapter 3

Isometries of D and H

In this chapter we are going to study the behaviour and dynamical properties
of isometries of D and H. It is natural to study such transformations up to
conjugation in the isometry groups, because, as we shall see shortly, conjugate
elements behave in a “similar way”. We shall begin with general results about
Aut Ĉ and then specialise to Aut(D) and Aut(H).

3.1 Classification of elements of Aut(Ĉ).
Definition 3.1. Two elements T and T̂ in Aut(Ĉ) are conjugate if there
exists an element S ∈ Aut(Ĉ) such that T̂ = STS−1.

Thus we have the following commutative diagram:

Ĉ T−→ Ĉ
S ↓ ↓ S
Ĉ T̂−→ Ĉ

What this means is that after applying S to Ĉ, the map T̂ behaves like T .
For example:

Example 3.2. If z0 is a fixed point of T , that is T (z0) = z0, then S(z0) is a
fixed point of T̂ .

CHECK:
T̂ (S(z0)) = STS−1 (S(z0)) = ST (z0) = S(z0). �

41
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Definition 3.3. If T =

(
a b

c d

)
∈ GL(2,C), then the trace of T is defined

by:
TrT = a+ d.

Remark 3.4. If T ∈ Aut(Ĉ) ∼= SL(2,C)/ ± I ∼= PGL(2,C, then TrT is
defined up to multiplication by ±1. Hence in Aut(Ĉ), only TrT 2 is well-
defined. Observe also that multiplying a matrix by a scalar λ changes the
trace by the same factor λ, that is the map Tr : GL(2,C) −→ C, defined by

Tr

(
a b

c d

)
= a+ d, is linear.

Remark 3.5. (i) If we normalize so that T ∈ SL(2,C), then TrT = TrT−1.
(ii) TrT = Tr(STS−1) for S ∈ SL(2,C).

Proof. It is easy to prove (i) by direct calculation. Also check by calculation
that, if A and B are matrices in GL(2,C), then Tr(AB) = Tr(BA). Then
(ii) follows since

Tr(STS−1) = Tr(TS−1S) = Tr(T ).

Corollary 3.6. TrT is an invariant under conjugation.

Lemma 3.7. Let T ∈ SL(2,C), T 6= Id. Then T has either 1 or 2 fixed
points. The first case occurs ⇐⇒ (TrT )2 = 4.

Proof. Let T =

(
a b

c d

)
. Then

T (z) = z ⇐⇒ az + b

cz + d
= z ⇐⇒ cz2 + (d− a)z − b = 0.

So the fixed points of the map T are:

z±0 =
a− d±

√
(d− a)2 + 4bc

2c
=
a− d±

√
(TrT )2 − 4

2c
,

where the last equality is obtained using the identity ad− bc = 1.
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3.1.1 Classification by fixed points and trace.

To analyse the behaviour of transformations in Aut(Ĉ), we begin by locating
their fixed points. It turns out the trace is sufficient to completely classify
the dynamics. We shall analyse the different possibilities one by one. We
begin by conjugating so the fixed point(s) are in a particularly easy position
to handle, namely 0 and ∞.

Case 1: Parabolic

By Lemma 3.7, T has one fixed point iff TrT = ±2 and T 6= Id. Call this
point z0. If we conjugate T by a map S ∈ Aut(Ĉ) such that S(z0) =∞, then
T̂ = STS−1 has a fixed point at ∞, see Example 3.2. So suppose we are in
this case.

Let T =

(
a b

c d

)
such that T (∞) = ∞. So we have that c = 0, ad = 1

and hence T =

(
a b

0 a−1

)
and T (z) =

az + b

a−1
= αz + β for some α, β. In

addition we have the condition TrT = a + a−1 = ±2 which implies that
a = ±1. Hence T (z) = z ± β, that is T is a Euclidean translation.

Case 2: Loxodromic

In the generic case, T has 2 fixed points z±0 . Conjugating T by a map
S ∈ Aut(Ĉ) such that S(z+

0 ) = 0 and S(z−0 ) =∞, that is the map

S : z 7→ z − z+
0

z − z−0
,

we may assume that

T =

(
a b

c d

)
, ad− bc = 1, T (0) = 0, T (∞) =∞.

We deduce that c = 0, b = 0 and d = a−1 so that

T =

(
a 0

0 a−1

)
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Figure 3.1: Hyperbolic. Expan-
sion z 7→ λz, λ > 1.

Figure 3.2: Elliptic. Rotation
z 7→ eiθ.

so that
T (z) = a2z.

We also have the condition TrT = a+ a−1 6= ±2, equivalently a 6= ±1. Thus
we may write

T (z) = λz, λ 6= 1.

The number λ is called the multiplier of T . Note also that λ = T ′(0).

This can be further subdivided into three subcases:
(a) Hyperbolic if λ > 0 ;
(b) Elliptic if |λ| = 1;
(c) Loxodromic otherwise.

Case 2a: Hyperbolic

This transformation is an expansion (if λ > 1) or a contraction (if λ < 1),
see Figure 3.1.

Case 2b: Elliptic

This transformation is a rotation as you can see in Figure 3.2.

Case 2c: Loxodromic

This transformation is a combination of the hyperbolic and elliptic cases, so
points move along spiral arms. These spirals are exactly what cartographers
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Figure 3.3: Degenerate fam-
ilies of coaxial circles. All
the circles in each family
are mutually tangent at the
common point z0 and the
tangency line of one set is
orthogonal to the tangency
line of the other.

Figure 3.4: Coaxial circles:
the generic case. All mem-
bers of one family of circles
pass through the common
points z±0 .

call “loxodromes” derived from the Greek words for “running obliquely”.

3.1.2 Coaxial circles

A nice way to understand what happens when the fixed points are not 0 and
∞, is to use coaxial circles. These are circles which come in complementary
families such that all circles in one family are orthogonal to all circles in the
other. There are two cases, the generic one and a degenerate one. In the
generic case, all the circles in one family pass through a pair of distinct
points, while all the circles in the other family are pairwise disjoint. In the
degenerate case, all the circles in both families are tangent at one common
point, the tangent line to one family being orthogonal to the tangent line to
the other. The two cases are illustrated in Figures 3.3 and 3.4.

Special cases of these two possiblities are illustrated in Figures 3.5 and 3.6.
In Figure 3.5 we see the (degenerate) case in which all circles are tangent to
the common point ∞. In Figure 3.6 we see the (generic) case in which all
circles in one family pass through 0,∞ while all those in the other family are
pairwise disjoint.

To see that such families of circles exist for general choices of points z0 or
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Figure 3.5: Coaxial circles with a
common point at ∞.

Figure 3.6: Generic coaxial cir-
cles: all members of one family
all pass through 0,∞ while mem-
bers of the other family are pair-
wise disjoint.

z±0 , we apply suitable conjugations to the configurations in Figures 3.5, 3.6,
recalling that elements of Aut(Ĉ) carry circles to circles and preserve angles.

Thus the inverse of the map z 7→ 1

z − z0

takes Figure 3.5 to Figure 3.3 and

the inverse of the map z 7→ z − z+
0

z − z−0
takes Figure 3.6 to Figure 3.4.

3.1.3 Dynamics and Coaxial circles

Now we can return to the dynamics of our various types of transformations.
As usual, we first analyse the case when the fixed points are at ∞ and 0.

A parabolic transformation with fixed point at ∞ translates points in a
fixed direction. The orbits of points lie along parallel lines through ∞. The
orthogonal family of lines is mapped one to another. Likewise a hyperbolic
transformation with fixed points at 0,∞ has orbits which move inwards or
outwards along radial lines from 0. It maps concentric circles centre 0 one
into the other. An elliptic with fixed points 0,∞ has orbits which move along
concentric circles centre 0 and maps radial lines one into the other.

To understand the action of general parabolics, hyperbolics and elliptics,
note that conjugation preserves circles and angles, hence coaxial families.
The orbits of points under general hyperbolics and parabolics move along a
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Figure 3.7: Orbit paths for a
parabolic with fixed point z0.

Figure 3.8: Orbit paths for a
hyperbolic with fixed point z±0 .

Figure 3.9: Orbit paths for
an elliptic. The circles of the
complementary family all pass
through the two fixed points.

Figure 3.10: Orbit paths for a
loxodromic. Picture from In-
dra’s Pearls [2].
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family of coaxial circles through the fixed point(s) and map members of the
orthogonal family one into the other, as shown in Figures 3.7 – 3.10.
Exercise: Describe the movement of an elliptic in a similar way.

3.1.4 Relation of multiplier to trace

Consider a loxodromic transformation T : z 7→ λz, λ ∈ C. Recall that λ is
called the multiplier of T . Write

T = ±
(√

λ 0

0
√
λ−1

)
, detT = 1, TrT =

√
λ+
√
λ−1.

Set l = log λ (defined only modulo 2πi). Then el = λ, so

TrT = e
l
2 + e−

l
2 = 2 cosh(l/2).

(Note that l/2 is defined only modulo πi and that cosh(x + iπ) = − coshx,
so there is the same ambiguity as in the trace.) Writing l/2 = x+ iy we note
that cosh(x+ iy) = cosh x cos y− i sinhx sin y. In particular, cosh(x+ iy) = 1
if and only if x = 0 and y = inπ. Thus

TrT = ±2 ⇐⇒ cosh(l/2) = ±1 ⇐⇒
x = 0 and y = nπi ⇐⇒ l = 2nπi ⇐⇒ λ = 1 ⇐⇒ T = id.

Now note that:

λ > 0, λ 6= 1 ⇐⇒ l ∈ R∗ + 2niπ ⇐⇒ TrT ∈ R, |TrT | > 2.

|λ| = 1, λ 6= 1 ⇐⇒ l ∈ iR∗ ⇐⇒ TrT ∈ (−2, 2)

where R∗ = R \ {0}. We have proved the following:

Proposition 3.8. Let T be a transformation in SL(2,C). Then: (i) T is
parabolic (or is the identity map) ⇐⇒ TrT = ±2;
(ii) T is hyperbolic ⇐⇒ TrT ∈ R, |TrT | > 2;
(iii) T is elliptic ⇐⇒ TrT ∈ (−2, 2);
(iv) T is loxodromic ⇐⇒ TrT /∈ R.

Lemma 3.9. The multiplier and its inverse λ and λ−1 are the derivatives of
T at its fixed points. If λ > 1, then it is the derivative of T at the repelling
fixed point, while if λ < 1, then it is the derivative of T at the attracting fixed
point.
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Proof. This is easy to check if T (z) = λz so that its fixed points are 0,∞. We
may assume without loss that λ > 1 so that 0 is the repelling point In general,
suppose T has attracting and repelling fixed points z+, z− respectively. Let
S ∈ SL(2,C) carry∞ 7→ z+ and 0 7→ z−. Then T = ST̂S−1 where T̂ has at-
tracting and repelling fixed points at∞, 0 respectively. Moreover by the chain
rule T ′(z−) = S ′(T̂ S−1(z−))T̂ ′(S−1(z−))(S−1)′(z−)). Now T̂ ′(S−1(z−)) =
T̂ ′(0) = λ and since SS−1 = id we have S ′(S−1(z−))(S−1)′(z−) = 1. This
gives the result.

3.1.5 Isometric circles

A concept which is sometimes useful is that of the isometric circle of T ∈
Aut Ĉ. This is a circle on which it neither expands not contracts, ie on which
|T ′(z)| = 1. To compute this:

If T =

(
a b

c d

)
, then T ′(z) =

1

(cz + d)2
. So

|T ′(z)| = 1 ⇐⇒ |cz + d| = 1.

This is a circle with centre −d/c and radius 1/c. Inside that circle we have
that |T ′(z)| > 1, while outside we have that |T ′(z)| < 1.

Exercise 3.10. If IT is the isometric circle of T , show that T (IT ) = IT−1

and that IST 6= S(IT ).

3.2 Isometries of H and D
Now we apply the above results to the classification of the orientation pre-
serving isometries of H and D.

Proposition 3.11. If T ∈ AutH or T ∈ AutD, then TrT ∈ R (and detT >
0).

Proof. If T ∈ AutH ∼= SL(2,R), this is obvious. But it is true also for
T ∈ AutD, since if C : H −→ D is the Cayley transformation, then
Aut(D) = C AutHC−1 and the trace and the determinant are invariant under
conjugation.
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Now consider AutH = SL(2,R). Let T =

(
a b

c d

)
, detT = 1, TrT ∈ R.

The fixed points of T ∈ AutH are the solutions z±0 of the equation z =
az + b

cz + d
and they can be calculated, as we have proved previously, by the formula

z±0 =
a− d±

√
(TrT )2 − 4

2c
.

It follows from Proposition 3.8 and the fact that the coefficients a, b, c, d are
real valued, that there are three possible cases to consider:1

(i) T is a parabolic transformation if TrT = ±2 and T 6= Id. Then T has
one fixed point in R̂.
(ii) T is a hyperbolic transformation if |TrT | > 2. Then T has two fixed
points in R̂.
(iii) T is an elliptic transformation if |TrT | < 2. Then T has two complex
conjugate fixed points, so exactly one of these points is in H.

If T ∈ AutD, then conjugating by the Cayley transform we see that the
three cases are almost the same. The only difference is that parabolics and
hyperbolics have their fixed points on ∂D while the elliptics have exactly one
of their two fixed points inside D, and one outside. (Why?) We shall look in
detail at each of these three cases in turn.

1The terminology can be explained by looking at the linear action of the cor-
responding matrices on R2. A matrix in SL(2,R) is hyperbolic if and only if it is

diagonalizable over R, or conjugate in SL(2,R) to

(
λ 0

0 1
λ

)
. It is elliptic iff it is con-

jugate in SL(2,R) to

(
cos θ sin θ

− sin θ cos θ

)
, and parabolic iff it is conjugate to

(
1 t

0 1

)
.

Under the usual linear action of SL(2,R) on R2, the invariant curves for the first
two canonical forms are respectively rectangular hyperbolae xy = constant and
circles centre 0. Applying a transformation in SL(2,R) carries these to hyperbo-
lae and ellipses, hence the terminology. You can think of the parabolics, whose
invariant curves are lines, as an intermediate case.
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3.2.1 Parabolic transformations

This is the case TrT = ±2 and T 6= Id. Such transformations have exactly
one fixed point FixT on ∂H or ∂D.

First suppose T ∈ AutH and conjugate by an element S ∈ SL(2,R) so
that FixT moves to ∞. To do this, we can use the transformation

S : z 7→ − 1

z − ξ , ξ = FixT.

If

T ∈ SL(2,R), T (∞) =∞, T =

(
a b

c d

)
, detT = 1,

then, as we proved in Section 3.1.1,

T (z) = z + α, α ∈ R.

This is a Euclidean translation. It fixes the horocycles {z ∈ H : =z > t > 0},
that is the horizontal lines shown in Figure 3.11, and maps the orthog-
onal family of vertical geodesics to itself. Note that the induced metric
ds = dx/Imz on a horocycle is Euclidean since y = =z is constant.

Conjugating back to the case where the fixed point is ξ ∈ R using S−1

gives Figure 3.12. The horocycles are tangent to R at ξ, because the horizon-
tal horocycles are tangent to ∂H at ∞. The orthogonal family of circles hit
∂H orthogonally and so are geodesics in H. T maps one of these geodesics
into another.

Exercise 3.12. Show that any parabolic transformation which fixes 0 belongs

to the family Tc(z) =
z

cz + 1
, c ∈ R \ {0}.

HINT: The transformation J : z 7→ −1/z conjugates

(
1 0

c 1

)
to

(
1 −c
0 1

)
.

�

3.2.2 Hyperbolic transformations

This is the case |TrT | > 2. Such transformations have two fixed points, both
of which are on R ∪∞.
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Figure 3.11: A parabolic with
fixed point at ∞. Points move
along the horizontal lines and
map the vertical lines one into
the other.

ξ = Fix(T )

Figure 3.12: Action of a
parabolic in general position.

Suppose that T ∈ AutH and conjugate T by an element S ∈ SL(2,R) so
that the fixed points are 0 and∞. This can be done using the transformation

S : z 7→ −z − ξ
+

z − ξ− , ξ± = FixT.

Then as in Section 3.1.1, T (z) = λz where λ > 0.
The picture is shown in Figure 3.13. T maps the radial lines to themselves

and the orthogonal family of semicircular geodesics to themselves. Notice
that the radial lines are the lines equidistant from the imaginary axis, which
is the line joining the fixed points of T . Conjugating back to the general
case, we obtain Figure 3.14.

Axis and Translation length

The geodesic joining the fixed points of T is called the axis of T and is
denoted AxT . The translation length is the distance a point is moved by
T along its axis, ie dH (P, T (P )). It turns out that this is independent of P .

To see this, it is sufficient to compute dH (P, T (P )) when T (z) = λz and
P ∈ iR. (Why?) So suppose that P = it. Then dH (P, T (P )) = dH(it, λit) =
log λ = l say. Note that l = l(T ) is independent of P . By the results of
Section 3.1.4, we see that if l = log λ, then TrT = 2 cosh l(T )/2. Notice that
both sides are invariant under conjugation. This gives a direct relationship
between the distance moved and the trace, and ascribes a geometric meaning
to TrT .

We can describe T as a hyperbolic translation along its axis.
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Figure 3.13: A hyperbolic with
fixed points at 0,∞. Points
move along the equidistant
curves and map the orthogonal
family of geodesics one into the
other.

ηξ

Figure 3.14: A hyperbolic
in general position. Points
move along the equidistant
curves and map the orthogonal
geodesics one into the other.

Distance moved by other points

Now suppose that P /∈ AxT . What can we say about dH(P, T (P ))? As
usual, put T in standard position so T (z) = λz, λ > 0, and let P = reiθ.
Then T (P ) = λreiθ. So

dH (P, T (P )) = dH(reiθ, λreiθ) = ρ where cosh ρ = 1 +
|1− λ|2
2λ sin2 θ

.

To interpret this formula, suppose that d is the distance of P from iR. The
angle of parallelism formula gives cosh d = 1/ sin θ. (Notice this depends only
on θ and not on r.) The formula relating the multiplier λ to TrT = 2 cosh l/2
gives

|1− λ|2
λ

= 4 sinh2 l/2.

Hence

cosh ρ = 1 + 2 sinh2 ρ/2 = 1 +
2 sinh2 l/2

sin2 θ

so that
sinh ρ/2 = sinh l/2 cosh d.

In particular, ρ > l and P moved further the further it is from the axis of T .
(We remark that this formula is a special case of Theorem 2.23.)



CHAPTER 3. ISOMETRIES OF D AND H 54

Attracting and repelling fixed points

QUESTION: How do we discover which fixed point is attracting and which
is repelling? There are several ways to answer this:

Method 1 : Compute the image of some point which is not the fixed point.

Method 2 : Compute the derivative T ′(z) = (cz + d)−2 at the fixed points.
The attractive fixed point z+ is the one for which |T ′(z+)| < 1.

Method 3 : One can devise a formula but has to take care of the square
roots. This is done in [2] p. 84

Example 3.13. Let T =

(
2 3

3 5

)
.

Note first that detT = 1. Then T is hyperbolic because TrT ∈ R and
|TrT | > 2. The translation length is given by l where TrT = 2 cosh l

2
= 7,

so l = 2arccosh7
2
.

The fixed points are

z± =
a− d±

√
(TrT )2 − 4

2c
=
−3±

√
45

6
=
−1±

√
5

2
.

