
Proof

Michael Cavaliere

Week 4

Class Content

What types of proof are there?

• Direct proof

• Proof by contradiction

• Proof by induction

• Proof by exhaustion

• Counterexample

Question 1

Prove that for n ∈ Z, if n is even if and only if n3 is even.

Solution Suppose that n is even, and let n = 2k for some k ∈ Z. It follows that n3 = (2k)3 = 8k3.
Since 8 is even, 8k3 is even, so n3 is even.

Conversely, suppose that n is odd, and let n = 2k + 1 for some k ∈ Z. It follows that

n3 = (2k + 1)3

= (2k + 1)(4k2 + 4k + 1)

= 8k3 + 12k2 + 6k + 1

Since 8k3 + 12k2 + 6k is even, 8k3 + 12k2 + 6k + 1 is odd, so n3 is odd.

Hence, n is even if and only if n3 is even.

Question 2

Prove that 3
√
2 is irrational.

Solution Suppose that 3
√
2 is rational. This means it can be written in the form

3
√
2 =
m

n

for m, n ∈ Z with no common factors and n ̸= 0. Cubing both sides gives

2 =
m3

n3
=⇒ m3 = 2n3

1



so m3 is even. This implies that m is even. Let m = 2k for some k ∈ Z. This implies that

m3 = (2k)3 = 8k3

=⇒ 8k3 = 2n3

=⇒ n3 = 4k3

Since 4 is even, 4k3 is even, so n3 is even. This implies that n is even. Since both m and n are even, 2

is a common factor, which is a contradiction to the assumption that m and n have no common factors.

Hence, 3
√
2 is irrational.

Question 3

Prove that 9n − 1 is divisible by 8 for every n ∈ N.

Solution Let P (n) be the statement above. When n = 1, 9n − 1 = 9− 1 = 8, so 9n − 1 is divisible by
8, so P (1) is true.

Suppose that P (k) is true, so 9k − 1 is divisible by 8, for some k ∈ N. Then,

9k+1 − 1 = 9k+1 − 9 + 8
= 9(9k − 1) + 8

Since 9k −1 is divisible by 8, 9(9k −1) is divisible by 8 and so 9(9k −1)+8 is divisible by 8. This implies
that 9k+1 − 1 is divisible by 8, so P (k + 1) is true. Therefore, by induction, P (n) is true for all n ∈ N.

Additional Questions

1. For a, b, c ∈ Z, prove that if a divides b and b divides c , then a divides c .

Solution Let a, b, c ∈ Z and suppose that a divides b and b divides c . By definition, this means
that there exists m, n ∈ Z such that b = am and c = bn. By substituting, this implies that
c = (am)n = a(mn). Since m, n ∈ Z, mn ∈ Z and so a divides c .

2. Prove that no square number ends in a 7.

Solution For any integer k ∈ Z, k = 10m + n for m, n ∈ Z where 0 ≤ n < 10. Since

k2 = (10m + n)2

= 100m2 + 20mn + n2

the final digit of k2 is the same as the final digit of n2. This shows that it suffices to show that

no square number between 0 and 9 ends in a 7.

02 = 0

12 = 1

22 = 4

32 = 9

...

92 = 81

Hence, no square number ends in a 7.
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3. A sequence is defined recursively by a1 = 6, a2 = 27 and an+2 = 6an+1 − 9an for n ∈ N. Prove
that an = 3

n(n + 1) for all n ∈ N.

Solution Let P (n) be the statement above. Since a1 = 6 = 3
1(1 + 1), P (1) is true. Since

a2 = 27 = 3
2(2 + 1), P (2) is true.

