Differentiability

Michael Cavaliere

Week 8

Class Content

Definition. For a real-valued function f defined at $a \in \mathbb{R}$, f is **differentiable** at $x = a$ if

$$
\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}
$$

exists. The value of the limit is the **derivative** of $f(x)$ at $x = a$, denoted $f'(a)$.

The function f is differentiable on an interval if it is differentiable at every point in the interval.

Definition. For a real-valued function f and $a \in \mathbb{R}$, $f(x)$ is **continuous** at $x = a$ if $\lim_{x \to a} f(x) = f(a)$. The function f is continuous on an interval if it is continuous at every point in the interval.

Theorem. For a real-valued function f, if $f(x)$ is differentiable at $x = a$, then $f(x)$ is continuous at $x = a$.

Proof. Suppose that $f(x)$ is differentiable at $x = a$, so

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

Using the product rule,

$$
\lim_{h \to 0} (f(a+h) - f(a)) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \times \lim_{h \to 0} h = 0
$$

Let $x = a + h$, so $h = x - a$. By making this substitution,

$$
\lim_{x \to a} (f(x) - f(a)) = \lim_{h \to 0} (f(a+h) - f(a)) = 0
$$

Using the sum rule,

$$
\lim_{x \to a} f(x) = \lim_{x \to a} (f(x) - f(a)) + \lim_{x \to a} f(a) = f(a)
$$

so $f(x)$ is continuous at $x = a$.

 \Box

Question 1

Prove that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous but not differentiable at $x = 0$.

Solution To show $f(x)$ is continuous at $x = 0$, we need to show that $\lim_{x\to 0} f(x) = f(0) = 0$. By definition, $\lim_{x\to 0} f(x) = 0$ if for all $\varepsilon > 0$, there is $\delta > 0$ such that whenever $|x| < \delta$, $|f(x)| < \varepsilon$. For every $\varepsilon > 0$, if $\delta = \varepsilon$, then whenever $|x| < \delta$,

$$
|f(x)| = ||x|| = |x| < \delta = \epsilon
$$

so $f(x)$ is continuous at $x = 0$.

To show $f(x)$ is not differentiable at $x = 0$, we need to show that

$$
\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}
$$

does not exist. Approaching the limit from the right, since $h > 0$,

$$
\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1
$$

Approaching the limit from the left, since $h < 0$,

$$
\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} -1 = -1
$$

Since the limits from the left and from the right are not equal, the limit cannot exist, so $f(x)$ is not differentiable at $x = 0$.

Theorem. If f and g are real-valued functions that are differentiable at $x = a$, then

- $f(x) + g(x)$ is differentiable at $x = a$ with derivative $f'(a) + g'(a)$ (sum rule)
- $f(x)g(x)$ is differentiable at $x = a$ with derivative $f'(a)g(a) + f(a)g'(a)$ (product rule)
- \bullet $\frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)}$ is differentiable at $x=a$ with derivative $\frac{f'(a)g(a)-f(a)g'(a)}{(g(a))^2}$ if $g(a)\neq 0$ (quotient rule)

Theorem (Chain Rule). If $f : A \rightarrow B$ is differentiable at $x = a$ and $g : B \rightarrow C$ is differentiable at $x = f(a)$, then g \circ f is differentiable at $x = a$ with $(g \circ f)'(a) = g'(f(a))f'(a)$.

Theorem (Leibniz' Theorem). If f and g are real-valued functions that are differentiable at $x = a$, then if $h(a) = f(a)g(a)$

$$
h^{(n)}(a) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(a) g^{(n-k)}(a)
$$

Question 2

- 1. Find $f'(x)$ where $f(x) = \frac{6x^2}{2}$ $2-x$
- 2. Find $f'(x)$ where $f(x) = x^x$
- 3. Find $f'(x)$ where $f(x) = \ln(xe^{x} + 1) x^{4}$
- 4. Find $f^{(5)}(x)$ where $f(x) = x^2 \sin x$