Let us find which fixed point is the attracting one using both Method 1 and
Method 2 above:
Method 1 :
Calculate T (0) = 3

5
> 0. Thus T moves points away from z− = −1−

√
5

2
and

towards z+ = −1+
√

5
2

, from which it follows that the attracting fixed point is
z+.
Method 2 :

T ′(z+) = T ′

(
−1 +

√
5

2

)
=

(
7

2
+

3
√

5

2

)−2

⇒
∣∣∣∣∣T ′
(
−1 +

√
5

2

)∣∣∣∣∣ < 1.

Thus z+ is the attracting fixed point. �

Example 3.14. The family of transformations St =

(
cosh t sinh t

sinh t cosh t

)
, t > 0.
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We claim this is the family of all hyperbolic transformations in AutD with
fixed points in 1 and −1. First check easily that St ∈ AutD and that
TrSt = 2 cosh t so that St is hyperbolic. In particular, St translates points
on its axis by a distance 2t.

You can either compute the fixed points of St directly, or argue as follows.
The Cayley transformation C : H −→ D sends the points 0,∞ −→ −1,+1.
Therefore we can conjugate this family to the family

Tλ : z 7→ λz,

where the fixed points are 0 and ∞ and where

TrTλ = 2 cosh l/2 with l = log λ.

Comparing traces we find CTλC
−1 = St with t = log λ/2.�

3.2.3 Elliptic transformations

This is the case |TrT | < 2. Such transformations have two conjugate fixed
points, exactly of which is in H (or D).

Suppose that T ∈ AutH and conjugate by an element S ∈ SL(2,R) so
that the fixed points are ±i. (Why is this possible?) We calculate easily that

T (i) = i⇒ T =

(
cos θ sin θ

− sin θ cos θ

)
.

In fact,

i =
ai+ b

ci+ d
⇒ a = d, b = −c, a2 + b2 = 1.

Such a map preserve hyperbolic circles centered at i, as you can see in Fig-
ure 3.15. The dotted circles in the lower half plane are outside H and so not
part of the action in our model.

The action carries the geodesics emanating from i (the black lines in
Figure 3.15) one into the other. The angle of rotation is the angle between
one such geodesic and its image under T . To calculate this angle, it is enought
to compute the derivative at i, that is

T ′(i) =
1

(−i sin θ + cos θ)2
= e2iθ.
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Figure 3.15: Action of an elliptic with fixed point at i. Points move around
the hyperbolic circles centre i and the orthogonal geodesics are mapped one
into the other.

So T is a hyperbolic rotation by ψ = 2θ about i.
We can relate the rotation angle to TrT by observing that TrT = 2 cos θ.

Since both TrT and the rotation angle ψ(T ) are clearly invariant under
conjugation (why?) we find

TrT = 2 cosψ(T )/2.

This should be compared with the formula for translation length of a hyper-
bolic:

TrT = 2 cosh l(T )/2.

Example 3.15. Conjugating T =

(
cos θ sin θ

− sin θ cos θ

)
to D using the Cayley

transformation C : H −→ D, we obtain the map

T̂ (z) = e2iθz.

PROOF: We calculate:

T̂ = CTC−1 =

(
1 −i
1 i

)(
cos θ sin θ

− sin θ cos θ

)(
i i

−1 1

)
· 1

(1 + i)2

=

(
eiθ −ieiθ
e−iθ ie−iθ

)(
i i

−1 1

)
· 1

2i
=

(
2ieiθ 0

0 2ie−iθ

)
· 1

2i
.
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Hence T̂ (z) = e2iθz, confirming that the rotation is by angle 2θ. We can also
see directly that Tr T̂ = 2 cos θ.
The action of an elliptic transformation in general position is similar.

Remark 3.16. In 3-dimensions the two formulae for elliptic and hyperbolic
transformations are part of one complex formula for complex translation dis-
tance which can be defined to be l(T ) = log λ/2 where λ is the multiplier.
To see how this works in the elliptic case, if the multiplier is λ then

log λ = log(e2iθ) = 2iθ

and that

TrT = 2 cosh
2iθ

2
= 2 cos θ.

The ambiguity of πi in defining log λ/2 turns into the ambiguity of ±1 in
defining the trace.

3.2.4 Orientation Reversing Isometries

To understand the orientation reversing isometries of H and D, it is enough
to find a single example. This is because if S, S ′ are orientation reversing
isometries then S ′S−1 (or indeed S ′S) preserves orientation.

Example 3.17. The map T : z 7→ −z̄ is a reflection in iR+ and reverses
orientation. Obviously it is an isometry of H.

By conjugation, we get an orientation reversing isometry with fixed axis
any line L in H. We can use the Cayley transformation to find analogous
isometries in D. This gives:

Proposition 3.18. Given any hyperbolic line L, there exists a unique ori-
entation reversing isometry σL such that σL|L = id, σ2

L = id, dH(x,L) =
dH(σL,L).

Geometrically σL is the inversion in the circle L. If L has Euclidean
radius ρ and centre O, then inversion in L is the map which sends radial lines
to themselves sending P 7→ P ′ where OP · OP ′ = ρ2. (See Example Sheet
5.)
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Exercise 3.19. We can investigate a general orientation reversing isometry
in Isom−H computationally as follows. Why can any such map be written in

the form T : z 7→ az̄ + b

cz̄ + d
? We calculate

=(T (z)) =
bc− ad
|cz + d|2 .

Hence in order for T to map H to itself, we need ad− bc = −1.

The equation which defines the fixed points of T is

czz̄ + dz − az̄ − b = 0.

So, if we set z = x+ iy, then:

(a+ d)y = 0 and c(x2 + y2) + (d− a)x− b = 0.

From the first equation we get a = −d or y = 0. If y = 0 then x =
a− d±

√
(TrT )2 + 4

2c
, so T has two fixed points on R̂ (and no other fixed

points). If a = −d then c(x2 + y2) + (d − a)x − b = 0 is the equation of a
circle with centre on R. In other words, T has a fixed geodesic in H.

The map T (z) = −λz̄ is a product of the reflection z 7→ z̄ and an homothety.
How does this fit with the computations above?

3.2.5 Isometries as product of reflections

Recall that, in Euclidean geometry, any translation (resp. any rotation) is a
product of two reflections in parallel (resp. intersecting) lines. In hyperbolic
geometry, we have a similar fact, but now there are 3 cases:
(i) reflection in two disjoint (ultra-parallel) lines gives a hyperbolic transfor-
mation;
(ii) reflection in two lines meeting at ∞ gives a parabolic transformation;
(iii) reflection in two intersecting lines gives an elliptic transformation.

We will analyze the first case in detail: the other two are similar.

Proposition 3.20. Let L and M two disjoint lines and let σL and σM
be the reflections in L and M respectively. Then σMσL is the hyperbolic
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transformation whose axis N is the common perpendicular of L and M. It
has translation distance 2d where d is the distance between L and M and
moves in the direction from L towards M.

Proof. Observe that σL and σM preserves N . If P be the point N ∩L, then
σMσL(P ) is at distance 2d from P on the other side of σM. Why is this
enough?

The following consequence gives the flavour of properties we shall be
studying in the next chapter.

Corollary 3.21. Any non-abelian subgroup G of SL(2,R) contains hyperbolic
elements.

Proof. Let the subgroup be H and suppose first that T ∈ H is elliptic with
fixed point v. Pick S ∈ H such that ST 6= TS. Then S(v) 6= v. (Why?)

Observe that if T is anticlockwise rotation of 2θ about v, then STS−1

is anticlockwise rotation by 2θ round S(v). So ST−1S−1 is anticlockwise
rotation by −2θ round S(v).

Let N be the line joining v to S(v) and let L and M be lines through
v and S(v) such that the anticlockwise angle from N to both L and M
is 2θ. Then L and M are disjoint (Why?) and furthermore, we see that
T = σLσN and ST−1S−1 = σNσM. It follows that TST−1S−1 = σLσM.
By Proposition 3.20, σLσM is a hyperbolic translation along the common
perpendicular of L and M. The case in which T is parabolic is a similar
exercise.



Chapter 4

Groups of isometries

4.1 Subgroups of Isom+(H)

In this chapter we start to look at discrete groups of isometries of H. This
encompasses the symmetry groups of tessellations and, what turns out to
be very closely related, the fundamental groups of surfaces. After defining a
discrete group, we begin by exploring the cyclic and abelian groups.

Definition 4.1. A group G is a topological group if G is a topological space
for which the multiplication maps G×G −→ G, (x, y 7→ xy) and the inverse
map G −→ G, x 7→ x−1 are continuous.

Lemma 4.2. The groups SL(2,R) and PSL(2,R) are topological groups.

Proof. We define the topology on SL(2,R) by identifiying it with the subset
X ⊂ R4 defined by

{(a, b, c, d) ∈ R4 : ad− bc = 1}.

If we define the map δ : X −→ X mapping (a, b, c, d) −→ (−a,−b,−c,−d),
then δ is a homeomorphism and δ together with the identity forms a cyclic
group of order 2 acting on X. We topologize PSL(2,R) as the quotient space.

It is clear that multiplication and inverse are continuous in both SL(2,R)
and PSL(2,R).

We shall be mainly interested in subgroups of SL(2,R) which satisfy one
of two closely related conditions, that of being discrete in SL(2,R) and of
acting properly discontinuously on H. It is an important property of

60
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subgroups of SL(2,R) that these two conditions are in fact equivalent. We
shall prove this as Theorem 4.20. in section 4.2. For the moment, we study
the two definitions and some variants and look at a collection of examples.

Definition 4.3. A subgroup G ⊂ SL(2,R) is discrete if G has no accumu-
lation points in SL(2,R).

Definition 4.4. The group G acts properly discontinuously on H if for
all compact subsets K ⊂ H, then gK∩K = ∅ for all but finitely many g ∈ G.

Exercise 4.5. Show that both the properties of being discrete and of acting
properly discontinuously on H are conjugation invariant, ie if G has one of
these properties, then so does the group TGT−1 = {TgT−1 : g ∈ G}, where
T ∈ SL(2,R).

The condition of being discrete can be formulated in slightly different
ways.

Lemma 4.6. The following conditions on subgroup G ⊂ SL(2,R) are equiv-
alent:
(i) There are no accumulation points in G;
(ii) G has no accumulation points in SL(2,R);
(iii) The identity is an isolated point of G.

Remark 4.7. Condition (ii) is on the face of it somewhat stronger than (i).
In fact for general metric spaces X ⊂ Y , the conditions (i) and (ii) are not
equivalent. For example, suppose X = { 1

n
} ⊂ [0, 1] = Y . Then X has no

accumulation points in itself, so (i) holds, but it does have an accumulation
point 0 ∈ Y , so (ii) fails. The proof which follows shows that if X, Y are
topological groups, then the two conditions are the same.

Proof. (i) implies (ii): Suppose that (ii) fails so that gn −→ h for some
h ∈ SL(2,R). Then gng

−1
n+1 −→ hh−1 = id. Since G is a subgroup, id ∈ G

and hence (i) fails.
(ii) implies (iii) since if the identity is not an isolated point, then clearly

(ii) fails.
(iii) implies (i): Choose a neighbourhood id ∈ U such that G∩U = {id}.

Then if g ∈ G, we have G ∩ gU = {g} which implies (i).

It is now easy to prove half of Theorem 4.20 referred to above:



CHAPTER 4. GROUPS OF ISOMETRIES 62

Lemma 4.8. If G acts properly discontinuously on H then G is discrete in
SL(2,R).

Proof. If G is not discrete then by Lemma 4.6 (iii) we can find a sequence
gn ∈ G such that gn −→ id. Thus gnz −→ z ∀ z ∈ H.

Let K = {w ∈ H : d(z, w) ≤ 1 be the closed unit ball centre z. Then
z ∈ K and for sufficiently large n, gnz ∈ K so that z ∈ g−1

n K. Hence
K ∩ g−1

n K 6= ∅ for infinitely many n, which shows G does not act properly
discontinuously on H.

The condition of acting properly discontinuously depends on properties
of the space being acting on. We shall see below that any discrete subgroup
of SL(2,R) acts properly discontinuously on H. However:

Example 4.9. The group SL(2,Z) of 2×2 matrices with integer coefficients
and determinant 1 is obviously a discrete subgroup of SL(2,R). As we shall
see below, any discrete subgroup of SL(2,R) acts properly discontinuously on
H. However SL(2,Z) does not act properly discontinuously on R ∪ ∞. To

see this, let I = [0, 1] and consider gn =

(
1 −1

n+ 1 −n

)
∈ SL(2,Z). Then

gnO = 1/n ∈ I for n > 1, and so gnI ∩ I 6= ∅. Since I is compact this proves
the claim.

There are a number of variants on the definition of acting properly dis-
continuously. We have chosen the one which works best in our proofs. The
next lemma gives some examples. For further discussion, see [14] Section 3.5,
also Examples Sheet 6.

Here are some alternative characterisations of acting properly discontin-
uously on H.

Lemma 4.10. Let G be a subgroup of SL(2,R) The following conditions are
equivalent:
(i) G does not act properly discontinuously on H.
(ii) Some G orbit in H has accumulation points in H.
(iii) All G orbits in H have accumulation points in H, with the possible
exception of one orbit which consists of a single point fixed by all elements
in G.
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Proof. (i) implies (ii): If G is not PD, then there exists a compact set K
with gnK ∩K 6= ∅ for infinitely many distinct gn ∈ G. Thus there are points
zn ∈ K with gnzn ∈ K. Since K is compact we can assume by passing to a
subsequence that zn −→ w ∈ K.

Now K is bounded and so is contained in the closed ball BR(w) for some
R > 0. Since zn −→ w ∈ K, we have d(zn, w) < 1 for large enough n
and so also d(gnzn, gnw) < 1. Since gnzn ∈ K it follows that gnw lie in the
closed ball BR+1(w) which is compact. Thus we can extract a convergent
subsequence, showing that the G orbit of w has an accumulation point in H.

(ii) implies (iii): Suppose the orbit of z0 has an accumulation point, so
there exist distinct points gnz0 −→ w0 ∈ H. Let z ∈ H and consider the
points gnz. We have

d(gnz, z) ≤ d(gnz, gnz0)+d(gnz0, w0)+d(w0, z) = d(z, z0)+d(gnz0, w0))+d(w0, z).

The right hand side of this expression is bounded independently of n, hence
the points gnz are all contained in a closed ball centre z. If infinitely many of
these points are distinct, it follows that the orbit has an accumulation point.

If gnz coincide for infinitely many distinct n, then we must have hnz = z
for infinitely many distinct elements hn ∈ G. This means that z must be a
common fixed point of the hn which are all elliptic. We claim that the orbit
of any other point w 6= z has accumulation points. For since the hn are all
distinct, they all rotate through different angles, and hence there must be
infinitely many distinct points hnw which all lie on a circle centre z. This
circle is compact and so the orbit of w has an accumulation point.

(iii) implies (i): Pick an orbit Gz say with an accumulation point, so that
gnz −→ w for some gn ∈ G and w ∈ H. Choose R > 0 so that the closed
ball BR(w) contains z. Clearly BR(w) contains infinitely many points gnz,
so gnBR(w)∩BR(w) 6= ∅ for infinitely many gn. Since BR(w) is compact the
result follows.

Now we collect some examples of subgroups of Isom+ H.

Example 4.11. If T ∈ Isom+ H then G =< T >= {T n : n ∈ Z} is cyclic.
G has finite order if and only if T is elliptic with a rational rotation angle
2πp/q for p/q ∈ Q (where we assume p, q are relatively prime). In this case
G =< S >, where S is rotation by 2π/q. If the angle of rotation is not of
this form, then G is neither discrete nor does it act properly discontinuously
on H.
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Proof. The first statement is clear. To prove the second statement, we just
have to show that S ∈ G. This is an easy exercise using the Euclidean
algorithm. The final statement follows since the orbit of any point other than
the fixed point is infinite and lies on a hyperbolic circle which is compact,
and so must have accumulation points on the circle.

In fact a famous result of Weyl from dynamics shows that in the above
example, every orbit of an irrational rotation on a circle is dense in the circle.

Proposition 4.12. (H. Weyl, 1916) Let T : [0, 1] −→ [0, 1] defined by map-
ping x −→ x+ α mod 1. If α /∈ Q then every orbit is dense.

Proof. First we claim that it is enough to see that there exists a sequence
nr ∈ Z such that T nr(0) −→ 0. In fact if

T nr(0) = nrα +mr, mr ∈ Z,

then
T nr(x) = x+ nrα +mr.

So
T nr(0)−mr −→ 0⇒ T nr(x)− x = nrα mod 1.

So
T nr(x) −→ x.

Now suppose there is no sequence T nr(0)→ 0. Then there exists an open
interval U 3 0 such that

T n(0) ∩ U = ∅ ∀ n 6= 0.

We claim that, in this case,

T n
(U

2

)
∩ Tm

(U
2

)
= ∅ ∀ n 6= m,

(where if U = [a, b], then U
2

:=
[
a
2
, b

2

]
). If not, there exists

x = u+ nα mod 1 = v +mα mod 1, u, v ∈ U
2
.

Then
u− v = (m− n)α mod 1 ∈ U ⇒ Tm−n(0) ∈ U .

Thus the translates of U
2

are disjoint, but each has positive measure, which
is impossible.
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Exercise 4.13. Let T ∈ Isom+ H be parabolic. If S ∈ IsomH commutes with
T , what can we say about < S, T >?

First note that if T (v) = v, then TS(v) = ST (v) = S(v) ⇒ S(v) = v
since T has a unique fixed point. So it easy to see that S is also parabolic
with the same fixed point.

Now put the fixed point at ∞. Then T (z) = z + a and S(z) = z + b. We
have 2 cases depending on whether or not a/b ∈ Q.
Case (a): a/b ∈ Q.
We have

a/b = n/m, n,m ∈ Z, hcf(n,m) = 1.

So a = nd and b = md with d ∈ R and there exist p, q ∈ Z such that
pn+ qm = 1.
Let L : z 7→ z + d. Then

T = Ln, S = Lm, T pSq = LnpLmq = L,

so < L >=< S, T >, that is < S, T > is a cyclic group generated by a single
parabolic element L.

Case (b): α = a/b /∈ Q.
In this case, we claim that every < S, T > orbit in H has accumulation points
in H, so that < S, T > does not act properly discontinuously on H. Pick
z ∈ H. The orbit of z is the set of points

T n
′
Sm

′
(z) = z + n′a+m′b, n′,m′ ∈ Z.

We have:

{n′a+m′b} is dense in R ⇐⇒ {n′α +m′ : n′,m′ ∈ Z} is dense in R

⇐⇒ {n′α mod 1 : n′ ∈ Z} is dense in [0, 1].

The last condition is exactly Weyl’s theorem above.
It is now easy to see that < S, T > is neither discrete nor acts properly

discontinuously. Why?

Lemma 4.14. Any abelian subgroup G ⊂ AutH which acts properly discon-
tinuously and which contains a parabolic or an elliptic transformation must
be cyclic.
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Proof. Let us take the case in which G contains a parabolic element; the other
case is similar. As in Exercise 4.13, all elements in G must be parabolic with
a common fixed point v. Conjugating to put v at ∞, we may assume all
elements are of the form Sa : z 7→ z + a, a ∈ R.

