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Class Content

Definition. For a real-valued function f and a, L ∈ R, the limit of f (x) is L as x → a if for all ε > 0,
there is δ > 0 such that if 0 < |x − a| < δ, then |f (x)− L| < ε.
This is denoted by f (x)→ L as x → a, or as limx→a f (x) = L.
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Theorem. If f and g are real-valued functions with f (x)→ L and g(x)→ M as x → a, then

• f (x) + g(x)→ L+M (sum rule)

• f (x)g(x)→ LM (product rule)

• f (x)
g(x) →

L
M if M ̸= 0 (quotient rule)

Theorem (Sandwich Rule). For real-valued functions f , g and h, if f (x)→ L and h(x)→ L as x → a
and f (x) ≤ g(x) ≤ h(x), then g(x)→ L as x → a.

Question 1

Find the following limits:

1. limx→1
x2−3x+2
x−1

2. limx→2
x−2
x2−4

3. limx→0 x sin(
1
x )
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Solution

1. Since x2 − 3x + 2 = (x − 1)(x − 2),

lim
x→1

x2 − 3x + 2
x − 1 = lim

x→1

(x − 1)(x − 2)
x − 1

= lim
x→1
(x − 2)

= ( lim
x→1
x)− 2

= −1

by the sum rule.

2. Since x2 − 4 = (x + 2)(x − 2),

lim
x→2

x − 2
x2 − 4 = limx→2

x − 2
(x + 2)(x − 2)

= lim
x→2

1

x + 2

=
1

limx→2(x + 2)

=
1

(limx→2 x) + 2

=
1

4

by the sum rule and the quotient rule.

3. Since −1 ≤ sin( 1x ) ≤ 1, −x ≤ x sin(
1
x ) ≤ x and so, since limx→0 x = limx→0(−x) = 0, by the

sandwich rule limx→0 x sin(
1
x ) = 0.

Question 2

Use the substitution x = 1
t and consider t → 0 to find limx→∞

5x3+2x2−7
x4+3x .

Solution Let x = 1
t , so

lim
x→∞

5x3 + 2x2 − 7
x4 + 3x

= lim
t→0

5
t3 +

2
t2 − 7

1
t4 +

3
t

= lim
t→0

5t+2t2−7t4
t4

1+3t3

t4

= lim
t→0

5t + 2t2 − 7t4

1 + 3t3

=
limt→0(5t + 2t

2 − 7t4)
limt→0(1 + 3t3)

= 0

Definition. For a real-valued function f and a ∈ R, f (x) is continuous at x = a if limx→a f (x) = f (a).
The function f is continuous on an interval if it is continuous at every point in the interval.

Theorem (Intermediate Value Theorem). For a function f : [a, b]→ R, if f is continuous on the interval
[a, b] with f (a) = α and f (b) = β, then for any γ ∈ (α, β), there is c ∈ (a, b) such that γ = f (c).
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Question 3

Show that the polynomial f (x) = 3x3 + x2 − 6x + 1 has three real roots in the interval [−2, 2].

Solution By definition,

f (−2) = −7
f (−1) = 5
f (0) = 1

f (1) = −1
f (2) = 17

Since f is a polynomial, f is continuous on [−2,−1] so by the intermediate value theorem, for every
γ ∈ (−7, 5), there is some c ∈ (−2,−1) such that γ = f (c). That implies that there is a root of f in
(−2,−1) by taking γ = 0.
By the same argument applied to the intervals [0, 1] and [1, 2], there are roots of f in the intervals

(0, 1) and (1, 2), so f has three real roots in the interval [−2, 2].

Additional Questions

1. Calculate the following limits, clearly stating what rules you used:

(a) limx→8
2x2−17x+8
8−x

(b) limx→0
x

3−
√
x+9

(c) limx→∞ x sin(
π
x )

(d) limx→∞
1+x
xx (Hint: use the fact that x

x ≥ x2 for all x ≥ 2.)

