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The Riley Slice
The Riley slice is the name given to the space of all (non-elementary)

subgroups of SL(2,C) with two parabolic generators.

SL(2,C) is the set of matrices T =

(
a b

c d

)
with a, b, c, d ∈ C; ad− bc = 1.

T acts on the Riemann sphere Ĉ = C ∪∞ by linear fractional transformations

T : z 7→ az+b
cz+d

. Typically T has two fixed points: it is called parabolic if it has

only one.

If S and T are parabolics with distinct fixed points, by normalising we can

assume these are ∞ and 0 respectively. Further normalising we can assume

S : z 7→ z + 1, T = Tc : z 7→ 1

cz + 1
, for some c ∈ C∗ = C \ {0}.

Thus we identify the Riley slice with C∗. Our object is to study the family of

groups

Gc =< S =

(
1 1

0 1

)
, Tc =

(
1 0

c 1

)
> .

This family has been studied from various viewpoints and illustrates many of

the powerful concepts introduced by Thurston.



Questions about Gc

As we have just seen, up to conjugation in SL(2,C), any (non-trivial) group

with two parabolic generators can be written

Gc =
〈
S =

(
1 1

0 1

)
, Tc =

(
1 0

c 1

)〉
.

T : z 7→ az+b
cz+d

extends to an isometry of hyperbolic 3-space H3, which we think

of as sitting above C. The boundary ∂H3 of H3 is identified with Ĉ. The

distance from any point in H3 to Ĉ is infinite.

If G ⊂ SL(2,C) is discrete as a subgroup of SL(2,C) then H3/G is a

hyperbolic manifold or orbifold.

We are interested in questions such as:

I For which c is Gc discrete? For which c is Gc discrete and free?

I For which c is Gc discrete and not free? What is the topology of H3/Gc?

Ian Agol (2002) announced a complete classification of all non-free discrete

groups on 2 parabolic generators. We will come to this at the end of the talk.



Riley’s computer plot

This computer plot illustrating the positive quadrant in the c-plane. was made

by Robert Riley in 1979.∗ It was a remarkable achievement. Points above the

dark scalloped “curve” S all represent free discrete groups.

∗ It is is easy to see the slice has a four-fold symmetry: Gc and G−c are the same

group and Gc and Gc̄ are complex conjugates.



Riley’s discoveries
Here is a blow up of part of the picture.

The scalloped ‘curve’ S is picked out by

∗’s representing so-called cusp groups.

He found many other discrete non-free

groups: × is a Heckoid group; + is a

knot group. We will explain these dif-

ferent types later.

The value c =
1 + i

√
3

2
, is the famous complement of the figure of eight knot

K. This means that S3 −K is homeomorphic to H3/Gc which, for this c, is a

metrically complete finite volume hyperbolic manifold.

It was largely Riley’s discovery of this particular group in

early 1976 which inspired Thurston to make his astonish-

ing hyperbolisation conjecture. Riley wrote an account

of his discovery which can be found on the web.

Robert Riley (1935-2000) at

the 1984 Warwick symposium.



Another picture of the Riley slice

This picture gives a completely different view of the slice. Made by David

Wright around 1992, it illustrates the Keen-Series pleating rays in the c-plane.

There is one ray for each p/q mod 2.

The rays appear to radiate out from the

central ‘eye’ in an extremely orderly reg-

ular way, the lines (−∞, 4) and (4,∞)

corresponding to 0/1, 1/1 respectively.

The rays are dense in the subset of

the c-plane corresponding to points for

which Gc is both free and discrete.

The irregular boundary of the region filled out by the rays looks similar to

Riley’s scalloped ‘curve’ S. (The ‘equipotential’ lines surrounding the ‘eye’ also

have a geometrical meaning but we won’t go into this here.)

We will first look at the two pictures separately and then put them together.

First however we need a bit of background about subgroups of SL(2,C).



Background I: SL(2,C) acting on Ĉ = C ∪∞
Consider the action of a group G ⊂ SL(2,C) by linear fractional

transformations (Möbius maps) on Ĉ. Its limit set Λ(G) is the set of

accumulation points of G-orbits. G acts properly discontinuously on the regular

set Ω(G) = Ĉ \Λ(G). If Ω(G) 6= ∅ then G is automatically a discrete subgroup

of SL(2,C). (The converse is not always true). A discrete subgroup of

SL(2,C) is called a Kleinian group.