Let A = {a > 0 : Sa ∈ G}. We claim that inf A > 0. If not, we can
find San ∈ G with an −→ 0. It is easy to see that in this case G does not
act properly discontinuously since if we take K to be the line interval joining
−1 + i to 1 + i then K ∩ SanK 6= ∅ for infinitely many n. Alternatively

this contradicts the discreteness of G, since

(
1 an

0 1

)
−→

(
1 0

0 1

)
. So by

Corollary 4.8, G does not act properly discontinuously.
Now let α = inf A. We claim that Sα ∈ G. Once again, if not, we can

find Sbn ∈ G with bn −→ α. Then Sbn−bn+1 ∈ G and bn − bn+1 −→ 0 which
we have already ruled out.

Now let T ∈ G, so T = Sa or T−1 = Sa for some a ∈ A. We can write
a = mα+ b where b ∈ [0, α). If b > 0 then TS−mα = Sb so b ∈ A, but if b > 0
this contradicts the definition of α.

The hyperbolic case is slightly more subtle. Suppose that T is hyper-
bolic and that ST = TS. Then S fixes the axis of T , since S(AxT ) =
AxSTS−1 = AxT .Thus S maps the fixed point set of T to itself. In other
words, S{v1, v2} = {v1, v2} where vi are the fixed points of T . However we
cannot conclude that S(vi) = vi. In fact we have:

Lemma 4.15. Suppose that T is hyperbolic and that S(AxT ) = AxT , so
that S{v1, v2} = {v1, v2} where vi are the fixed points of T . Then either:
(a) S(vi) = vi, and S is hyperbolic with the same axis, ST = TS, and
< S, T > is cyclic or
(b) S(vi) = vj and S is elliptic of order 2 with fixed point on AxT , STS−1 =
T−1 and < S, T > is a (non-abelian) dihedral group.

Proof. Case (a) follows exactly as in the parabolic and elliptic cases discussed
above.

In case (b), we show that the restriction map S : AxT −→ AxT must
have a fixed point. There are two methods:
• We can arrange AxT to be the diameter [−1, 1] of D. Then S restricts
to a map of the axis [−1, 1] to itself with S(1) = −1, S(−1) = 1. So using
the intermediate value theorem there must exist a point x ∈ AxT such that
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S(x) = x. So S2 = id and it follows that S is elliptic of order 2.
•We may as well assume that the fixed points of T are vi = {0,∞} and that

T (z) = λz. Let S =

(
a b

c d

)
. Then

S(0) =∞, S(∞) = 0, detS = 1 ⇒ d = 0, a = 0, c = −1/b,

so S =

(
0 b

−1
b

0

)
which is elliptic of order 2 and has fixed point ib.

In either case, we now note that STS−1 is hyperbolic (because T is) and
has the same translation length and same axis. However S has interchanged
the fixed points and hence the direction of translation. So STS−1 = T−1 as
claimed.

Putting together the above discussion, we have proved:

Proposition 4.16. Any discrete abelian subgroup of Isom+ H is cyclic.

Proof. Suppose that G ⊂ Isom+ H is abelian. We have seen from the exam-
ples above that all the elements in G are either all elliptics with the same
fixed point; parabolics with a common fixed point; or hyperbolics with a
common axis. The arguments above also show that if G is either cyclic or
non-discrete.

We can also show:

Proposition 4.17. Suppose that G is discrete and contains at least one
hyperbolic element T , and suppose further that all elements of G map AxT
to itself. Let H = {g ∈ G : g is hyperbolic}. Then either H = G and G
is cyclic generated by a single hyperbolic, or [G : H] = 2 and G is infinite
dihedral, H is infinite cyclic and any element g /∈ H is elliptic of order 2 as
in the above example.

Proof. If H = G then all elements in G are hyperbolics with a common axis.
The result follows as in the parabolic case Lemma 4.14, using the translation
length along the axis as a substitute for the distance of translation of a
parabolic with fixed point ∞.

If H 6= G, pick g, g′ /∈ H. Then as in Lemma 4.15 case (b), g, g′ must
interchange the endpoints of AxT . This means that gg′ fixes the endpoints
of the axis, so either gg′ = id , in which case g′ = g−1, or gg′ ∈ H. The result
follows.
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We end this section with a couple of more complicated examples.

Example 4.18. Let G = SL(2,Z) ⊂ SL(2,R). This group is clearly discrete.

Example 4.19. Start with a tessellation of H and consider its symmetry
group. It is fairly clear that this must act properly discontinuously (because
only finitely many symmetries map a compact set to itself). By Corollary 4.8
it is discrete as a subgroup of PSL(2,R).

4.2 Relation of properly discontinuity and dis-

creteness.

In this section we prove the important theorem mentioned above.

Theorem 4.20. G ∈ PSL(2,R) is discrete if and only if its action on H is
properly discontinuous.

Definition 4.21. A Fuchsian group is a discrete subgroup of SL(2,R).

We have already proved in Lemma 4.8 that if G acts properly discontinu-
ously, then G is discrete. To prove the converse, we start with the following
Lemma.

Lemma 4.22. Let z0 ∈ H and suppose that K ⊂ H is compact. Then the
set E = {T ∈ PSL(2,R) : T (z0) ∈ K} is compact.

Remark 4.23. We will only need to use this Lemma in the case z0 = i ∈ H,
in which case the final step of the proof is slightly simpler.

Proof. Note that a set in K ⊂ H is compact if and only if it is closed and
bounded. Why? Also note that since PSL(2,R) inherits the topology from
R4, to see E is compact we also only need see it is closed and bounded.
• (E is closed): Consider the continuous map β : PSL(2,R) −→ H defined
by T 7→ T (z0). Then E = β−1(K) which is closed.
• (E is bounded): Since K is compact, there exists M1 such that ∀ T =(
a b

c d

)
∈ E, we have

|T (z0)| =
∣∣∣∣az0 + b

cz0 + d

∣∣∣∣ < M1.
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Also, as K is compact in H, there exists M2 > 0 such that

=
(
az0 + b

cz0 + d

)
>M2.

Using the formula

=
(
az + b

cz + d

)
=

(ad− bc)=z
(cz + d)2

and remembering that ad − bc = 1 because T ∈ PSL(2,R), we deduce that
=z0 > M2|cz0 + d|2 and hence |az0 + b| < M1|cz0 + d|.
So

|cz0 + d| <
√
=z0

M2

, |az0 + b| < M1

√
=z0

M2

.

This gives upper bounds on |cz0 + d| and |az0 + b|. In the case z0 = i we see
easily that |ci+ d| and |ai+ b| bounded ⇒ |a|, |b|, |c| and |d| bounded.

In the general case the same result follows because |c| > L⇒ |cz0 + d| >
|L||z0| − |d| > k as |L| −→ ∞. (Check this.)

Proof of Theorem 4.20. It remains to show that G discrete implies that G
acts on H properly discontinuously. In other words, given a compact subset
K ⊂ H, we have to show that T (K)∩K = ∅ for all but finitely many T ∈ G.
Without loss of generality, we can assume that K = BR(i), that is the closed
hyperbolic disk with centre i and radius R >> 0 (because K ⊂ BR(i)). (This
is because if T (K)∩K 6= ∅ then certainly T (BR(i))∩BR(i) 6= ∅.) Also note
that BR(i) ∩ T (BR(i)) 6= ∅⇒ T (i) ∈ B2R(i). In fact, if

x = T (y), d(x, i) 6 R, d(y, i) 6 R,

then

d(i, T (i)) 6 d(i, T (y)) + d(T (y), T (i)) = d(i, x) + d(y, i) 6 2R.

Now let EG = {T ∈ PSL(2,R) : T (i) ∈ B2R(i)}∩G. By Lemma 4.22, the set
{T : T (i) ∈ B2R(i)} is compact. But G is discrete and so also EG is discrete.
However any infinite subset of a compact set has accumulation points, so EG
must be finite. Thus T (BR(i)) ∩ BR(i) 6= ∅ for all but finitely many T ∈ G
which is what we needed to show.
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Corollary 4.24. (i) If G ⊂ PSL(2,R) is not discrete, then all but possibly
one G-orbit have accumulation points.
(ii) If G is discrete, then no G-orbit has accumulation points in H.
(iii) If G is discrete and infinite, then every orbit of z0 ∈ H has accumulation
points on ∂H.

Proof. (i) and (ii) follow immediately from the theorem and Lemma 4.10. (iii)
is clear since H ∪ ∂H is compact and G cannot consist entirely of elliptics
with a common fixed point.

The set of accumulation points of a G-orbit G(z) on ∂H turns out to be
independent of z ∈ H ∪ ∂H. It is called the limit set of G. The limit set is
an important object which will be studied in more detail in Chapter 8.

Definition 4.25. G acts freely on X if for any z ∈ X, g ∈ G such that
gz = z, then g = id.

Remark 4.26. Clearly G ⊂ PSL(2,R) acts freely on H ⇐⇒ G does not
contain elliptic elements.

Corollary 4.27. If a discrete group G acts freely, then ∀ z ∈ H, there exists
a neighbourhood U of z such that g U ∩ U = ∅ ∀ g ∈ G.

Proof. By Corollary 4.24 (ii), z is not an accumulation point of Gz. So let

ε = inf
g∈G−{id}

d(z, gz).

Then
B ε

2
(z) ∩ hB ε

2
(z) = ∅ ∀ h ∈ G, h 6= id.

In fact,

d(z, hz) 6 d(z, w) + d(w, hz) < ε ∀ w ∈ B ε
2
(z) ∩ hB ε

2
(z).

Why do we care about properly discontinuous actions? Firstly, because
they are the actions associated to tessellation of H. A more high level math-
ematical reason relates to the theory of covering spaces, which we shall see
more of in the final chapter. Recall the following definition:
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Definition 4.28. Given two path connected topological spaces X and Y , a
continuous map p : X −→ Y is a covering map if each y ∈ Y has a
neighbourhood Vy such that every connected component of p−1(Vy) is mapped
homeomorphically to Vy by the restriction of the map p.

Example 4.29. (i) The map p1 : R −→ S1 defined by θ 7→ e2πiθ is a covering
map.
(ii) The map R2 −→ T2 defined by (x, y) 7→ (e2πix, e2πiy) is a covering map.

Theorem 4.30. Let G be a group acting on a topological space X. Then
X/G is Hausdorff and p : X −→ X/G is a covering map ⇐⇒ G acts freely
and properly discontinuously on X.

Proof. See [15], Proposition 3.5.8 p.99.

4.2.1 More properties of discrete groups

Let us look at some more interesting and useful properties of subgroups
G ⊂ PSL(2,R).

Lemma 4.31. Suppose that G is discrete and that h ∈ G hyperbolic. Then
for any g ∈ G, either g has no fixed points in common with h, or g is
hyperbolic and has both fixed points in common with h.

Proof. Without loss of generality, we may suppose that g and h have a com-
mon fixed point at ∞ ∈ H and that h(z) = λz with |λ| > 1. We also have
g(z) = az + b (where a = 1 iff g is parabolic). We compute:

h−nghn(z) = λ−n(aλnz + b) = az + λ−nb.

This is impossible unless b = 0 because G is discrete.

Lemma 4.32. Suppose that g ∈ Isom+H is either parabolic or elliptic and
h ∈ Isom+H doesn’t fix the fixed point of g. Then ghg−1h−1 is hyperbolic.

Proof. • Method 1 :
By geometry of two reflections, as in Corollary 3.21 in the previous chapter.
• Method 2 :
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Say g parabolic with g(∞) = ∞. Then g =

(
1 t

0 1

)
and h =

(
a b

c d

)
with

c 6= 0 (so that h(∞) 6=∞). Hence ghg−1h−1 =

(
a+ ct b+ td

c d

)(
d+ tc −b− ta
−c a

)
and so

Tr(ghg−1h−1) = 2ad+ c2t2 − 2bc = 2 + c2t2 > 2.

The proof of the elliptic case is similar. We may as well assume that the

fixed point of g is 0 ∈ D. Then g =

(
eiθ 0

0 e−iθ

)
and h =

(
a b

c d

)
with

h(0) 6= 0. Then b 6= 0 and ghg−1h−1 =

(
eiθa eiθb

e−iθc e−iθd

)(
de−iθ −be−iθ
−ceiθ aeiθ

)
.

So

Tr(ghg−1h−1) = ad−bce2iθ−bce−2iθ+ad = 2(1+bc)−2bc cos 2θ = 2+4bc sin2(θ).

Note that c = b̄, d = ā, so

Tr(ghg−1h−1) = 2 + 4|b|2 sin2(θ) > 2.

Corollary 4.33. Suppose that G is discrete and that h ∈ G is hyperbolic.
Suppose that there exists g ∈ G such that g (Axh) 6= Axh. Then G contains
infinitely many hyperbolic elements with distinct axes.

Proof. By Lemma 4.31, both endpoints of g (Axh) = Ax(ghg−1) are dis-
tinct from those of Axh. (We are using the important fact that T (AxS) =
AxTST−1. Why is this true?)
We claim that the set {hng (Axh)} are an infinite set of axes no two of
which have a common end point. In fact, if hng (Axh) = hmg (Axh) with
n 6= m, then hrg (Axh) = g (Axh) for some minimum r > 0. Let a, b
be the endpoints of Axh. Then hrg(a), hrg(b) ∈ {g(a), g(b)} and so either
hrg(a) = g(a), hrg(b) = g(b) or hrg(a) = g(b), hrg(b) = g(a). In both case,
h2rg(a) = g(a), h2rg(b) = g(b). Thus h2r fixes both Axh and g(Axh). But
this is impossible, so r = 0.
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We have already shown that any abelian Fuchsian group is cyclic. In
fact, Fuchsian groups are either extremely simple (virtually abelian) or they
contain a free group on at least two generators. The simple examples are
known as elementary groups

Definition 4.34. A Fuchsian group G is called elementary if it is one of
the following list:
(a) < T > where T is elliptic;
(b) < T > where T is parabolic;
(c) < T > where T is hyperbolic;
(d) the (non-abelian) dihedral group generated by a hyperbolic and an elliptic
as in Exercise 4.15 (b).

Note that in each of the first three cases, G fixes either one or two points
in H ∪ ∂H. In the last case, G does not fix any points but it does fix a line,
namely the axis of T .

Theorem 4.35. Let G be a Fuchsian group. Then the following are equiva-
lent:
(i) G is elementary.
(ii) G is virtually abelian, that is there exists a finite index abelian subgroup
H ⊂ G.
(iii) G has a finite G-orbit in H ∪ ∂H.

Remark 4.36. Condition (i) is the easiest to understand; condition (ii) is
the most sophisticated and (iii) is sometimes preferred because it is works
also in H3.

Proof. Proof of (i) ⇒ (ii): Obvious.
Proof of (ii) ⇒ (iii): Let G be virtually abelian and let H be an abelian
subgroup of G so that G/H is finite. Since H is discrete and abelian, we
know from Proposition 4.16 that it is cyclic and that there exists v such that
H(v) = v, that is H ⊂ StabG(v). Then |orbG(v)| ≤ |G/H| <∞.
Proof of (iii) ⇒ (i):
Suppose first that G contains no hyperbolic elements. Then by Lemma 4.32
all the elements have a common fixed point and be either all elliptic with a
common fixed point, or all parabolic with a common fixed point. We have
already analysed these cases and shown that G must be cyclic.

Now suppose that G contains a hyperbolic element h. Then either every
other element fixes Axh or not. In the first case it follows from Proposi-
tion 4.17 that G is elementary.
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In the second case, there exists g ∈ G such that g (Axh) is distinct from
Axh. Moreover by Lemma 4.31 these two axes have no endpoint in common.
To finish the proof it will be enough to see that in this case there doesn’t
exist any finite G-orbit. Clearly, any point in H∪ ∂H distinct from the fixed
points h± of h has an infinite G-orbit. Since g (Axh) = Ax ghg−1 has no
common end with Axh, the images of h+ and h− under powers of ghg−1 are
all distinct, so the orbits of h± are infinite also. This completes the proof.

4.2.2 General tests for discreteness

Here are some more sophisticated tests for discreteness.

Lemma 4.37. (Shimuzu’s Lemma)

If G is Fuchsian and A =

(
1 1

0 1

)
∈ G, then for any B =

(
a b

c d

)
∈ G we

have either c = 0 or |c| > 1.

Proof. Let B0 = B and Bn+1 = BnAB
−1
n . Say Bn =

(
an bn

cn dn

)
. A compu-

tation shows that

(
an+1 bn+1

cn+1 dn+1

)
=

(
1− ancn a2

n

−c2
n 1 + ancn

)
.

From this cn+1 = −c2
n so that if |c| < 1, then c2

n −→ 0. Also by induction,
we see that |an| 6 n + |a0|, so ancn −→ 0 and an −→ 1. So Bn+1 −→ A
contradicting discreteness.

Corollary 4.38. Under the hypotheses of the previous Lemma, we have that

|(Tr(ABA−1B−1)− 2| > 1.

Proof. Check that Tr[A,B] = 2 + c2.

This is a special case of Jørgensen’s inequality, the most important result
of this type. It applies to subgroups of SL(2,C).

Theorem 4.39. (Jørgensen’s inequality)
For any elements A,B in a non-elementary discrete subgroup of SL(2,C):

|(Tr2(A)− 4|+ |(Tr(ABA−1B−1)− 2| > 1.
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Proof. If A is parabolic, this is just the previous corollary. If A is hyperbolic

or elliptic, by normalizing we can write A =

(
u 0

0 1
u

)
. Then

|(Tr2(A)− 4|+ |(Tr(ABA−1B−1)− 2| = (1 + |bc|)
∣∣∣∣u− 1

u

∣∣∣∣2 = µ.

Computing Bn as above, you can show that the sequence has a limit if |µ| < 1.
The details are quite complicated, see [10] p. 107.



Chapter 5

Fundamental domains

5.1 Fundamental domains

Definition 5.1. If G is a Fuchsian group, then a subset R ⊂ H is a funda-
mental domain for G if:
(i) if x, y ∈ R such that x = gy for an element g ∈ G, then g = id, equiva-
lently gR ∩R = ∅ ∀g ∈ G− {id}.
(ii) ∀ z ∈ H, ∃ g ∈ G such that gz ∈ R, that is⋃

g∈G

gR = H.

A similar definition can be for more general groups G acting properly
discontinuously on a metric space X. Say R is a fundamental domain for a
group G and choose A ⊂ R. It is easy to see that for any g 6= id, the set
(R \ A) ∪ g(A) is also a fundamental domain. Thus a fundamental domain
for G is far from being unique.

Definition 5.2. A subset C ⊂ H is called convex if for all x and y in C,
every point on the geodesic line segment connecting x and y is in C.

We shall also usually want to assume the following additional good prop-
erties:
(iii) R is the interior of a convex geodesic polygon in H, ie R is the interior
of a convex set and ∂R ∩ H is a countable union of geodesic segments of
positive length, only finitely many of which meet any compact set.
(iv)

⋃
g∈G gR is locally finite, that is for any compact subset K ⊂ H, then

76
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]{g : gR ∩K 6= ∅} <∞.

Suppose that R is a geodesic polygon. Notice that R may not be compact,
so that ∂R may intersect ∂H, in which case the connected components of
∂R ∩ ∂H may be either isolated points or arcs in ∂H. We call a maximal
geodesic segment in ∂R, or a maximal arc in ∂R ∩ ∂H, an edge. In most
cases that we will consider, ∂R will have a finite number of edges.

5.2 Existence of a fundamental domain: Dirich-

let and Ford fundamental domains

Theorem 5.3. Say G is a Fuchsian group acting on H (or D). Then there
exist fundamental domains R for G satisfying (i)-(iv) above. The funda-
mental domain can be chosen to be finite sided if and only if G is finitely
generated.