Solution

1. By the quotient rule,

$$
f'(x) = \frac{12x(2-x) + 6x^2}{(2-x)^2} = \frac{6x(4-x)}{(2-x)^2}
$$

2. By definition, $f(x) = x^x = (e^{\ln x})^x = e^{x \ln x}$. Let $g(x) = e^x$ and $h(x) = x \ln x$, so $f(x) = g(h(x))$. By the product rule,

$$
h'(x) = x \times \frac{1}{x} + \ln x = 1 + \ln x
$$

By the chain rule,

$$
f'(x) = g'(h(x))h'(x) = e^{x \ln x}(1 + \ln x) = x^x(1 + \ln x)
$$

3. Let $g(x) = \ln x$ and $h(x) = xe^{x} + 1$, so $g(h(x)) = \ln(xe^{x} + 1)$. By the product rule,

$$
h'(x) = xe^{x} + e^{x} = (x + 1)e^{x}
$$

By the chain rule,

$$
(g \circ h)'(x) = \frac{(x+1)e^x}{xe^x+1}
$$

By the sum rule,

$$
f'(x) = \frac{(x+1)e^x}{xe^x+1} - 4x^3
$$

4. Let $g(x) = x^2$ and $h(x) = \sin x$, so

$$
g^{(1)}(x) = 2x
$$

\n
$$
g^{(2)}(x) = 2
$$

\n
$$
g^{(3)}(x) = 0
$$

\n
$$
g^{(4)}(x) = 0
$$

\n
$$
g^{(5)}(x) = 0
$$

\n
$$
h^{(5)}(x) = 0
$$

\n
$$
h^{(6)}(x) = 0
$$

\n
$$
h^{(7)}(x) = -\cos x
$$

\n
$$
h^{(8)}(x) = \sin x
$$

\n
$$
h^{(9)}(x) = \cos x
$$

By Leibniz' theorem,

$$
f^{(5)}(x) = g(x)h^{(5)}(x) + 5g^{(1)}(x)h^{(4)}(x) + 10g^{(2)}(x)h^{(3)}(x)
$$

+
$$
10g^{(3)}(x)h^{(2)}(x) + 5g^{(4)}(x)h^{(1)}(x) + g^{(5)}(x)h(x)
$$

=
$$
x^2 \cos x + 10x \sin x - 20 \cos x
$$

=
$$
(x^2 - 20) \cos x + 10x \sin x
$$

Additional Questions

1. If $f(2) = -8$, $f'(2) = 3$, $g(2) = 17$ and $g'(2) = -4$, determine the value of $(fg)'(2)$.

Solution By the product rule,

$$
(fg)'(2) = f(2)g'(2) + f'(2)g(2)
$$

= -8 × -4 + 3times17
= 83

2. If $f'(-1) = -2$, $g'(-1) = 0$ and $(\frac{f}{g})'(-1) = 6$, determine the value of $g(-1)$.

Solution By the quotient rule,

$$
6 = \left(\frac{f}{g}\right)'(-1)
$$

=
$$
\frac{f'(-1)g(-1) - f(-1)g'(-1)}{(g(-1))^2}
$$

=
$$
\frac{-2g(-1)}{(g(-1))^2}
$$

=
$$
\frac{-2}{g(-1)}
$$

so $-2g(-1) = 6$ and hence $g(-1) = -3$.

3. Prove from the definition that ln(x) is differentiable on (0, ∞) with derivative $\frac{1}{x}$. You may assume that ln (x) is continuous on $(0,\infty)$ and that lim $_{x\to 0}(1+x)^{\frac{1}{x}}=e$.

Solution Using the definition of differentiability, we want to show that

$$
\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \frac{1}{a}
$$

for all $a \in (0, \infty)$.

Using log laws,

$$
\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{h \to 0} \frac{\ln(\frac{a+h}{a})}{h}
$$

$$
= \lim_{h \to 0} \frac{\ln(1+\frac{h}{a})}{h}
$$

$$
= \lim_{h \to 0} \frac{1}{h} \ln\left(1+\frac{h}{a}\right)
$$

$$
= \lim_{h \to 0} \ln\left(\left(1+\frac{h}{a}\right)^{\frac{1}{h}}\right)
$$

Let $t = \frac{h}{a}$, so $h \to 0$ if and only if $t \to 0$. Then, using log laws,

$$
\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{h \to 0} \ln\left(\left(1 + \frac{h}{a}\right)^{\frac{1}{h}}\right)
$$

$$
= \lim_{t \to 0} \ln((1+t)^{\frac{1}{at}})
$$

$$
= \lim_{t \to 0} \frac{1}{a} \ln((1+t)^{\frac{1}{t}})
$$

Let $f(x) = (1+x)^{\frac{1}{x}}$ and $g(x) = \ln(x)$, so $\ln((1+t)^{\frac{1}{t}}) = g(f(x)) = (g \circ f)(x)$. Since $\lim_{x\to 0} f(x) =$ e and g is continuous at $x = e$, $\lim_{x\to 0} (g \circ f)(x) = g(e) = 1$. Hence, by the product rule,

$$
\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{t \to 0} \frac{1}{a} \ln((1+t)^{\frac{1}{t}})
$$

$$
= \frac{1}{a} \lim_{t \to 0} \ln((1+t)^{\frac{1}{t}})
$$

$$
= \frac{1}{a}
$$

so $ln(x)$ is continuous at $x = a$ with derivative $\frac{1}{a}$ for all $a \in (0, \infty)$.