By a famous theorem of Ahlfors (1964) , Ω(G)/G is a finite union of Riemann

surfaces with finite genus and finitely many punctures.

The limit set for Gc with

c = 0.05 + 0.93i. Note that Ω(Gc) is

connected but not simply connected.

As we will see, in this case Ω(Gc)/Gc

is a sphere with 4 punctures.



Background II: Classification of Möbius maps

T =

(
a b

c d

)
∈ SL(2,C) is classified TrT = a+ d.

T is either:

I loxodromic: 2-fixed points on Ĉ joined by an

H3-line called its axis. In H3 acts by translation

& rotation along the axis. Trajectories spiral in to

the two fixed points. TrT /∈ [−2, 2].

I parabolic: 1-fixed point on Ĉ. TrT = ±2 (and

T 6= id).

I elliptic: 2-fixed points on Ĉ. In H3 acts by pure

rotation about its axis. TrT ∈ (−2, 2).

I purely hyperbolic: (special case of loxodromic).

Acts by pure translation along its axis.

TrT ∈ (−∞,−2) ∪ (2,∞).

Loxodromic

Parabolic

Elliptic



Back to the Riley slice: A fundamental domain for Gc

Let us start by trying to find a fundamental domain for Gc acting on Ĉ.

The isometric circle of an element M ∈ SL(2,C) is the circle on which

|M ′(z)| = 1. It is defined for all M other than translations z 7→ z + t, t ∈ R.

The blue circles in the figure are the isometric

circles of Tc and T−1
c = T−c. Tc maps the out-

side of the lower circle onto the inside of the

upper. Provided that these two circles lie within

a strip of width 1, it is easy to show by Klein’s

ping-pong theorem, that the white region within

the strip is a fundamental domain R for the Gc

action and that Gc is both free and discrete.

1/c

-1/c

.

.
1/2-1/2

Tc

More generally, if Gc is discrete, the region within the strip and outside all its

isometric circles is a fundamental domain called its Ford domain. It is

analogous to a Dirichlet domain with the base point at ∞.



The quotient manifold H3/Gc

It is not hard to see that R glues up to form a 4×-punctured sphere S0,4 This

is the quotient Riemann surface Ω(G)/G.

The Gc action extends to H3. The region R̂ ⊂ H3

within a slab of width 1 and outside the two hemispheres

above the blue circles is a fundamental domain. R̂ glues

up to form a solid ball which has two parabolic cylinders

drilled out. We denote this manifold B. Its boundary

∂B at infinity is identified with Ω(Gc)/Gc.

The white lines are missing in the solid sphere. They are at infinite hyperbolic

distance from points in B. Their endpoints are the 4 punctures on ∂B. Notice

that the endpoints are naturally are matched in pairs.

What is a parabolic cylinder? A fundamental region in H3 for the parabolic translation

S(z) = z + 1 is the slab above the lines |<z| = ±1/2. These lines glue together to

form as cylinder, so that Ĉ/ < S > is a cylinder. Likewise the part of each horizontal

plane above C between the slides of the slab glues to a cylinder. Thus H3/ < S > is a

solid cylinder with the central line missing.



The region of free discrete groups

Even when the isometric circles of Tc, T
−1
c are not contained in the strip of

width 1, it is still possible that Gc is free and discrete.

Let D ⊂ C be the region for which Gc is free discrete and so that Ω(G) 6= ∅.

An easy computation shows that when |c| > 4 the isometric circles of Tc, T
−1
c

are contained in the strip of width 1. Hence D contains the region |c| > 4. One

can show using Teichmüller theory that D is open and is the conformal image

of a punctured disk.

By general theory, there is a quasi-conformal homeomorphism between the

regular sets of any two groups in D, which extends to a quasi-isometry

(controlled homeomorphism) between the quotient 3-manifolds. In other words,

all the manifolds H3/Gc for c ∈ D are homeomorphic to B and have

homeomorphic boundaries ∂B = S0,4.

However D is not defined by any nice equations. Classically this was considered

an almost impossible problem. In fact ∂D is the same as Riley’s scalloped

‘curve’ S.



Locating D
There are two ways to go about locating D, both computational.

Riley’s method was to use Ford fundamental domains – the region outside all

the isometric circles of the group.

