Set Theory

Michael Cavaliere

Week 3

Class Content

Question 1

List the elements of the following sets:

1.
$$
A = \{x \in \mathbb{N} : x^2 = 4\}
$$

\n2. $B = \{x \in \mathbb{Z} : x^2 = 4\}$
\n3. $C = \{x \in \mathbb{N} : -1 \le x \le 5\}$
\n4. $D = \{5x : x \in \mathbb{Z}, -3 < x < 2\}$
\n5. $E = \{x \in \mathbb{Q} : x^2 = 2\}$
\n6. $F = \{x \in \mathbb{R} : x^2 = 2\}$
\n7. $G = \{\sqrt{x} : x \in \mathbb{N}, x < 5\}$

Solution

- 1. $A = \{2\}$ 2. $B = \{-2, 2\}$ 3. $C = \{1, 2, 3, 4, 5\}$ 4. $D = \{-10, -5, 0, 5\}$ 5. $E = \emptyset$ 6. $F = \{-\sqrt{2},$ √ 2} √ √
- 7. $G = \{1,$ 2, 3, 2}

Definition. The **intersection** of a set A and a set B is the set $A \cap B = \{x : x \in A \text{ and } x \in B\}$.

Definition. The **union** of a set A and a set B is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

Definition. The **complement** of a set A relative to a set B is the set $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$

Question 2

Let A, B and C be sets. Draw a Venn diagram showing the following sets:

1. $(A \cap B) \cap C$

Solution

2. $(A \cap B) \cup C$

Solution

3. $C \setminus (A \cap B)$

Solution

4. $(A \cap B) \setminus C$

Solution

5. $A \cap (B \cup C)$

Solution

- 6. $(A \cap B) \cup (A \cap C)$
	- Solution

Question 3

Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for any sets A, B and C (the first distributive law).

Solution To prove $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, we show that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ and that $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Suppose that $x \in A \cap (B \cup C)$. By definition of the intersection, $x \in A$ and $x \in B \cup C$.

- If $x \in B$, then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
- If $x \notin B$, then $x \in C$. This implies that $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.

Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Suppose that $x \in (A \cap B) \cup (A \cap C)$. By definition of the union, $x \in A \cap B$ or $x \in A \cap C$, so $x \in A$ by definition of the intersection.

- If $x \in B$, then $x \in B \cup C$, so $x \in A \cap (B \cup C)$.
- If $x \notin B$, then $x \in C$. This implies that $x \in B \cup C$, so $x \in A \cap (B \cup C)$.

Therefore, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$, and so $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Additional Questions

- 1. Write each of the following sets in set-builder notation (describing the set by giving a property that the elements must satisfy):
	- (a) $\{-1, -2, -3, \dots\}$
	- (b) {1, 3, 5, 7}
	- (c) $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$
	- (d) $(0, 1) \cap \mathbb{O}$
	- (e) [−10, 10] ∩ N

Can you think of another way of writing them?

Solution

- (a) ${n \in \mathbb{Z} : n < 0}, {\{-n : n \in \mathbb{N}\}}$
- (b) ${2n+1 : n \in \mathbb{Z}, 0 \le n \le 3}, {x \in \mathbb{R} : (x-1)(x-3)(x-5)(x-7) = 0}$
- (c) $\{\frac{n}{n+1} : n \in \mathbb{N}\}, \{\frac{n-1}{n} : n \in \mathbb{Z}, n \ge 2\}$
- (d) $\{x \in \mathbb{Q} : 0 < x < 1\}, \{\frac{p}{q} : p, q \in \mathbb{N}, p < q\}$
- (e) ${n \in \mathbb{N} : n \le 10}$, ${n \in \mathbb{N} : n^2 < 101}$

Some ways of writing sets are of course more useful than others!

- 2. (a) Let A, B and C be sets. Which of the following is always true?
	- i. $A \setminus (B \setminus C) = (A \setminus B) \cup C$ ii. $A \setminus (B \cup C) = (A \setminus B) \setminus C$ iii. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution

- i. False
- ii. True
- iii. True
- (b) For each statement which is true, give a proof. For each statement which is false, give an example of sets A , B and C such that the statement is false.

Solution

- i. Let $A = \{0\}$, $B = \emptyset$ and $C = \{1\}$. Then, $A \setminus (B \setminus C) = A \setminus B = A = \{0\}$ and $(A \setminus B) \cup C = A \cup C = \{0, 1\}.$
- ii. By definition,

$$
A \setminus (B \cup C) = A \cap (B \cup C)'
$$

= $A \cap (B' \cap C')$ (de Morgan's laws)
= $(A \cap B') \cap C'$ (associative law)
= $(A \setminus B) \cap C'$
= $(A \setminus B) \setminus C$

iii. By definition,

$$
A \setminus (B \cap C) = A \cap (B \cap C)'
$$

= $A \cap (B' \cup C')$ (de Morgan's laws)
= $(A \cap B') \cup (A \cap C')$ (distributive law)
= $(A \setminus B) \cup (A \setminus C)$