Solution
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(a) By factorising, 2x2 − 17x + 8 = (2x − 1)(x − 8), so by the sum and product rules,

lim
x→8

2x2 − 17x + 8
x − 8 = lim

x→8

(2x − 1)(x − 8)
8− x

= lim
x→8
−(2x − 1)

= −2( lim
x→8
x) + 1

= −15

(b) Since (3−
√
x + 9)(3 +

√
x + 9) = 9− (x + 9) = −x ,

lim
x→0

x

3−
√
x + 9

= lim
x→0

x(3 +
√
x + 9)

(3−
√
x + 9)(3 +

√
x + 9)

= lim
x→0

x(3 +
√
x + 9)

−x
= lim
x→0
−(3 +

√
x + 9)

= lim
x→0
(−3−

√
x + 9)

For all x ≥ 0, 3 ≤
√
x + 9 ≤ x + 3. Since limx→0(x + 3) = (limx→0 x) + 3 = 3 by the sum

rule, the sandwich rule can be applied and so limx→0
√
x + 9 = 3. Hence, by the sum rule,

lim
x→0

x

3−
√
x + 9

= lim
x→0
(−3−

√
x + 9)

= −3− ( lim
x→0

√
x + 9)

= −6

(c) Let t = 1
x , so x →∞ if and only if t → 0. Then,

lim
x→∞

x sin
(π
x

)
= lim
t→0

sin
(
π
1
t

)
t

= lim
t→0

sin(πt)

t

= lim
t→0

π sin(πt)

πt

Let s = πt, so t → 0 if and only if s → 0. Then, using the fact that lims→0 sin(s)s = 1 with

the product rule,

lim
x→∞

x sin
(π
x

)
= lim
t→0

π sin(πt)

πt

= lim
s→0

π sin(s)

s

= π lim
s→0

sin(s)

s

= π

(d) By definition, for all x ≥ 2, xx ≥ x2 so 0 ≤ 1+x
xx ≤

1+x
x2 for all x ≥ 2.

Let t = 1
x , so x →∞ if and only if t → 0. Then, by the sum and product rules,

lim
x→∞

1 + x

x2
= lim
t→0

1 + 1t
1
t2

= lim
t→0
(t2 + t)

= (lim
t→0
t)2 + (lim

t→0
t)

= 0

so the sandwich rule can be applied and so limx→∞
1+x
xx = 0.
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2. Use the following theorem to find the limits of

(a) e4x+1 as x → − 12 .
(b) 2sin(x) as x → π

2 .

Theorem. If f and g are real-valued functions where limx→a f (x) = L and g is continuous at

x = L, then limx→a(g ◦ f )(x) = g(limx→a f (x)) = g(L).

Solution

(a) Let f (x) = 4x + 1 and g(x) = ex , so e4x+1 = g(f (x)) = (g ◦ f )(x).
Since f is continuous on R, limx→− 1

2
f (x) = f (− 12) = −1.

Since g is continuous on R, g is continuous at x = −1. By the theorem above, this implies
that limx→− 1

2
e4x+1 = g(−1) = 1

e .

(b) Let f (x) = sin(x) and g(x) = 2x , so 2sin(x) = g(f (x)) = (g ◦ f )(x).
Since f is continuous on R, limx→ π

2
= sin(π2 ) = 1.

Since g is continuous on R, g is continuous at x = 1. By the theorem above, this implies
that limx→ π

2
2sin(x) = g(1) = 2.

3. Use the definitions of convergence of sequences and continuity to show that if f : R → R is
continuous and (an)→ a, then (f (an))→ f (a).

Solution Let ε > 0. We want to show that there is N ∈ N such that for all n > N, |f (an) −
f (a)| < ε.
Since f is continuous on R, for all b ∈ R, limx→b f (x) = f (b). By definition of limits, this implies
that there is δ > 0 such that whenever |x − b| < δ, then |f (x)− f (b)| < ε.
Since δ > 0, by definition of convergence, there is N ∈ N such that for all n > N, |an−a| < δ. This
implies, using the definitions of continuity and limits above, that for all n > N, |f (an)− f (a)| < ε,
so (f (an))→ f (a).
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