Root Finding Methods

Michael Cavaliere

Week 9

Class Content

Theorem (Intermediate Value Theorem). For a function $f : [a, b] \rightarrow \mathbb{R}$, if f is continuous on the interval [a, b] with $f(a) = \alpha$ and $f(b) = \beta$, then for any $\gamma \in (\alpha, \beta)$, there is $c \in (a, b)$ such that $\gamma = f(c)$.

The Bisection Method Suppose that $f : [a, b] \to \mathbb{R}$ is continuous on the interval $[a, b]$ where $f(a)$ and $f(b)$ have different signs. By the intermediate value theorem, there is a root of f in (a, b) . Let $c = \frac{a+b}{2}$ and consider $f(c)$.

- If $f(c) = 0$, then c is a root of f and the process stops.
- If $f(a)$ and $f(c)$ have different signs, then by the intermediate value theorem, there is a root of f in (a, c) .
- Otherwise, $f(b)$ and $f(c)$ have different signs, and so by the intermediate value theorem, there is a root of f in (c, b) .

Repeat this process until the value of $c \in (a, b)$ such that $f(c) = 0$ has been found.

Question 1

Let $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = 3x^7 - 5x^6 + 4x^2 - 3$.

- 1. Find an interval [a, b] for which f is continuous on [a, b] and $f(a)$ and $f(b)$ have opposite signs.
- 2. Prove that f has a root in (a, b) .
- 3. Use the bisection method to find this root correct to one decimal place.

Solution

1. Trying some small values:

$$
f(0) = -3
$$

$$
f(1) = -1
$$

$$
f(2) = 77
$$

Since any polynomial is continuous on \mathbb{R} , f is continuous on the interval [1, 2] and $f(1)$ and $f(2)$ have different signs.

- 2. Since f is continuous on the interval [1, 2], by the intermediate value theorem, for any $\gamma \in (-1, 77)$, there is $c \in (1, 2)$ such that $\gamma = f(c)$. Taking $\gamma = 0$, this implies that there is a root of f in the interval (1, 2).
- 3. Let $c_1 = \frac{1+2}{2} = 1.5$, so $f(1.5) = 0.305$ to three decimal places. Since $f(1)$ and $f(1.5)$ have different signs, the root of f must be in the interval $(1, 1.5)$.

Let $c_2 = \frac{1+1.5}{2} = 1.25$, so $f(1.25) = -1.518$ to three decimal places. Since $f(1.25)$ and $f(1.5)$ have different signs, the root of f must be in the interval $(1.25, 1.5)$.

Let $c_3 = \frac{1.25 + 1.5}{2} = 1.375$, so $f(1.375) = -1.371$ to three decimal places. Since $f(1.375)$ and $f(1.5)$ have different signs, the root of f must be in the interval (1.375, 1.5).

Let $c_4 = \frac{1.375 + 1.5}{2} = 1.4375$, so $f(1.4375) = -0.801$ to three decimal places. Since $f(1.4375)$ and $f(1.5)$ have different signs, the root of f must be in the interval $(1.4375, 1.5)$.

Let $c_5 = \frac{1.4375 + 1.5}{2} = 1.46875$, so $f(1.46875) = -0.332$ to three decimal places. Since $f(1.46875)$ and $f(1.5)$ have different signs, the root of f must be in the interval (1.46875, 1.5). Hence, to one decimal place, the root of f is 1.5.

The Newton-Raphson Method Suppose that $f : [a, b] \rightarrow \mathbb{R}$ is differentiable on the interval $[a, b]$ where $f(a)$ and $f(b)$ have different signs. By the intermediate value theorem, there is a root of f in (a, b) . Choose a value of $x_1 \in (a, b)$ and use the recurrence relation

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

to converge towards the root, where x_{n+1} is the point that the tangent to the function at $(x_n, f(x_n))$ intersects the x-axis.

Question 2

Let $f: \mathbb{R}_{>0} \to \mathbb{R}$ where $f(x) = \ln(xe^{x} + 1) - x^{4}$.

- 1. Find an interval [a, b] for which f is differentiable on [a, b] and $f(a)$ and $f(b)$ have opposite signs.
- 2. Prove that f has a root in (a, b) .
- 3. Use the Newton-Raphson method to find this root correct to one decimal place.

