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Week 10

Class Content

Theorem (Mean Value Theorem). For a function f : [a, b] → R, if f is continuous on [a, b] and
differentiable on (a, b), then there is c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)
b − a

(or, rearranging, f (b) = f (a) + (b − a)f ′(c)).

Question 1

Use the mean value theorem on the function f : [n, n+ 1]→ R where f (x) = ln(x) to show that for all
n ∈ N, n ln(1 + 1

n ) < 1.

Solution Since f is differentiable on R>0, f is continuous on [n, n+1] and differentiable on (n, n+1).
By the mean value theorem, there is c ∈ (n, n+1) such that f (n+1) = f (n)+ f ′(c). Since f ′(c) = 1

c ,

this implies that

ln(n + 1) = ln(n) +
1

c

=⇒ ln(n + 1)− ln(n) =
1

c

=⇒ ln

(
1 +
1

n

)
=
1

c

Since n < c < n + 1, 1
n+1 <

1
c <

1
n , so

ln

(
1 +
1

n

)
<
1

n

=⇒ n ln

(
1 +
1

n

)
< 1

Theorem (Taylor’s Theorem, or the nth Mean Value Theorem). For f : [a, b] → R, if f is continuous
on [a, b], f (k) exists and is continuous on [a, b] for all k ∈ {1, . . . , n − 1} and f (n) exists on (a, b), then
there is c ∈ (a, b) such that

f (b) = f (a) + (b − a)f ′(a) +
(b − a)2

2!
f ′′(a) + · · ·+

(b − a)n−1

(n − 1)! f
(n−1)(a) +

(b − a)n

n!
f (n)(c)︸ ︷︷ ︸

Rn

=

(
n−1∑
k=0

(b − a)k

k!
f (k)(a)

)
+ Rn

where Rn =
(b−a)n
n! f

(n)(c) is known as the Lagrange form of the remainder.
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Definition. For f : [a, b]→ R where f is continuous on [a, b] and f (n) exists and is continuous on [a, b]
for all n ∈ N, the Taylor series of f about x = c for c ∈ [a, b] is the series

∞∑
n=0

(x − c)n

n!
f (n)(c)

The range of values for which the series converges, i.e.

f (x) =

∞∑
n=0

(x − c)n

n!
f (n)(c)

is the interval of convergence.

Question 2

1. Find the Taylor series about x = −1 of 1x2 .

2. Determine the interval of convergence for the Taylor series.

Solution

1. Finding the derivatives,

f (x) = x−2 f (−1) = 1
f ′(x) = −2x−3 f ′(−1) = 2
f ′′(x) = 6x−4 f ′′(−1) = 6

...
...

f (n)(x) = (−2)(−3) . . . (−(n + 1))x−(n+2) f (n)(−1) = (n + 1)!

= (−1)n−2(n + 1)!x−(n+2)

= (−1)n(n + 1)!x−(n+2)

By Taylor’s theorem,

f (x) =

∞∑
n=0

(x + 1)n

n!
f (n)(−1)

=

∞∑
n=0

(x + 1)n(n + 1)!

n!

=

∞∑
n=0

(n + 1)(x + 1)n

2. Let an = (n + 1)(x + 1)
n, so ∣∣∣∣an+1an

∣∣∣∣ = ∣∣∣∣(n + 2)(x + 1)n+1(n + 1)(x + 1)n

∣∣∣∣
=
n + 2

n + 1
|x + 1|

=
1 + 2

n

1 + 1
n

|x + 1|

By the sum, product and quotient rules, (| an+1an |) → |x + 1|. By the ratio test, this implies that
the series converges if |x + 1| < 1 and diverges if |x + 1| > 1. When |x + 1| = 1, either x = 0 or
x = −2. If x = 0, then

∞∑
n=0

(n + 1)(x + 1)n =

∞∑
n=0

(n + 1)
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diverges, and if x = −2 then
∞∑
n=0

(n + 1)(x + 1)n =

∞∑
n=0

(−1)n(n + 1)

diverges. Hence, the Taylor series converges when |x+1| < 1, which implies that −1 < x+1 < 1,
so the interval of convergence is (−2, 0).

