Set Theory

Michael Cavaliere

Week 3

Class Content

Question 1

List the elements of the following sets:

1. $A = \{x \in \mathbb{N} : x^2 = 4\}$ 2. $B = \{x \in \mathbb{Z} : x^2 = 4\}$ 3. $C = \{x \in \mathbb{N} : -1 \le x \le 5\}$ 4. $D = \{5x : x \in \mathbb{Z}, -3 < x < 2\}$ 5. $E = \{x \in \mathbb{Q} : x^2 = 2\}$ 6. $F = \{x \in \mathbb{R} : x^2 = 2\}$ 7. $G = \{\sqrt{x} : x \in \mathbb{N}, x < 5\}$

Definition. The intersection of a set A and a set B is the set $A \cap B = \{x : x \in A \text{ and } x \in B\}$. **Definition.** The union of a set A and a set B is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}$. **Definition.** The complement of a set A relative to a set B is the set $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$.

Question 2

Let A, B and C be sets. Draw a Venn diagram showing the following sets:

- 1. $(A \cap B) \cap C$
- 2. $(A \cap B) \cup C$
- 3. $C \setminus (A \cap B)$
- 4. $(A \cap B) \setminus C$
- 5. $A \cap (B \cup C)$
- 6. $(A \cap B) \cup (A \cap C)$

Question 3

Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for any sets A, B and C (the first distributive law).

Additional Questions

- 1. Write each of the following sets in set-builder notation (describing the set by giving a property that the elements must satisfy):
 - (a) $\{-1, -2, -3, \dots\}$ (b) $\{1, 3, 5, 7\}$ (c) $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$ (d) $(0, 1) \cap \mathbb{Q}$ (e) $[-10, 10] \cap \mathbb{N}$

Can you think of another way of writing them?

- 2. (a) Let A, B and C be sets. Which of the following is always true?
 - i. $A \setminus (B \setminus C) = (A \setminus B) \cup C$ ii. $A \setminus (B \cup C) = (A \setminus B) \setminus C$ iii. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
 - (b) For each statement which is true, give a proof. For each statement which is false, give an example of sets A, B and C such that the statement is false.