Limits and Continuity

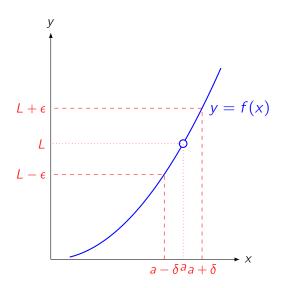
Michael Cavaliere

Week 7

Class Content

Definition. For a real-valued function f and $a, L \in \mathbb{R}$, the **limit** of f(x) is L as $x \to a$ if for all $\varepsilon > 0$, there is $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$.

This is denoted by $f(x) \to L$ as $x \to a$, or as $\lim_{x \to a} f(x) = L$.



Theorem. If f and g are real-valued functions with $f(x) \to L$ and $g(x) \to M$ as $x \to a$, then

- $f(x) + g(x) \rightarrow L + M$ (sum rule)
- $f(x)g(x) \rightarrow LM$ (product rule)
- $\frac{f(x)}{g(x)} \to \frac{L}{M}$ if $M \neq 0$ (quotient rule)

Theorem (Sandwich Rule). For real-valued functions f, g and h, if $f(x) \to L$ and $h(x) \to L$ as $x \to a$ and $f(x) \le g(x) \le h(x)$, then $g(x) \to L$ as $x \to a$.

Question 1

Find the following limits:

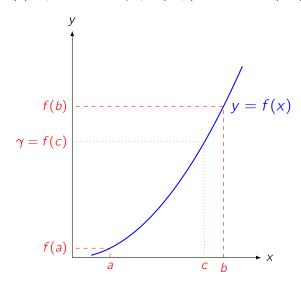
- 1. $\lim_{x\to 1} \frac{x^2-3x+2}{x-1}$
- 2. $\lim_{x\to 2} \frac{x-2}{x^2-4}$
- 3. $\lim_{x\to 0} x \sin(\frac{1}{x})$

Question 2

Use the substitution $x = \frac{1}{t}$ and consider $t \to 0$ to find $\lim_{x \to \infty} \frac{5x^3 + 2x^2 - 7}{x^4 + 3x}$.

Definition. For a real-valued function f and $a \in \mathbb{R}$, f(x) is **continuous** at x = a if $\lim_{x \to a} f(x) = f(a)$. The function f is **continuous** on an interval if it is continuous at every point in the interval.

Theorem (Intermediate Value Theorem). For a function $f : [a, b] \to \mathbb{R}$, if f is continuous on the interval [a, b] with $f(a) = \alpha$ and $f(b) = \beta$, then for any $\gamma \in (\alpha, \beta)$, there is $c \in (a, b)$ such that $\gamma = f(c)$.



Question 3

Show that the polynomial $f(x) = 3x^3 + x^2 - 6x + 1$ has three real roots in the interval [-2, 2].

Additional Questions

- 1. Calculate the following limits, clearly stating what rules you used:
 - (a) $\lim_{x\to 8} \frac{2x^2 17x + 8}{8 x}$
 - (b) $\lim_{x\to 0} \frac{x}{3-\sqrt{x+9}}$
 - (c) $\lim_{x\to\infty} x \sin(\frac{\pi}{x})$
 - (d) $\lim_{x\to\infty} \frac{1+x}{x^x}$ (Hint: use the fact that $x^x \geq x^2$ for all $x \geq 2$.)
- 2. Use the following theorem to find the limits of
 - (a) e^{4x+1} as $x \to -\frac{1}{2}$.
 - (b) $2^{\sin(x)}$ as $x \to \frac{\pi}{2}$.

Theorem. If f and g are real-valued functions where $\lim_{x\to a} f(x) = L$ and g is continuous at x = L, then $\lim_{x\to a} (g\circ f)(x) = g(\lim_{x\to a} f(x)) = g(L)$.

3. Use the definitions of convergence of sequences and continuity to show that if $f: \mathbb{R} \to \mathbb{R}$ is continuous and $(a_n) \to a$, then $(f(a_n)) \to f(a)$.

2