Types of proof: -Direct proof - Induction - Contradiction - Exhaustion

Theorem 2.4 $\sqrt{2}$ is not a rational number.

Proof Suppose that $\sqrt{2}$ is rational. In that case, it can be written in the form $\sqrt{2} = \frac{p}{q}$, where *p* and *q* are integers which have no factors in common – that is, $\frac{p}{q}$ is a proper fraction – and *q* \neq 0. Squaring both sides:

 $2=\frac{p^2}{a^2} \implies p^2=2q^2$

Thus p^2 is an even integer, and by Example 2.2 this means that p also must be even. (If p were odd, then p^2 would be odd.) So we can write $p = 2r$ where r is some integer. Therefore

$$
2q^2=(2r)^2=4r^2\,
$$

and so $q^2 = 2r^2$.

Hence q is also even, for the same reason that p is. This means that both p and q are even, which contradicts the hypothesis that $\frac{p}{q}$ was in its simplest form. So the only option open to us is to conclude that it is not possible to express $\sqrt{2}$ as a rational number.

Theorem 2.4 $\sqrt{2}$ is not a rational number.

Proof Suppose that $\sqrt{2}$ is rational. In that case, it can be written in the form $\sqrt{2} = \frac{p}{q}$, where p and q are integers which have no factors in common – that is, $\frac{p}{q}$ is a proper fraction – and $q \neq 0$. Squaring both sides:

$$
2 = \frac{p^2}{q^2} \quad \Longrightarrow \quad p^2 = 2q^2
$$

Thus p^2 is an even integer, and by Example 2.2 this means that p also must be even. (If p were odd, then p^2 would be odd.) So we can write $p = 2r$ where r is some integer. Therefore

$$
2q^2=(2r)^2=4r^2
$$

and so $q^2=2r^2.$ Hence q is also even, for the same reason that p is.

This means that both *p* and *q* are even, which contradicts the hypothesis that $\frac{p}{q}$ was in its simplest form. So the only option open to us is to conclude that it is not possible to express $\sqrt{2}$ as a rational number.

Prove 3/2 is not rational. Lemma: n³ even if and only if neven

n'even *6* never
\nSuppose n even. Let n=2k for
\n
$$
k \in \mathbb{Z}
$$
.
\n $n^3 = (2k)^3 = 8k^3 = 2(4k^3) : n^3$ even.
\nSuppose n odd. Let n=2k+1 for
\n $k \in \mathbb{Z}$.
\n $n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k + 1$
\n $= 2(4k^3 + 6k^2 + 3k) + 1 : n^3$ odd.

Suppose 3/2 is rational.

$$
3\sqrt{2} = \frac{1}{2}
$$
 where $p, q \in \mathbb{Z}$, $q \neq 0$

$$
2 = \frac{p^3}{q^3} \Rightarrow p^3 = 2q^3
$$
\n
$$
p^3 \text{ even} \Rightarrow p \text{ even}
$$
\n
$$
p^3 \text{ even} \Rightarrow p \text{ even}
$$
\n
$$
2r \text{ for } r \in \mathbb{Z}
$$
\n
$$
(2r)^3 = 2q^3 \Rightarrow 8r^3 = 2q^3 \Rightarrow q^3 = 4r^3
$$
\n
$$
q^3 \text{ even} \Rightarrow q \text{ even}
$$
\n
$$
p \text{ and } q \text{ have } 2 \text{ as a common factor } \frac{1}{2}
$$
\n
$$
q = 1 \Rightarrow q \text{ is a rational}
$$

factor 'y
Hence, 3
$$
\sqrt{2}
$$
 is not rational

Definition 3.1 (Principle of mathematical induction) Suppose we have a variable proposition $P(n)$ which depends on some natural number *n*. Then if $P(1)$ is true, and if $P(k) \Rightarrow P(k+1)$ for some $k \in \mathbb{N}$, then $P(n)$ is true for all $n \in \mathbb{N}$.

I Prove base case (usually n=1)

2. Inductive step Assume n=k is true to prove $n = k + 1$ is $true$

Prove 9ⁿ⁻¹ is divisible by 8 for all nEN. Let P(n) be the statement above. 1. Base case: $P(1) : 9' - 1 = 8 : P(1)$ is true. 2. Inductive step: Suppose P(k) is the for KEN. Let $q^k-1 = 8r$ for $r \in \mathbb{Z}$. $9^{k+1} - 1 = 9(9^{k}) - 1$ $= 8(9^{k})+9^{k}-1$ $= 8 (9^{k}) + 8r$ $= 8 (9^{k} + r)$: $P(k+1)$ is $\frac{1}{2}$ trie 3. Conclusion

Since $P(1)$ is true and $P(k) \Rightarrow P(k+1)$ for KEN, P(n) is true by induction for every nEN.