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Class Content

Definition. For a sequence (an) and a ∈ R, (an) → a if for all ε > 0, there is some N ∈ N such that
|an − a| < ε for every n > N.

n
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a + ε

a − ε
aN

N

Definition. For a sequence (an), (an)→∞ if for all A > 0, there is some N ∈ N such that an > A for
every n > N.

Similarly, (an)→ −∞ if for all A < 0, there is some N ∈ N such that an < A for every n > N.
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Question 1

Use the definition of convergence to show that the sequence an =
n
n+1 converges to 1 as n →∞.

Solution To prove that (an) → 1, we need to show that for every ε > 0, there is some N ∈ N such
that |an − 1| < ε for every n > N.
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Let ε > 0. By definition,

an − 1 =
n

n + 1
− 1

=
n − n − 1
n + 1

= −
1

n + 1

=⇒ |an − 1| =
1

n + 1

<
1

n

Let N ∈ N where N ≥ 1
ε . Then, for all n > N

|an − 1| <
1

n

<
1

N
(since n > N)

≤ ε (since N ≥
1

ε
)

Hence, (an)→ 1.

Theorem. If (an)→ a and (bn)→ b, then
• (an + bn)→ a + b (sum rule)

• (anbn)→ ab (product rule)

• ( anbn )→
a
b if b ̸= 0 (quotient rule)

Theorem (Sandwich Rule). For sequences (an), (bn) and (cn), if (an) → L and (cn) → L and there is
some N ∈ N such that an ≤ bn ≤ cn for all n > N, then (bn)→ L.

Question 2

Find the limits of the following sequences:

1. an =
2n2+3n
n3+n2

2. an =
3n2+n cos n
2n(n−3)

Solution

1. By definition,

an =
2n2 + 3n

n3 + n2

=
2
n +

3
n2

1 + 1
n

Since ( 1n ) → 0, (
2
n ) → 0 and (

3
n2 ) → 0 by the product rule. This implies that (

2
n +

3
n2 ) → 0 and

(1 + 1
n )→ 1 by the sum rule. Hence, by the quotient rule, (an)→ 0.

2. By definition,

an =
3n2 + n cos n

2n(n − 3)

=
3n2 + n cos n

2n2 − 6n

=
3 + cos nn
2− 6

n
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Since ( 1n )→ 0, (
6
n )→ 0 by the product rule.

Since −1 ≤ cos n ≤ 1, −1n ≤
cos n
n ≤ 1

n for all n ∈ N. Since (
1
n ) → 0 and (

−1
n ) → 0, this implies

that ( cos nn )→ 0 by the sandwich rule.
This implies that (3 + cos nn )→ 3 and (2−

6
n2 )→ 2 by the sum rule. Hence, by the quotient rule,

(an)→ 3
2 .

Definition. For a sequence (ak), the corresponding series is the sum

∞∑
k=1

ak

Definition. For a sequence (ak) and S ∈ R,

∞∑
k=1

ak = S

if the sequence of partial sums (Sn)→ S where

Sn =

n∑
k=1

ak

Theorem (Sum Rule). For series
∑∞
k=1 ak and

∑∞
k=1 bk , if

∑∞
k=1 ak and

∑∞
k=1 bk both converge, then∑∞

k=1(ak + bk) converges.

Theorem (Null Sequence Test). The series
∑∞
k=1 ak only converges if (ak)→ 0.

Theorem (Comparison Test). For series
∑∞
k=1 ak and

∑∞
k=1 bk , if

• ak , bk ≥ 0 for all k ∈ N

• ak ≤ Mbk for all k ∈ N and M > 0

•
∑∞
k=1 bk converges

then
∑∞
k=1 ak converges. Similarly, if

• ak , bk ≥ 0 for all k ∈ N

• ak ≥ Mbk for all k ∈ N and M > 0

•
∑∞
k=1 bk diverges

then
∑∞
k=1 ak diverges.

Theorem (Ratio Test). For a series
∑∞
k=1 ak , if (|

ak+1
ak
|)→ L, then

• if L < 1,
∑∞
k=1 ak converges

• if L > 1,
∑∞
k=1 ak diverges

Theorem (Alternating Series Test). For a sequence (ak), if

• ak > 0 for all k ∈ N

• (ak) is decreasing

• (ak)→ 0

then
∑∞
k=1(−1)kak converges.
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Question 3

Which of the following series are convergent?

1.
∑∞
n=1

n2+n3

n5

2.
∑∞
n=1(−1)n

3.
∑∞
n=1

(−1)n
n2

4.
∑∞
n=1

1
n!

5.
∑∞
n=1

3n

n

6.
∑∞
n=1

√
n+2

n
3
2+1

Solution

1. Convergent, using the sum rule. Let an =
1
n2 and bn =

1
n3 , so

an + bn =
1

n2
+
1

n3
=
n2 + n3

n5

Since
∑∞
n=1 an and

∑∞
n=1 bn both converge, the series converges.

