Differentiability

Michael Cavaliere

Week 8

Class Content

Definition. For a real-valued function f defined at $a \in \mathbb{R}$, f is differentiable at x = a if

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. The value of the limit is the **derivative** of f(x) at x = a, denoted f'(a).

The function f is differentiable on an interval if it is differentiable at every point in the interval.

Definition. For a real-valued function f and $a \in \mathbb{R}$, f(x) is **continuous** at x = a if $\lim_{x \to a} f(x) = f(a)$. The function f is **continuous** on an interval if it is continuous at every point in the interval.

Theorem. For a real-valued function f, if f(x) is differentiable at x = a, then f(x) is continuous at x = a.

Proof. Suppose that f(x) is differentiable at x = a, so

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Using the product rule,

$$\lim_{h \to 0} (f(a+h) - f(a)) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \times \lim_{h \to 0} h = 0$$

Let x = a + h, so h = x - a. By making this substitution,

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{h \to 0} (f(a+h) - f(a)) = 0$$

Using the sum rule,

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(x) - f(a)) + \lim_{x \to a} f(a) = f(a)$$

so f(x) is continuous at x = a.

Question 1

Prove that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous but not differentiable at x = 0.

Solution To show f(x) is continuous at x = 0, we need to show that $\lim_{x\to 0} f(x) = f(0) = 0$. By definition, $\lim_{x\to 0} f(x) = 0$ if for all $\varepsilon > 0$, there is $\delta > 0$ such that whenever $|x| < \delta$, $|f(x)| < \varepsilon$. For every $\varepsilon > 0$, if $\delta = \varepsilon$, then whenever $|x| < \delta$,

$$|f(x)| = ||x|| = |x| < \delta = \epsilon$$

so f(x) is continuous at x = 0.

To show f(x) is not differentiable at x = 0, we need to show that

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

does not exist. Approaching the limit from the right, since h > 0,

$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

Approaching the limit from the left, since h < 0,

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} -1 = -1$$

Since the limits from the left and from the right are not equal, the limit cannot exist, so f(x) is not differentiable at x = 0.

Theorem. If f and g are real-valued functions that are differentiable at x = a, then

- f(x) + g(x) is differentiable at x = a with derivative f'(a) + g'(a) (sum rule)
- f(x)g(x) is differentiable at x = a with derivative f'(a)g(a) + f(a)g'(a) (product rule)
- $\frac{f(x)}{g(x)}$ is differentiable at x = a with derivative $\frac{f'(a)g(a)-f(a)g'(a)}{(g(a))^2}$ if $g(a) \neq 0$ (quotient rule)

Theorem (Chain Rule). If $f : A \to B$ is differentiable at x = a and $g : B \to C$ is differentiable at x = f(a), then $g \circ f$ is differentiable at x = a with $(g \circ f)'(a) = g'(f(a))f'(a)$.

Theorem (Leibniz' Theorem). If f and g are real-valued functions that are differentiable at x = a, then if h(a) = f(a)g(a)

$$h^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a) g^{(n-k)}(a)$$

Question 2

- 1. Find f'(x) where $f(x) = \frac{6x^2}{2-x}$
- 2. Find f'(x) where $f(x) = x^x$
- 3. Find f'(x) where $f(x) = \ln(xe^x + 1) x^4$
- 4. Find $f^{(5)}(x)$ where $f(x) = x^2 \sin x$

Solution

1. By the quotient rule,

$$f'(x) = \frac{12x(2-x) + 6x^2}{(2-x)^2} = \frac{6x(4-x)}{(2-x)^2}$$

2. By definition, $f(x) = x^x = (e^{\ln x})^x = e^{x \ln x}$. Let $g(x) = e^x$ and $h(x) = x \ln x$, so f(x) = g(h(x)). By the product rule,

