Sequences and Series

Michael Cavaliere

Week 6

Class Content

Definition. For a sequence (a_n) and $a \in \mathbb{R}$, $(a_n) \to a$ if for all $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ for every n > N.

Definition. For a sequence (a_n) , $(a_n) \to \infty$ if for all A > 0, there is some $N \in \mathbb{N}$ such that $a_n > A$ for every n > N.

Similarly, $(a_n) \to -\infty$ if for all A < 0, there is some $N \in \mathbb{N}$ such that $a_n < A$ for every n > N.

Question 1

Use the definition of convergence to show that the sequence $a_n = \frac{n}{n+1}$ converges to 1 as $n \to \infty$.

Solution To prove that $(a_n) \to 1$, we need to show that for every $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that $|a_n - 1| < \varepsilon$ for every n > N.

Let $\varepsilon > 0$. By definition,

$$a_n - 1 = \frac{n}{n+1} - 1$$
$$= \frac{n-n-1}{n+1}$$
$$= -\frac{1}{n+1}$$
$$\implies |a_n - 1| = \frac{1}{n+1}$$
$$< \frac{1}{n}$$

Let $N \in \mathbb{N}$ where $N \geq \frac{1}{\varepsilon}$. Then, for all n > N

$$|a_n - 1| < rac{1}{n}$$

 $< rac{1}{N}$ (since $n > N$)
 $\leq \varepsilon$ (since $N \geq rac{1}{\varepsilon}$)

Hence, $(a_n) \rightarrow 1$.

Theorem. If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$, then

- $(a_n + b_n) \rightarrow a + b$ (sum rule)
- $(a_n b_n) \rightarrow ab$ (product rule)
- $\left(\frac{a_n}{b_n}\right) \rightarrow \frac{a}{b}$ if $b \neq 0$ (quotient rule)

Theorem (Sandwich Rule). For sequences (a_n) , (b_n) and (c_n) , if $(a_n) \to L$ and $(c_n) \to L$ and there is some $N \in \mathbb{N}$ such that $a_n \leq b_n \leq c_n$ for all n > N, then $(b_n) \to L$.

Question 2

Find the limits of the following sequences:

1.
$$a_n = \frac{2n^2 + 3n}{n^3 + n^2}$$

2. $a_n = \frac{3n^2 + n\cos n}{2n(n-3)}$

Solution

1. By definition,

$$a_n = \frac{2n^2 + 3n}{n^3 + n^2} \\ = \frac{\frac{2}{n} + \frac{3}{n^2}}{1 + \frac{1}{n}}$$

Since $(\frac{1}{n}) \to 0$, $(\frac{2}{n}) \to 0$ and $(\frac{3}{n^2}) \to 0$ by the product rule. This implies that $(\frac{2}{n} + \frac{3}{n^2}) \to 0$ and $(1 + \frac{1}{n}) \to 1$ by the sum rule. Hence, by the quotient rule, $(a_n) \to 0$.

2. By definition,

$$a_n = \frac{3n^2 + n\cos n}{2n(n-3)} = \frac{3n^2 + n\cos n}{2n^2 - 6n} = \frac{3 + \frac{\cos n}{n}}{2 - \frac{6}{n}}$$

Since $(\frac{1}{n}) \to 0$, $(\frac{6}{n}) \to 0$ by the product rule.

Since $-1 \le \cos n \le 1$, $\frac{-1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ for all $n \in \mathbb{N}$. Since $(\frac{1}{n}) \to 0$ and $(\frac{-1}{n}) \to 0$, this implies that $(\frac{\cos n}{n}) \to 0$ by the sandwich rule.

This implies that $(3 + \frac{\cos n}{n}) \to 3$ and $(2 - \frac{6}{n^2}) \to 2$ by the sum rule. Hence, by the quotient rule, $(a_n) \to \frac{3}{2}$.

Definition. For a sequence (a_k) , the corresponding series is the sum

$$\sum_{k=1}^{\infty} a_k$$

Definition. For a sequence (a_k) and $S \in \mathbb{R}$,

$$\sum_{k=1}^{\infty} a_k = S$$

if the sequence of partial sums $(S_n) \rightarrow S$ where

$$S_n = \sum_{k=1}^n a_k$$

Theorem (Sum Rule). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, then $\sum_{k=1}^{\infty} (a_k + b_k)$ converges.