We shall prove that such fundamental domains exist by direct construc-
tion. There are two main methods: Dirichlet domains and Ford domains.

We shall show later that if R can be chosen to be finite sided, then G is
finitely generated. The converse is somewhat harder and won’t be done here,
see [10]. It is false in dimension greater than two.

5.2.1 Dirichlet domains

Pick z0 ∈ H. For each orbit point gz0, g 6= id, draw the perpendicular
bisector of the line from z0 to gz0. This separates H into two parts. For
each g ∈ G − {id}, let Hg = Hg(z0) ⊂ H be the half-space cut out by
the perpendicular bisector of z0 and gz0 and containing z0, in other words
Hg(z0) = {z ∈ H : d(z, z0) < d(z, gz0)}.

Definition 5.4. Pick z0 ∈ H such that gz0 = z0 ⇒ g = id. (Why can we do
this?). We define the Dirichlet domain with centre z0 to be

R = Rz0 =
⋂

g∈G−{id}

Hg(z0) = {z ∈ H : d(z, z0) < d(z, gz0) ∀ g 6= id}.

We will show that Rz0 has the properties (i) – (iv) required by Theorem
5.3. In practice, the half-planes corresponding to a finite number of orbit
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points “near” z0 determine R and the remaining half spaces Hgn don’t cut
down R further. The construction depends heavily on z0: we shall see some
actual examples below.

Proof that Rz0 satisfies the conditions of Theorem 5.3

� We begin by showing that h(Rz0) = Rhz0 :

h(Rz0) = {hz ∈ H : d(z, z0) < d(z, gz0) ∀ g 6= id}
= {hz ∈ H : d(hz, hz0) < d(hz, hgz0) ∀ g 6= id}

= {w ∈ H : d(w, hz0) < d(w, hgh−1hz0) ∀ g 6= id}
= {w ∈ H : d(w, hz0) < d(w, khz0) ∀ k 6= id} = Rhz0 ,

where for the last equality we used the obvious fact that

{hgh−1 ∈ G : g 6= id} = {k ∈ G : k 6= id}.

� Proof of (i):
If z ∈ Rz0 ∩ Rgz0 , then d(z, z0) < d(z, gz0) and d(z, gz0) < d(z, g−1gz0) =
d(z, z0). So

Rz0 ∩Rgz0 = Rz0 ∩ g(Rz0) = ∅.

� Proof of (ii):
The cardinality ]{Gz0 ∩B1(z)} is finite by the properly discontinuity of the
action of the group G. So there exist only finitely many nearest orbit points
g1z0, . . . , gnz0 to z. So we can choose an element g such that d(z, gz0) =
infh∈G d(z, hz0), that is

d(z, gz0) 6 d(z, hz0) ∀ h 6= g.

Hence
d(g−1z, z0) 6 d(g−1z, g−1hz0) ∀ h 6= g.

We would like to conclude that this gives g−1z ∈ R, that is

d(w, z0) 6 d(w, kz0) ∀ k 6= id (5.1)

implies that w ∈ R. We will do this by showing that (5.1) implies that the
half open line segment [z0, w) ⊂ R, from which it follows immediately that
[z0, w] ⊂ R.
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If α ∈ [z0, w), then d(z0, α) + d(α,w) = d(z0, w) ≤ d(w, hz0) ∀ h 6= id,
where the last inequality follows from (5.1). Thus d(z0, α) ≤ d(w, hz0) −
d(α,w) ≤ d(α, hz0) ∀ h 6= id. Moreover the second inequality is an equality
only if α is on the line from hz0 to w. Since this line intersects [z0, w) exactly
in w, this only happens if α = w, which by our assumption is not the case.
Hence d(z0, α) < d(α, hz0) ∀ h 6= id hence α ∈ R as claimed.
� Proof of (iv):
Without loss of generality, we can take K to be the closed disk of radius R
and centre z0. Then we have that gRz0 ∩K 6= ∅ ⇒ ∃z ∈ gRz0 = Rgz0 such
that d(z, z0) 6 R. Let z = gw with w ∈ Rz0 . Then

d(gz0, z0) 6 d(z, gz0) + d(z, z0) 6 d(z, z0) + d(z, z0) 6 2R

because z ∈ Rgz0 . Since there are only finitely many orbit points within
distance 2R from z0, the result follows.
� Proof of (iii):
It is clear that R is convex since each half space Hg is convex and the inter-
section of convex sets is convex.
We claim that if K is a compact set, then only finitely many common perpen-
diculars meet K. Again without loss of generality we can take K to be the
closed disk of radius R and centre z0. Say w ∈ Lh, the common perpendicular
to z0 and hz0, and w ∈ K. Then

d(z0, hz0) 6 d(z0, w) + d(w, hz0) = 2d(w, z0) 6 2R.

The claim follows from (iv).
Thus if B is any open ball with R ∩ B 6= ∅, then only finitely many

common perpendiculars meet B so that ∂R ∩ B contains at most finitely
many geodesic segments. To complete the proof of (iii), it is enough to show
that R is open, equivalently that R ∩B is open for any open ball B.
Assume that R∩B 6= ∅ (otherwise there is nothing to prove). SoHg∩B = Hg

for all but finitely many g ∈ G, because B ⊂ Hg for all but finitely many
g ∈ G. So

R ∩B = [
⋂
g∈G

Hg∈G] ∩B = (Hg1 ∩ · · · ∩Hgn) ∩B.

So R is open in B, (and it is impossible for the half lines Lg to accumulate
on R).
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5.2.2 Ford domains

For this construction, we will assume that G contains parabolic elements
which fix ∞. We let G0 =< T > be the subgroup which stabilises ∞, where

T (z) = z + t. Note that if g =

(
a b

c d

)
∈ G \ G0, then c 6= 0. For later

use, we remark that it follows easily from Shimuzu’s lemma 4.37, that in
this situation there is a positive lower bound on |c|. If t = 1, the lemma
says that |c| > 0. If t 6= 1, let S(z) = λz. Check that STS−1(z) = z + λt
so taking λ = 1/|t|, we can apply the lemma to the group SGS−1. Since

SgS−1 =

(
a λb

λ−1c d

)
we deduce that |c| ≥ 1/|t|.

This Ford domain construction uses isometric circles, see Section 3.1.5.

Remember that if g ∈ PSL(2,C), then g′(z) =
1

(cz + d)2
. If g =

(
a b

c d

)
∈

PSL(2,C) with c 6= 0, then the isometric circle Ig of g is the circle with
centre −d

c
and radius 1

|c| :

Ig = {z ∈ C : |cz + d| = 1} = {z ∈ C : |g′(z)| = 1}.

We define the region inside Ig as

Dg = {z ∈ C : |cz + d| < 1}

and the region outside Ig as

Eg = {z ∈ C : |cz + d| > 1}.

Observe that:
(i) g|Dg is an expansion (because |g′(z)| > 1).
(ii) g|Eg is a contraction (because |g′(z)| < 1).

Using the chain rule is an easy exercise to prove the following facts:

Exercise 5.5. (i) g(Ig) = Ig−1 ;
(ii) g(Eg) = Dg−1

(iii) g(Dg) = Eg−1.
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Definition 5.6. Let Σ ⊂ H be any vertical strip c < <z < t + c, c > 0 of
width t. We define the Ford domain as

R = Σ ∩
⋂

g∈G−{G0}

Eg.

Proof that R satisfies the conditions of Theorem 5.3

� Proof of (i):
If z ∈ R, then z ∈ Eg with g /∈ G0. So g(z) ∈ Dg−1 , hence g(z) /∈ R.
So z ∈ gR ∩ R ⇐⇒ z ∈ R, g−1z ∈ R, but g−1z ∈ Dg and R ∩Dg = ∅. So
gR ∩R = ∅ ∀g ∈ G− {id}, as we wanted to prove.
� Proof of (ii):
Let z ∈ H. Clearly by applying suitable element in G0 we may assume that
z ∈ Σ.

Consider =g(z) with g ∈ G. We claim that either z ∈ R or there exists
g ∈ G such that =g(z) > =z. In fact, if z /∈ R, then z ∈ Dg for some g ∈ G,

g =

(
a b

c d

)
with c 6= 0. So |cz + d| < 1 and so =g(z) = =z

|cz+d|2 > =z.

Now using the above observation on Shimuzu’s lemma, for any g ∈ G\G0

we have |c| ≥ 1/|t| so that rad(Ig) = 1
|c| 6 |t|. Thus if =z > |t|, then z ∈ R.

In this way, we can inductively find a sequence gn ∈ G \ G0 such that
=gn(z) is strictly increasing and gn(z) ∈ Σ. The sequence either terminates
with gn(z) ∈ R for some n, or is infinite. But in the second case we would
have an accumulation point of the orbit of z in a compact subset of H, which
is impossible. �

Exercise 5.7. The Ford domain can be viewed as the limit of the Dirichlet
domain as the base point z0 −→∞.

Notice first that if z0 ∈ H, then the common perpendicular Lg to the
line from z0 to gz0 can be described as follows. Let CR(z0) be the ball of
radius R centre z0. There is a unique R for which the circles CR(z0) and
g(CR(z0)) = CR(gz0) are tangent. Then Lg is the geodesic through the point
of tangency and tangent to the two circles.

Now let z0 −→ ∞ ∈ ∂H. The circle CR(z0) converges to a horocycle
H(d) = {z ∈ H : =z = d} for some d > 0. There is a unique value of d
such that g−1(H(d)) (which is a circle tangent to R at g−1(∞)) is tangent to
H(d). There is a unique geodesic through the tangency point in the tangent
direction. Prove that this geodesic is the isometric circle of g.
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5.3 Examples of fundamental domains

5.3.1 Dirichlet domains for the elementary groups

For the elementary groups G =< T > the Dirichlet domains are as follows:
(i) Elliptic case:
Without loss of generality, we may assume that T is the rotation by 2π

n
about

0 ∈ D. Let z0 = ρ0e
iθ0 , ρ 6= 0. The Dirichlet region centre z0 is the sector

{z = ρeiθ : θ0 − π/n < θ < θ0 + π/n}.

(ii) Parabolic case:
Normalize so that T is the parabolic transformation which fixes ∞, that is
T (z) = z + a for some a > 0. The Dirichlet region centre z0 is the strip

{z : <z0 − a/2 < <z < <z0 + a/2}.

(iii) Hyperbolic case:
Say T (z) = a2z for some a > 1. The Dirichlet domain centre z0 is the region
between two semicircles:

{z : |a−1z0| < |z| < |az0|}.

5.3.2 Dirichlet domains for the action of Z2 on R2

Let X = R2 and let G = Z2 act on X by horizontal and vertical translations
by 1. Thus if we define S : (x, y) 7→ (x + 1, y) and T : (x, y) 7→ (x, y + 1),
then G = {SnTm : n,m ∈ Z}.

The Dirichlet domain construction still makes sense. The Dirichlet do-
main centre z0 ∈ X is the unit square with z0 at its centre. Observe that
there are three common perpendiculars through each vertex of R.

Exercise 5.8. Experiment with finding Dirichlet domains with different cen-
tres for the group Z2 acting on R2 as above. In fact, if G acts a lattice
subgroup, S : (x, y) 7→ (x + 1, y) and T : (x, y) 7→ (x + a, y + b) with b > 0,
then, in general, the Dirichlet region is a hexagon.
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5.3.3 Dirichlet domains for the action of SL(2,Z) on H
Let the group G = SL(2,Z) acting on the space X = H. We will calculate
the Dirichlet domain with centre z0 = 2i.
Let J(z) = −1

z
and S(z) = z + 1, then J(2i) = i

2
, S(2i) = 2i + 1 and

S−1(2i) = 2i− 1.
(Recall that in the Dirichlet domain construction, we need that if gz0 = z0,
then g = id. So, for example, in this case we can’t choose z0 = i as centre
because J(i) = i, while z0 = 2i is allowed.)
Calculating we see that J(2i) = −1

2i
= i

2
, S(2i) = 2i+ 1 and S−1(2i) = 2i−1.

Proposition 5.9. The region R = {z ∈ H : |<z| < 1
2
, |z| > 1} ⊂ H is the

Dirichlet region with centre 2i for the action of G = SL(2,Z) on H.

Proof. The perpendicular bisector of the line from 2i to i/2 is the geodesic
|z| = 1; likewise the perpendicular bisectors of the lines from 2i to 2i± 1 are
the geodesics <z = ±1/2. The half planes associated to these three lines cut
out the region R. Thus if ∆ denotes the Dirichlet domain R2i, then certainly
∆ ⊂ R, so in particular if z ∈ H then there exists g ∈ G with gz ∈ R.

To show that ∆ = R, it will therefore suffice to show that gR ∩ R =
∅ ∀g ∈ G−{id}. So suppose that gR∩R 6= ∅ for some g ∈ G−{id}. Then
there exists a point z ∈ R such that g−1z ∈ R also.

Let g−1 =

(
a b

c d

)
. Then =g−1(z) = =z

|cz+d|2 .

Note that if z ∈ R, then

|cz + d|2 = c2|z|2 + 2|cd|<z + d2 > c2 − |cd|+ d2 = (|c| − |d|)2 + |cd| > 1

since c, d ∈ Z and they are not both 0. Hence =g−1(z) = =z
|cz+d|2 < =z.

Making the same argument with the pair of points g−1z and gg−1z = z and
replacing g−1 with g, we see equally that =z < =g−1z.
So we obtain =z < =g−1z < =z which is absurd. Thus gR ∩ R = ∅ ∀g ∈
G− {id} as claimed.

Of course this method is very special to SL(2,Z).
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Exercise 5.10. Show that the Dirichlet region for SL(2,Z) with centre z0 =
i+ 1

2
is the region R′ = {z ∈ H : |z| > 1, |z − 1/2| > 1, 0 < <z < 1}.

Hint: use the element Ω =

(
1 −1

1 0

)
which is elliptic of order 3. You

can see directly that R′ is a fundamental domain by cutting and pasting the
fundamental domain R above.

5.3.4 Ford domains for the action of SL(2,Z) on H

Let S =

(
1 1

0 1

)
and J =

(
0 −1

1 0

)
∈ SL(2,Z) as above.

The group contains the element

(
1 1

0 1

)
that fixes ∞, so, as we have

explained above, we have to restrict the Ford domain
⋂
g∈G−{id}Eg to a strip

Σ of width 1, that is R = Σ ∩
(⋂

g∈G−{id}Eg

)
.

The isometric circle of

(
a b

c d

)
has centre −d

c
and radius 1

|c| with c 6= 0.

Observing that all the entries of the matrix are in Z, then the biggest radius
is 1. Hence the radii are 6 1 and the equality holds if and only if |c| = 1. So
if |c| 6= 1, then the radius is 6 1

2
; while if |c| = 1, then − c

d
∈ Z.

Consider J =

(
0 −1

1 0

)
, then IJ has centre 0 and radius 1.

Also the element N =

(
0 −1

1 d

)
∈ SL(2,Z) for every d ∈ Z, so here are

isometric circles of radius 1 with centre any integer. Depending on how we
choose the strip Σ, we get the same fundamental domains R or R′ as in
Section 5.3.3.



Chapter 6

Side pairing and the cycle
condition

In this chapter we shall answer several questions at the same time: How
to create more discrete groups, how to find presentations for these groups,
and how to recognize when a given polygon is a fundamental domain for a
particular group.

6.1 Side pairings

We begin by examining some basic features of fundamental domains. Sup-
pose that R is a finite sided convex geodesic polygon which is a fundamental
domain for some discrete group Γ ⊂ Isom+H. Certain copies of R are adja-
cent to R. Of particular interest are those copies which are adjacent to R
along a segment of positive length (as opposed to those copies which meet R
simply in a vertex).

Definition 6.1. A side of R is a segment s ⊂ ∂R of positive length such
that s ⊂ R ∩ g(R) for some g ∈ Γ.A side pairing of R is an element g ∈ Γ
such that R ∩ g(R) is a side.

Notice that sides are not necessarily maximal geodesic segments in ∂R.
Maximal segments in ∂R are called edges of R). Thus an edge may be a
union of several sides. Note also that the definition of side-pairings allows a
side to be paired to itself.

In what follows, we will start by assuming that R is a fundamental poly-
gon for some discrete group Γ and g ∈ Γ. However later on we shall simply

85
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suppose that R is a polygon and we are given a set of isometries which pair
its sides. It turns out that, under suitable conditions, these side pairings will
generate a discrete group for which R is the fundamental domain. This is
part of the famous Poincaré theorem which we will be discussing in this and
the next chater.

In these notes, it will be important to associate a side-pairing transfor-
mation to each a side of R in a well defined way. We adopt the convention
that the side-pairing transformation associated to a side s of R is the unique
element gs ∈ Γ which carries s to another side of R. This is illustrated in
Figure 6.1. Suppose that g−1R,R are adjacent along a side s. Then g carries
the pair of regions g−1R,R to the pair R, gR and hence carries s = g−1R∩R
to g(s) = R ∩ gR. Hence by our convention, the side-pairing associated to s
is g, i.e. g = gs.

g−1
s (R)

R
gs(R)s gs(s)

1

Figure 6.1: Side-pairings: gs carries g−1
s R to R and s′ to s.

The following lemma records the basic facts about side pairings, as illus-
trated in Figure 6.1.

Lemma 6.2. Let s be a side of R and with associated side-pairing gs. Then:
(i) s = R ∩ g−1

s R and gs(s) = R ∩ gsR;
(ii) If gs is a side pairing, then so is g−1

s . Moreover g−1
s is the side-pairing

associated to the side gs(s).

Proof. Referring to Figure 6.1, this follows easily from our definitions and
the discussion above.

We write
Γ∗ = {g ∈ Γ : g is a side pairing of R}.

It follows from the lemma that Γ∗ is symmetric, that is, if g ∈ Γ∗, then
g−1 ∈ Γ∗.
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R = h0R

h1R

hk−1R
hkR = R

1

Figure 6.2: Path across the tessellation from z ∈ R to hz ∈ hR.

hi
−1hi+1R

hiR
hi+1R

R

1

Figure 6.3: Adjacent regions along the path β and the ‘pull backs’ by h−1
i .

Proposition 6.3. Suppose that Γ is a Fuchsian group and that R is a finite
sided convex geodesic polygon which is a fundamental domain for Γ. Suppose
that for each side s ∈ R there exists g ∈ Γ which pairs s to some side s′ of R.
Then Γ∗ = {g ∈ Γ : g is a side pairing of R} generates Γ, that is for every
h ∈ Γ then h = gi1 · gi2 · · · gin where gir ∈ Γ∗.

Proof. Let h ∈ Γ. Choose z ∈ R and consider the geodesic path β from z
to hz. Adjust β slightly if necessary so that it avoids all the vertices of the
tiles g(R), where g ∈ Γ, so we get the arrangement in Figure 6.3. Label the
copies of R crossed by β in order R = R0, R1, . . . , Rn = h(R). Let Ri = hiR
for i = 0, . . . , n with hi ∈ Γ, h0 = id and hn = h. Notice that from the
definition, each pair of regions hiR, hi+1R, i = 0, . . . , n−1 are adjacent along
a common side.
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If we apply h−1
i to the adjacent regions hiR, hi+1R we get the regions R =

R, h−1
i hi+1R. Thus these two regions are also adjacent, so that h−1

i hi+1 ∈ Γ∗.
We have h = hn =

∏n−1
i=0 h

−1
i hi+1 which proves the result. (Observe that, in

general, this expression for h is not unique.)