The cells with blue boundaries in Riley’s plot are re-

gions in which the Ford domain is bounded by the

isometric hemispheres of the same set of group ele-

ments and hence has the same combinatorial shape.

The second method is to use the pleating rays

discovered by Keen and myself. These we ex-

plain next.

This image by Yamashita is a modern

rendering of a variant of Riley’s cells,

superimposed with the rays. The cells

get smaller and harder to detect as they

approach S.



Pleated surfaces and bending lines

Let C(G) be the union of all hyperbolic lines in H3 joining pairs of points in the

limit set Λ(G).

Pictures by

Yair Minsky

There is a natural map β between the regular set Ω(G) and the boundary

∂C(G) of C(G).

This boundary is an example of what Thurston called a pleated surface. It is

made up of pieces of hyperbolic plane (hemispheres) meeting along hyperbolic

lines called bending lines.

β passes to the quotient and induces a homeomorphism between Ω(G)/G and

∂C(G)/G. Thus the convex hull boundary ∂C(G)/G is also the 4-punctured

sphere S0,4.



Bending lines and pleating rays

The bending lines project to disjoint and simple (=non-self intersecting)

geodesics on ∂C(G)/G. In particular if the line is an axis of an element g ∈ G,

then it projects to a closed simple loop on S0,4. In this situation all the

bending lines are equivalent under Gc and the projected loop γ divides S0,4

into two parts, each a sphere with two punctures and a hole.

The two halves lift to hemispheres which intersect along

the axis Ax g. Note that g maps the overlapping hemi-

spheres to themselves. Since g maps these hemispheres

to themselves, it has no rotational part so must be purely

hyperbolic with real trace.

γ

As c varies in D, so does the limit set Λ(Gc) and hence ∂C(Gc) and its

bending lines.

Definition (Keen-S.) The pleating ray Pγ ⊂ D of a loop γ on S0,4 is the set of

points c ∈ D for which the bending lines all project to γ.

If Ax g projects to γ then Pγ ⊂ {c ∈ D : Tr g ∈ R}.



Pleating rays and finding D

To use pleating rays to find D, one has to enumerate all the non-trivial (= not a

loop round a single puncture) simple closed curves γ on ∂C/G, up to homotopy

in B. Each such loop is the projection of a line of rational slope in the plane R2

with punctures at Z2. Thus curves on ∂B are indexed by p/q, q ≥ 0, p ∈ Z.

The blue region projects to S0,4. There are

punctures at each lattice point Z2. The red

and green dots are the fixed points of S, Tc

respectively. The vertical line γ1,0 projects

to a loop which is homotopically trivial in

B. Moreover γp/q is homotopic in B to

γ(p+2q)/q.

γ4/5

It turns out that γp/q is also homotopic in B to γ−p/q .



Computing the rays

Let γp/q be a non-trivial simple closed curve on ∂B represented by a word

Wp/q ∈ G. Then Wp/q is a product of S and T = Tc. TrWp/q is a polynomial

Qp/q of degree q in c which can be read off from the punctured plane diagram.

Example For p/q = 1/2, W1/2 = STS−1T−1 and TrW1/2 = Q1/2(c) = 2 + c2.

Recall that Pp/q = {c ∈ D : ∂C(Gc)/Gc is bent along γp/q},
and Pp/q ⊂ Q−1

p/q(R). However it is not true that Pp/q = Q−1
p/q(R).

In general Q−1
p/q(R) is a complicated set of branched one manifolds with many

singular points. In particular, it has 2q branches going off to infinity in

directions eiπr/q for r = 1, . . . , 2q.

Theorem (Keen-S. ) Pp/q is the unique branch which goes to infinity in

direction eiπ(q−p)/q, and this branch has no singularities in D. Along it

TrWp/q increases monotonically from −∞ to −2.

For example, P1/2 is the part of the imaginary axis with =c > 2.



There is a ray for each p/q mod 2, starting from 0/1 along the negative real

axis and moving around to 1/1 on the positive axis. The two vertical rays

correspond to p/q = ±1/2. The Pp/q ray has direction π(q − p)/q at infinity.

Plot by Yamashita. The rays are dense in D.



Rays: The main theorem

Theorem (Keen-S. PLMS 1994, with improvements by Parker-S. 1995)

I For p/q mod 2, Pp/q is a connected∗ non-singular branch of TrWp/q ∈ R
in direction eiπ(q−p)/q as |c| → ∞. TrW increases along Pp/q from −∞
to −2.

