Differentiability

Michael Cavaliere

Week 8

Class Content

Definition. For a real-valued function f defined at $a \in \mathbb{R}$, f is differentiable at x = a if

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. The value of the limit is the **derivative** of f(x) at x = a, denoted f'(a).

The function f is differentiable on an interval if it is differentiable at every point in the interval.

Definition. For a real-valued function f and $a \in \mathbb{R}$, f(x) is **continuous** at x = a if $\lim_{x \to a} f(x) = f(a)$. The function f is **continuous** on an interval if it is continuous at every point in the interval.

Theorem. For a real-valued function f, if f(x) is differentiable at x = a, then f(x) is continuous at x = a.

Proof. Suppose that f(x) is differentiable at x = a, so

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Using the product rule,

$$\lim_{h \to 0} (f(a+h) - f(a)) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \times \lim_{h \to 0} h = 0$$

Let x = a + h, so h = x - a. By making this substitution,

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{h \to 0} (f(a+h) - f(a)) = 0$$

Using the sum rule,

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(x) - f(a)) + \lim_{x \to a} f(a) = f(a)$$

so f(x) is continuous at x = a.

Question 1

Prove that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous but not differentiable at x = 0.

Theorem. If f and g are real-valued functions that are differentiable at x = a, then

- f(x) + g(x) is differentiable at x = a with derivative f'(a) + g'(a) (sum rule)
- f(x)g(x) is differentiable at x = a with derivative f'(a)g(a) + f(a)g'(a) (product rule)
- $\frac{f(x)}{g(x)}$ is differentiable at x = a with derivative $\frac{f'(a)g(a)-f(a)g'(a)}{(g(a))^2}$ if $g(a) \neq 0$ (quotient rule)

Theorem (Chain Rule). If $f : A \to B$ is differentiable at x = a and $g : B \to C$ is differentiable at x = f(a), then $g \circ f$ is differentiable at x = a with $(g \circ f)'(a) = g'(f(a))f'(a)$.

Theorem (Leibniz' Theorem). If f and g are real-valued functions that are differentiable at x = a, then if h(a) = f(a)g(a)

$$h^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a) g^{(n-k)}(a)$$

Question 2

- 1. Find f'(x) where $f(x) = \frac{6x^2}{2-x}$
- 2. Find f'(x) where $f(x) = x^x$
- 3. Find f'(x) where $f(x) = \ln(xe^x + 1) x^4$
- 4. Find $f^{(5)}(x)$ where $f(x) = x^2 \sin x$

Additional Questions

- 1. If f(2) = -8, f'(2) = 3, g(2) = 17 and g'(2) = -4, determine the value of (fg)'(2).
- 2. If f'(-1) = -2, g'(-1) = 0 and $(\frac{f}{a})'(-1) = 6$, determine the value of g(-1).
- Prove from the definition that ln(x) is differentiable on (0, ∞) with derivative ¹/_x. You may assume that ln(x) is continuous on (0, ∞) and that lim_{x→0}(1 + x)^{1/x} = e.
- 4. Show that the following functions are differentiable on their domains and find their derivatives:
 - (a) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \sin^6(x) + \sin(x^6)$.
 - (b) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \tan^4(x^2 + 1)$.
 - (c) $f: (0, \infty) \to \mathbb{R}$ where $f(x) = \frac{\ln(3x^2+1)}{3x+2}$
- 5. Let $f(x) = e^x x^2$. Use Leibniz' theorem to find $f^{(n)}(x)$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$.