Please tick the register!

Admin

Michael Cavaliere - michael. cavaliere @ warwick. ac.uk michael.n. Cavaliere @ warwick. ac.uk ^also me, but use the first one!

Advice and Feedback Hours: Fridays 12pm - 1pm, Zeeman

https://warwick.ac.uk/fac/sci/maths/people/staff/cavaliere/ec133

Vectors:
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -7 \\ 5 \end{pmatrix}$, $(2,5)$

Matrices:
$$\begin{pmatrix} 1 & 5 \\ -8 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 5 & 1 \\ 4 & -2 \\ 0 & -7 \end{pmatrix}$

Matrix Multiplication

mxp matrix A pxn matrix B

The product AB is the man matrix where

(AB) ij =
$$\sum_{k=1}^{P}$$
 Aik Bkj

Tith row,
ith column

e.g.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & -3 \\ -9 & 6 \end{pmatrix}$$

$$AB = \begin{pmatrix} 0 & -3 \\ -9 & 6 \end{pmatrix}$$

$$BA = \begin{pmatrix} -9 & -12 \\ -36 & 15 \end{pmatrix}$$

$$BA = \begin{pmatrix} -9 & -12 \\ 9 & 6 \end{pmatrix}$$

Transpose

man matrix A

The transpose is the nxm matrix A^T where $(A^T)_{ij} = A_{ji}$

e.g.
$$A = \begin{pmatrix} 1 & 0 & -4 \\ -5 & 2 & 8 \end{pmatrix}$$
, $A^{T} = \begin{pmatrix} 1 & -5 \\ 0 & 2 \\ -4 & 8 \end{pmatrix}$ 2x3

3 Let
$$A = \begin{bmatrix} 7 & -10 & 2 \\ 5 & 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 8 & -3 \\ 5 & -3 & 2 \\ 1 & -2 & 4 \end{bmatrix}$$

Which of the following expressions are valid? Calculate those that are.

(a)
$$A^T$$

(e)
$$B^TA^T$$

(d)
$$BA^T$$

(f)
$$A^2$$

a)
$$\begin{pmatrix} 7 & 5 \\ -10 & 1 \\ 2 & 0 \end{pmatrix}$$

e)
$$\begin{pmatrix} -41 & 10 \\ 82 & 37 \\ -33 & -13 \end{pmatrix}$$

b)
$$\begin{pmatrix} -41 & 82 & -33 \\ 10 & 37 & -13 \end{pmatrix}$$

$$d)\begin{pmatrix} -79 & 13 \\ 69 & 22 \\ 35 & 3 \end{pmatrix}$$

Linear Map

A function $f: \mathbb{R}^m \to \mathbb{R}^n$ is a linear map if for all $\underline{u}, \underline{v} \in \mathbb{R}^m$, $\lambda \in \mathbb{R}$

$$t(\gamma \overline{\wedge}) = \gamma t(\overline{\wedge})$$
$$t(\overline{\wedge} + \overline{\wedge}) = t(\overline{\wedge}) + t(\overline{\wedge})$$

e.g.
$$f,g,h:\mathbb{R}^2 \to \mathbb{R}$$
 where $f(x,y)=x+y$ $\sqrt{g(x,y)=x-1}$ X $h(x,y)=0$

Let
$$(a,b)$$
, $(c,d) \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$.
 $f(a+c,b+d) = ... = f(a,b) + f(c,d)$
 $f(\lambda a, \lambda b) = ... = \lambda f(a,b)$

6 Show that the following transformations are linear.

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 with $f(x,y) = (3x+2y,-x,2y-x)$ (b) $g: \mathbb{R}^3 \to \mathbb{R}^2$ with $g(x,y,z) = (x+y+z,x-y+z)$ (c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ with $h(x,y) = (-y,x)$

c) Let
$$(a,b)$$
, $(c,d) \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$.

$$h(a,b) + h(c,d) = (-b,a) + (-d,c)$$

= $(-b-d,a+c)$
 $h(a+c,b+d) = (-(b+d),a+c)$
= $(-b-d,a+c)$
 $h(a+c,b+d) = h(a,b) + h(c,d)$

Theorem

There is a one-to-one correspondence between

There is a one-to-one correspondence between linear maps and matrices.

Matrix A
$$\longrightarrow$$
 Linear map $f(x) = Ax$

Column

Column

Vectors

Linear map $f \longrightarrow$ Matrix $(f(e_1) ... f(e_n))$
 $e_1,...,e_n$ basis of domain of f

e.g.
$$f:\mathbb{R}^{3} \to \mathbb{R}^{2}$$
 where $f(x,y,z) = (x+2y,y-3z)$
basis
 $(!),(!),(!),(!) = (!)$
 i_{1},i_{2},k_{3} $f(!) = (!)$
 $f(!) = (!)$
 $f(!) = (!)$
 $f(!) = (!)$

So the matrix corresponding to f is
$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -3 \end{pmatrix}$$

6 Show that the following transformations are linear.

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 with $f(x,y) = (3x+2y,-x,2y-x)$ (b) $g: \mathbb{R}^3 \to \mathbb{R}^2$ with $g(x,y,z) = (x+y+z,x-y+z)$ (c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ with $h(x,y) = (-y,x)$

- 7 (a) Write down matrices representing the linear maps in the previous question, relative to the standard bases for \mathbb{R}^2 and \mathbb{R}^3 .
 - **(b)** Use your answers to calculate matrices representing the linear maps $g \circ f$, $f \circ g$ and h^{-1} .

$$f(\bar{x}) = A\bar{x}$$

$$= g(A\bar{x})$$

$$= g(A\bar{x})$$

$$= g(A\bar{x})$$