S−1R

TR
STR
= TSR

R SR

T−1R

1

Figure 6.4: Copies of the fundamental domain for Z2 =< S, T > meeting
round the basic fundamental domain R.

Example 6.4. Consider the space X = R2 and the group G = Z2 acting
on X by horizontal and vertical translations by 1. Thus G is generated by
S : (x, y) 7→ (x + 1, y) and T : (x, y) 7→ (x, y + 1), in fact G = {SnTm :
n,m ∈ Z}. The unit square R = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1} is
a fundamental domain for G. The side pairings are S, T , S−1 and T−1 and
obviously they generate G. The arrangement of SR, TR, S−1R and T−1R
round ∂R is shown in Figure 6.4.

6.1.1 Relations between the side pairings: the neigh-
bourhood of a vertex of R

We have learnt that the discrete group Γ associated to a tessellation is gen-
erated by the side pairings of a fundamental domain. To understand Γ as an
abstract group we need not only a set of generators but also a set of relations
between the generators, which between them imply all possible other rela-
tions. Such a collection of generators and relations is called a presentation
of G. It turns out that a set of relations which give a presentation for Γ
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can be read off by studying what happens near the vertices of a fundamental
domain, as we will explain.

Suppose we are given a finite sided geodesic polygon R which is a fun-
damental domain for the action of a discrete group Γ, so that the images of
R form a locally finite tessellation of H, together with a collection of side
pairings which match sides of R in pairs. (Remember that we allow a side to
be paired to itself.)

Consider the set of copies of R which meet round one of its vertices v, as
shown in Figure 6.5. By local finiteness, only finitely many images of R meet
at v. Thus if we label the regions in clockwise order round v, then eventually
we come back to where we started. In other words, we can label the regions
h0R = R, h1R, . . . hk−1R, hkR = h0R = R, where h0 = hk = id.

h1R

R = h0R
= hkR

hk−1R

1

Figure 6.5: Copies of R meeting round a vertex v.

By the same reasoning as in the proof of the Proposition 6.3, we have:
(i) id = hk = (h−1

0 h1) · · · (h−1
k−1hk);

(ii) h−1
i−1hi ∈ Γ∗ for i = 1, . . . , k.

It will be convenient to rewrite this slightly: if we set e−1
i := h−1

i hi+1 ∈ Γ∗

for i = 0, . . . , k − 1, then we can re-write (i) as id = hk = e−1
0 · · · e−1

k−1,
or equivalently id = ek−1 · · · e0. Thus we have a relation among the side
pairings, which we call a cycle relation or a vertex cycle. If we start
at a different vertex of R, the relation we get may be quite distinct, or it
may only differ from the one we already found by cyclic permutation, which
one can also think of as conjugation: id = ek−1 · · · e0 is the same relation as
id = e0ek−1 · · · e1 since e0ek−1 · · · e1 = (e0)ek−1 · · · e0(e−1

0 ). We shall shortly
see many examples of how this works.



CHAPTER 6. SIDE PAIRING AND THE CYCLE CONDITION 90

The following important and much harder result is part of Poincaré’s
theorem which we will prove in Chapter 7.

Proposition 6.5. Taking these relations for all vertices of R and choosing
one relation from each cyclic conjugacy class, gives a presentation for Γ =<
Γ∗ >.

Example 6.6. Although the above results are stated for discrete groups
acting on H, they apply equally to a discrete group acting on R2. Thus to
understand cycle relations better, let us look at our old example of the space
X = R2 and of the group Γ = Z2 acting on X by horizontal and vertical
translations given by the maps S : (x, y) 7→ (x + 1, y) and T : (x, y) 7→
(x, y + 1). We proved before that a fundamental domain for Γ is the unit
square R = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1} and that the side
pairings are S, T , S−1 and T−1, in other words, Γ∗ = {S±1, T±1}. Clearly
Γ = {SnTm : n,m ∈ Z} =< Γ∗ >.

R

h2R

h0R
= h4R

h3R

h1R

h1R h2R

h−1
1

R h̄1h2R

h2R

h3R

h−1
2

R

h̄2h3R

h4R h3R

h−1
3

h̄3h4R

1

Figure 6.6: Four copies of R round the upper right vertex of R. The lower
pictures illustrate how we pull back adjacent pairs of regions so that one of
the pair is R. To save space we have written h̄ for h−1.
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Now we refer to Figure 6.6, in which we look at the copies of R meeting at
its top right hand vertex. Going round this vertex starting from the bottom
left square R we have:
(i) h0 = id;
(ii) h1 = T ;
(iii) h2 = TS. To see this, we apply h−1

1 to the adjacent squares h1R, h2R.
Since the square immediately to the right of R is SR, we deduce h−1

1 h2 = S.
Thus h2 = h1S = TS.
(iv) h3 = TST−1. To see this, we apply h−1

2 to the adjacent squares h2R, h3R.
Since the square immediately below R is T−1R, we deduce h−1

2 h3 = T−1 and
so h3 = h2T

−1 = TST−1.
(v) h4 = id = TST−1S−1. To see this, we apply h−1

3 to the adjacent squares
h4R, h3R. We see that h−1

3 h4 = S−1 and so h4 = h3S
−1 = TST−1S−1. Thus

we conclude that id = TST−1S−1, in other words, TS = ST. Clearly in this
case, Γ = Z2 =< S, T |TS = ST >, as claimed in Proposition 6.5.

We remark that with our previous notation we have: (i) e0 = h−1
1 h0 =

T−1; (ii) e1 = h−1
2 h1 = S−1T−1T = S−1; (iii) e2 = h−1

3 h2 = S−1TS = T ; (iv)
e3 = h−1

4 h3 = S, so that ei ∈ Γ∗ and e0e1e2e3 = id.

6.1.2 Reading off the relations mechanically.

As before, let R be the fundamental domain for a discrete group G. We want
to find a mechanical way of reading off the vertex relations in G. Choose a
starting vertex v0 and let s0 be the side of R which ends in v0 and which
comes before v0 in clockwise order round ∂R, as in Figure 6.7.

Let g0 be the side pairing associated to s0. Let v1 = g0(v0). Now let
s1 be the side immediately before v1 in the clockwise order round ∂R. Let
g1 be the side-pairing associated to s1, and let v2 = g1(v1). Continuing this
process, we obtain a sequence:

v0
g0−→ v1

g1−→ v2
g2−→ · · · vr gr−→ · · ·

Eventually the sequence of vertices will repeat, because there are only finitely
many vertices, and because the sequence goes backwards as well as forwards.
We shall discuss the point at which we stop the cycle after we have looked
at the procedure in more detail below.

To see the connection between this procedure and our previous way of
reading off regions round vertices, we proceed as follows. As above, we define
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v3 = g2(v2)
R

g2g0

g1

v0

s0

v2 = g1(v1)

v1 = g0(v0)
s1

s2

1

Figure 6.7: Starting the procedure for finding the vertex cycles.

ei = h−1
i+1hi so that eiei−1 . . . e0 = h−1

i+1.

eiR

v0
hiR

hi+1R

hi
−1 = h̄i

vi = h̄iv0

si
R

h̄ihi+1R

= ēiR

1

Figure 6.8: Action of h−1
i = h̄i on adjacent regions meeting at v0.

We started at v0. We applied the side pairing g0 associated to the side s0

immediately before v0. The copies of R adjacent along this side are R = h0R
and h1R, where h0 = id. Thus g0 = h−1

1 = e0 and by definition v1 = e0v0.
Now we need to know the side immediately before v1 in the clockwise

order round ∂R. We can find this by applying h−1
1 to the adjacent pair

h1R, h2R as shown in Figure 6.8 (with i = 1). Under this map, the vertex



CHAPTER 6. SIDE PAIRING AND THE CYCLE CONDITION 93

v0 maps to h−1
1 v0 = e0v0 = v1. Thus the right hand side of the figure (again

with i = 1) illustrates exactly the configuration we need to read off the side
s1 immediately before v1 in the clockwise order round ∂R. We see that s1 is
the intersection of the adjacent regions R and h−1

1 h2R. Since h−1
1 h2 = e−1

1 ,
the relevant side pairing is g1 = e1. Thus v2 = e1v1 = e1e0v0 = h−1

2 v0.
Now suppose inductively that vi−1 = h−1

i−1v0 and that the side pairing asso-
ciated to the side before vi−1 is ei−1. Then vi = ei−1vi−1 = ei−1ei−2 . . . e0v0 =
h−1
i v0. So we can read off from Figure 6.8 that the side pairing associated to
si is h−1

i+1hi = ei and hence that vi+1 = eivi = h−1
i+1v0.

We conclude that the above sequence of vertices and side-pairings

v0
g0−→ v1

g1−→ v2
g2−→ · · · vr gr−→ · · ·

can be written

v0
e0−→ e0v0 = v1

e1−→ v2
e2−→ · · · vk−1

ek−1−→ vk = v0

where ei = h−1
i+1hi and vi = h−1

i v0.
There is a slight ambiguity in what we have said about where to stop the

cycle. We can either stop at the first recurrence of the vertex v0, or we can
stop at the point at which we have made a full circuit of the vertex v0. We
will discuss how to distinguish these cases shortly. If we continue until we
have made a full circuit of the vertex v0, then

v0
e0−→ v1

e1−→ v2−→· · ·−→vk−1
ek−1−→ vk = v0

is called the full vertex cycle of v0. Since we have gone all the way round
the vertex, we have e−1

0 · · · e−1
k−1 = id, that is id = ek−1 · · · e0. Notice that to

find the relation we read off the sequence of elements ei from right to left.

Remark 6.7. We note that the above procedure works backwards also, in
other words, given a vertex vi, we can run the process backwards to find vi−1

and ei−1.

Example 6.8. Let’s look at how this works in our usual concrete example,
that of Z2 acting on R2 by horizontal and vertical translation by 1. This is
illustrated in Figure 6.9. Using our previous notation and choosing as v0 the
top right hand vertex, we read off the cycle:

v0
T−1

−→ v1
S−1

−→ v2
T−→ v3

S−→ v0



CHAPTER 6. SIDE PAIRING AND THE CYCLE CONDITION 94

This gives the relation
id = STS−1T−1,

in accordance with what we found before. You can check that e0 = h−1
1 h0 =

T−1; e1 = h−1
2 h1 = S−1T−1T = S−1; e2 = h−1

3 h2 = S−1TS = T ; e3 =
h−1

4 h3 = S and also that v1 = h−1
1 v0 = T−1v0; v2 = h−1

2 v0 = S−1T−1v0 =
S−1v1; v3 = h−1

3 v0 = S−1v0 = TS−1T−1v0 = TS−1v1 = Tv2; v4 = h−1
4 v0 = v0.

S−1

v3
v0

v1v2

R

S

TT−1

1

Figure 6.9: Reading off the cycle relations for < S, T >.

6.1.3 How do we know when to stop?

As mentioned above, there is a question about how we know when to stop
the vertex cycle, either at the first recurrence of the initial vertex v0, or when
we have made a full circuit of the vertex v0. To distinguish these cases, we
look at angle sums round the vertex v0. Let θi = θvi be the angle in R at vi.
Applying the transformation hi (see Figure 6.8), we see that θi is also the
angle in hiR at v0,see Figure 6.10. If we consider the full vertex cycle

v0
e0−→ v1

e1−→ v2
e2−→ · · · vk−1

ek−1−→ vk = v0

there are two possibilities: either (i) vr 6= v0 for any r < k; or (ii) vr = v0

for an index 0 < r < k. We can test which case we are in by looking at the
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θ1

h0R

h2R

h1R

1

Figure 6.10: The angle at vertex hiR at v0 is the same as the angle in R at
h−1
i v0 = vi.

angle sum
∑k−1

i=0 θvi for the vertices vi in the cycle. In the first case, we have
gone around all the copies of R which meet at the vertex v0 and so

k−1∑
i=0

θi = 2π.

In the second case, we have only gone part of the way round the regions
which meet at v0 so

k−1∑
i=0

θi < 2π.

In fact we can say more. Since er is determined from vr, the cycle repeats
from vr onwards. Thus there are, say, p repeats of the cycle before have gone
all the way round R, that is pr = k so that p(θ0 + · · ·+ θr−1) = 2π or

r−1∑
i=0

θi = 2π/p

for some p ∈ N, p > 1.
In both cases, we know that if we go round the full vertex cycle then

ek−1 · · · e0 = id. In the first case, no sub-cycle e−1
i · · · e−1

j fixes v0. It follows

that e−1
i · · · e−1

j is not elliptic and ek−1 · · · e0 = id gives a relation in Γ.
In the second case, we have vr = h−1

r v0 = v0. Going round p times
completes the full vertex cycle so we find (ek−1 · · · e0)p = id. In other words,
er−1 · · · e0 is elliptic with order p and fixed point v0.
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6.1.4 Examples

Let us look at some examples to see how this works. For the moment we
shall assume that somehow we know that the group generated by the side
pairings is discrete: the content of Poincaré’s theorem which we shall below
is that this is in fact automatic once we have checked the angle sum for each
vertex cycle is correct.

The first case is illustrated by our familiar torus example. Referring back
to example 6.8, the full vertex cycle is

v0
T−1

−→ v1
S−1

−→ v2
T−→ v3

S−→ v0.

The angle in R at each vertex is π/2 and
∑3

i=0 θi = 4 · π
2

= 2π. Thus p = 1
and we get the relation STS−1T−1 = id as claimed.

The second case can be illustrated by using a square in which we pair
adjacent sides, as illustrated in Figure 6.11. In this case there are three
vertex cycles:

v2
A−→ v2; v0

B−→ v0; v3
B−1

−→ v1
A−1

−→ v3.

The angle at each vertex is still π/2. Thus for the cycle v2
A−→ v2 we have

θv2 = π/2 = 2π/4. We deduce that A is elliptic of order 4, that is, we have

the relation A4 = id. From the cycle v0
B−→ v0 we deduce similarly that B is

elliptic of order 4 and B4 = id.

Finally for the cycle v3
B−1

−→ v1
A−1

−→ v3 we have θv3 + θv1 = π = 2π/2. We
deduce the relation (A−1B−1)2 = id. In other words, BA is elliptic of order
2.

Now we look at a family of hyperbolic examples. In each case, we take a
regular hyperbolic quadrilateral with angle α < π/2 at each vertex. We pair
opposite sides as shown in Figure 6.12. Each side is labelled with the corre-
sponding side pairing, so that for example A takes the side with endpoints
v0, v1 to the side with endpoints v3, v2.

Just as in Example 6.8, we find the cycle

v0
B−→ v1

A−→ v2
B−1

−→ v3
A−1

−→ v4.

The angle sum round this cycle is

3∑
i=0

θvi = 4α =
2π

p
,
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B

v3

v2
v1

v0

A

1

Figure 6.11: A square with different side-pairings. There are 3 vertex cycles
giving relations A4 = B4 = (BA)2 = id.

with p ∈ N. From this we conclude that copies of the quadrilateral can
tessellate H only if α = π

2p
for some p > 1. In this case, A−1B−1AB is

elliptic of order p, in other words, (A−1B−1AB)p = id. If p = 1, we have the
Euclidean case that we have already seen.

Example 6.9. Consider the Dirichlet domain R for the group SL(2,Z) which
we discussed in Section 5.3.3. Recall that R was the region bounded by the
lines <z = ±1/2 and the circle |z| = 1. The vertical sides of R are paired by
the map S : z 7→ z+ 1 which is parabolic with fixed point∞, while the finite
side is matched to itself by the map J : z 7→ −1

z
which is elliptic of order 2

with fixed point i.
Let v0 be the bottom-right vertex 1/2 +

√
3i/2. The vertex cycle of v0 is

v0
e0=S−1

−→ v1
e1=J−→ v2 = v0

and the angle sum in v0 is θ0 + θ1 = 2π
3

because, as can be seen from the
diagram, θ0 = θ1 = π

3
. So we get the relation (JS−1)3 = id.

We can check this directly. We have

JS−1 =

(
0 −1

1 0

)(
1 −1

1 0

)
=

(
−1 −1

1 0

)
.



CHAPTER 6. SIDE PAIRING AND THE CYCLE CONDITION 98

A−1

v0

v1 v2

v3

B

A

B−1

1

Figure 6.12: Side-pairings for a hyperbolic quadrilateral. There is one cycle
with relation (A−1B−1AB)p = id.

Thus JS−1 is elliptic of order 3, because

2 cosφ = −1⇒ cosφ = −1

2
⇒ φ =

2π

3
,

where φ is the rotation angle round the fixed point.
To go round the full angle 2π at v0 we need the cycle:

v0
S−1

−→ v1
J−→ v0

S−1

−→ v1
J−→ v0

S−1

−→ v1
J−→ v0.

There is also a cycle at i, namely i
J−→ i. The angle at this vertex is π,

from which we deduce the relation J2 = id which we of course already know.
Hence SL(2,Z) has two generators, S and J , satisfying the relations

(JS−1)3 = id; J2 = id. It will follow from Poincaré’s theorem (see below)
that these are all the relations we need for a presentation of SL(2,Z).

Example 6.10. Now consider the Ford domain R for SL(2,Z) that we dis-
cussed in Section 5.3.4. This is the region bounded by the vertical lines
<z = 0,<z = 1, and the circles of radius 1 and centres 0, 1. There are two
side pairings for R:
(i) the map Ω : z 7→ z−1

z
which is elliptic of order 3 and which has fixed point

w0 = ei
π
3 , that is Ω =

(
1 −1

1 0

)
;

(ii) the map S : z 7→ z + 1.
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If we choose the bottom-left vertex v0, we get the vertex cycle

v0
e0=Ω−→ v1

e1=S−1

−→ v2 = v0

and the angle sum in v0 is θ0 + θ1 = π because θ0 = θ1 = π
2
. Checking

by direct calculation, we have: ΩS−1 =

(
1 −1

0 1

)(
1 −1

1 0

)
=

(
0 −1

1 0

)
so

S−1Ω 6= id, but (S−1Ω)2 = id. An alternative way to see that S−1Ω is elliptic
of order 2 is because

Trace S−1Ω = 0⇒ 2 cosφ = 0⇒ cosφ = 0⇒ φ =
π

2
,

where φ is the rotation angle round the fixed point.
Now look at the vertex w0 = eiπ/3. The vertex cycle is

w0
e0=Ω−1

−→ w1 = v0

and the angle sum in w0 is θ0 = 2π
3

. So we obtain the corresponding rela-
tion (Ω−1)3 = id, as we already know. Poincaré’s theorem will tell us that
(S−1Ω)2 = id; (Ω−1)3 = id, are an alternative presentation of SL(2,Z).

In both these examples, we omitted the vertex ∞ of ∂R. In this case we

have a cycle ∞ e0=S−→ ∞ and the vertex ∞ is fixed by S. There is no cycle
relation, but notice that S is parabolic rather than hyperbolic. As we shall
see in the next section, in fact whenever we have an ideal vertex, the group
element which fixes it is necessarily parabolic.

6.1.5 Vertex cycle at ∞
The discussion up to now has looked at the pattern of copies of R round a
vertex in H. Suppose that R has a vertex on ∂H, does this imply any new
relations in G? To simplify the discussion, from now on, we will assume that
R has only finitely many sides. There are two possibilities, illustrated in
Figures 6.13 and 6.14.