Theorem (Null Sequence Test). The series $\sum_{k=1}^{\infty} a_k$ only converges if $(a_k) \to 0$.

Theorem (Comparison Test). For series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, if

- $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$
- $a_k \leq Mb_k$ for all $k \in \mathbb{N}$ and M > 0
- $\sum_{k=1}^{\infty} b_k$ converges

then $\sum_{k=1}^{\infty} a_k$ converges. Similarly, if

- $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$
- $a_k \ge Mb_k$ for all $k \in \mathbb{N}$ and M > 0
- $\sum_{k=1}^{\infty} b_k$ diverges

then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem (Ratio Test). For a series $\sum_{k=1}^{\infty} a_k$, if $(|\frac{a_{k+1}}{a_k}|) \to L$, then

- if L < 1, $\sum_{k=1}^{\infty} a_k$ converges
- if L > 1, $\sum_{k=1}^{\infty} a_k$ diverges

Theorem (Alternating Series Test). For a sequence (a_k) , if

- $a_k > 0$ for all $k \in \mathbb{N}$
- (a_k) is decreasing
- $(a_k) \rightarrow 0$

then $\sum_{k=1}^{\infty} (-1)^k a_k$ converges.

Question 3

Which of the following series are convergent?

- 1. $\sum_{n=1}^{\infty} \frac{n^2 + n^3}{n^5}$
- 2. $\sum_{n=1}^{\infty} (-1)^n$
- 3. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$
- 4. $\sum_{n=1}^{\infty} \frac{1}{n!}$
- 5. $\sum_{n=1}^{\infty} \frac{3^n}{n}$
- 6. $\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{n^{\frac{3}{2}}+1}$

Solution

1. Convergent, using the sum rule. Let $a_n = \frac{1}{n^2}$ and $b_n = \frac{1}{n^3}$, so

$$a_n + b_n = \frac{1}{n^2} + \frac{1}{n^3} = \frac{n^2 + n^3}{n^5}$$

Since $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge, the series converges.

- 2. Divergent, using the null sequence test. Let $a_n = (-1)^n$. Since (a_n) is not convergent, the series diverges.
- 3. Convergent, using the alternating series test. Let $a_n = \frac{1}{n^2}$, so (a_n) is decreasing and $(a_n) \to 0$, and so the series converges.
- 4. Convergent, using the ratio test. Let $a_n = \frac{1}{n!}$, so

$$\left. \frac{a_{n+1}}{a_n} \right| = \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

Since $\left(\frac{1}{n+1}\right) \to 0$, the series converges.

5. Divergent, using the ratio test. Let $a_n = \frac{3^n}{n}$, so

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{3^{n+1}n}{3^n(n+1)}$$
$$= \frac{3n}{n+1}$$
$$= \frac{3}{1+\frac{1}{n}}$$

Using the sum rule and the quotient rule, $(\frac{3}{1+\frac{1}{n}}) \rightarrow 3$, so the series diverges.

6. Divergent, using the comparison test. Let $a_n = \frac{\sqrt{n+2}}{n^2+1}$, so

$$\frac{\sqrt{n+2}}{n^{\frac{3}{2}}+1} = \frac{1+\frac{2}{\sqrt{n}}}{n+\frac{1}{\sqrt{n}}} \\ > \frac{1+\frac{2}{\sqrt{n}}}{2n} \\ > \frac{1}{2n}$$

Since $a_n > \frac{1}{2}(\frac{1}{n})$ for every $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series diverges.

Additional Questions

1. Use the definition of convergence to show that $\left(\frac{1}{\sqrt{n}}\right) \to 0$ as $n \to \infty$.

Solution By definition, $(\frac{1}{\sqrt{n}}) \to 0$ if for all $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all n > N, $|a_n| < \varepsilon$.

Let $\varepsilon > 0$ and take $N \in \mathbb{N}$ such that $N \ge \frac{1}{\varepsilon^2}$. Then, for all n > N,

$$|a_n| = \frac{1}{\sqrt{n}}$$

$$< \frac{1}{\sqrt{N}}$$

$$\leq \varepsilon$$
(since $N \ge \frac{1}{\varepsilon^2}$)

so $\left(\frac{1}{\sqrt{n}}\right) \to 0$.

