Functions

Michael Cavaliere

Week 5

Class Content

Definition. A function $f : X \to Y$ is **injective** if for every $y \in Y$, there exists at most one $x \in X$ such that $y = f(x)$.

Alternatively, f is **injective** if for every $w, x \in X$, $f(w) = f(x)$ implies that $w = x$.

Definition. A function $f : X \to Y$ is **surjective** if for every $y \in Y$, there exists at least one $x \in X$ such that $y = f(x)$.

Definition. A function $f : X \to Y$ is **bijective** if it is both injective and surjective, so for every $y \in Y$, there exists exactly one $x \in X$ such that $y = f(x)$.

Definition. A function $f: X \to Y$ is **invertible** if there is a function $f^{-1}: Y \to X$ such that $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$.

Theorem. A function $f : X \to Y$ is bijective if and only if f is invertible.

Consider the diagrams from above:

• Bijection:

• Injection:

• Surjection:

Question 1

Which of the following functions are injective, surjective or bijective?

- 1. $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$
- 2. $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ where $f(x) = x^2$
- 3. $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ where $f(x) = \frac{1}{x}$
- 4. $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ where $f(x) = \frac{1}{x}$
- 5. $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ where $f(x) = \frac{1}{x}$
- 6. $f : \mathbb{N} \to \mathbb{Z}$ where

$$
f(x) = \begin{cases} \frac{x}{2} & x \text{ is even} \\ -\frac{x+1}{2} & x \text{ is odd} \end{cases}
$$

7.
$$
f : \mathbb{N} \to \mathbb{Z}
$$
 where

$$
f(x) = \begin{cases} \frac{x}{2} & x \text{ is even} \\ -\frac{x-1}{2} & x \text{ is odd} \end{cases}
$$

8. $f : \mathbb{N} \to \mathbb{N}$ where

$$
f(x) = \begin{cases} 1 & x = 1 \\ x - 1 & x > 1 \end{cases}
$$

Solution

- 1. Not injective as $f(-1) = f(1)$, not surjective as there is no $x \in \mathbb{R}$ such that $f(x) = -1$.
- 2. Surjective as $f(\sqrt{y}) = y$ for $y \in \mathbb{R}_{\geq 0}$, not injective as $f(-1) = f(1)$.
- 3. Injective as

$$
f(w) = f(x) \implies \frac{1}{w} = \frac{1}{x}
$$

$$
\implies w = x
$$

not surjective as there is no $x \in \mathbb{R} \setminus \{0\}$ such that $f(x) = 0$.

- 4. Bijective as f is self-inverse $(f \circ f = id_{\mathbb{R}_{>0}})$.
- 5. Bijective as f is self-inverse $(f \circ f = id_{\mathbb{R} \setminus \{0\}})$.

6. Injective as $f(x) > 0$ for even x and $f(x) < 0$ for odd x and

$$
f(2w) = f(2x) \implies w = x
$$

$$
\implies 2w = 2x
$$

and

$$
f(2w - 1) = f(2x - 1) \implies -w = -x
$$

$$
\implies 2w - 1 = 2x - 1
$$

not surjective as there is no $x \in \mathbb{N}$ such that $f(x) = 0$.

7. Bijective as there is an inverse $f^{-1}: \mathbb{Z} \to \mathbb{N}$ where

$$
f^{-1}(x) = \begin{cases} 2x & x > 0 \\ 1 - 2x & x \le 0 \end{cases}
$$

8. Not injective as $f(1) = f(2)$, surjective as $f(y + 1) = y$ for $y \in \mathbb{N}$.

Question 2

Prove that if a function $f : X \rightarrow Y$ is invertible, then it is bijective.

Solution Suppose that f is invertible, so there is a function $f^{-1}: Y \to X$ where $(f \circ f^{-1})(y) = y$ for all $y \in Y$ and $(f^{-1} \circ f)(x) = x$ for all $x \in X$.

- To show that f is injective, suppose that $f(w) = f(x)$ for $w, x \in X$. By applying f^{-1} to both sides, $f^{-1}(f(w)) = f^{-1}(f(x))$, so $(f^{-1} \circ f)(w) = (f^{-1} \circ f)(x)$. This implies that $w = x$, so f is injective.
- To show that f is surjective, let $y \in Y$, so $f^{-1}(y) \in X$. By definition, $f(f^{-1}(y)) = (f \circ f^{-1})(y) = y$, so there exists $x \in X$ such that $f(x) = y$, so f is surjective.