Solution

1. Trying some small values:

$$
f(1) = 0.313...
$$

$$
f(2) = -13.24...
$$

By the product rule, xe^x is differentiable on $\mathbb{R}_{>0}$ and so, by the sum rule, $xe^x + 1$ is differentiable on $\mathbb{R}_{>0}$. By the chain rule, $ln(xe^{x} + 1)$ is differentiable on $\mathbb{R}_{>0}$. Finally, by the sum rule, f is differentiable on $\mathbb{R}_{>0}$, so f is differentiable on the interval [a, b] and $f(1)$ and $f(2)$ have different signs.

- 2. Since f is differentiable on the interval $[1, 2]$, f is continuous on the interval $[1, 2]$. Since f is continuous on the interval [1, 2], by the intermediate value theorem, for any $\gamma \in (f(2), f(1))$, there is $c \in (1, 2)$ such that $\gamma = f(c)$. Taking $\gamma = 0$, this implies that there is a root of f in the interval (1, 2).
- 3. Using the derivative from last time,

$$
f'(x) = \frac{(x+1)e^x}{xe^x+1} - 4x^3
$$

Let $x_1 = 1.5$, so

$$
x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
$$

= 1.2494...

$$
x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}
$$

= 1.1298...

$$
x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}
$$

= 1.1005...

$$
x_5 = x_4 - \frac{f(x_4)}{f'(x_4)}
$$

= 1.0988...

$$
x_6 = x_5 - \frac{f(x_5)}{f'(x_5)}
$$

= 1.0988...

Hence, to three decimal places, the root of f is 1.099.

Additional Questions

1. Use the bisection method to find a root of $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \cos x - xe^x$ to two decimal places.

Solution By the product rule, xe^x is continuous on \mathbb{R} , and so by the sum rule, f is continuous on R.

Trying some small values:

$$
f(0) = 1
$$

$$
f(1) = -2.177...
$$

Since f is continuous on the interval [0, 1], by the intermediate value theorem, there is $c \in (0, 1)$ such that $f(c) = 0$.

Let $c_1 = \frac{1}{2} = 0.5$, so $f(0.5) = 0.053$ to three decimal places. Since $f(0.5)$ and $f(1)$ have different signs, the root is in $(0.5, 1)$.

Let $c_2 = \frac{0.5+1}{2} = 0.75$, so $f(0.75) = -0.856$ to three decimal places. Since $f(0.5)$ and $f(0.75)$ have different signs, the root is in (0.5, 0.75).

Let $c_3 = \frac{0.5+0.75}{2} = 0.625$, so $f(0.625) = -0.357$ to three decimal places. Since $f(0.5)$ and $f(0.625)$ have different signs, the root is in $(0.5, 0.625)$.

Let $c_4 = \frac{0.5 + 0.625}{2} = 0.5625$, so $f(0.5625) = -0.141$ to three decimal places. Since $f(0.5)$ and $f(0.5625)$ have different signs, the root is in $(0.5, 0.5625)$.

Let $c_5 = \frac{0.5+0.5625}{2} = 0.53125$, so $f(0.53125) = -0.042$ to three decimal places. Since $f(0.5)$ and $f(0.53125)$ have different signs, the root is in $(0.5, 0.53125)$.

Let $c_6 = \frac{0.5+0.53125}{2} = 0.515625$, so $f(0.515625) = 0.006$ to three decimal places. Since $f(0.515625)$ and $f(0.53125)$ have different signs, the root is in (0.515625, 0.53125).

Let $c_7 = \frac{0.515625 + 0.53125}{2} = 0.5234375$, so $f(0.5234375) = -0.017$ to three decimal places. Since $f(0.515625)$ and $f(0.5234375)$ have different signs, the root is in $(0.515625, 0.5234375)$.

Hence, to two decimal places, the root of f is 0.52.

- 2. (a) Prove that the equation $3x \ln x = 7$ has at least one solution in the interval (2, 3).
	- (b) Use the Newton-Raphson method to find a solution to $3x \ln x = 7$ to five decimal places.

