The Mean Value Theorem and Taylor's Theorem

Michael Cavaliere

Week 10

Class Content

Theorem (Mean Value Theorem). For a function $f : [a, b] \to \mathbb{R}$, if f is continuous on [a, b] and differentiable on (a, b), then there is $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

(or, rearranging, f(b) = f(a) + (b - a)f'(c)).

Question 1

Use the mean value theorem on the function $f : [n, n+1] \to \mathbb{R}$ where $f(x) = \ln(x)$ to show that for all $n \in \mathbb{N}$, $n \ln(1 + \frac{1}{n}) < 1$.

Solution Since *f* is differentiable on $\mathbb{R}_{>0}$, *f* is continuous on [n, n+1] and differentiable on (n, n+1). By the mean value theorem, there is $c \in (n, n+1)$ such that f(n+1) = f(n) + f'(c). Since $f'(c) = \frac{1}{c}$, this implies that

$$\ln(n+1) = \ln(n) + \frac{1}{c}$$
$$\implies \ln(n+1) - \ln(n) = \frac{1}{c}$$
$$\implies \ln\left(1 + \frac{1}{n}\right) = \frac{1}{c}$$

Since n < c < n+1, $\frac{1}{n+1} < \frac{1}{c} < \frac{1}{n}$, so

$$\ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$$
$$\implies n\ln\left(1+\frac{1}{n}\right) < 1$$

Theorem (Taylor's Theorem, or the *n*th Mean Value Theorem). For $f : [a, b] \to \mathbb{R}$, if f is continuous on [a, b], $f^{(k)}$ exists and is continuous on [a, b] for all $k \in \{1, ..., n-1\}$ and $f^{(n)}$ exists on (a, b), then there is $c \in (a, b)$ such that

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \underbrace{\frac{(b-a)^n}{n!}f^{(n)}(c)}_{R_n}$$
$$= \left(\sum_{k=0}^{n-1}\frac{(b-a)^k}{k!}f^{(k)}(a)\right) + R_n$$

where $R_n = \frac{(b-a)^n}{n!} f^{(n)}(c)$ is known as the Lagrange form of the remainder.

Definition. For $f : [a, b] \to \mathbb{R}$ where f is continuous on [a, b] and $f^{(n)}$ exists and is continuous on [a, b] for all $n \in \mathbb{N}$, the **Taylor series** of f about x = c for $c \in [a, b]$ is the series

$$\sum_{n=0}^{\infty} \frac{(x-c)^n}{n!} f^{(n)}(c)$$

The range of values for which the series converges, i.e.

$$f(x) = \sum_{n=0}^{\infty} \frac{(x-c)^n}{n!} f^{(n)}(c)$$

is the interval of convergence.

Question 2

- 1. Find the Taylor series about x = -1 of $\frac{1}{x^2}$.
- 2. Determine the interval of convergence for the Taylor series.

Solution

1. Finding the derivatives,

$$f(x) = x^{-2} \qquad f(-1) = 1$$

$$f'(x) = -2x^{-3} \qquad f'(-1) = 2$$

$$f''(-1) = 6$$

$$\vdots \qquad \vdots \qquad f''(-1) = 6$$

$$\vdots \qquad f^{(n)}(x) = (-2)(-3) \dots (-(n+1))x^{-(n+2)} \qquad f^{(n)}(-1) = (n+1)!$$

$$= (-1)^{n-2}(n+1)!x^{-(n+2)}$$

$$= (-1)^n(n+1)!x^{-(n+2)}$$

By Taylor's theorem,

$$f(x) = \sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} f^{(n)}(-1)$$
$$= \sum_{n=0}^{\infty} \frac{(x+1)^n (n+1)!}{n!}$$
$$= \sum_{n=0}^{\infty} (n+1)(x+1)^n$$

2. Let $a_n = (n+1)(x+1)^n$, so

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+2)(x+1)^{n+1}}{(n+1)(x+1)^n}\right|$$
$$= \frac{n+2}{n+1}|x+1|$$
$$= \frac{1+\frac{2}{n}}{1+\frac{1}{n}}|x+1|$$

By the sum, product and quotient rules, $(|\frac{a_{n+1}}{a_n}|) \rightarrow |x+1|$. By the ratio test, this implies that the series converges if |x+1| < 1 and diverges if |x+1| > 1. When |x+1| = 1, either x = 0 or x = -2. If x = 0, then

$$\sum_{n=0}^{\infty} (n+1)(x+1)^n = \sum_{n=0}^{\infty} (n+1)$$

diverges, and if x = -2 then

$$\sum_{n=0}^{\infty} (n+1)(x+1)^n = \sum_{n=0}^{\infty} (-1)^n (n+1)$$

diverges. Hence, the Taylor series converges when |x+1| < 1, which implies that -1 < x+1 < 1, so the interval of convergence is (-2, 0).

1 Additional Questions

1. Use the mean value theorem to show that for all $x \in \mathbb{R}_{>0}$, $1 + 2x < e^{2x} < (1 - 2x)^{-1}$.

Solution Let $x \in \mathbb{R}_{>0}$ and define $f : [0, x] \to \mathbb{R}$ where $f(y) = e^{2y}$. Since f is differentiable on \mathbb{R} , f is continuous on [0, x] and differentiable on (0, x). By the mean value theorem, there is $c \in (0, x)$ such that f(x) = f(0) + xf'(c), so $e^{2x} = 1 + 2xe^{2c}$. Since 0 < c < x, $2e^c > 2e^0 = 2$ and so $e^{2x} > 1 + 2x$.

