Sequences and Series

Michael Cavaliere

Week 6

Class Content

Definition. For a sequence (a_n) and $a \in \mathbb{R}$, $(a_n) \to a$ if for all $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ for every n > N.

Definition. For a sequence (a_n) , $(a_n) \to \infty$ if for all A > 0, there is some $N \in \mathbb{N}$ such that $a_n > A$ for every n > N.

Similarly, $(a_n) \to -\infty$ if for all A < 0, there is some $N \in \mathbb{N}$ such that $a_n < A$ for every n > N.

Question 1

Use the definition of convergence to show that the sequence $a_n = \frac{n}{n+1}$ converges to 1 as $n \to \infty$.

Theorem. If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$, then

• $(a_n + b_n) \rightarrow a + b$ (sum rule)

- $(a_n b_n) \rightarrow ab$ (product rule)
- $\left(\frac{a_n}{b_n}\right) \rightarrow \frac{a}{b}$ if $b \neq 0$ (quotient rule)

Theorem (Sandwich Rule). For sequences (a_n) , (b_n) and (c_n) , if $(a_n) \to L$ and $(c_n) \to L$ and there is some $N \in \mathbb{N}$ such that $a_n \leq b_n \leq c_n$ for all n > N, then $(b_n) \to L$.

Question 2

Find the limits of the following sequences:

1. $a_n = \frac{2n^2 + 3n}{n^3 + n^2}$ 2. $a_n = \frac{3n^2 + n\cos n}{2n(n-3)}$

Definition. For a sequence (a_k) , the corresponding series is the sum

$$\sum_{k=1}^{\infty} a_k$$

Definition. For a sequence (a_k) and $S \in \mathbb{R}$,

$$\sum_{k=1}^{\infty} a_k = S$$

if the sequence of partial sums $(S_n) \rightarrow S$ where

$$S_n = \sum_{k=1}^n a_k$$

Theorem (Sum Rule). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, then $\sum_{k=1}^{\infty} (a_k + b_k)$ converges.

Theorem (Null Sequence Test). The series $\sum_{k=1}^{\infty} a_k$ only converges if $(a_k) \to 0$.

Theorem (Comparison Test). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if

- $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$
- $a_k \leq Mb_k$ for all $k \in \mathbb{N}$ and M > 0
- $\sum_{k=1}^{\infty} b_k$ converges

then $\sum_{k=1}^{\infty} a_k$ converges. Similarly, if

- $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$
- $a_k \ge Mb_k$ for all $k \in \mathbb{N}$ and M > 0
- $\sum_{k=1}^{\infty} b_k$ diverges

then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem (Ratio Test). For a series $\sum_{k=1}^{\infty} a_k$, if $\left(\left| \frac{a_{k+1}}{a_k} \right| \right) \to L$, then

- if L < 1, $\sum_{k=1}^{\infty} a_k$ converges
- if L > 1, $\sum_{k=1}^{\infty} a_k$ diverges

Theorem (Alternating Series Test). For a sequence (a_k) , if

- $a_k > 0$ for all $k \in \mathbb{N}$
- (a_k) is decreasing

•
$$(a_k) \rightarrow 0$$

then $\sum_{k=1}^{\infty} (-1)^k a_k$ converges.

Question 3

Which of the following series are convergent?

- 1. $\sum_{n=1}^{\infty} \frac{n^2 + n^3}{n^5}$ 2. $\sum_{n=1}^{\infty} (-1)^n$
- 3. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$
- 4. $\sum_{n=1}^{\infty} \frac{1}{n!}$
- 5. $\sum_{n=1}^{\infty} \frac{3^n}{n}$
- 6. $\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{n^{\frac{3}{2}}+1}$

Additional Questions

- 1. Use the definition of convergence to show that $\left(\frac{1}{\sqrt{n}}\right) \to 0$ as $n \to \infty$.
- 2. Use the triangle inequality and the definition of convergence to show that if $(a_n) \rightarrow a$ and $(a_n) \rightarrow b$, then a = b (i.e. that limits of sequences are unique).
- 3. Decide whether the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$$

converges or diverges.

4. (a) Find a series $\sum_{k=1}^{\infty} a_k$ that converges where $\left(\left|\frac{a_{k+1}}{a_k}\right|\right) \to 1$. (b) Find a series $\sum_{k=1}^{\infty} a_k$ that diverges where $\left(\left|\frac{a_{k+1}}{a_k}\right|\right) \to 1$. This shows that the ratio test is inconclusive when L = 1.

3