2. Divergent, using the null sequence test. Let an = (−1)n. Since (an) is not convergent, the series
diverges.

3. Convergent, using the alternating series test. Let an =
1
n2 , so (an) is decreasing and (an) → 0,

and so the series converges.

4. Convergent, using the ratio test. Let an =
1
n! , so∣∣∣∣an+1an

∣∣∣∣ = n!

(n + 1)!
=

1

n + 1

Since ( 1n+1)→ 0, the series converges.

5. Divergent, using the ratio test. Let an =
3n

n , so∣∣∣∣an+1an
∣∣∣∣ = 3n+1n

3n(n + 1)

=
3n

n + 1

=
3

1 + 1
n

Using the sum rule and the quotient rule, ( 3
1+ 1

n

)→ 3, so the series diverges.

6. Divergent, using the comparison test. Let an =
√
n+2

n
3
2+1
, so

√
n + 2

n
3
2 + 1

=
1 + 2√

n

n + 1√
n

>
1 + 2√

n

2n

>
1

2n

Since an >
1
2(
1
n ) for every n ∈ N and

∑∞
n=1

1
n diverges, the series diverges.
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Additional Questions

1. Use the definition of convergence to show that ( 1√
n
)→ 0 as n →∞.

Solution By definition, ( 1√
n
) → 0 if for all ε > 0, there is N ∈ N such that for all n > N,

|an| < ε.
Let ε > 0 and take N ∈ N such that N ≥ 1

ε2 . Then, for all n > N,

|an| =
1√
n

<
1√
N

(since n > N)

≤ ε (since N ≥
1

ε2
)

so ( 1√
n
)→ 0.

2. Use the triangle inequality and the definition of convergence to show that if (an)→ a and (an)→ b,
then a = b (i.e. that limits of sequences are unique).

Solution If (an)→ a, then by definition, for all ε > 0, there is N1 ∈ N such that for all n > N1,
|an − a| < ε.
If (an)→ b, then by definition, for all ε > 0, there is N2 ∈ N such that for all n > N2, |an−b| < ε.
By the triangle inequality,

|a − b| = |a − an + an − b|
≤ |a − an|+ |an − b|
= |an − a|+ |an − b|

This implies that for all ε > 0, there exists N ∈ N where N = max(N1, N2) such that for all n > N,

|a − b| ≤ |an − a|+ |an − b|
< 2ε

Since this holds for every ε > 0, this implies that |a − b| = 0 and so a = b.

3. Decide whether the series
∞∑
n=1

(−1)n
n2

n3 + 1

converges or diverges.

Solution Let an =
n2

n3+1 , so an > 0 for all n ∈ N. Since

an =
n2

n3 + 1

=
1
n

1 + 1
n3

(an)→ 0 by the sum rule, product rule and quotient rule.
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By definition, for all n ∈ N,

an+1 − an =
(n + 1)2

(n + 1)3 + 1
−
n2

n3 + 1

=
n2 + 2n + 1

n3 + 3n2 + 3n + 2
−
n2

n3 + 1

=
(n2 + 2n + 1)(n3 + 1)− n2(n3 + 3n2 + 3n + 2)

(n3 + 1)(n3 + 3n2 + 3n + 2)

=
(n5 + 2n4 + n3 + n2 + 2n + 1)− (n5 + 3n4 + 3n3 + 2n2)

(n3 + 1)(n3 + 3n2 + 3n + 2)

=
−n4 − 2n3 − n2 + 2n + 1
(n3 + 1)(n3 + 3n2 + 3n + 2)

<
−2− n2 + 2n + 1

(n3 + 1)(n3 + 3n2 + 3n + 2)
(since n4 + 2n3 > 2)

=
−(n2 − 2n + 1)

(n3 + 1)(n3 + 3n2 + 3n + 2)

=
−(n − 1)2

(n3 + 1)(n3 + 3n2 + 3n + 2)

≤ 0 (since (n − 1)2 ≥ 0)

so an+1−an < 0 and hence an > an+1. Since an > 0 for all n ∈ N, (an)→ 0 and (an) is decreasing,
by the alternating series test, the series converges.

4. (a) Find a series
∑∞
k=1 ak that converges where (|

ak+1
ak
|)→ 1.

(b) Find a series
∑∞
k=1 ak that diverges where (|

ak+1
ak
|)→ 1.

This shows that the ratio test is inconclusive when L = 1.

Solution

(a) Let an =
1
n2 , so

∑∞
n=1 an converges. Since∣∣∣∣an+1an

∣∣∣∣ = 1
(n+1)2

1
n2

=
n2

(n + 1)2

=
n2

n2 + 2n + 1

=
1

1 + 2
n +

1
n2(∣∣∣ an+1an ∣∣∣)→ 1 by the sum rule, product rule and quotient rule.

(b) Let an =
1
n , so

∑∞
n=1 an diverges. Since∣∣∣∣an+1an

∣∣∣∣ = 1
n+1
1
n

=
n

n + 1

=
1

1 + 1
n(∣∣∣ an+1an ∣∣∣)→ 1 by the sum rule and quotient rule.
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