1 Additional Questions

1. Use the mean value theorem to show that for all x ∈ R>0, 1 + 2x < e2x < (1− 2x)−1.

Solution Let x ∈ R>0 and define f : [0, x ] → R where f (y) = e2y . Since f is differentiable
on R, f is continuous on [0, x ] and differentiable on (0, x). By the mean value theorem, there is
c ∈ (0, x) such that f (x) = f (0) + xf ′(c), so e2x = 1 + 2xe2c . Since 0 < c < x , 2ec > 2e0 = 2
and so e2x > 1 + 2x .

Let g : [0, x ] → R where g(y) = e−2y . Since f is differentiable on R, f is continuous on
[0, x ] and differentiable on (0, x). By the mean value theorem, there is c ∈ (0, x) such that
f (x) = f (0) + xf ′(c), so e−2x = 1 − 2xe2c . Since 0 < c < x , −2e−2c > −2e0 = −2 and so
e−2x > 1− 2x .
Combining these inequalities, since e−2x > 1−2x if and only if e2x < (1−2x)−1, this implies that
1 + 2x < e2x < (1− 2x)−1.

2. Use the mean value theorem to show that for all x, y ∈ (π4 ,
π
3 ) with x ≤ y , cos

2 y−cos2 x ≤ 3(x−y)
4 .

Solution Let x, y ∈ (π4 ,
π
3 ) with x ≤ y and define f : [x, y ] → R where f (z) = cos

2 z . Since f

is differentiable on R, f is continuous on [x, y ] and differentiable on (x, y).
By the mean value theorem, there is c ∈ (x, y) such that f (y) = f (x) + (y − x)f ′(c). Since
f ′(c) = − sin 2c , this implies that cos2 y = cos2 x − (y − x) sin 2c and hence cos2 y − cos2 x =
(x − y) sin 2c .
Since π4 < c <

π
3 ,
√
3
2 < sin 2c < 1. Since

3
4 <

√
3
2 ,

3
4 < sin 2c . Since x − y ≤ 0, (x − y) sin 2c ≤

3(x−y)
4 . Hence, cos2 y − cos2 x ≤ 3(x−y)

4 .

3. Let f (x) =
√
x .

(a) Find the Taylor series of f (x) about x = 1 up to and including the term in (x − 1)4.
(b) Use this to approximate the value of

√
1.5 to three decimal places.

Solution

(a) Finding the derivatives,

f (x) = x
1
2 f (1) = 1

f ′(x) =
1

2
x−

1
2 f ′(1) =

1

2

f ′′(x) = −
1

4
x−

3
2 f ′′(1) = −

1

4

f (3)(x) =
3

8
x−

5
2 f (3)(1) =

3

8

f (4)(x) = −
15

16
x−

7
2 f (4)(1) = −

15

16
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By Taylor’s theorem,

√
x = 1 +

x − 1
2
−
(x − 1)2

8
+
(x − 1)3

16
−
5(x − 1)4

128
+ R5

(b) Using the Taylor series,

√
1.5 ≈ 1 +

1

4
−
1

32
+
1

128
−
5

2048
= 1.22412109375

so to three decimal places,
√
1.5 ≈ 1.224.

4. Use the Taylor series

ex =

∞∑
n=0

xn

n!

sin x =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

about x = 0 to find:

(a) The Taylor series of ex
2−1 about x = 0.

(b) The Taylor series of ex about x = −1.
(c) The Taylor series of esin x about x = 0 up to and including the term in x4.

Solution

(a) Since ex
2−1 = ex

2

e ,

ex
2−1 =

1

e

∞∑
n=0

(x2)n

n!
=

∞∑
n=0

x2n

e(n!)

(b) Since ex = ex+1

e ,

ex =
1

e

∞∑
n=0

(x + 1)n

n!
=

∞∑
n=0

(x + 1)n

e(n!)

(c) By expanding the Taylor series,

sin x = x −
x3

6
+ . . .

esin x =

∞∑
n=0

sinn x

n!

= 1 + sin x +
sin2 x

2
+
sin3 x

6
+
sin4 x

24
+ . . .

= 1 +

(
x −
x3

6

)
+
1

2

(
x −
x3

6

)2
+
1

6

(
x −
x3

6

)3
+
1

24

(
x −
x3

6

)4
+ . . .

= 1 +

(
x −
x3

6

)
+
1

2

(
x2 −

x4

3
+ . . .

)
+
1

6

(
x3 + . . .

)
+
1

24

(
x4 + . . .

)
= 1 + x +

x2

2
−
x4

8
+ . . .

Hence, up to the term in x4, the Taylor series of esin x is 1 + x + x
2

2 −
x4

8 .
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