Limits and Continuity

Michael Cavaliere

Week 7

Class Content

Definition. For a real-valued function f and $a, L \in \mathbb{R}$, the **limit** of f(x) is L as $x \to a$ if for all $\varepsilon > 0$, there is $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$. This is denoted by $f(x) \to L$ as $x \to a$, or as $\lim_{x \to a} f(x) = L$.

Theorem. If f and g are real-valued functions with $f(x) \rightarrow L$ and $g(x) \rightarrow M$ as $x \rightarrow a$, then

- $f(x) + g(x) \rightarrow L + M$ (sum rule)
- $f(x)g(x) \rightarrow LM$ (product rule)
- $\frac{f(x)}{q(x)} \rightarrow \frac{L}{M}$ if $M \neq 0$ (quotient rule)

Theorem (Sandwich Rule). For real-valued functions f, g and h, if $f(x) \to L$ and $h(x) \to L$ as $x \to a$ and $f(x) \leq g(x) \leq h(x)$, then $g(x) \to L$ as $x \to a$.

Question 1

Find the following limits:

- 1. $\lim_{x \to 1} \frac{x^2 3x + 2}{x 1}$
- 2. $\lim_{x \to 2} \frac{x-2}{x^2-4}$
- 3. $\lim_{x\to 0} x \sin(\frac{1}{x})$

Solution

1. Since $x^2 - 3x + 2 = (x - 1)(x - 2)$,

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x - 2)}{x - 1}$$
$$= \lim_{x \to 1} (x - 2)$$
$$= (\lim_{x \to 1} x) - 2$$
$$= -1$$

by the sum rule.

2. Since $x^2 - 4 = (x + 2)(x - 2)$,

$$\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x+2)(x-2)}$$
$$= \lim_{x \to 2} \frac{1}{x+2}$$
$$= \frac{1}{\lim_{x \to 2} (x+2)}$$
$$= \frac{1}{(\lim_{x \to 2} x) + 2}$$
$$= \frac{1}{4}$$

by the sum rule and the quotient rule.

3. Since $-1 \leq \sin(\frac{1}{x}) \leq 1$, $-x \leq x \sin(\frac{1}{x}) \leq x$ and so, since $\lim_{x\to 0} x = \lim_{x\to 0} (-x) = 0$, by the sandwich rule $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$.

Question 2

Use the substitution $x = \frac{1}{t}$ and consider $t \to 0$ to find $\lim_{x\to\infty} \frac{5x^3+2x^2-7}{x^4+3x}$.

Solution Let $x = \frac{1}{t}$, so

$$\lim_{x \to \infty} \frac{5x^3 + 2x^2 - 7}{x^4 + 3x} = \lim_{t \to 0} \frac{\frac{5}{t^3} + \frac{2}{t^2} - 7}{\frac{1}{t^4} + \frac{3}{t}}$$
$$= \lim_{t \to 0} \frac{\frac{5t + 2t^2 - 7t^4}{t^4}}{\frac{1 + 3t^3}{t^4}}$$
$$= \lim_{t \to 0} \frac{5t + 2t^2 - 7t^4}{1 + 3t^3}$$
$$= \frac{\lim_{t \to 0} (5t + 2t^2 - 7t^4)}{\lim_{t \to 0} (1 + 3t^3)}$$
$$= 0$$

Definition. For a real-valued function f and $a \in \mathbb{R}$, f(x) is **continuous** at x = a if $\lim_{x\to a} f(x) = f(a)$. The function f is **continuous** on an interval if it is continuous at every point in the interval.

Theorem (Intermediate Value Theorem). For a function $f : [a, b] \to \mathbb{R}$, if f is continuous on the interval [a, b] with $f(a) = \alpha$ and $f(b) = \beta$, then for any $\gamma \in (\alpha, \beta)$, there is $c \in (a, b)$ such that $\gamma = f(c)$.

Question 3

Show that the polynomial $f(x) = 3x^3 + x^2 - 6x + 1$ has three real roots in the interval [-2, 2].

Solution By definition,

f(-2) = -7 f(-1) = 5 f(0) = 1 f(1) = -1f(2) = 17

Since f is a polynomial, f is continuous on [-2, -1] so by the intermediate value theorem, for every $\gamma \in (-7, 5)$, there is some $c \in (-2, -1)$ such that $\gamma = f(c)$. That implies that there is a root of f in (-2, -1) by taking $\gamma = 0$.

By the same argument applied to the intervals [0, 1] and [1, 2], there are roots of f in the intervals (0, 1) and (1, 2), so f has three real roots in the interval [-2, 2].

Additional Questions

- 1. Calculate the following limits, clearly stating what rules you used:
 - (a) $\lim_{x\to 8} \frac{2x^2 17x + 8}{8 x}$
 - (b) $\lim_{x\to 0} \frac{x}{3-\sqrt{x+9}}$
 - (c) $\lim_{x\to\infty} x \sin(\frac{\pi}{x})$
 - (d) $\lim_{x\to\infty} \frac{1+x}{x^x}$ (Hint: use the fact that $x^x \ge x^2$ for all $x \ge 2$.)