$$h'(x) = x \times \frac{1}{x} + \ln x = 1 + \ln x$$

By the chain rule,

$$f'(x) = g'(h(x))h'(x) = e^{x \ln x}(1 + \ln x) = x^x(1 + \ln x)$$

3. Let $g(x) = \ln x$ and $h(x) = xe^{x} + 1$, so $g(h(x)) = \ln(xe^{x} + 1)$. By the product rule,

$$h'(x) = xe^{x} + e^{x} = (x+1)e^{x}$$

By the chain rule,

$$(g \circ h)'(x) = \frac{(x+1)e^x}{xe^x + 1}$$

By the sum rule,

$$f'(x) = \frac{(x+1)e^x}{xe^x + 1} - 4x^3$$

4. Let $g(x) = x^2$ and $h(x) = \sin x$, so

$$g^{(1)}(x) = 2x h^{(1)}(x) = \cos x \\ g^{(2)}(x) = 2 h^{(2)}(x) = -\sin x \\ g^{(3)}(x) = 0 h^{(3)}(x) = -\cos x \\ g^{(4)}(x) = 0 h^{(4)}(x) = \sin x \\ g^{(5)}(x) = 0 h^{(5)}(x) = \cos x \\ \end{cases}$$

By Leibniz' theorem,

$$f^{(5)}(x) = g(x)h^{(5)}(x) + 5g^{(1)}(x)h^{(4)}(x) + 10g^{(2)}(x)h^{(3)}(x)$$

+ 10g^{(3)}(x)h^{(2)}(x) + 5g^{(4)}(x)h^{(1)}(x) + g^{(5)}(x)h(x)
= x² cos x + 10x sin x - 20 cos x
= (x² - 20) cos x + 10x sin x

Additional Questions

1. If f(2) = -8, f'(2) = 3, g(2) = 17 and g'(2) = -4, determine the value of (fg)'(2).

Solution By the product rule,

$$(fg)'(2) = f(2)g'(2) + f'(2)g(2)$$

= $-8 \times -4 + 3times17$
= 83

2. If f'(-1) = -2, g'(-1) = 0 and $(\frac{f}{g})'(-1) = 6$, determine the value of g(-1).

Solution By the quotient rule,

$$6 = \left(\frac{f}{g}\right)'(-1)$$

= $\frac{f'(-1)g(-1) - f(-1)g'(-1)}{(g(-1))^2}$
= $\frac{-2g(-1)}{(g(-1))^2}$
= $\frac{-2}{g(-1)}$

so -2g(-1) = 6 and hence g(-1) = -3.

3. Prove from the definition that $\ln(x)$ is differentiable on $(0, \infty)$ with derivative $\frac{1}{x}$. You may assume that $\ln(x)$ is continuous on $(0, \infty)$ and that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.

Solution Using the definition of differentiability, we want to show that

$$\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \frac{1}{a}$$

for all $a \in (0, \infty)$.

Using log laws,

$$\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{h \to 0} \frac{\ln(\frac{a+h}{a})}{h}$$
$$= \lim_{h \to 0} \frac{\ln(1+\frac{h}{a})}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \ln\left(1+\frac{h}{a}\right)$$
$$= \lim_{h \to 0} \ln\left(\left(1+\frac{h}{a}\right)^{\frac{1}{h}}\right)$$

Let $t = \frac{h}{a}$, so $h \to 0$ if and only if $t \to 0$. Then, using log laws,

$$\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{h \to 0} \ln\left(\left(1 + \frac{h}{a}\right)^{\frac{1}{h}}\right)$$
$$= \lim_{t \to 0} \ln((1+t)^{\frac{1}{at}})$$
$$= \lim_{t \to 0} \frac{1}{a} \ln((1+t)^{\frac{1}{t}})$$

Let $f(x) = (1+x)^{\frac{1}{x}}$ and $g(x) = \ln(x)$, so $\ln((1+t)^{\frac{1}{t}}) = g(f(x)) = (g \circ f)(x)$. Since $\lim_{x \to 0} f(x) = e$ and g is continuous at x = e, $\lim_{x \to 0} (g \circ f)(x) = g(e) = 1$. Hence, by the product rule,

$$\lim_{h \to 0} \frac{\ln(a+h) - \ln(a)}{h} = \lim_{t \to 0} \frac{1}{a} \ln((1+t)^{\frac{1}{t}})$$
$$= \frac{1}{a} \lim_{t \to 0} \ln((1+t)^{\frac{1}{t}})$$
$$= \frac{1}{a}$$

so $\ln(x)$ is continuous at x = a with derivative $\frac{1}{a}$ for all $a \in (0, \infty)$.