Suppose that P (k) and P (k + 1) are true for k ∈ N, so ak = 3k(k + 1) and ak+1 = 3k+1(k + 2).
By definition of ak+2,

ak+2 = 6ak+1 − 9ak
= 6(3k+1(k + 2))− 9(3k(k + 1))
= 2(3k+2)(k + 2)− (3k+2)(k + 1)
= 3k+2(2(k + 2)− (k + 1))
= 3k+2(2k + 4− k − 1)
= 3k+2(k + 3)

so P (k + 1) is true. Therefore, by induction, P (n) is true for all n ∈ N.
Note that two base cases are needed and two inductive hypotheses are needed, because ak+2 is

reliant on both ak and ak+1. This is a variation on induction, but hopefully you can see why it

works!

4. Prove by contradiction that if x ∈ Q and y ∈ R \Q, then x + y ∈ R \Q.

Solution Let x ∈ Q and y ∈ R \Q. Suppose that x + y /∈ R \Q, so x + y ∈ Q. By definition,
x = m

n and x + y =
p
q for m, n, p, q ∈ Z with n, q ̸= 0. Then,

y = (x + y)− x =
p

q
−
m

n
=
pn

qn
−
mq

nq
=
pn −mq
nq

Since m, n, p, q ∈ Z, pn−mq ∈ Z and nq ∈ Z. Since n, q ̸= 0, nq ̸= 0. Hence, y ∈ Q, which is a
contradiction, so x + y /∈ Q and so x + y ∈ R \Q.

5. Is it true that if x ∈ Q and y ∈ Q, then x + y ∈ Q? Provide a proof or a counterexample.

Solution The statement is true. Let x, y ∈ Q, so x = m
n and y =

p
q for m, n, p, q ∈ Z with

n, q ̸= 0. Then,
x + y =

m

n
+
p

q
=
mq

nq
+
pn

qn
=
mq + pn

nq

Since m, n, p, q ∈ Z, mq + pn ∈ Z and nq ∈ Z. Since n, q ̸= 0, nq ̸= 0. Hence, x + y ∈ Q.

6. Is it true that if x ∈ R\Q and y ∈ R\Q, then x+y ∈ R\Q? Provide a proof or a counterexample.

Solution The statement is false. Let x =
√
2 and y = −

√
2, so x, y ∈ R \Q. Then, x + y = 0

so x + y ∈ Q.

7. All cows are the same colour.
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Proof. Let P (n) be the statement that any n cows are all the same colour for n ∈ N. Since one
cow is always the same colour as itself, P (1) is true.

Suppose that P (k) is true for some k ∈ N, so any k cows are all the same colour. Let C be a
set of k + 1 cows. If one cow c1 is removed from C, then C \ {c1} is a set of k cows, so by
the inductive hypothesis all cows in C \ {c1} are the same colour. Similarly, if a different cow c2
is removed from C, then C \ {c2} is a set of k cows, so by the inductive hypothesis all cows in
C \ {c2} are the same colour.
Since C \ {c1, c2} ⊆ C \ {c1} and C \ {c1, c2} ⊆ C \ {c2}, the cows in C \ {c1, c2} are the same
colour as the cows in C \ {c1} and the cows in C \ {c2}. This implies that the cows in C \ {c1}
and C \ {c2} are all the same colour.
Since C = (C \ {c1})∪ (C \ {c2}), this implies that all cows in C are the same colour, so P (k +1)
is true.

Hence, by induction, all cows are the same colour.

This result clearly is not true, so what is the mistake in the proof?

Solution The proof of the inductive step assumes that |C| ≥ 3, because it assumes that c1 and
c2 can be removed from C and C \ {c1, c2} is not empty. This means that it cannot be used to
go from the base case P (1) to P (2).

Thinking about the argument above in the case that k = 1, if we assume P (1) is true then let

C = {c1, c2} be a set of k + 1 cows. It is clear that all cows in C \ {c1} are the same colour and
all cows in C \ {c2} are the same colour. However, C \ {c1, c2} = ∅ and so the argument above
cannot be used to show that the cows in C \ {c1} and C \ {c2} are the same colour.
The moral of this example is that it is very important to make sure that the argument in your

inductive step works for all k ∈ N.
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