Solution

(a) By factorising, $2x^2 - 17x + 8 = (2x - 1)(x - 8)$, so by the sum and product rules,

$$\lim_{x \to 8} \frac{2x^2 - 17x + 8}{x - 8} = \lim_{x \to 8} \frac{(2x - 1)(x - 8)}{8 - x}$$
$$= \lim_{x \to 8} -(2x - 1)$$
$$= -2(\lim_{x \to 8} x) + 1$$
$$= -15$$

(b) Since $(3 - \sqrt{x+9})(3 + \sqrt{x+9}) = 9 - (x+9) = -x$, $\lim_{x \to 0} \frac{x}{3 - \sqrt{x+9}} = \lim_{x \to 0} \frac{x(3 + \sqrt{x+9})}{(3 - \sqrt{x+9})(3 + \sqrt{x+9})}$ $= \lim_{x \to 0} \frac{x(3 + \sqrt{x+9})}{-x}$ $= \lim_{x \to 0} -(3 + \sqrt{x+9})$ $= \lim_{x \to 0} (-3 - \sqrt{x+9})$

For all $x \ge 0$, $3 \le \sqrt{x+9} \le x+3$. Since $\lim_{x\to 0} (x+3) = (\lim_{x\to 0} x) + 3 = 3$ by the sum rule, the sandwich rule can be applied and so $\lim_{x\to 0} \sqrt{x+9} = 3$. Hence, by the sum rule,

$$\lim_{x \to 0} \frac{x}{3 - \sqrt{x + 9}} = \lim_{x \to 0} (-3 - \sqrt{x + 9})$$
$$= -3 - (\lim_{x \to 0} \sqrt{x + 9})$$
$$= -6$$

(c) Let $t = \frac{1}{x}$, so $x \to \infty$ if and only if $t \to 0$. Then,

$$\lim_{x \to \infty} x \sin\left(\frac{\pi}{x}\right) = \lim_{t \to 0} \frac{\sin\left(\frac{\pi}{\frac{1}{t}}\right)}{t}$$
$$= \lim_{t \to 0} \frac{\sin(\pi t)}{t}$$
$$= \lim_{t \to 0} \frac{\pi \sin(\pi t)}{\pi t}$$

Let $s = \pi t$, so $t \to 0$ if and only if $s \to 0$. Then, using the fact that $\lim_{s\to 0} \frac{\sin(s)}{s} = 1$ with the product rule,

$$\lim_{x \to \infty} x \sin\left(\frac{\pi}{x}\right) = \lim_{t \to 0} \frac{\pi \sin(\pi t)}{\pi t}$$
$$= \lim_{s \to 0} \frac{\pi \sin(s)}{s}$$
$$= \pi \lim_{s \to 0} \frac{\sin(s)}{s}$$
$$= \pi$$

(d) By definition, for all $x \ge 2$, $x^x \ge x^2$ so $0 \le \frac{1+x}{x^x} \le \frac{1+x}{x^2}$ for all $x \ge 2$. Let $t = \frac{1}{x}$, so $x \to \infty$ if and only if $t \to 0$. Then, by the sum and product rules,

$$\lim_{x \to \infty} \frac{1+x}{x^2} = \lim_{t \to 0} \frac{1+\frac{1}{t}}{\frac{1}{t^2}} = \lim_{t \to 0} (t^2 + t) = (\lim_{t \to 0} t)^2 + (\lim_{t \to 0} t) = 0$$

so the sandwich rule can be applied and so $\lim_{x\to\infty}\frac{1+x}{x^x}=0.$

- 2. Use the following theorem to find the limits of
 - (a) e^{4x+1} as $x \to -\frac{1}{2}$.
 - (b) $2^{\sin(x)}$ as $x \to \frac{\pi}{2}$.

Theorem. If f and g are real-valued functions where $\lim_{x\to a} f(x) = L$ and g is continuous at x = L, then $\lim_{x\to a} (g \circ f)(x) = g(\lim_{x\to a} f(x)) = g(L)$.

Solution

- (a) Let f(x) = 4x + 1 and $g(x) = e^x$, so $e^{4x+1} = g(f(x)) = (g \circ f)(x)$. Since f is continuous on \mathbb{R} , $\lim_{x \to -\frac{1}{2}} f(x) = f(-\frac{1}{2}) = -1$. Since g is continuous on \mathbb{R} , g is continuous at x = -1. By the theorem above, this implies that $\lim_{x \to -\frac{1}{2}} e^{4x+1} = g(-1) = \frac{1}{e}$.
- (b) Let f(x) = sin(x) and g(x) = 2^x, so 2^{sin(x)} = g(f(x)) = (g ∘ f)(x).
 Since f is continuous on ℝ, lim_{x→^π/2} = sin(^π/₂) = 1.
 Since g is continuous on ℝ, g is continuous at x = 1. By the theorem above, this implies that lim_{x→^π/2} 2^{sin(x)} = g(1) = 2.
- 3. Use the definitions of convergence of sequences and continuity to show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and $(a_n) \to a$, then $(f(a_n)) \to f(a)$.

Solution Let $\varepsilon > 0$. We want to show that there is $N \in \mathbb{N}$ such that for all n > N, $|f(a_n) - f(a)| < \varepsilon$.

Since f is continuous on \mathbb{R} , for all $b \in \mathbb{R}$, $\lim_{x \to b} f(x) = f(b)$. By definition of limits, this implies that there is $\delta > 0$ such that whenever $|x - b| < \delta$, then $|f(x) - f(b)| < \varepsilon$.

Since $\delta > 0$, by definition of convergence, there is $N \in \mathbb{N}$ such that for all n > N, $|a_n - a| < \delta$. This implies, using the definitions of continuity and limits above, that for all n > N, $|f(a_n) - f(a)| < \varepsilon$, so $(f(a_n)) \to f(a)$.