Solution

- (a) Let $f(x) = 3x \ln x 7$, so c is a solution to the equation above if and only if $f(c) = 0$. By the product rule, $3x \ln x$ is differentiable on $\mathbb{R}_{>0}$ and, by the sum rule, f is differentiable on $\mathbb{R}_{>0}$, so f is differentiable and hence continuous on the interval [2, 3]. Since $f(2) = -2.841...$ and $f(3) = 2.8875...$ by the intermediate value theorem, there is $c \in (2, 3)$ such that $f(c) = 0$, and hence c is a solution to the equation above.
- (b) Since f is differentiable on [2, 3] and, by the product rule and the sum rule, $f'(x) = 3(\ln x + 1)$, the Newton-Raphson method can be used.

Let $x_1 = 2.5$, so

$$
x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
$$

= 2.522233...

$$
x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}
$$

= 2.522182...

$$
x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}
$$

= 2.522182...

Hence, to five decimal places, the solution to the equation above is 2.52218.

- 3. Let $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 2x^2 3x 11$.
	- (a) Show that for a root $x > 0$,

$$
x = \sqrt{\frac{3x + 11}{x + 2}}
$$

(b) Use direct iteration to find a root of f to three decimal places.

Solution

(a) Let x be a root of f with $x > 0$, so

$$
x^{3} + 2x^{2} - 3x - 11 = 0
$$

\n
$$
\implies x^{3} + 2x^{2} = 3x + 11
$$

\n
$$
\implies x^{2}(x + 2) = 3x + 11
$$

\n
$$
\implies x^{2} = \frac{3x + 11}{x + 2}
$$

\n
$$
\implies x = \sqrt{\frac{3x + 11}{x + 2}}
$$

(b) Let

$$
x_{n+1} = \sqrt{\frac{3x_n + 11}{x_n + 2}}
$$

If $x_1 = 0$, then

$$
x_2 = \sqrt{\frac{3x_1 + 11}{x_1 + 2}} = 2.3452...
$$

\n
$$
x_3 = \sqrt{\frac{3x_2 + 11}{x_2 + 2}} = 2.0373...
$$

\n
$$
x_4 = \sqrt{\frac{3x_3 + 11}{x_3 + 2}} = 2.0587...
$$

\n
$$
x_5 = \sqrt{\frac{3x_4 + 11}{x_4 + 2}} = 2.0571...
$$

\n
$$
x_6 = \sqrt{\frac{3x_5 + 11}{x_5 + 2}} = 2.0572...
$$

Hence, to three decimal places, the root of f is 2.057.

4. Use the intermediate value theorem and Rolle's theorem to prove that there is exactly one real root of the polynomial $f(x) = x^3 + x + 1$.

Theorem (Rolle's Theorem). For $f : [a, b] \rightarrow \mathbb{R}$, if f is continuous on the interval [a, b] and differentiable on the interval (a, b) and $f(a) = f(b)$, then there is $c \in (a, b)$ such that $f'(c) = 0$.

Solution By definition, when $x > 0$, $f(x) > 0$, so there are no positive roots of f. When $x < -1$, $x^3 + x < -1$, so $f(x) < 0$ and so there are no roots of f less than -1. This implies that if there are any real roots of f, then they are in the interval $[-1, 0]$.

$$
f(-1) = -1
$$

$$
f(0) = 1
$$

Since f is a polynomial, f is continuous on $[-1, 0]$ so by the intermediate value theorem, for every $\gamma \in (-1,1)$, there is some $c \in (-1,0)$ such that $\gamma = f(c)$. That implies that there is at least one root of f in $(-1, 0)$ by taking $\gamma = 0$.

Since f is a polynomial, f is differentiable on $(-1, 0)$. Suppose there is a second root $d \in (-1, 0)$. Since f is continuous on $[-1, 0]$ and differentiable on $(-1, 0)$, f is continuous on $[c, d] \subseteq [-1, 0]$ and differentiable on $(c, d) \subseteq (-1, 0)$. Since $f(c) = f(d)$, by Rolle's theorem, there exists $x \in (c, d)$ such that $f'(x) = 0$.

However, $f'(x) = 3x^2 + 1$ and so for any $x \in (c, d)$, $x < 0$ and so $f'(x) < 0$. This is a contradiction, so there must be exactly one real root of f .