- 4. Show that the following functions are differentiable on their domains and find their derivatives:
	- (a) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \sin^6(x) + \sin(x^6)$.
	- (b) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \tan^4(x^2 + 1)$.
	- (c) $f: (0, \infty) \to \mathbb{R}$ where $f(x) = \frac{\ln(3x^2 + 1)}{3x + 2}$ $3x+2$

Solution

(a) Let $g(x) = \sin(x)$ and $h(x) = x^6$, so $f(x) = h(g(x)) + g(h(x)) = (h \circ g)(x) + (g \circ h)(x)$. Since g and h are differentiable on $\mathbb R$, by the chain rule and the sum rule, f is differentiable on R and

$$
f'(x) = h(g(x)) + g(h(x)) = (h \circ g)'(x) + (g \circ h)'(x)
$$

= h'(g(x))g'(x) + g'(h(x))h'(x)
= 6 sin⁵(x) cos(x) + 6 cos(x⁶)x⁵

(b) Let $u(x) = x^2 + 1$ and $v(x) = \tan(x)$, so $f(x) = v(u(x)) = (v \circ u)(x)$. Let $g(x) = \tan(x)$ and $h(x) = x^4$, so $v(x) = h(g(x)) = (h \circ g)(x)$. Since g and h are differentiable on $\mathbb R$, by the chain rule, v is differentiable on $\mathbb R$ and

$$
v'(x) = h'(g(x))g'(x)
$$

= $4 \tan^3(x) \sec^2(x)$

Since u and v are differentiable on $\mathbb R$, by the chain rule, f is differentiable on $\mathbb R$ and

$$
f'(x) = v'(u(x))u'(x)
$$

= $4 \tan^3(x^2 + 1) \sec^2(x^2 + 1)(2x)$
= $8x \tan^3(x^2 + 1) \sec^2(x^2 + 1)$

(c) Let $u(x) = \ln(3x^2 + 1)$ and $v(x) = 3x + 2$, so $f(x) = \frac{u(x)}{v(x)}$.

Let $g(x) = 3x^2 + 1$ and $h(x) = \ln(x)$, so $u(x) = h(g(x)) = (h \circ g)(x)$. Since g and h are differentiable on $(0, \infty)$, by the chain rule, u is differentiable on $(0, \infty)$ and

$$
u'(x) = h'(g(x))g'(x)
$$

$$
= \frac{6x}{3x^2 + 1}
$$

Since u and v are differentiable on $(0, \infty)$, by the quotient rule, f is differentiable on $(0, \infty)$ and

$$
f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}
$$

=
$$
\frac{\frac{6x}{3x^2+1}(3x+2) - 3\ln(3x^2+1)}{(3x+2)^2}
$$

=
$$
\frac{6x(3x+2) - 3(3x^2+1)\ln(3x^2+1)}{(3x+2)^2(3x^2+1)}
$$

5. Let $f(x) = e^{x}x^2$. Use Leibniz' theorem to find $f^{(n)}(x)$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

Solution Let $g(x) = e^x$ and $h(x) = x^2$, so $f(x) = g(x)h(x)$. Since both g and h are n-times differentiable on $\mathbb R$, f is *n*-times differentiable on $\mathbb R$. It follows that $g^{(n)}(x) = e^x$ for all $n \in \mathbb{N}$, $h'(x) = 2x$, $h''(x) = 2$ and $h^{(m)}(x) = 0$ for all $m \ge 3$. By Leibniz' theorem, this implies that

$$
f^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} g^{(k)}(x) h^{(n-k)}(x)
$$

= $g^{(n)}(x)h(x) + n g^{(n-1)}(x)h'(x) + \frac{n(n-1)}{2} g^{(n-2)}(x)h''(x)$
= $e^{x}x^2 + 2ne^{x}x + n(n-1)e^{x}$
= $e^{x}(x^2 + 2nx + n(n-1))$