Case (a): R has an ideal vertex on ∂H. By this we mean that two
sides of R meet at some point v ∈ ∂H. An example is the Dirichlet domain
for SL(2,Z) we found in the last chapter, which has an idea vertex at ∞.
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v

Figure 6.13: Case (a): R has an
ideal vertex at v ∈ ∂H.

Figure 6.14: Case (b): ∂R con-
tains a line segment in ∂H.

Since R has only finitely many sides, it also has at most finitely many
ideal vertices. Thus if we apply a side-pairing to one of the sides which ends
at v, it must be mapped to another side which also ends in an ideal vertex.
Thus after a finite number of applications of side-pairings, we must return
to where we first started. It follows that we can associate a vertex cycle to v
just as before:

v0
e0−→ v1

e1−→ v2 · · · vk−1
ek−1−→ v0 = vk.

What is now the meaning of the cycle? If we consider how the copies of
R are laid down adjacent to R, it is impossible to make a full circuit of v
and return to R as we did in the case when the vertex was in H. Thus in
this case it is impossible that hk = id. Nevertheless, after following through
the cycle we have as previously h−1

k = ek−1 · · · e0 fixes v0. It follows that hk
must be parabolic or hyperbolic.

The following important result shows that in fact, if we assume that
images of R tessellate H, then hk must be parabolic.

Proposition 6.11. Assume that the images of R under a Fuchsian group G
cover (tessellate) H, and that this covering is locally finite. Suppose that R
has an ideal vertex v ∈ ∂H with vertex cycle as above. Then h = ek−1 · · · e0

is parabolic.

Proof. Suppose to the contrary that h is hyperbolic. By conjugation we may
assume that v = ∞, so that Ax(h) is a vertical line with one end at ∞.
Since R has an ideal vertex at ∞, we can choose a vertical line L which is
eventually in R, as shown in Figure 6.15.
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Axh

L

bnan

E

1

Figure 6.15: Illustration of the proof of Proposition 6.11

Choose points bn ∈ L ∩ R such that bn −→ ∞ as n −→ ∞ and points
an ∈ Ax(h) such that =an = =bn. The lines L and Ax(h) are asymptotic, so
that d(an, bn) −→ 0 as n −→∞.

Now pick a fundamental interval E ⊂ Ax(h) for the action of h on its
axis. (Any choice of interval of length equal to the translation length of h will
do.) Then for all n, there exists mn such that hmn(an) ∈ E. Since an −→∞,
an infinite number of these mn must be distinct. Since d(an, bn) −→ 0 we
have d(hmnan, h

mnbn) −→ 0 and hence hmn(bn) −→ E. But hmn(bn) ∈ hmnR,
so that this shows that an infinite number of copies of R accumulate on E,
which is impossible by the assumption of local finiteness of the tessellation
of H by copies of R. So h must be parabolic as claimed.

Case (b): ∂R contains an interval in ∂H, precisely, R has two infinite
sides whose endpoints bound an interval on ∂H.

This is illustrated in Figure 6.14. We can apply the side pairings in the
same pattern as previously but now the image regions h0R, hiR, . . . hkR are
adjacent one to the next, each containing intervals which are adjacent along
I, see Figure 6.16. Let I be the connected component of R̄∩∂H in question,
so that I is an interval in ∂H. This time we argue that the chain of adjacent
intervals I = I0, I1, . . . , In which appear on ∂H as edges of the regions R =
h0R, h1R . . . must eventually return to an interval Ik = hkI0 for some cycle
h−1
k = ek−1 · · · e0. Let h = hk.

Lemma 6.12. Let I be a connected component of R̄ ∩ ∂H (so I is a closed
subinterval of ∂H. Then I contains no parabolic or hyperbolic fixed points.
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hkR

I hkI

R

h1Rh−1R

1

Figure 6.16: Images of the fundamental domain R under a vertex cycle in
case (b).

Proof. First we let J = IntI, so that J is an open interval in ∂H. We first
show that J contains no fixed points of G. Suppose to the contrary that
z ∈ J is the attracting fixed point of some g ∈ G. Since R has only finitely
many sides, there is a neighbourhood U of z in H ∪ ∂H so that U ∩ ∂H ⊂ J
and U ∩ H ⊂ R. Pick w ∈ J close to z. The images gn(w) accumulate on
z and hence eventually lie in J . Since gn(w) ∈ gnR̄, it follows that there
are points in gn(R) which eventually lie in U . But this is impossible, since
g(R) ∩R = ∅ for g 6= id.

Finally we have to deal with the endpoints of I. Applying the appropriate
side-pairings, we see that on one side, I is adjacent to the next interval I1 in
the cycle. On its other side and running the cycle backwards, it is adjacent
to a similar interval I−1. By the same argument as above, the open intervals
IntI1 and IntI−1 contain no fixed points. Now the argument above applied
to I ∪ I−1 ∪ I1 shows that the endpoints of I are also not fixed points.

Proposition 6.13. Assume that the images of R under a Fuchsian group
G tessellate H, and that this covering is locally finite. If ∂R contains an
interval in ∂H, then either the corresponding vertex cycle h is hyperbolic or
G is elementary.

Proof. There is now reason why we cannot continue the cycle at I indefinitely
in both directions, producing a sequence of adjacent intervals
. . . , I−2, I−1, I, I1, I, . . . By Lemma 6.12, there are no fixed points of G in
K :=

⋃∞
−∞ In.

Now there are three possibilities:
(i) K = ∂H. In this case G can have no fixed points on ∂H. Thus all elements
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of G are elliptic, which as we have seen forces G to be elementary, generated
by a finite order elliptic element. It is not hard to argue that the elliptic
generator is h and that the images of ∪k−1

i=0 Ii cover ∂H.
(ii) K = ∂H \ {x0} for some x0 ∈ ∂H. In this case G can have at most one
fixed point on ∂H, on which images of ∪k−1

i=0 Ii accumulate on x0 from both
sides. It is not hard to see that the only option is that h is parabolic with
fixed point x0. In this case also, G is elementary generated by h.
(iii) K = ∂H \ L for some non-empty interval L. In this case the images
under h and h−1 of ∪k−1

i=0 Ii accumulate on the two endpoints of L. Thus the
two endpoints of L are fixed points of h, so h is hyperbolic.

6.1.6 Poincaré’s Theorem

In the above sections we have shown that of R is a convex polygon which is a
locally finite fundamental domain for a discrete group G acting on H, then:
(a) the angle sum corresponding to each vertex cycle with corresponding
vertex v ∈ H is

∑k−1
i=0 θi = 2π

p
with p ∈ N and:

• if p = 1, then we get a corresponding relation ek−1 · · · e0 = id;
• if p > 1, then ek−1 · · · e0 is elliptic of order p, so that (ek−1 · · · e0)p = id .
(b) if R is finite sided and has an ideal vertex v ∈ ∂H, then the vertex cycle
corresponding to v is parabolic.

A famous theorem due to Poincaré says that we can reverse these condi-
tions:

Theorem 6.14 (Poincaré’s theorem). Suppose that R ⊂ H is finite sided
convex polygon whose sides are identified in pairings by isometries {g1, . . . , gr} =
G∗. Say the above conditions (a) and (b) hold. Then:
(i) G∗ generates a Fuchsian group G;
(ii) R is a locally finite fundamental domain for the G action;
(iii) G =< g1, . . . , gr : vertex relations >, that is the vertex relations are all
you need!

Notice that there is no requirement on cycles associated to sides of R̄
contained in ∂H. If such sides exist, then either G is elementary or the cycle
is automatically hyperbolic. The proof of this theorem is highly non-trivial
and will be the topic of Chapter 7.

The theorem allows us finally to produce large numbers of interesting
examples of Fuchsian groups. All you have to do is find a polygon R and a
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suitable set of side pairings. There is enormous freedom in how you can do
this. Below, we give just a few examples, for more see Example Sheet 8.

Remark 6.15. If condition (a) fails, so the copies of R round a finite vertex
don’t fit together properly, then it is not hard to see that the group G =<
G∗ > can’t possibly be Fuchsian. However, it is possible that G may be
Fuchsian while (b) fails, when the cycle associated to the ideal vertex is
hyperbolic not parabolic. In this case, what happens is that even though G
is discrete, the images of R̄ do not cover all of H and moreover their union
is not locally finite, in other words, their images may accumulate on a line
which is itself not in the union of their images. This situation is really rather
subtle. We shall discuss such issues further in Chapter 7.

Figure 6.17: Four sided
ideal quadrilateral with op-
posite sides paired. In
this case the commutator is
parabolic.

B

A

Figure 6.18: Four sided re-
gion whose boundary con-
tains intervals on ∂H. In
this case the commutator is
hyperbolic.

Example 6.16. We have already studied the example of a four sided fun-
damental domain with opposite sides paired by transformations A,B, see
Figure 6.12. In Figures 6.17 and 6.18 we have also four sided regions R
with opposite sides paired; in the first case the four sides meet in four ideal
vertices and in the second ∂R includes 4 intervals on ∂H. In all cases, we
have the same vertex cycle A−1B−1AB. In the first case, for images of R to
tesselate, then we can conclude that A−1B−1AB must be parabolic. In the
second situation, it is automatically hyperbolic. It is possible to find side
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pairings which match the sides in Figure 6.17 such that the commutator is
hyperbolic, but the images of R in this case do not tesselate H, see Chapter
7.

Example 6.17. The regular octagon. Now we look at two examples in
which R is a regular hyperbolic octagon with vertex angle π/4. First consider
the set of side pairings shown in Figure 6.19. In this case the vertex cycle is

v0
B−→ v1

A−1

−→ v2
B−1

−→ v3
C−→ v4

D−→ v5
C−1

−→ v6
D−1

−→ v7
A−→ v8 = v0.

Since there are eight terms in the cycle and the angle at each vertex is
π/4, we find the total angle sum is 8 × π/2 = 2π. Thus the relation in this
case is

AD−1C−1DCB−1A−1B = id.

Cyclically permuting and inverting, this becomes

A−1B−1ABC−1D−1CD = id.

Note that the order of terms in this relation is not the same as the order of
labels round ∂R.

By Poincaré’s theorem, the group generated by A,B,C,D is Fuchsian
and the images of the octagon under G tesselate H.

If we change the arrangement of the side pairings around ∂R, everything
changes. Figure 6.20 shows the case in which opposite sides are paired. In
this case the cycle sequence is:

v0
D−1

−→ v1
C−→ v2

B−1

−→ v3
A−→ v4

D−→ v5
C−1

−→ v6
B−→ v7

A−1

−→ v8 = v0.

So the relation in this case is

A−1BC−1DAB−1CD−1 = id.

Example 6.18. (Schottky groups)
Let C1, . . . , C2k be pairwise disjoint circles arranged in such a way that if Di

is the disc inside Ci, then Di ∩Dj = ∅ when i 6= j. Suppose they are paired
by isometries g1, . . . , gk, in such a way that gi(Ci) = Ci+k, i = 1, . . . , k and
so that gi(Di) = H \Di+k. Then:
(i) G =< g1, . . . , gk > is a free group;
(ii) the region R outside all the discs Di, for i = 1, . . . , 2k, is a fundamental
domain for G.
A group generated in this way is called Schottky group.



CHAPTER 6. SIDE PAIRING AND THE CYCLE CONDITION 106

s0
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B A−1
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C−1 D

A

1

Figure 6.19: Side pair-
ings of a regular oc-
tagon giving the relation
D−1C−1DCB−1A−1BA =
id.

s0

v3

v0

v1

v6

v5

v4

v7

v2

B A−1

B−1
C

D−1

C−1 D

A

1

Figure 6.20: Side pair-
ings of a regular oc-
tagon matching opposite
sides. The relation is
A−1BC−1DAB−1CD−1 =
id.

Proposition 6.19. If G is not elementary and discrete, it contains a free
group of rank 2.

Proof. First consider a single hyperbolic isometry with axis L and translation
length d. Let C,C ′ which meet L orthogonally at distance d apart, and
let D,D′ be the disjoint disks bounded by C,C ′. Then h(C) = C ′ and
h(D) = H \ C ′.

Now pick 2 hyperbolic isometries g1 and g2 with distinct axes L1, L2 and
translation lengths d1, d2. We want to make the above construction for each
axis separately, but we want to do it in such a way that the four circles Ci, Ci
are disjoint, i = 1, 2. This may not be possible. However, if we take N ∈ N
sufficiently large, then the 4 circles orthogonal to L1, L2 at distances Nd1

and Nd2 apart are disjoint. So picking sufficiently high powers of g, g′ we
can arrange a fundamental domain for a Schottky group as above. In fact
this is just the 4 sided quadrilateral example illustrated in Figure 6.18.



Chapter 7

Hyperbolic structures on
surfaces

7.1 Hyperbolic structures on surfaces

Definition 7.1. A hyperbolic structure on a topological surface S is a
maximal collection of coordinate charts, that is open sets Ui ⊂ S and maps
Φi : Ui −→ H such that:
(i) Φi : Ui −→ Φi(Ui) is a homeomorphism:
(i) the sets Ui cover S;
(ii) the “overlap maps” are isometries, that is

γij = ΦiΦ
−1
j : Φj(Ui ∩ Uj) −→ Φi(Ui ∩ Uj) ∈ IsomH.

We call a surface with a hyperbolic structure, a hyperbolic surface. The
definition of a hyperbolic structure is just like the definition of a manifold,
except that the coordinate charts map to H and the overlap maps have to be
hyperbolic isometries. Of course one can make a much more general defini-
tions of a geometric structure on a manifold, for example see the interesting
article [17].

We have available two slightly different ways of constructing a hyperbolic
structure on a surface. The first method requires only a polygon R together
with a set of side pairing isometries, and does not require a Fuchsian group
G for which R is a fundamental domain. In contrast, the second requires a
Fuchsian group G acting freely on H, but does not depend on the choice of

107
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a fundamental domain.

Method 1.
Suppose given a hyperbolic polygon, and suppose that the sides of R are
paired by a set of hyperbolic isometries G0 as discussed above. We can
form a surface by identifying two point if they are matched by one of these
isometries, more precisely, we define an equivalence relation ∼ on R by:

x ∼ y, x, y ∈ R iff x = g(y) for some g ∈ G0.

It is clear that R/ ∼ is a surface, which we can topologise with the
quotient topology. Points in the interior of R are in one point equivalence
classes while points in the interior of a side of ∂R are in two point classes. If
x is a vertex, then its equivalence class consists exactly of all the vertices in
its vertex cycle.

If the vertex cycles do not give any elliptic elements, then the surface
R/ ∼ carries a natural hyperbolic structure.

To see this, we have to define the coordinate charts. Think of R as
embedded in H by the inclusion R ↪→ H.
(i) If x ∈ Int(R), then Φ := id.
(ii) If z ∈ s for some side s of R, but z is not a vertex, let R, g(R) be
the copies of R which are adjacent along s. (So that s is associated to the
side pairing g−1.) Choose r > 0 such that Br(z) ∩ R is an open half disc
centred on z and bounded by s, while Br(g

−1z) ∩ R is a similar half disc
centred on g−1(z). (This is possible since z is not a vertex of R and R is a
convex polygon.) Let A = (Br(z) ∩ R) ∪ (Br(z) ∩ s) (so A is an open half
disc in R, together with an open segment in s centred at z) and likewise let
B = (Br(g

−1z)) ∩R) ∪ (Br(g
−1z)) ∩ g−1s). In the quotient R/ ∼, x ∈ A ∩ s

is identified to y ∈ B ∩ s exactly when x = g(y); in other words, A and B
are glued along s ∩ A and g−1(s) ∩B.

Let U be the projection to R/ ∼ of A∪B. Then U is an open neighbour-
hood of the image z̄ of z in R/ ∼. We define the associated chart Φ : U −→ H
as follows:
• If x ∈ A, then Φ(x) := x.
• If x ∈ B, then Φ(x) := g(x).
(iii) If z is a vertex of R, we have to make a chart by gluing together all
the copies of R which make a cycle round the vertex z. The details are an
exercise.
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Exercise 7.2. Verify that these charts satisfy the definition of a geometric
structure above.

For future use, we observe that we can define a metric on R/ ∼ as follows:

d̄([x], [y]) = inf
n∑
i=0

d(xi, x
′
i)

where x0 ∈ [x], x′n ∈ [y] and x′i ∼ xi+1 for i = 0, . . . , n− 1.
The symmetry of d̄ and the triangle inequality are obvious. Thus to prove
that d̄ defines a metric, we have to prove only that

d̄([x], [y]) = 0⇒ [x] = [y.]

This can be done by noting that every point is contained in a ball in which
the restricted metric is hyperbolic.

Method 2. Suppose that G is a Fuchsian group acting freely on H. (To
act freely means that gx = x implies that g = id for all x ∈ H.) Let H/G
denote the space of G-orbits. There is a natural projection H −→ H/G;
we give H/G the quotient topology. One can show (exercise!) that H/G is
Hausdorff. A similar definition to d̄ above makes the quotient H/G a metric
space.

Each point in [x] ∈ H/G is a G-orbit in H. To define the hyperbolic
structure, pick x ∈ H which projects in [x]. Choose a open ball Br(x)
containing x in H which contains no other orbit points (possible since G acts
freely and properly discontinuously). Then Br(x) projects to a set U ⊂ H/G
whose lift Ũ to H consists of the disjoint open balls Br(gx), g ∈ G. This set
is open in H so that U is open in H/G. We can define a chart as the map
which identifies U with the ball Br(x) ⊂ H.

Exercise 7.3. Check that this defines a geometric structure on H/G.

Exercise 7.4. Check that if R is a fundamental domain for a Fuchsian group
G acting on H then the two ways of forming a quotient give the same hyper-
bolic structure.

If G contains elliptic elements, then it does not act freely on H. The prob-
lem in extending the above ideas to this case is that in the neighbourhood of
an elliptic fixed point, there will never be a chart which maps bijectively to H.
Instead, there is a chart which maps homeomorphically to a neighbourhood
of the singular point in the quotient H/ < T >, where T is a finite order
elliptic. Such a structure is called an orbifold.
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Definition 7.5. A surface S is a hyperbolic orbifold if it satisfies the same
conditions as that of a geometric structure above, except that at finitely many
points, the chart maps to the quotient U/ < T > where U is a neigborhood
of an elliptic fixed point v and T is an element of finite order fixing v.

Groups which contain no finite order elements (in our case no elliptics)
and called torsion free.

Definition 7.6. A hyperbolic surface or orbifold S is said to be complete if
the metric d̄ above is metrically complete, in other words, every sequence of
points xn ∈ S which is d̄ Cauchy, has a subsequence which converges to a
point in S.

The importance of this definition will be apparent later.

7.2 Cusps, funnels and cone points

If the boundary of the fundamental region or polygon R meets ∂H, the glued
up surface S = R/ ∼ has boundary. Likewise if the group G contains elliptic
elements, S contains some distinguished points. These are features of the
surface which we can describe in more detail as follows.

As we have already seen, elliptic fixed points correspond to points where
S is locally like H/ < T >, where T is elliptic. These are called cone points
of S. In a neighbourhood of such a point, S looks like a cone with angle
2π/n where n is the order of the elliptic at that point, see Figure 7.3.

Figure 7.1: Cone points. This picture is slightly misleading as on a surface
with a hyperbolic structure the cone points would not meet like this.

To deal with the ends of S, first look at two types of hyperbolic structures
on annuli:
(a) H/ < T >, where T is hyperbolic.
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Figure 7.2: Back to back cusps.
This picture is also slightly mis-
leading as on a surface with a
hyperbolic structure would not
contain a singular disc. Such
surfaces cannot be isometrically
emebdded into in Euclidean space
R3.