Hence, f is bijective.

Additional Questions

1. Is it true that if a function $f : X \to Y$ is injective, then $|X| = |Y|$? Provide a proof or a counterexample.

Solution Let $X = \{0, 1\}$ and $Y = \{0, 1, 2\}$, so $|X| < |Y|$. Let $f : X \to Y$ be the function where $f(0) = 0$ and $f(1) = 1$. Since $f(w) \neq f(x)$ whenever $w \neq x$ for $w, x \in X$, f is injective.

2. For $f: X \to Y$ and $g: Y \to Z$, if f and g are both injective, then $g \circ f$ is injective. Show that the converse is not true with a counterexample.

Solution Let $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ where $f(x) = x$ and $g : \mathbb{R} \to \mathbb{R}$ where $g(x) = x^2$, so g is not injective since $q(-1) = q(1)$.

Then, $g \circ f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ where $(g \circ f)(x) = x^2$. If $(g \circ f)(w) = (g \circ f)(x)$, then $w^2 = x^2$ and since $w, x \in \mathbb{R}_{\geq 0}$, this implies that $w = x$, so $q \circ f$ is injective.

Hence $g \circ f$ is injective but g is not injective, so the converse cannot hold.

3. Prove that for $f : X \to Y$ and $g : Y \to Z$, if $g \circ f$ is injective, then f is injective.

Solution Since $g \circ f$ is injective, for every $w, x \in X$, if $(g \circ f)(w) = (g \circ f)(x)$, then $w = x$. For every $w, x \in X$, if $f(w) = f(x)$, then $g(f(w)) = g(f(x))$, so $(g \circ f)(w) = (g \circ f)(x)$. Using the injectivity of $g \circ f$, this implies that $w = x$. Hence, f is injective.

4. For $f: X \to Y$ and $g: Y \to Z$, if f and g are both surjective, then $g \circ f$ is surjective. Show that the converse is not true with a counterexample.

Solution Let $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ where $f(x) = \sqrt{x}$ and $g : \mathbb{R} \to \mathbb{R}_{\geq 0}$ where $g(x) = |x|$, so f is not surjective since there is no $x \in \mathbb{R}_{\geq 0}$ with $f(x) = -1$.

Then, $g \circ f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ where $(g \circ f)(x) = |\sqrt{x}| = \sqrt{x}$. For all $y \in \mathbb{R}_{\geq 0}$, $y^2 \in \mathbb{R}_{\geq 0}$ and $(g \circ f)(y^2) = y$, so $g \circ f$ is surjective.

Hence, $g \circ f$ is surjective but f is not surjective, so the converse cannot hold.

5. Prove that for $f: X \to Y$ and $g: Y \to Z$, if $g \circ f$ is surjective, then g is surjective.

Solution Since $g \circ f$ is surjective, for every $z \in Z$, there exists $x \in X$ such that $z = (g \circ f)(x)$. Since $f(x) \in Y$, this implies that for every $z \in Z$, there exists $y \in Y$ such that $z = g(y)$, by taking $y = f(x)$ where $z = (q \circ f)(x)$. Hence, q is surjective.

6. We say a function $f : X \to Y$ has a left inverse if there is a function $g : Y \to X$ such that $q \circ f = id_X$ (this is similar to the definition of an inverse function, but only for composition on the left of f). Show that if f has a left inverse, then f is injective.

Solution Suppose that f has a left inverse $q: Y \to X$. By definition, $(q \circ f)(x) = x$ for every $x \in X$. Suppose that $f(w) = f(x)$ for $w, x \in X$. This implies that $g(f(w)) = g(f(x))$, so $(q \circ f)(w) = (q \circ f)(x)$ and hence $w = x$. This implies that f is injective.

7. We say a function $f : X \to Y$ has a right inverse if there is a function $g : Y \to X$ such that $f \circ q = id_{Y}$ (this is similar to the definition of an inverse function, but only for composition on the right of f). Show that if f has a right inverse, then f is surjective.

Solution Suppose that f has a right inverse $q: Y \to X$. By definition, $(f \circ q)(y) = y$ for every $y \in Y$. Since $g(y) \in X$, this implies that for every $y \in Y$, there exists $x = g(y)$ such that $y = f(x)$. This implies that f is surjective.