EC119 Week 6

Ans. 10

\n(a_n)
$$
\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{limit}
$$
 for all ∞ , there is $N \in \mathbb{N}$

\n $\frac{x}{2}$ and \overrightarrow{AC} such that $|\overrightarrow{an} - \overrightarrow{al}| \leq \overrightarrow{for}$ all $n > N$.

\n(a_n) \overrightarrow{max} and \overrightarrow{a} are

\n(a_n) \overrightarrow{max} and \overrightarrow{max} are

\n(a_n) \overrightarrow{max} and \overrightarrow{max} are

\n(b_n) \overrightarrow{max} and \overrightarrow{max} are

\n(c_n) \overrightarrow{max} and \overrightarrow{max} are

\n(d_n) \overrightarrow{max} and \overrightarrow{max} are

\n(e_n) \overrightarrow{max} and \overrightarrow{max} are

\n(f_n) \overrightarrow{max} and \overrightarrow{max} are

\n(g_n) \overrightarrow{max} and \overrightarrow{max} are

\n(h_n) \overrightarrow{max} and \overrightarrow{max} are

\n(i_n) \overrightarrow{max} and \overrightarrow{max} are

\n(ii) \overrightarrow{max} and \overrightarrow{max} are

\n(iii) \overrightarrow{max} and

Since $|a_{n-1}| < \varepsilon$ for all $n > N$, $(a_{n}) \rightarrow 1$.

Finalised Page 1

If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$, then (sum rule) $-(a_n+b_n) \rightarrow a+b$ (product rule) $-(a_0b_0) \rightarrow ab$ $\frac{a_n}{b_0}$ \rightarrow $\frac{a}{b}$ if $b \neq 0$ (quotient rule) If $(an) \rightarrow L$ and $(C_n) \rightarrow L$ and there is NEN such that $a_n \le b_n \le c_n$ for all $n > N$, then $(b_n) \rightarrow L$ (sandwich rule). Allowed to assume $(\frac{1}{n}) \rightarrow \infty$. Find the limits of $a_n = \frac{2n^2 + 3n}{n^2 + n^2}$ and $b_n = \frac{3n^2 + n \cos n}{2n(n-3)}$ $a_n = \frac{\frac{2n^2 + 3n}{n^3}}{\frac{n^3 + n^2}{n^3}} = \frac{\frac{2}{n} + \frac{3}{n^2}}{1 + \frac{1}{n}}$ Product rule: $(\frac{2}{n}) \rightarrow 0$, $(\frac{3}{n^2}) \rightarrow 0$ Sum rule: $(\frac{2}{7} + \frac{3}{71}) \rightarrow 0$, $(1 + \frac{1}{7}) \rightarrow 1$ check nonzero for
Quotient rule: $(an) \rightarrow 0$ quotient rule bn = $\frac{3n^2 + n cos n}{2n^2 - 6n} = \frac{3 + \frac{cos n}{n}}{2 - \frac{6}{n}}$ Product rule: $\binom{6}{n} \rightarrow 0$
Sum rule: $(2-\frac{6}{n}) \rightarrow 2$ Since $-1 \le cos n \le 1$, $-\frac{1}{n} \le \frac{cos n}{n} \le \frac{1}{n}$ and $(\frac{1}{n}) \rightarrow 0$ and
 $(-\frac{1}{n}) \rightarrow 0$, $(\frac{cos n}{n}) \rightarrow 0$ by the sandwich rule. Sum rule: $(3 + \frac{cosh}{n}) \rightarrow 3$
Quotient rule: $(b_n) \rightarrow \frac{3}{2}$ $\sum_{k=1}^{\infty} a_k = S$ if $(S_n) \rightarrow S$ where $S_n = \sum_{k=1}^{n} a_k$ \leftarrow partial sums Not convergent = divergent

Finalised Page 2

Theorem (Sum Rule). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, then $\sum_{k=1}^{\infty} (a_k + b_k)$ converges.

Theorem (Null Sequence Test). The series $\sum_{k=1}^{\infty} a_k$ only converges if $(a_k) \rightarrow 0$.

Theorem (Comparison Test). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if

- $a_k, b_k \geq 0$ for all $k \in \mathbb{N}$
- $a_k \le Mb_k$ for all $k \in \mathbb{N}$ and $M > 0$
- \bullet $\sum_{k=1}^{\infty} b_k$ converges

then $\sum_{k=1}^{\infty} a_k$ converges. Similarly, if

- $a_k, b_k \geq 0$ for all $k \in \mathbb{N}$
- $a_k \ge Mb_k$ for all $k \in \mathbb{N}$ and $M > 0$
- \bullet $\sum_{k=1}^{\infty} b_k$ diverges

then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem (Ratio Test). For a series $\sum_{k=1}^{\infty} a_k$, if $(|\frac{a_{k+1}}{a_k}|) \rightarrow L$, then

- if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges
- if $L > 1$, $\sum_{k=1}^{\infty} a_k$ diverges

Theorem (Alternating Series Test). For a sequence (a_k) , if

- $a_k > 0$ for all $k \in \mathbb{N}$
- \bullet (a_k) is decreasing
- \bullet $(a_k) \rightarrow 0$

then $\sum_{k=1}^{\infty} (-1)^k a_k$ converges.

Finalised Page 3

Which of these are convergent?

$$
\sum_{n=1}^{\infty} \frac{n^2 + n^3}{n^5}
$$
 Sum rule
$$
\sum_{n=1}^{\infty} \frac{1}{n!}
$$
 Ratio 4esth

$$
\sum_{n=1}^{\infty} (-1)^n
$$
 Null sequence
$$
\sum_{n=1}^{\infty} \frac{3^n}{n}
$$
 Ratio Hst

$$
\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \text{ Alhending} \sum_{n=1}^{\infty} \frac{\sqrt{n}+2}{n^2+1} \text{ Comparison} \frac{\sqrt{n}+2}{n^{3/2}+1} = \frac{1+\frac{2}{\sqrt{n}}}{n+\frac{1}{\sqrt{n}}} > \frac{1+\frac{2}{\sqrt{n}}}{2n}
$$

 $\overline{\mathbf{2}}$

2ስ