EC119 Week 6

Since $|an-1| \leq \varepsilon$ for all n > N, $(a_n) \longrightarrow I$.

Finalised Page 1

If
$$(a_n) \rightarrow a$$
 and $(b_n) \rightarrow b$, then

$$= (a_n + b_n) \rightarrow a + b \qquad (sum rule)$$

$$= (a_n b_n) \rightarrow ab \qquad (product rule)$$

$$= (a_n b_n) \rightarrow ab \qquad (product rule)$$
If $(a_n) \rightarrow a$ if $b \neq 0$ (quotient rule)
If $(a_n) \rightarrow a$ if $b \neq 0$ (quotient rule)
If $(a_n) \rightarrow L$ and $(c_n) \rightarrow L$ and there is NEN
such that $a_n \leq b_n \leq c_n$ for all $n > N$, then $(b_n) \rightarrow L$
(sandwich rule).
Allowed to assume $(\frac{1}{n}) \rightarrow 0$.
Find the limits of $a_n = \frac{2n^2 + 3n}{n^2 + n^2}$ and $b_n = \frac{3n^2 + n\cos n}{2n(n-3)}$
 $a_n = \frac{2n^2 + 3n}{n^3 + n^2} = \frac{2n}{n} + \frac{3}{n^2}$
Product rule: $(\frac{2}{n}) \rightarrow 0$, $(\frac{3}{n^2}) \rightarrow 0$
Sum rule: $(\frac{2}{n} + \frac{3}{n}) \rightarrow 0$, $(1 + \frac{1}{n}) \rightarrow 1$ check nonzero for
Quotient rule: $(a_n) \rightarrow 0$ quotient rule
 $b_n = \frac{3n^2 + n\cos n}{2n^2 - 6n} = \frac{3 + \frac{\cos n}{2 - \frac{6}{n}}}{2 - \frac{6}{n}}$
Product rule: $(\frac{2}{n}) \rightarrow 0$
Sum rule: $(2 - \frac{5}{n}) \rightarrow 2$
Since $-1 \leq \cos n \leq 1$, $-\frac{1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}$ and $(\frac{1}{n}) \rightarrow 0$ and
 $(-\frac{1}{n}) \rightarrow 0$, $(\frac{\cos n}{n}) \rightarrow 0$ by the sandwich rule.
Sum rule: $(3 + \frac{\cos n}{n}) \rightarrow 3$
Quotient rule: $(b_n) \rightarrow \frac{3}{2}$
 $\sum_{k=1}^{\infty} a_k = S$ if $(S_n) \rightarrow S$ where $S_n = \sum_{k=1}^{n} a_k \leftarrow partial sums$
Not convergent = divergent

Finalised Page 2

Theorem (Sum Rule). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, then $\sum_{k=1}^{\infty} (a_k + b_k)$ converges.

Theorem (Null Sequence Test). The series $\sum_{k=1}^{\infty} a_k$ only converges if $(a_k) \to 0$.

Theorem (Comparison Test). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if

- $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$
- $a_k \leq Mb_k$ for all $k \in \mathbb{N}$ and M > 0
- $\sum_{k=1}^{\infty} b_k$ converges

then $\sum_{k=1}^{\infty} a_k$ converges. Similarly, if

- $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$
- $a_k \ge Mb_k$ for all $k \in \mathbb{N}$ and M > 0
- $\sum_{k=1}^{\infty} b_k$ diverges

then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem (Ratio Test). For a series $\sum_{k=1}^{\infty} a_k$, if $(|\frac{a_{k+1}}{a_k}|) \to L$, then

- if L < 1, $\sum_{k=1}^{\infty} a_k$ converges
- if L > 1, $\sum_{k=1}^{\infty} a_k$ diverges

Theorem (Alternating Series Test). For a sequence (a_k) , if

- $a_k > 0$ for all $k \in \mathbb{N}$
- (a_k) is decreasing
- $(a_k) \rightarrow 0$

then $\sum_{k=1}^{\infty} (-1)^k a_k$ converges.

Which of these are convergent?

$$\sum_{n=1}^{\infty} \frac{n^2 + n^3}{n^5} \text{ Sum rule } \sum_{n=1}^{\infty} \frac{1}{n!} \text{ Ratio test}$$

$$\sum_{n=1}^{\infty} (-1)^n$$
 Null sequence $\sum_{n=1}^{\infty} \frac{3^n}{n}$ Ratio test

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \underset{\text{series test}}{\text{Alternating}} \qquad \sum_{n=1}^{\infty} \frac{\sqrt{n^2+2}}{n^{2}+1} \underset{\text{test}}{\text{Comparison}} \qquad \frac{\sqrt{n^2+2}}{n^{3/2}+1} = \frac{1+\frac{2}{\sqrt{n^2}}}{n+\frac{1}{\sqrt{n^2}}} > \frac{1+\frac{2}{\sqrt{n^2}}}{2n}$$

2

20