2. Use the triangle inequality and the definition of convergence to show that if $(a_n) \rightarrow a$ and $(a_n) \rightarrow b$, then a = b (i.e. that limits of sequences are unique).

Solution If $(a_n) \to a$, then by definition, for all $\varepsilon > 0$, there is $N_1 \in \mathbb{N}$ such that for all $n > N_1$, $|a_n - a| < \varepsilon$.

If $(a_n) \to b$, then by definition, for all $\varepsilon > 0$, there is $N_2 \in \mathbb{N}$ such that for all $n > N_2$, $|a_n - b| < \varepsilon$. By the triangle inequality,

$$a - b| = |a - a_n + a_n - b|$$
$$\leq |a - a_n| + |a_n - b|$$
$$= |a_n - a| + |a_n - b|$$

This implies that for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ where $N = \max(N_1, N_2)$ such that for all n > N,

$$|a-b| \le |a_n-a| + |a_n-b| < 2\varepsilon$$

Since this holds for every $\varepsilon > 0$, this implies that |a - b| = 0 and so a = b.

3. Decide whether the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$$

converges or diverges.

Solution Let $a_n = \frac{n^2}{n^3+1}$, so $a_n > 0$ for all $n \in \mathbb{N}$. Since

$$a_n = \frac{n^2}{n^3 + 1} \\ = \frac{\frac{1}{n}}{1 + \frac{1}{n^3}}$$

 $(a_n) \rightarrow 0$ by the sum rule, product rule and quotient rule.

By definition, for all $n \in \mathbb{N}$,

$$\begin{aligned} a_{n+1} - a_n &= \frac{(n+1)^2}{(n+1)^3 + 1} - \frac{n^2}{n^3 + 1} \\ &= \frac{n^2 + 2n + 1}{n^3 + 3n^2 + 3n + 2} - \frac{n^2}{n^3 + 1} \\ &= \frac{(n^2 + 2n + 1)(n^3 + 1) - n^2(n^3 + 3n^2 + 3n + 2)}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &= \frac{(n^5 + 2n^4 + n^3 + n^2 + 2n + 1) - (n^5 + 3n^4 + 3n^3 + 2n^2)}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &= \frac{-n^4 - 2n^3 - n^2 + 2n + 1}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &< \frac{-2 - n^2 + 2n + 1}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &< \frac{-2 - n^2 + 2n + 1}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &= \frac{-(n^2 - 2n + 1)}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &= \frac{-(n - 1)^2}{(n^3 + 1)(n^3 + 3n^2 + 3n + 2)} \\ &\leq 0 \end{aligned}$$
 (since $(n - 1)^2 \ge 0$)

so $a_{n+1}-a_n < 0$ and hence $a_n > a_{n+1}$. Since $a_n > 0$ for all $n \in \mathbb{N}$, $(a_n) \to 0$ and (a_n) is decreasing, by the alternating series test, the series converges.

4. (a) Find a series $\sum_{k=1}^{\infty} a_k$ that converges where $\left(\left|\frac{a_{k+1}}{a_k}\right|\right) \to 1$. (b) Find a series $\sum_{k=1}^{\infty} a_k$ that diverges where $\left(\left|\frac{a_{k+1}}{a_k}\right|\right) \to 1$. This shows that the ratio test is inconclusive when L = 1.

Solution

(a) Let $a_n = \frac{1}{n^2}$, so $\sum_{n=1}^{\infty} a_n$ converges. Since

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}}$$
$$= \frac{n^2}{(n+1)^2}$$
$$= \frac{n^2}{n^2 + 2n + 1}$$
$$= \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}}$$

 $\left(\left|\frac{a_{n+1}}{a_n}\right|\right) \to 1$ by the sum rule, product rule and quotient rule. (b) Let $a_n = \frac{1}{n}$, so $\sum_{n=1}^{\infty} a_n$ diverges. Since

$$\frac{a_{n+1}}{a_n} \bigg| = \frac{\frac{1}{n+1}}{\frac{1}{n}}$$
$$= \frac{n}{n+1}$$
$$= \frac{1}{1+\frac{1}{n}}$$

 $\left(\left| \frac{a_{n+1}}{a_n} \right| \right) \to 1$ by the sum rule and quotient rule.