Figure 7.3: Hyperbolic annulus.
A funnel on a surface looks like
one end of this cylinder.

(b) H/ < T >, where T is parabolic.

We say that S has a cusp if there is a neighborhood of a component of
∂S which has a chart to a horoball neighborhood of a standard cusp, see
Figure 7.2.

We say that S has a funnel if there is a neighborhood of a component of
∂S which has a chart to an end of a hyperbolic annulus, see Figure 7.3.

Note that these elliptic (or parabolic) hyperbolic surfaces correspond to
the 3 surfaces of constant negative curvature of revolution, see in [18], p. 242.

Notice that in all these cases, the quotient S with the induced metric d̄
is metrically complete. We shall study a more subtle case in which S is not
metrically complete in the next section.

It is not hard to check the following Lemma.

Lemma 7.7. Parabolic (or elliptic) elements of G correspond precisely to
parabolic points of D/G. The number of such points on D/G is equal to the
number of conjugacy classes of maximal parabolic (or elliptic) elements of G.
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7.3 Incomplete hyperbolic structures

Suppose we have a convex finite sided polygon R and associated side pairings,
and suppose there are cusp vertices on ∂H for which the associated vertex
cycle is hyperbolic. As we shall see, this does not necessarily imply that the
group generated by the side pairings is not discrete; it does however mean
that the tessellation by images of R is no longer locally finite and does not
cover the whole of H.

The pictures below, taken from [16], help us to understand how this can
come about. We want to study a region R which has a cusp vertex fixed by
a single hyperbolic transformation h. In Figure 7.4, the heavy line <z = a∞
is the axis of a hyperbolic element h(z) with attracting fixed point a∞ and
repelling fixed point ∞. Thus h is a contraction (homothety) by a factor
λ < 1; precisely h(z) = a∞ + λ(z − a∞). The lines Ln := {<z = an} are
successive images of L0 = {<z = 0} under powers of h; thus an+1 = h(an) =
hn(0) and h(Ln) = Ln+1 = hn+1L0.

Now imagine that the cusp vertex of R is the point∞ and that the parts
of L0 and L1 above some definite height are the sides of R which meet at
∞. Suppose that the vertex cycle at ∞ is just the hyperbolic element h.
Take a sequence of points zn ∈ Ln on the same horizontal level, ie such
that =zn = =z0 for all n. Each zn is carried back under h−n to a point in
L0. It is easy to see that dH(zn, zn+1) decreases geometrically, so (zn) is a
Cauchy sequence in H. The limit is clearly the point a∞ + i=z0 at the same
horizontal level as z0 on Axh. Let [zn] be the image of zn on S = R/ ∼. Since
the projection to S clearly contracts distance, the points [zn] are a Cauchy
sequence on S which has no limit in S. In other words, S is not metrically
complete.

An alternative view of this phenomenon is that the geodesic lines shown
on the left in Figure 7.5 do not extend indefinitely, rather they come to an
end when they reach Axh.

The right hand frame in Figure 7.5 shows the quotient of a neighbourhood
of Axh by the action of h. The black boundary curve is exactly the length of
the translation length of h, and is missing from the quotient surface S. The
image of the line L0 (which in the quotient is equivalent to every line Ln) is
seen spiralling in towards the missing boundary.

Finally, let us see this phenomenon at work in an actual Fuchsian group.
Figure 7.6 shows the tessellation of H by the group generated by the two
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Figure 7.4: Accumulation of strips under iteration of a hyperbolic element h
with fixed point at a∞.

Figure 7.5: The quotient of the previous figure by hyperbolic h is a cylinder.
The dark boundary is missing from the tessellation by images of the strip.
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Figure 7.6: Tesselation of H by a once punctured torus group with parabolic
commutator.

transofrmations A =

(
1 1

1 2

)
and B =

(
1 −1

−1 2

)
. A fundamental domain

for the corresponding group of isometries (which has index six in PSL(2,Z))
is the region bounded by the lines <z = ±1 and the semicircles from ∞1
to 0. You can check that A maps [−1,∞] to [0, 1] and B maps [1,∞] to
[0,−1]. This region is an ideal quadrilateral and opposite sides are matched
in pairs. You can also check that the vertex cycle corresponding to ∞ is the
commutator B−1A−1BA which one can verify by direct computation is the
parabolic transformation z 7→ z + 6. Thus in this case the region R with
its side pairings A,B satisfies the conditions of Poincaré’s theorem, and the
images of R indeed forma a locally finite tessellation of H.

Figure 7.7 shows a very similar set-up. We start with the same region
R and the sides are still paired by hyperbolic isometries A′ and B′ say.
However now A′, B′ are chosen such that their commutator B′−1A′−1B′A′ is
hyperbolic.1 The result is that instead of tessellating the whole plane, the
images of R under G =< A′, B′ > accumulate on every image of the axis of
the commutator, shown by heavy black lines in the figure. In this situation,
S is not metrically complete; geodesics on S do not extend indefinitely; the

1Note that A and A′ both pair the same pair of sides [∞,−1] and [0, 1]. If these lines
had finite endpoints in H, the choice of pairing transformation would be unique. However
since the sides in question are geodesics with endpoints on ∂H, there is a one-parameter
family of freedom in the choice of pairing. This is what makes it possible to choose A′ as
required.
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Figure 7.7: Tessellation of H under a two generator group which generate a
once punctured torus group with hyperbolic commutator.

group G =< A′, B > (ie the group generated by the the side pairings of R) is
discrete; the images of R are mutually disjoint but do not cover all of H; and
finally the images are not locally finite, since an infinite number of images
accumulate in a neighbourhood of each image of Axh.

It is this situation which is being avoided by the three equivalent con-
ditions in Theorem 7.23 below. For further discussion and other pictures,
see [14].

7.4 Covering spaces

In this section, we sketch briefly what is needed from the theory of covering
spaces to understand Poincaré’s theorem and its proof. All the concepts
discussed in this section are in Introduction to Topology course MA 3F1 and
can be found in many books on topology, for example [19] p. 227-232 and
[20] Section 1.3.

All the spaces below are topological spaces and ‘map’ means ‘continuous
map’.

Definition 7.8. The map f : Y −→ X is a covering map if f is surjective
and if each x ∈ X has a neighborhood U which is evenly covered, that is
f−1(U) = tVi (disjoint union) such that f |Vi is a homeomorphism to U .
The space Y is called a covering space of X.

Definition 7.9. If we have a covering map f : Y −→ X and another space
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Z with a map g : Z −→ X, then a map g̃ : Z −→ Y such that f ◦ g̃ = g is
called a lift of the map g.

Theorem 7.10. (Path lifting) Suppose f : Y −→ X is a covering space.
Suppose α : [0, 1] −→ X is a path with α(0) = x0, and suppose y0 ∈ f−1(x0).
Then there exists a unique path α̃ : [0, 1] −→ Y such that such that f ◦ α̃ = α
and such that α̃(0) = y0, in other words, such that the path α̃ is a lift of α

7.4.1 Fundamental group

Let X be a topological space. Recall that two paths α1 : [0, 1] −→ X
and α2 : [0, 1] −→ X with α1(0) = α2(0) and α1(1) = α2(1) are called
homotopic if you can continuously deform one to the other. More formally
(see, for example, [19]):

Definition 7.11. Two paths α1 : [0, 1] −→ X and α2 : [0, 1] −→ X with
α1(0) = α2(0) = p and α1(1) = α2(1) = p′ are homotopic if there exists a
continuous map F : [0, 1] × [0, 1] −→ X such that α1(t) = F (t, 0), α2(t) =
F (t, 1), F (0, s) = p and F (1, s) = p′ for all (t, s) ∈ [0, 1]× [0, 1].

Theorem 7.12. (Homotopy lifting) Let f : Y −→ X be a covering map
and let F : [0, 1] × [0, 1] −→ X be a homotopy between two paths α1 and
α2 in X with α1(0) = α2(0) = p and α1(1) = α2(1) = p′. Let α̃1 and α̃2

be liftings of α1 and α2 respectively. Then there exists a unique homotopy
F̃ : [0, 1]× [0, 1] −→ Y between α̃1 and α̃2 such that F̃ lifts F .

The set of the homotopy classes of loops based at x0 ∈ X is called the
fundamental group of X and is denoted π1(X, y0). It is a group under the
composition of paths.

Corollary 7.13. If f : Y −→ X is a covering map, then f induces an
injection of the fundamental groups f∗ : π1(Y, y0) −→ π1(X, x0).

Proof. We assume that f(y0) = x0. Suppose that β is a loop in Y based at
y0 which maps to the trivial loop in X. This means that there is a homotopy
F : [0, 1] × [0, 1] −→ X between f ◦ β and the trivial path g(t) ≡ x0. the
path g(t) ≡ x0 clearly lifts to the trivial path g̃(t) ≡ y0. and the homotopy
F lifts to a homotopy between g̃ and β.
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7.4.2 The Universal Covering Space

Definition 7.14. A space Y is simply connected if every loop in Y is
homotopic to a point. In particular, π1(Y, y0) = {id}.

Given a space X, the universal cover of X is a simply connected covering
space of X. Subject to mild hypotheses on X, such a space always exists and
is unique up to homeomorphism. In more detail, fix a point x0 ∈ X and let

X̃ = {homotopy classes of paths α : [0, 1] −→ X,α(0) = x0}.

With a suitable topology on X̃ (roughly speaking, the topology obtained by
lifting small neighbourhoods in X to X̃, see for example [19] Theorem 10.19):

Theorem 7.15. Under mild hypotheses on X explained below, the map p :
X̃ −→ X, defined by p(α) = α(1), is a covering map. Moreover X̃ is simply

connected. If p′ : X̃ ′ −→ X is any other simply connected covering space of
X then there exists a homeomorphism h : X̃ −→ X̃ ′ such that p′ ◦ h = p.

The mild hypotheses on X are that it must be:
(i) connected
(ii) locally path-connected, that is, each point x ∈ X has a neighbourhood
base of path connected neighbourhoods;
(iii) semi-locally simply connected, that is, each point x ∈ X has a neigh-
bourhood in which every loop is null homotopic.

The space X̃ is called the universal cover of X. The canonical example
to focus on here is:

Example 7.16. Let G be a discrete group acting freely on H and let X =
H/G. Then p : H −→ H/G is a covering map. Since H is simply connected,
it can be identified with the universal cover of X.

A map g : X̃ −→ X̃ which commutes with p : X̃ −→ X is called covering
transformation. The set of covering transformations form a group, the
covering group of X. It is a standard result that the covering group can be
identified with the fundamental group π1(X).

In our example X = H/G, where G is a torsion free Fuchsian group, this
identification can be seen very concretely as follows. Each g ∈ G defines
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an isometry H −→ H which commutes with the projection to X. It is not
hard to see that every map H −→ H which respects G-orbits must have this
form. Thus we can identify G with the group G of covering transformations
of X. In particular, fixing a point x̃0 ∈ p−1(x0), then for every g ∈ Γ we
have a corresponding point gx̃0 ∈ H. Observing that the path from x0 to gx̃0

projects to a loop α on X based at x0, we can define a bijection G −→ π1(X)
mapping g 7→ α.

The Uniformisation Theorem can be viewed as a converse to Exam-
ple 7.16. Recall that a hyperbolic surface S is complete if the metric d̄
described above is metrically complete.

Theorem 7.17. Uniformisation theorem Let X be a complete hyperbolic
surface. Then X = H/G for some torsion free Fuchsian group G.

As we shall see below, the proof is a consequence of Poincaré’s theorem.

Exercise 7.18. Prove the claim above that if G is a Fuchsian group acting
freely on H, then p : H −→ H/G is a covering map. (If needed, see for
example [15], p.155).

7.4.3 The developing map

The proof of the Uniformisation theorem and of the Poincaré theorem are al-
most the same. To prove them we need the important idea of the developing
map. For more detail on this section, see [14].

Suppose we are given a hyperbolic structure on a surface S. Let S̃ be the
universal cover of S, which we view as the set of all the homotopy classes
of paths on S with fixed base point x0 ∈ S. The developing map is a map
D : S̃ −→ H defined as follows.

Let α ∈ S̃ be a path on S with initial point x0. We can cover α by a finite
number of charts (Ui,Φi), so that α passes in turn through U0, U1, . . . , Un say.
From the definition of a hyperbolic structure, if Ui∩Uj 6= ∅, then there exists
γij ∈ Isom(H) such that Φi(α ∩ Ui ∩ Uj) = γijΦj(α ∩ Ui ∩ Uj).

The map D will send α, and simultaneously the open sets Ui, to H by a
process of “analytic continuation”. Thus D|(α∩U0) is just the map Φ0.

Since U0∩U1 6= ∅, then there exists γ01 ∈ Isom(H) such that Φ0(α∩U0∩
U1) = γ01Φ1(α ∩ Ui ∩ Uj). We set D|(α∩U1) = γ01Φ1. This agrees with the
previous definition on U0 ∩ U1 and extends the definition of D to U0 ∪ U1.
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Continuing in this way, we set D|(α∩U2) = γ01γ12Φ2, and so on. In this

way we obtain a path Dα in H. We define the map D mapping S̃ 3 α 7→
Dα(1) ∈ H. It is tedious but not hard to check that D is independent of the
choice of sequence of charts Ui, and also depends only on the homotopy class
of α.

Exercise 7.19. Check that D : S̃ −→ H is a covering map.

The developing map also induces a map D∗ : π1(S) −→ Isom(H). Let
α ∈ π1(S) be a loop based at x0 ∈ S. This means that the final point of α is
also x0, so that in the above construction we may take Un = U0. Thus D(α)
is of the form gΦ0(x0) for some γ = γ01γ12 . . . γn−1,n ∈ IsomH. We define
D∗(α) = γ = γ01γ12 . . . γn−1,n.

Exercise 7.20. Check the following points:
(i) D∗(α) does not depend on the choice of α in its homotopy class.
(ii) D∗ is a group homomorphism π1(S) −→ Isom(H).

Lemma 7.21. D∗ is an isomorphism onto its image.

Proof. If D∗(α) = id then the developing image of α in H is a loop start-
ing and ending at Φ0(x0). Since H is simply connected, this loop is null-
homotopic. Therefore it lifts (since D is a covering map) to a null homotopy
of α in S.

Exercise 7.22. Here are some further points to check:
(iii) G = D∗(π1(S)) acts without fixed points in H.
(iv) G = D∗(π1(S)) is a discrete subgroup in Isom(H).

7.5 Proof of the Uniformisation Theorem

The proof below is an elaboration of that in [14], see also [11].
If S is a hyperbolic surface we denote its universal cover by S̃ with pro-

jection p : S̃ −→ S. The metric on S given locally by the hyperbolic metric
in charts. Piecing charts together enables us to define the length l(γ) of a
path γ. Then we can define a metric on S by

d(p, q) = infγ{l(γ) : γ is a path from p to q}.
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It is easy to check that this is the same as the metric d̄ described above. We
can lift charts and hence the hyperbolic structure on S to a structure on S̃
and then define a metric on S̃ in a similar way. Throughout the proof, we will
repeatedly use the path lifting and homotopy lifting properties of covering
maps.

The main result we need is the following, which is essentially a version of
the Hopf-Rinow theorem, see [11].

Theorem 7.23. Let S be a hyperbolic surface. The following are equivalent:

1. The developing map D : S̃ −→ H is a surjective covering map.

2. S is metrically complete

3. S̃ is metrically complete.

The Uniformisation theorem (Theorem 7.17) is a corollary of this
result:

Corollary 7.24. Every complete hyperbolic surface is H/G for some torsion
free Fuchsian group G.

Proof. Let ψ : π1(S) −→ IsomH be the holonomy homomorphism and let
G = ψ(π1(S)). Check that the homotopy lifting property implies that ψ is
an isomorphism. (Note that G being torsion free is just the condition for the
hyperbolic structure on S to be without cone points; the same proof works
allowing cone points if desired.)

We will show that D : S̃ −→ H induces an isometry D̄ : S −→ H/G.
Since we know that D is a covering map, it will follow (cf Example sheet 6
Q. 6) that G is discrete.

We define D̄ as follows. Let x0 ∈ S be a basepoint and suppose that
x ∈ S. Join x0 to x by a path α and define Eα(x) ∈ H to be the endpoint of
the developing image of α. We want to define D̄(x) to be the image of Eα(x)
in H/G, so we need to show that the image of Eα(x) in H/G is independent
of the choice of α.

Suppose that β is another such path and let (U, φ) be the chart containing
x on S. Then Eα(x) ∈ gαφ(U) and Eβ(x) ∈ gβφ(U) for some gα, gβ ∈ IsomH.
We need to show that Eα(x) = hEβ(x) for some h ∈ G. Now β−1α is a loop
in S based at x0. We find the developing image of β−1α by following the
developing image of α to gαφ(U), then by following the path obtained by
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applying g−1
β gα to the developed path from gβφ(U) back along β to D(x0).

The first chart along this second leg of the path will be gαφ(U) and the final
chart we get to will be g−1

β gαφ(U) Since β−1α is a loop in S based at x0, it

follows that g−1
β gα ∈ G. Hence Eα(x), Eβ(x) descend to the same point in

H/G.
To see that D̄ is injective, we first note that D̄ is a covering map. It follows

that the number of points in D̄−1(v) is locally constant for v ∈ H/G. It also
follows from the definition that if v0 is the image of D(x0), then D−1(v0) ⊂ H
is exactly the G-orbit of D(x0), and hence that D̄−1(v0) contains exactly one
point. The result follows.

We prove Theorem 7.23 with the following three lemmas. Throughout the
proof, it is a good idea to keep in mind is the incomplete structures discussed
in Section7.3, which illustrate what might go wrong.

Lemma 7.25. (1)⇒ (2)

Proof. We first show that (1) implies that closed bounded sets in S are
compact.

Since S̃ and H are simply connected, (1) implies that D is a homeo-
morphism. By the definition of charts, D is a local isometry and hence an
isometry. Since closed bounded sets in H are compact, the same is true of
closed bounded sets in S̃. In particular, any closed ball Br(x̃) for x̃ ∈ S̃ and
r > 0 is compact.

Consider a ball Br(x) ⊂ S for any r > 0 and x ∈ S. Let x̃ ∈ p−1(x).
Suppose that y ∈ Br(x). Then there is a path γ from x to y of length a < r.
This lifts to a path γ̃ in S̃ from x̃ to point ỹ with p(ỹ) = y of length a. So
ỹ ∈ Br(x̃) ⊂ S̃. Hence

y ∈ p(Br(x̃)) ⊂ p(Br(x̃)).

Since K = p(Br(x̃)) is the image of the compact set Br(x̃), it is compact.
This proves that Br(x) is contained in the compact set K. Since compact
sets are closed, we get that the closure Br(x) ⊂ K is a closed subset of a
compact set which is compact.

Now we can easily prove that (1) ⇒ (2). Suppose that (xn) is Cauchy
sequence in S. Then there exists r > 0 such that xn ∈ Br(x0) for all n ∈
N. Since this set is compact, it is sequentially compact and so (xn) has a
subsequence converging to a limit in S. Since (xn) is Cauchy, it converges in
S.
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Lemma 7.26. (2)⇒ (3)

Proof. Suppose that (xn) ⊂ S̃ is Cauchy. Notice that p : S̃ −→ S decreases
distance, in other words dS(p(z), p(z′)) ≤ dS̃(z, z′) for all z, z′ ∈ S̃. This is
because a path from z to z′ in S̃ of length r projects to a path of the same
length from p(z) to p(z′). Hence (p(xn)) ⊂ S is Cauchy in S, hence by our
hypothesis (2) has a limit w ∈ S.