I Pp/q ends on ∂D when TrWp/q = −2. Wp/q is parabolic and γp/q has

length zero. ∂B degenerates into a two triply punctured spheres S0,3

joined by paired parabolic cusps. (Groups with an ‘extra’ parabolic like

this are called cusp groups.)

I (Choi-S.) 2006 TrWp/q ∈ R is also non-singular at the cusp group on ∂D.

I The rays are pairwise disjoint and their union is dense in D. They can be

interpolated by ‘irrational’ rays on which the bending locus is a family of

pairwise disjoint non-closed geodesics called a geodesic lamination.

∗ (Komori - S.) 1999 In factPp/q = P−p/q and each ray actually has two complex conjugate

branches corresponding to conjugate groups.



Some deep results
The picture of the Riley slice with rays can be used to illustrate a number of

very deep results proved by the Thurston school.

Theorem (Proved by Canary, Hersonsky and Shalen (2003)

based on McMullen (1991)) Cusp groups are dense in ∂D.

Theorem (Bers density conjecture, proved by Ohshika (2005)

based on Brock-Bromberg (2004)) All free discrete groups in

the c-plane lie on D ∪ ∂D.

Theorem (Ending lamination conjecture, proved by Ohshika-

Miyachi (2010) based on Minsky (1999) and requiring Tame-

ness conjecture proved by Agol and independently Calegari-Gabai,

2004.) For each irrational λ ∈ (0, 1) there is a unique

group on ∂D corresponding to the unique end point of

the ‘irrational’ ray Pλ.

Corollary ∂D is a Jordan curve.

The main content of these

results is that things are

just as the picture indi-

cates.

The groups in the Riley slice are a very special case. Most of these results

extend to much wider classes of groups. The Keen-S. rays can also be

generalised to much more general situations (Choi-S. 2006), although it is an

open problem to prove that they are dense in the relevant parameter space.



Discrete groups outside D.
The last part of my talk is largely inspired by the work of Makoto Sakuma and his

many collaborators: H. Akiyoshi, M. Wada, Y. Yamashita, D. Lee, J. Parker et al.

Here again is a small part of Riley’s plot. The scalloped

‘curve’S is picked out by ∗’s representing cusp groups

(ends of pleating rays). There are also discrete groups

beneath S which as we have now seen is the boundary of

the free discrete region D. Being outside D, they are not

free. + represents a knot complement and × a closely

related Heckoid group. Each discrete group is enclosed

by black loop marking a region of non-discreteness. Ri-

ley found all this by algebraic methods.

Compare this to the very recent picture made

by Yamashita. The black dots mark discrete

groups outside D. As you can see they all

lie on what appear to be extensions of the

pleating rays.



Extending the rays outside D

A pleating ray is a subset of a certain branch of the real locus TrWg ∈ R. This

branch can be analytically continued outside D ∪ ∂D, entering a region where

TrWγ ∈ (−2, 2).

γ= bending line

fixed points of Wγ 

4x sphere  

∂!(G)/G 

Lift in Ω(G) is 2 overlapping disks 

Fundamental 
domain for pink 
half of 4xsphere 

fixed point of Wγ 

γ

Axis of Wγ

Angle θ

• When TrWγ(c) < −2, we are in D and on Pγ . γ is a bending line for ∂C/G. It divides ∂C/G
into 2 spheres each with 2 punctures and a boundary loop γ. The spheres lift to overlapping disks

whose boundaries meet in the fixed points of Wγ .

• When TrWγ = −2 then Wγ(c) is parabolic. ∂C/G becomes 2 spheres with 3 punctures. The

lifted disks are tangent and Gc is a cusp group. This point is on ∂D.

• When TrWγ ∈ (−2, 2) then Wγ is elliptic so rotates about its axis. ∂C/G degenerates to 2

spheres with 2 punctures and one cone point. These lift to two disks, now disjoint but connected

by AxWγ .



On a ray outside D: Heckoid groups and knots

Suppose that as above TrWγ ∈ (−2, 2) so Wγ is elliptic. For Gc to be

discrete, must have finite order: Wn
γ = id for some n ∈ N. This occurs when

TrWγ = −2 cosπ/n. This is called a Heckoid group, marked × in Riley’s

picture.

