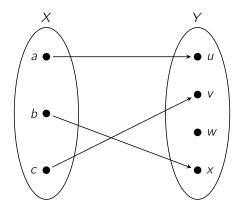
Week 5

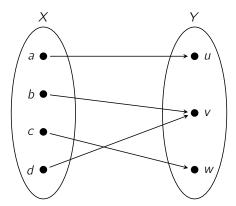
Class Content

Definition. A function $f : X \to Y$ is **injective** if for every $y \in Y$, there exists at most one $x \in X$ such that y = f(x).

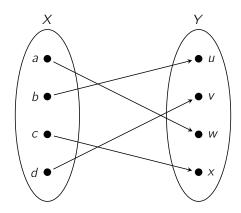
Alternatively, f is **injective** if for every $w, x \in X$, f(w) = f(x) implies that w = x.



Definition. A function $f : X \to Y$ is surjective if for every $y \in Y$, there exists at least one $x \in X$ such that y = f(x).



Definition. A function $f : X \to Y$ is **bijective** if it is both injective and surjective, so for every $y \in Y$, there exists exactly one $x \in X$ such that y = f(x).

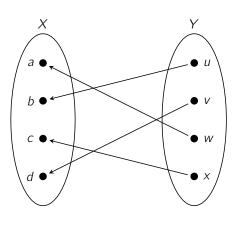


Definition. A function $f : X \to Y$ is invertible if there is a function $f^{-1} : Y \to X$ such that $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$.

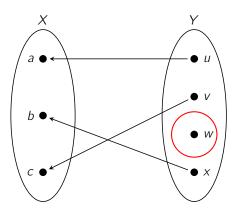
Theorem. A function $f : X \to Y$ is bijective if and only if f is invertible.

Consider the diagrams from above:

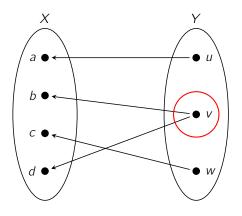
• Bijection:



• Injection:



• Surjection:



Question 1

Which of the following functions are injective, surjective or bijective?

- 1. $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$
- 2. $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ where $f(x) = x^2$
- 3. $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ where $f(x) = \frac{1}{x}$
- 4. $f : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ where $f(x) = \frac{1}{x}$

- 5. $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ where $f(x) = \frac{1}{x}$
- 6. $f : \mathbb{N} \to \mathbb{Z}$ where

$$f(x) = \begin{cases} \frac{x}{2} & x \text{ is even} \\ -\frac{x+1}{2} & x \text{ is odd} \end{cases}$$
7. $f: \mathbb{N} \to \mathbb{Z}$ where
$$f(x) = \begin{cases} \frac{x}{2} & x \text{ is even} \\ -\frac{x-1}{2} & x \text{ is odd} \end{cases}$$
8. $f: \mathbb{N} \to \mathbb{N}$ where
$$f(x) = \begin{cases} 1 & x = 1 \\ x-1 & x > 1 \end{cases}$$

Question 2

Prove that if a function $f : X \to Y$ is invertible, then it is bijective.

Additional Questions

- 1. Is it true that if a function $f : X \to Y$ is injective, then |X| = |Y|? Provide a proof or a counterexample.
- 2. Prove that for $f: X \to Y$ and $g: Y \to Z$, if f and g are both injective, then $g \circ f$ is injective.
- 3. Show that the converse (the converse is if $g \circ f$ is injective, then f and g are both injective) is not true with a counterexample.
- 4. Prove that for $f : X \to Y$ and $g : Y \to Z$, if $g \circ f$ is injective, then f is injective.
- 5. Prove that for $f : X \to Y$ and $g : Y \to Z$, if $g \circ f$ is surjective, then g is surjective.
- 6. We say a function $f : X \to Y$ has a left inverse if there is a function $g : Y \to X$ such that $g \circ f = id_X$ (this is similar to the definition of an inverse function, but only for composition on the left of f). Show that if f has a left inverse, then f is injective.
- 7. We say a function $f : X \to Y$ has a right inverse if there is a function $g : Y \to X$ such that $f \circ g = id_Y$ (this is similar to the definition of an inverse function, but only for composition on the right of f). Show that if f has a right inverse, then f is surjective.