Let Br(w) be an open ball evenly covered by p. (This exists since p is a
covering map.) This means that p−1(Br(w)) is a union of disjoint balls Vi
each homeomorphic to Br(w); furthermore by the definition of the hyperbolic
structure on S̃ each ball is isometric to Br(w). The centres {p−1(w)} of these
balls are separated by a uniform distance at least 2r. Since (xn) is Cauchy,
all points eventually lie in just one Vi and hence converge to the unique point
{p−1(w)} ∩ Vi.

Lemma 7.27. (3)⇒ (1)

Proof. We will show that D is a surjective local homeomorphism with the
path lifting property, and then apply Proposition 7.28 below. That D is a
local homeomorphism (every point x ∈ S̃ is contained in a neighbourhood U
such that the restriction of D to U is a homeomorphism onto its image) is
immediate from the definition of D.

Suppose that α : [0, 1] −→ H is a path. We have to show we can lift α to
a path α̃ : [0, 1] −→ S̃ such that D ◦ α̃ = α.
(i) Say t0 ∈ [0, 1) is such that we can lift α : [0, t0] to α̃ : [0, t0] −→ S̃. It is
easy to see that we can extend α̃ to a lift of α on an interval [0, t0 + ε) for
some ε > 0. In fact α̃(t0) has a neighbourhood U on which D is an isometry.
We can choose ε > 0 so that (α(t0 − ε), α(t0 + ε)) ⊂ D(U). Then D−1 ◦ α is
well defined on (t0 − ε, t0 + ε) and D−1 ◦ α extends α̃ to [0, t0 + ε).
(ii) Say t0 ∈ [0, 1) is such that we can lift α : [0, t0) to α̃ : [0, t0) −→ S̃. Pick
tn −→ t0. Then (α(tn)) is Cauchy in S. Since D is a local isometry, (α̃(tn))
is Cauchy in S̃, hence by (3) has a limit w ∈ S̃ say. Clearly D(w) = α(t0)
and so defining α̃(t0) = w extends α̃ to a path defined on [0, t0].

Now (i) and (ii) together with a standard argument using connectivity of
[0, 1] show that α lifts to a path α̃ : [0, 1] −→ H.

This implies that D is surjective: suppose that y ∈ H. Pick x ∈ ImD
and joining x to y by a path α in H with α(0) = x, α(1) = y. Lift α to α̃
and note that D(α̃(1)) = y.

Finally, apply Proposition 7.28 to prove (1).
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Proposition 7.28 is a general result about covering maps:

Proposition 7.28. Suppose that f : X −→ Y is a local homeomophism with
the path lifting property. Then f is a covering map.

Proof. This result is standard but since I don’t know a straighforward refer-
ence, here is a sketch proof.

Let Ỹ be the universal cover of Y with projection map p : Ỹ −→ Y . Let
x0 ∈ X, y0 ∈ Y z0 ∈ Ỹ be base points with p(z0) = f(x0) = y0.

We first claim that p lifts to a map P : Ỹ −→ X such that f ◦ P = p.
For let z ∈ Ỹ and let α be a path from z0 to z. Then p ◦ α is a path from
y0 to p(z). By the hypothesis on f , this lifts to a path from x0 to w say
in X. Define P (z) = w. We have to check that this is independent of the
choice of α. Since Ỹ is simply connected it will be enough if we show it is
independent of ‘small’ homotopies of α, which can be done since f is a local
homeomorphism.

Now suppose that y ∈ Y . We have to show that y has a neighbourhood
which is evenly covered by f in X. Choose a neighbourhood U of y whose
inverse image under p is evenly covered by sets Ui ⊂ Ỹ . We claim that the
sets P (Ui) evenly cover U for the map f . It will be enough to show that two
sets P (Ui), P (Uj) are either disjoint or coincide.

Suppose that x ∈ P (Ui) ∩ P (Uj). We may assume that U is simply
connected. Any point z ∈ U is connected to f(x) by a path which has a
lift β in X; it follows since U is simply connected that the endpoint of β
is uniquely defined and also (by lifting β to each of Ui and Uj) lies in both
P (Ui) and P (Uj). Thus P (Ui) = P (Uj).

7.6 Proof of Poincaré’s theorem

In this section we outline of how Poincaré’s Theorem can be proved in a
similar way to Theorem 7.23. Another version of the proof can be found in
[10]. First, we recall the statement.

Suppose R̄ ⊂ H is a closed convex polygon whose sides are identified in
pairs by isometries {g1, . . . , gr} = G0. Recall the cycle conditions from
Chapter 6:
(a) the angle sum corresponding to each vertex cycle with the vertex v ∈ H
is
∑k−1

i=0 θi = 2π
p

with p ∈ N and (ek−1 · · · e0)p = id.
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(b) if R̄ has an ideal vertex v ∈ ∂H, then the vertex cycle corresponding to
v is parabolic.

Theorem 7.29. (Poincaré’s theorem)
Say R̄ is finite sided convex polygon whose sides are identified in pairs by

isometries G0 as above, and suppose the cycle conditions hold. Then:
(i) G0 generates a discrete group G ⊂ IsomH;
(ii) R is a locally finite fundamental domain for the G-action;
(iii) G =< g1, . . . , gr : vertex relations >.

Notice that (ii) shows that the images of R tessellate H. The content of
(iii) is that the vertex relations are all one needs for a presentation of G.

To prove Theorem 7.29, we introduce an abstract group G∗, generated
by G together with the cycle relations, and an abstract space X, which can
think of as a patchwork quilt, in which the patches are copies of R̄, one for
each g ∈ G∗, sewn together as dictated by the side pairings. We shall show
that there is a natural equivariant homeomorphism of X onto H and that G
is isomorphic to G∗.

More precisely, let

G∗ =< g1, . . . , gr : vertex relations > .

We have a natural group homomorphism j : G∗ −→ G, where G ⊂ IsomH is
the image of G∗ in the isometry group of H. Statement (iii) of Theorem 7.29
is that the map j is an isomorphism.

Also let
⊔
g∈G∗(R̄, g) be the disjoint union of copies of R̄, one for each

element in G∗, and let

X =
( ⊔
g∈G∗

(R̄, g)
)
/ ≈

where ≈ is the equivalence relation which identifies points in X according
to side pairings and cycles. Thus we identify x ∈ (R̄, id) with y ∈ (R̄, g)
if g ∈ G0 and y = g−1x, and more generally x ∈ (R̄, h) is identified to
y ∈ (R̄, hg) if g ∈ G0 and y = g−1x. The relation ≈ is the equivalence relation
generated by this pairing. (What this means is that we form a patchwork
quilt, in which the patches are copies of R̄, one for each g ∈ G∗. Two patches
(R̄, g), (R̄, h)are sewn together along an edge exactly when h−1g ∈ G0, in
other words, when the two patches differ by a side pairing which carries one
of the two regions to the other.)
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Notice that G∗ acts on X by g ◦ (x, h) −→ (x, gh). One has to check
that this action respects ≈. Since G∗ is generated by G0, it follows that X
is connected. We define a metric on X by taking the hyperbolic metric on
each copy of R̄ and setting the distance between two points to be the length
of the shortest path joining them. (Cf the definition of the metric on R/ ∼
in Section 7.1.) There is a natural map Ψ : X −→ H which sends x ∈ (R̄, g)
to j(g)(x) ∈ H. We check that Ψ is well defined and a covering map onto its
image. Clearly, Ψ(g ◦ (x, h)) = j(g)Ψ(x, h).

The main point in proving Theorem 7.29 is the following variant of Theo-
rem 7.23. The proof, which we omit here, is similar to that of Theorem 7.23.
In fact, the space X is very closely related to the Cayley complex of the
group G, as discussed for example in [20] Section 1.3. The Cayley complex
is the dual of X. Following [20], see also the discussion about loops in X
below, it is not hard to show that X is simply connected and thus can be
viewed as the universal cover of S.

Recall from Section 7.1 that R̄/ ∼ is the hyperbolic surface obtained by
gluing R̄ using the side pairings.

Theorem 7.30. With the above set up, the following are equivalent:

1. The map Ψ : X −→ H is a surjective covering map.

2. R̄/ ∼ is metrically complete.

3. X is metrically complete.

Lemma 7.31. Let R̄ be a (closed) finite sided polygon with side pairings.
Then R̄/ ∼ is metrically complete iff the condition the cycles corresponding
to the ideal vertices (cusps) of R̄ are parabolic.

Proof. This we leave as an exercise (see discussion in class and also [14]).

Corollary 7.32. Suppose that all the cycle conditions hold; in particular
that the cycles corresponding to the ideal vertices (cusps) of R are parabolic.
Then X is simply connected and Ψ is a bijection onto H.

Proof. That Ψ is surjective follows from Theorem 7.30 and Lemma 7.31.
Then X is simply connected since H is simply connected and Ψ is a covering
map. To show that Ψ is injective: suppose that Ψ(x) = Ψ(y). We can join
x to y by a path β in X; then Ψ ◦ β is a loop in H which is null homotopic
since H is simply connected. Since Ψ is a covering map, this lifts to a loop
in X, so that x = y.
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We also have to show that the map j : G∗ −→ G is an isomorphism.
Notice that any path in X passes in order through a sequence of regions
(R̄, gi) where g−1

i gi+1 ∈ G0. Thus a path α in X corresponds to an expression
e(α) = e0e1 . . . en−1, ei ∈ G0, while a path from (R̄, id) to (R̄, g) gives an
expression g = e0e1 . . . en−1, ei ∈ G0. Similarly, any product of generators
corresponds to a path. In particular, if α is a loop in X we find a relation
e(α) = e0e1 . . . en = id. Notice also that a small loop round a vertex of X
corresponds to one of the cycle relations in G∗. If a segment of a path α
cuts a side of R̄ and immediately reenters across the same side, then e(α) =
. . . ee−1 . . .. Thus ensuring (as we may) that this never happens, is equivalent
to requiring that the sequence of generators e(α) = e0e1 . . . en, ei ∈ G0 is
reduced, ie never contains consecutive terms of the form xx−1, x ∈ G0.

Lemma 7.33. Suppose that α is a null homotopic loop in X. Then the
corresponding path relation e(α) = e0e1 . . . en = id is a relation in G∗.

Proof. Let αs, s ∈ [0, 1] be a family of paths such that α0 = α and α1 = {pt}.
Without loss of generality, we may assume all the paths as are reduced. As
αs moves across the homotopy, the only times the product e(αs) changes is
when αs crosses a vertex in X. This changes e(αs) by a relation coming from
a vertex cycle corresponding to a vertex v of R̄. In this way, one can prove
inductively that the relation e(α) = id may be built up as a product of vertex
relations.

Corollary 7.34. The map j : G∗ −→ G is an isomorphism.

Proof. Suppose that h ∈ G∗ and that j(h) = id ∈ IsomH. Take a path in X
from x0 ∈ (R̄, id) to the corresponding point (x0, h) ∈ (R̄, h). This projects
to a loop in H. This loop is null homotopic since H is simply connected, so
lifts to a null homotopy in X and hence to a relation h = id in G∗.



Chapter 8

The limit set

8.1 The limit set

Definition 8.1. Let G be a Fuchsian group. The limit set Λ = Λ(G) of G
is the closure of the non-elliptic fixed points of G in the Euclidean metric on
D ∪ ∂D. Clearly Λ ⊂ ∂D.

Theorem 8.2. Let G be a Fuchsian group and let Λ be its limit set. Then:
(i) Λ is closed and G-invariant.
(ii) |Λ| 6 2 ⇐⇒ G is elementary. If |Λ| > 2 then |Λ| =∞.
If G is non-elementary, then:
(iii) Λ is minimal, that is, every G-orbit is dense.
(iv) Λ is uncountable and perfect.
(v) Either Λ is nowhere dense or Λ = ∂D.
(vi) For any x ∈ D∪∂D, Λ is the set of accumulation points of the orbit Gx.

Recall that if X is a metric space, then a subset A ⊂ X is nowhere dense
in X if for all non-empty open sets U ⊂ X, there exists an open non-empty
set V ⊂ U such that V ∩ A = ∅. Equivalently, the interior of the closure of
A is empty, Int (Ā) = ∅. A set A ⊂ X is perfect if it is closed and if every
point in A is an accumulation point of A, that is, there exist distinct points
an ∈ A such that an −→ a.

We will need a general fact from metric spaces.

Lemma 8.3. A perfect subset A of a complete metric space X is uncountable.

127
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Proof. Recall the Baire category theorem, which says that a complete metric
space is not a countable union of nowhere dense subsets. Suppose that A ⊂ X
is perfect. Since A is closed, it is itself a complete metric space so we can
apply the Baire category theorem to A. Thus it will be sufficient to see that
each point a ∈ A is nowhere dense in A. Since {a} is closed, we have to see
that {a} has empty interior I. Clearly I ⊂ {a} so if I is non-empty, then
I = {a}. Now I is open in A so I = U ∩ A for some set U which is open in
X. But A is perfect, so if U is open in X and a ∈ U then U ∩ A contains
points in A other than a. This shows that I = {a} 6= U ∩A which completes
the proof.

Notation: If g ∈ G is hyperbolic, we write g+ for its attracting fixed
point. For simplicity of notation, we also write g+ to denote the unique fixed
point if g is parabolic.

Proof. (i) Λ is closed by definition. To prove G-invariance, say η ∈ Λ. By def-
inition we have η = lim g+

n where gn ∈ G are non-elliptic. Then gg+
n −→ gη

and g(g+
n ) = (ggng

−1)+, which shows that g(η) is also a limit of non-elliptic
fixed points.

(ii) If G is elementary, then |Λ| 6 2 follows from our list of elementary
groups. If G is non-elementary, then G has infinitely many distinct hyper-
bolic axes and hence Λ contains infinitely many distinct hyperbolic fixed
points.

(iii) Say E ⊂ Λ is G-invariant and closed. We must show that E = Λ. We
will show that every non-elliptic fixed point is in E, from which the result
follows. So let h ∈ G be non-elliptic. We must show that h+ ∈ E. Pick
η ∈ E. We have three cases:
(a) If η = h+ there is nothing to prove.
(b) Say η ∈ E and η 6= h−. Then hn(η) −→ h+. So h+ ∈ E.
(c) Suppose η = h−. (This case only happens if h is hyperbolic.) Since G is
non-elementary, there exists an element g ∈ G such that g(Axh) 6= Axh and
so g(η) 6= h−. By the G-invariance, g(η) ∈ E.
Now arguing as in (a) with g(η) in place of η we get that hng(η) −→ h+.
Since E is closed and G-invariant, it follows that h+ ∈ E. Hence all hyper-
bolic fixed points are in E and so Λ ⊂ E.
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(iv) To show that Λ is perfect, suppose that η ∈ Λ, so by definition
η = lim g+

n for some sequence of hyperbolic elements gn ∈ G. If all the gn
are distinct then η is an accumulation point as required. If not, then η = g+

for some non-elliptic element g ∈ G. Pick ξ ∈ Λ, ξ 6= η±. Then hn(ξ) −→ η
and all the points hn(ξ) are distinct as required. That Λ is uncountable now
follows from Lemma 8.3

(v) This is proved after (vi).

(vi) This property is rather more subtle. We do it first for x ∈ D. Since
G is non-elementary, we know that Gx is infinite. Hence in the Euclidean
topology, Gx must have accumulation points. However by discreteness these
cannot be in D. Denoting A(Gx) the set of all the accumulation points of
Gx, we have A(Gx) ⊂ ∂D. Moreover since gn(x) −→ g+ for all x ∈ D we
have g+ ∈ A(Gx), so A(Gx) ⊃ Λ.

We also claim that A(Gx) is independent of x. For suppose that y ∈ D.
Then dH(gx, gy) = dH(x, y) for all g ∈ G. Thus as gn(x) −→ ξ in the
Euclidean metric dE, we have dE(gnx, gny) −→ 0 and so gn(y) −→ ξ also. So
A(Gx) = A(Gy).

Thus we have only to show that A(Gx) ⊂ Λ for some choice of x ∈ D.
To prove this we introduce the convex hull C(Λ) of Λ in D ∪ ∂D. We say
V ⊂ D ∪ ∂D is hyperbolically convex if x, y ∈ V implies that the hyperbolic
line joining x to y is contained in V . By definition, C(Λ) is the smallest
hyperbolically convex set in D∪∂D. It is also called the Nielsen region of G.

Clearly C(Λ) is G-invariant. It is also not hard to see that C(Λ) ∩ ∂D =
Λ. Thus choosing x ∈ C(Λ), we have A(Gx) ⊂ C(Λ) which implies that
A(Gx) ⊂ Λ as required.

Now suppose that ξ ∈ D. Defining A(Gξ) in the obvious way, we see as
before that A(Gξ) ⊃ Λ. To prove the reverse inclusion, we will show that G
acts properly discontinuously on ∂D \ Λ.

We prove this as follows. There is a natural mapping r : ∂D\Λ −→ C(Λ),
often called the retraction map, defined as follows. For η ∈ ∂D \ Λ, consider
horocycles based at η of increasing size. There is a first such horocycle
which touches C(Λ), and moreover since C(Λ) is convex the horocycle meets
C(Λ) in exactly one point which we define to be r(η). It is not hard to see
that the map r is continuous and G-equivariant. The action of G on D and
properly discontinuous, so given a neighbourhood U 3 r(η) with compact
closure (in D), only finitely many G-images of U meet U . The inverse image
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W = r−1(U) is an open neighbourhood of η in ∂D \ Λ which only meets
finitely many G-images of W . It follows that η cannot be an accumulation
point of any G-orbit, so in particular A(Gξ) ⊂ Λ.

(v) Say Λ 6= ∂D. Let x ∈ ∂D−Λ. Since Λ is closed, there is a neighbour-
hood Nx of x such that Nx ⊂ ∂D−Λ. By G-invariance, g(Nx)∩Λ = ∅ ∀g ∈
G. Now given an open set U with U ∩ Λ 6= ∅, we have to find a non-empty
open set V ⊂ U with V ∩ Λ = ∅.

Let ξ ∈ U ∩ Λ. By (vi), the accumulation points of the orbit of x are
exactly Λ so we can choose gn ∈ G with gn(x) −→ ξ. Then eventually
gn(x) ∈ U and so gn(Nx) ∩ U 6= ∅. Since gn(Nx) is open and contains
gn(x) ∈ Λ, we are done.

In somewhat old terminology, a non-elementary Fuchsian group is said to
be of the first kind if Λ = ∂D and of the second kind otherwise.

Corollary 8.4. If G is of the second kind, then Λ is homeomorphic to the
(middle third) Cantor set.

Proof. It follows easily from the fact that Λ is nowhere dense, that Λ is
totally disconnected. For suppose ξ, η ∈ Λ. Then ∂D \ {ξ, η} consists of
two connected open intervals W1,W2. Since Λ is nowhere dense, we can
find ai ∈ Wi, ai /∈ Λ, i = 1, 2. The points a1, a2 separate ∂D into two open
intervals U1, U2 each containing one of ξ, η. Thus the sets Ui∩Λ disconnect Λ.
The result follows from the theorem that every perfect totally disconnected
subset of R is homeomorphic to the Cantor set.