Otherwise H3/Gc is a cone manifold – it looks everywhere like a hyperbolic

manifold, except that the angle round the projection of the elliptic axis is not

2π.

Finally we arrive at TrWγ = 2 and Wγ = id. At this point the lifted disks have

zero diameter so the fixed points of the two parabolics defining the punctures

coincide. These two parabolics will be conjugates of the original two

generators. The relation Wγ = id says they commute.

Claim The manifold H3/Gc where TrWγ = 2 is the complement of the

two-bridge knot or link associated to p/q†, marked + in Riley’s picture.

To see why this is so we need to take a closer look at γp/q.
†

(p, q) are not exactly the same as the Schubert parameters (α, β).



Connection to knots

Corresponding to every line of slope p/q one can form a two-bridge knot or link

as in these pictures:

inside

Picture for

p/q = 5/3 from

Hatcher and

Thurston (1985).

The red circle represents the boundary S0,4 of B. In the picture, the solid

interior of B is outside the red circle. The sloping lines are on ∂B (inside the

red circle).

Up to homotopy, there is a unique closed loop on S0,4 which is disjoint from

the knot. It is nothing other than our curve γp/q.

γp/q can be untwisted by applying homeomorphisms of S0,4. Each basic move

(half Dehn twist) moves one of the punctures around the other, and in doing so

twists up the parts of the knot outside the red circle.



Unravelling γp/q with half twists

A half twist interchanges two

punctures and is the identity

outside a neighbourhood.

inside

outside

γ

2

1

3

4

2

1

3

4

1

3
2

4

2
1 3

4

inside

outside

γ

2

1

3

4

2

1

3

4

1

32

4 2
1 3

4

A half-twist interchanging 2 and 3 in-

duces twisting (braiding) of the cusp

tubes ‘inside’ the ball.

Applying repeated half-twists ‘unrav-

els’ γp/q.



Rays and extended rays
This beautiful sequence of pictures taken from ASWY illustrates the same sequence as

we move down a ray, first inside D, then meeting ∂D, and finally on the extended ray.

(A) γp/q separates the two punctures with the hollow S0,4 (the

boundary of the convex hull) inside. This is a point on Pp/q∩D.

(B) γp/q has been pinched to become parabolic, separating the

convex hull into two three punctured spheres each of which lift

to a pair of tangent circles in Λ.This is Pp/q ∩ ∂D.

(C) γp/q is elliptic, rotating around the axis joining the remnants

of the two 3-punctured spheres. This is a Heckoid group.

(D) Finally γp/q = id. The remnants of the initial surface

completely disappear and we are left with a knot or link (as q

is odd or even). This is the knot complement.



The knot group at the end of the ray

At the end of the ray where TrWp/q = 2 we have Wp/q = id.

The remnants of the initial surface completely disappear and

we are left with a knot or link (depending on whether q is odd

or even).

One can check that Wp/q is the unique relation in the Wirtinger

presentation of the knot, so that Wp/q = id represents the knot

group.

By results of Thurston, H3/Gp/q has a hyperbolic structure, unless the knot or

link is a torus knot. This happens when p/q = 1/n or (n− 1)/n, n ∈ N.

If p/q = 1/n, then P1/n extends to the real axis. It

ends at a Fuchsian group G which has an extra ‘acci-

dental symmetry’. G is a Hecke group. The quotient

surface Σn a sphere with one puncture and two cone

points of order n and 2. The knot complement fibres

over the circle and is a Seifert fibre space over Σn.



Completing the picture

Theorem 1. (Announced and sketched by Agol 2002; recently completed by

Akiyoshi, Ohshika, Parker, Sakuma & Yoshida.) Every non-free discrete group

with two parabolic generators is either a two bridge knot or link complement, a

Heckoid group, or a Hecke group.

Theorem 2. (In progress). Akiyoshi, Sakuma, Yamashita, Wada.

The group corresponding to the relevant parameter on an extended ray is

indeed either a Heckoid group or a knot complement as discussed.

Idea: Examine the patterns of isometric circles for specified c on the extended

ray and show they give a fundamental domain for Gc.

Current project (S.) Find a proof of Theorem 2 by using the theory of

deformations of cone manifolds and studying the degenerations which can

occur.

Corollary of 1 & 2 All non-free discrete groups in the Riley slice lie on extended

rays.

Conjecture A similar result is true in many other parameter spaces.



Thank you