Let $g : [0, x] \to \mathbb{R}$ where $g(y) = e^{-2y}$. Since f is differentiable on \mathbb{R} , f is continuous on [0, x] and differentiable on (0, x). By the mean value theorem, there is $c \in (0, x)$ such that f(x) = f(0) + xf'(c), so $e^{-2x} = 1 - 2xe^{2c}$. Since 0 < c < x, $-2e^{-2c} > -2e^{0} = -2$ and so $e^{-2x} > 1 - 2x$.

Combining these inequalities, since $e^{-2x} > 1 - 2x$ if and only if $e^{2x} < (1 - 2x)^{-1}$, this implies that $1 + 2x < e^{2x} < (1 - 2x)^{-1}$.

2. Use the mean value theorem to show that for all $x, y \in (\frac{\pi}{4}, \frac{\pi}{3})$ with $x \leq y, \cos^2 y - \cos^2 x \leq \frac{3(x-y)}{4}$.

Solution Let $x, y \in (\frac{\pi}{4}, \frac{\pi}{3})$ with $x \le y$ and define $f : [x, y] \to \mathbb{R}$ where $f(z) = \cos^2 z$. Since f is differentiable on \mathbb{R} , f is continuous on [x, y] and differentiable on (x, y).

By the mean value theorem, there is $c \in (x, y)$ such that f(y) = f(x) + (y - x)f'(c). Since $f'(c) = -\sin 2c$, this implies that $\cos^2 y = \cos^2 x - (y - x)\sin 2c$ and hence $\cos^2 y - \cos^2 x = (x - y)\sin 2c$.

Since $\frac{\pi}{4} < c < \frac{\pi}{3}$, $\frac{\sqrt{3}}{2} < \sin 2c < 1$. Since $\frac{3}{4} < \frac{\sqrt{3}}{2}$, $\frac{3}{4} < \sin 2c$. Since $x - y \le 0$, $(x - y) \sin 2c \le \frac{3(x - y)}{4}$. Hence, $\cos^2 y - \cos^2 x \le \frac{3(x - y)}{4}$.

- 3. Let $f(x) = \sqrt{x}$.
 - (a) Find the Taylor series of f(x) about x = 1 up to and including the term in $(x 1)^4$.
 - (b) Use this to approximate the value of $\sqrt{1.5}$ to three decimal places.

Solution

(a) Finding the derivatives,

$$f(x) = x^{\frac{1}{2}} \qquad f(1) = 1$$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} \qquad f'(1) = \frac{1}{2}$$

$$f''(x) = -\frac{1}{4}x^{-\frac{3}{2}} \qquad f''(1) = -\frac{1}{4}$$

$$f^{(3)}(x) = \frac{3}{8}x^{-\frac{5}{2}} \qquad f^{(3)}(1) = \frac{3}{8}$$

$$f^{(4)}(x) = -\frac{15}{16}x^{-\frac{7}{2}} \qquad f^{(4)}(1) = -\frac{15}{16}$$

By Taylor's theorem,

$$\sqrt{x} = 1 + \frac{x-1}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{16} - \frac{5(x-1)^4}{128} + R_5$$

(b) Using the Taylor series,

$$\sqrt{1.5} \approx 1 + \frac{1}{4} - \frac{1}{32} + \frac{1}{128} - \frac{5}{2048} = 1.22412109375$$

so to three decimal places, $\sqrt{1.5} \approx 1.224$.

4. Use the Taylor series

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

about x = 0 to find:

- (a) The Taylor series of e^{x^2-1} about x = 0.
- (b) The Taylor series of e^x about x = -1.
- (c) The Taylor series of $e^{\sin x}$ about x = 0 up to and including the term in x^4 .

Solution

(a) Since
$$e^{x^2-1} = \frac{e^{x^2}}{e}$$
,
 $e^{x^2-1} = \frac{1}{e} \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{e(n!)}$
(b) Since $e^x = \frac{e^{x+1}}{e}$,
 $e^x = \frac{1}{e} \sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} = \sum_{n=0}^{\infty} \frac{(x+1)^n}{e(n!)}$

$$\sin x = x - \frac{x^3}{6} + \dots$$

$$e^{\sin x} = \sum_{n=0}^{\infty} \frac{\sin^n x}{n!}$$

$$= 1 + \sin x + \frac{\sin^2 x}{2} + \frac{\sin^3 x}{6} + \frac{\sin^4 x}{24} + \dots$$

$$= 1 + \left(x - \frac{x^3}{6}\right) + \frac{1}{2} \left(x - \frac{x^3}{6}\right)^2 + \frac{1}{6} \left(x - \frac{x^3}{6}\right)^3 + \frac{1}{24} \left(x - \frac{x^3}{6}\right)^4 + \dots$$

$$= 1 + \left(x - \frac{x^3}{6}\right) + \frac{1}{2} \left(x^2 - \frac{x^4}{3} + \dots\right) + \frac{1}{6} \left(x^3 + \dots\right) + \frac{1}{24} \left(x^4 + \dots\right)$$

$$= 1 + x + \frac{x^2}{2} - \frac{x^4}{8} + \dots$$

Hence, up to the term in x^4 , the Taylor series of $e^{\sin x}$ is $1 + x + \frac{x^2}{2} - \frac{x^4}{8}$.