Change of Basis Matrix

 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ has coordinates (3,4) with respect to the basis $\{1,1\}$.

$$\begin{pmatrix} 3 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
 so $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ has coordinates $(3,-1)$ with respect to the basis $\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}\}$

The change of basis matrix from $\{u_1, ..., u_n\} \subseteq \mathbb{R}^n$ to $\{v_1, ..., v_n\} \subseteq \mathbb{R}^n$ is the matrix where the i^{th} column is the coordinates of u_i in terms of $v_1, ..., v_n$.

"Write old in terms of new"

The coordinates of a vector in terms of $\{\underline{v}_1, \dots, \underline{v}_n\}$ can be found by multiplying this matrix by the coordinates in terms of $\{\underline{u}_1, \dots, \underline{u}_n\}$.

e.g. Let
$$u_1 = {2 \choose 2}$$
, $u_2 = {2 \choose 1}$, $v_1 = {-1 \choose 1}$ and $v_2 = {-2 \choose 2}$, so $\frac{3}{2}u_1, u_2\frac{3}{2}$ and $\frac{3}{2}v_1, v_2\frac{3}{2}$ are bases.

let u1=ay1+by2.

$$\binom{1}{2} = \binom{a}{-a} + \binom{b}{-2b} \Rightarrow a+b=1, -a-2b=2$$

 $\Rightarrow a=4, b=-3$

so UI has coordinates (4,-3) in the new basis.

Let
$$Uz = aV_1 + bV_2$$

$$\binom{2}{1} = \binom{a}{-a} + \binom{b}{-2b} \Rightarrow a+b=2, -a-2b=1$$

$$\binom{2}{1} = \binom{9}{-a} + \binom{6}{-2b} \Rightarrow a+b=2,-a-2b=1$$

 $\Rightarrow a=5, b=-3$
So uz has coordinates $(5,-3)$ in the new basis.

The change of basis matrix from {u,u2} to {v,v2} is

$$A = \begin{pmatrix} 4 & 5 \\ -3 & -3 \end{pmatrix}$$

To check: U1 has coordinates (1,0) in {U1, U2} and coordinates (4,-3) in {V1, Y2}.

$$\begin{pmatrix} 4 & 5 \\ -3 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

i has coordinates $(-\frac{1}{3}, \frac{2}{3})$ in $\{\underline{u}_1, \underline{u}_2\}$ and coordinates (2,-1) in $\{\underline{v}_1,\underline{v}_2\}$

$$\begin{pmatrix} 4 & 5 \\ -3 & -3 \end{pmatrix} \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

The change of basis matrix from 2 V1_V23 to 2 U1, 428 is A-1.

4 Let $S = \{\mathbf{i}, \mathbf{j}\}$ be the standard basis for \mathbb{R}^2 , where $\mathbf{i} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and let $T = \{\begin{bmatrix} -5 \\ -7 \end{bmatrix}, \begin{bmatrix} 6 \\ 1 \end{bmatrix}\}$ be another basis for \mathbb{R}^2 . Calculate the matrices that convert between these bases.

From T to S:
$$\begin{pmatrix} -5 & 6 \\ -7 & 4 \end{pmatrix}$$
go to standard
basis

From S to T: $\begin{pmatrix} -5 & 6 \\ -7 & 4 \end{pmatrix}^{-1} = \frac{1}{22} \begin{pmatrix} 4 & -6 \\ 7 & -5 \end{pmatrix}$

Geometric Interpretations of Linear Maps

- **8** Write down matrices representing the following geometric transformations in the plane, relative to the standard basis vectors $\mathbf{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$:
 - (a) A reflection in the line y = -x
 - (b) An anticlockwise rotation through an angle of $\frac{\pi}{3}$ about the origin.
 - (c) A scaling by a factor of 3 parallel to the x-axis, and a factor of $\frac{1}{2}$ parallel to the y-axis.

Reflection in
$$y = (tan \sigma) x : (cos 2\sigma sin 2\sigma)$$

 $sin 2\sigma cos 2\sigma$

e.g. Let C be the circle with equation
$$x^2 + y^2 = 4$$
 and let $f: \mathbb{R}^2 \to \mathbb{R}^2$ where $f(x,y) = (x,y+2x)$.

We want an equation for f(C).

$$C = \{(u,v): u^2 + v^2 = 4\}$$

 $f(C) = \{f(u,v): u^2 + v^2 = 4\}$

Let $(x,y) \in f(C)$ so (x,y) = f(u,v) for some $(u,v) \in C$.

$$(x,y) = f(u,v) = (u, v+2u)$$

So
$$x=u \Rightarrow u=x$$

 $y=v+2u \qquad v=y-2x$

Since $u^2+v^2=4$, $x^2+(y-2x)^2=4$ so $5x^2-4xy+y^2=4$ is the equation for f(C).

If f is a linear map with corresponding matrix A and C is a shape, then the area inside f(C) is equal to Idet(A) I times the area inside C.

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 where $f(x,y) = (x, y+2x)$

C is a circle of radius 2 so the area inside C is 471.

To find the area inside f(c):

The matrix corresponding to f is $A = (f(\frac{1}{0}) f(\frac{0}{1}))$ $= (\frac{1}{2} \frac{0}{1})$

det (A) = 1 so the area inside f(C) is 4TT.

A good way to work out geometric interpretation is to think about the unit square.