- 4. Show that the following functions are differentiable on their domains and find their derivatives:
 - (a) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \sin^6(x) + \sin(x^6)$.
 - (b) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \tan^4(x^2 + 1)$.
 - (c) $f:(0,\infty) \to \mathbb{R}$ where $f(x) = \frac{\ln(3x^2+1)}{3x+2}$

Solution

(a) Let $g(x) = \sin(x)$ and $h(x) = x^6$, so $f(x) = h(g(x)) + g(h(x)) = (h \circ g)(x) + (g \circ h)(x)$. Since g and h are differentiable on \mathbb{R} , by the chain rule and the sum rule, f is differentiable on \mathbb{R} and

$$f'(x) = h(g(x)) + g(h(x)) = (h \circ g)'(x) + (g \circ h)'(x)$$

= h'(g(x))g'(x) + g'(h(x))h'(x)
= 6 sin⁵(x) cos(x) + 6 cos(x⁶)x⁵

(b) Let $u(x) = x^2 + 1$ and $v(x) = \tan(x)$, so $f(x) = v(u(x)) = (v \circ u)(x)$. Let $g(x) = \tan(x)$ and $h(x) = x^4$, so $v(x) = h(g(x)) = (h \circ g)(x)$. Since g and h are differentiable on \mathbb{R} , by the chain rule, v is differentiable on \mathbb{R} and

$$v'(x) = h'(g(x))g'(x)$$

= 4 tan³(x) sec²(x)

Since u and v are differentiable on \mathbb{R} , by the chain rule, f is differentiable on \mathbb{R} and

$$f'(x) = v'(u(x))u'(x)$$

= 4 tan³(x² + 1) sec²(x² + 1)(2x)
= 8x tan³(x² + 1) sec²(x² + 1)

(c) Let $u(x) = \ln(3x^2 + 1)$ and v(x) = 3x + 2, so $f(x) = \frac{u(x)}{v(x)}$.

Let $g(x) = 3x^2 + 1$ and $h(x) = \ln(x)$, so $u(x) = h(g(x)) = (h \circ g)(x)$. Since g and h are differentiable on $(0, \infty)$, by the chain rule, u is differentiable on $(0, \infty)$ and

$$u'(x) = h'(g(x))g'(x)$$
$$= \frac{6x}{3x^2 + 1}$$

Since *u* and *v* are differentiable on $(0, \infty)$, by the quotient rule, *f* is differentiable on $(0, \infty)$ and

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$

= $\frac{\frac{6x}{3x^2+1}(3x+2) - 3\ln(3x^2+1)}{(3x+2)^2}$
= $\frac{6x(3x+2) - 3(3x^2+1)\ln(3x^2+1)}{(3x+2)^2(3x^2+1)}$

5. Let $f(x) = e^x x^2$. Use Leibniz' theorem to find $f^{(n)}(x)$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

Solution Let $g(x) = e^x$ and $h(x) = x^2$, so f(x) = g(x)h(x). Since both g and h are n-times differentiable on \mathbb{R} , f is n-times differentiable on \mathbb{R} . It follows that $g^{(n)}(x) = e^x$ for all $n \in \mathbb{N}$, h'(x) = 2x, h''(x) = 2 and $h^{(m)}(x) = 0$ for all $m \ge 3$. By Leibniz' theorem, this implies that

$$f^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} g^{(k)}(x) h^{(n-k)}(x)$$

= $g^{(n)}(x)h(x) + ng^{(n-1)}(x)h'(x) + \frac{n(n-1)}{2}g^{(n-2)}(x)h''(x)$
= $e^{x}x^{2} + 2ne^{x}x + n(n-1)e^{x}$
= $e^{x}(x^{2} + 2nx + n(n-1))$