Proof

Michael Cavaliere

Week 4

Class Content

What types of proof are there?

e Direct proof

Proof by contradiction

Proof by induction

Proof by exhaustion

Counterexample

Question 1

Prove that for n € Z, if n is even if and only if n® is even.

Solution Suppose that n is even, and let n = 2k for some k € Z. It follows that n® = (2k)3 = 8k>.
Since 8 is even, 8k> is even, so n3 is even.
Conversely, suppose that n is odd, and let n = 2k + 1 for some k € Z. It follows that

n®=(2k+1)°
= (2k +1)(4k® + 4k + 1)
=8k3+12k> + 6k +1

Since 8k3 4 12k? + 6k is even, 8k® 4+ 12k? + 6k + 1 is odd, so n® is odd.
Hence, n is even if and only if n® is even.

Question 2

Prove that /2 is irrational.

Solution Suppose that v/2 is rational. This means it can be written in the form

va="

n

for m, n € Z with no common factors and n # 0. Cubing both sides gives

3
m
2:73 — m?® =2n
n



so m® is even. This implies that m is even. Let m = 2k for some k € Z. This implies that
m® = (2k)* = 8k>

= 8k*=2n°

= nd =4k

Since 4 is even, 4k3 is even, so n3 is even. This implies that n is even. Since both m and n are even, 2
is a common factor, which is a contradiction to the assumption that m and n have no common factors.
Hence, /2 is irrational.

Question 3
Prove that 9" — 1 is divisible by 8 for every n € N.
Solution Let P(n) be the statement above. When n=1,9"—-1=9—1=8, so 9" — 1 is divisible by

8, so P(1) is true.
Suppose that P(k) is true, so 9k — 1 is divisible by 8, for some k € N. Then,

9k+1_1:9k+1_9+8
=9(9"-1)+8

Since 9% — 1 is divisible by 8, 9(9% — 1) is divisible by 8 and so 9(9¥ — 1) + 8 is divisible by 8. This implies
that 91 — 1 is divisible by 8, so P(k + 1) is true. Therefore, by induction, P(n) is true for all n € N.

Additional Questions

1. For a, b, c € Z, prove that if a divides b and b divides ¢, then a divides c.

Solution Let a, b, c € Z and suppose that a divides b and b divides c. By definition, this means
that there exists m,n € Z such that b = am and ¢ = bn. By substituting, this implies that
c = (am)n = a(mn). Since m,n € Z, mn € Z and so a divides c.

2. Prove that no square number ends in a 7.

Solution For any integer k € Z, k = 10m + n for m, n € Z where 0 < n < 10. Since
k? = (10m + n)?
= 100m? 4+ 20mn + n?

the final digit of k? is the same as the final digit of n?. This shows that it suffices to show that
no square number between 0 and 9 ends in a 7.

0°2=0
12 =
22 =
32=9
92 =81

Hence, no square number ends in a 7.



3. A sequence is defined recursively by a; = 6, a, = 27 and a,4o = 6a,+1 — 9a, for n € N. Prove
that a, = 3"(n+ 1) for all n € N.

Solution Let P(n) be the statement above. Since a; = 6 = 3*(1 + 1), P(1) is true. Since
a =27 =32(2+ 1), P(2) is true.

Suppose that P(k) and P(k + 1) are true for k € N, so ax = 3%(k + 1) and ax.1 = 31 (k +2).
By definition of axio,

Akq2 = Baky1 — 9ak
=6(3 "1 (k +2)) — 9(3"(k + 1))
=2(3*)(k +2) — (3*)(k + 1)
=322(k+2) - (k+1))
=320k +4 - k1)
=3K2(k +3)

so P(k + 1) is true. Therefore, by induction, P(n) is true for all n € N.

Note that two base cases are needed and two inductive hypotheses are needed, because axio is
reliant on both ax and ax4+1. This is a variation on induction, but hopefully you can see why it
works!

4. Prove by contradiction that if x € Q and y € R\ Q, then x +y € R\ Q.

Solution let x € Q and y € R\ Q. Suppose that x +y ¢ R\ Q, so x +y € Q. By definition,

m

x:Fandx—l—y:gform,n,p,qGZWith n,q # 0. Then,

p m pn mq pn—mqg
y=xty)-x=2-0_2_ 19 P

q n aqn nqg nq
Since m,n,p,g € Z, pn—mq € Z and nq € Z. Since n,q # 0, ng # 0. Hence, y € Q, which is a
contradiction, so x+y ¢ Q and so x +y € R\ Q.

5. Is it true that if x € Q and y € Q, then x + y € Q7 Provide a proof or a counterexample.

Solution The statement is true. Let x,y € Q, so x = % and y = g for m,n,p,q € Z with

n,qg# 0. Then, . N
p mq pn _ mqg-+pn
X = — —_ = — _ = —

Ty n * q nq * an nq

Since m,n,p,q € Z, mqg+ pn € Z and nq € Z. Since n,q # 0, ng # 0. Hence, x+ y € Q.

6. Isit true that if x € R\Q and y € R\Q, then x+y € R\Q? Provide a proof or a counterexample.

Solution The statement is false. Let x =+v2 and y = —v/2, s0 x,y € R\ Q. Then, x+y =0
sox+yeQ.

7. All cows are the same colour.



Proof. Let P(n) be the statement that any n cows are all the same colour for n € N. Since one
cow is always the same colour as itself, P(1) is true.

Suppose that P(k) is true for some k € N, so any k cows are all the same colour. Let C be a
set of k + 1 cows. If one cow ¢ is removed from C, then C\ {c1} is a set of k cows, so by
the inductive hypothesis all cows in C \ {c;} are the same colour. Similarly, if a different cow ¢,
is removed from C, then C \ {c} is a set of k cows, so by the inductive hypothesis all cows in
C\ {c} are the same colour.

Since C\{c,} CC\{c}and C\{c,x} CC\{c} thecowsin C\ {ci, c} are the same
colour as the cows in C\ {c1} and the cows in C\ {c}. This implies that the cows in C \ {c}
and C \ {c} are all the same colour.

Since C = (C\{a}) U(C\ {c}), this implies that all cows in C are the same colour, so P(k+ 1)
is true.

Hence, by induction, all cows are the same colour. ]

This result clearly is not true, so what is the mistake in the proof?

Solution The proof of the inductive step assumes that |C| > 3, because it assumes that ¢; and
¢ can be removed from C and C \ {c1, 2} is not empty. This means that it cannot be used to
go from the base case P(1) to P(2).

Thinking about the argument above in the case that k = 1, if we assume P(1) is true then let
C ={c1,c} be aset of k+ 1 cows. It is clear that all cows in C\ {c;} are the same colour and
all cows in C \ {¢,} are the same colour. However, C \ {c1, &2} = @ and so the argument above
cannot be used to show that the cows in C\ {c1} and C\ {c} are the same colour.

The moral of this example is that it is very important to make sure that the argument in your
inductive step works for all k € N.



