The leading diagonal of a matrix $A = (a_{ij})$ is the diagonal with entries $a_{11}, a_{22}, ..., a_{nn}$.

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{1n} & a_{1n} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{nn} & a_{2n} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{1n} & a_{2n} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{nn} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

A matrix is diagonal if the only non-zero entries are on the leading diagonal.

A matix is upper triangular if the only non-zero entries are on or above the leading diagonal.

If $A\underline{v} = \lambda \underline{v}$ for $\lambda \in \mathbb{R}$ and $\underline{v} \in \mathbb{R}^n \setminus \{\underline{o}\}$, then λ is the eigenvalue corresponding to the eigenvector \underline{v} .

- **1** Let D be an $n \times n$ diagonal matrix, and let T be an $n \times n$ upper triangular matrix.
 - (a) Show that the eigenvalues of D are exactly the elements on the leading diagonal.
 - **(b)** Show that the eigenvalues of T are exactly the elements on the leading diagonal. (One approach is to try the cases n=2 and n=3 first, then generalise.)
- a) The eigenvalues of D are the roots of the characteristic polynomial $X_D(x) = \det(D x I_n)$.

Let
$$D = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

So $D - xI_n = \begin{pmatrix} a_{11} - x & 0 & \cdots & 0 \\ 0 & a_{22} - x & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} - x \end{pmatrix}$

(can prove rigorously by induction) so det $(D-xI_n) = (a_{11}-x)(a_{22}-x)...(a_{nn}-x)$ so the roots of XD are $a_{11},a_{22},...,a_{nn}$.

Hence, the eigenvalues of D are an, azz, ..., ann.

b) The eigenvalues of T are the roots of the characteristic polynomial Xr(x) = det(T-xIn).

Let
$$T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ o & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ o & o & \cdots & a_{nn} \end{pmatrix}$$

So $T - x I_n = \begin{pmatrix} a_{11} - x & a_{12} & \cdots & a_{1n} \\ o & a_{22} - x & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ o & \cdots & a_{nn} - x \end{pmatrix}$

(can be proven by induction, expand down columns) Expanding the determinant down columns gives $\det(T-x I_n) = (a_{11}-x)(a_{22}-x)...(a_{nn}-x)$ so the roots of XT are $a_{11}, a_{22},..., a_{nn}$.

Hence, the eigenvalues of Tare an, azz, ..., ann.

Note: Prove it is true = prove <u>all</u> cases, not just some examples.

Prove it is false = find one counterexample (e.g. not linear if $f(0) \neq 0$)

- **2** Suppose that A is an $n \times n$ matrix with eigenvalues k_1, \ldots, k_n and corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
 - (a) Show that A^2 has eigenvalues k_1^2, \ldots, k_n^2 and eigenvalues $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
 - (b) More generally, show that A^m has eigenvalues k_1^m, \ldots, k_n^m and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ for any positive integer m.
 - (c) Let $h \in \mathbb{R}$ be a nonzero scalar. Show that hA has eigenvalues hk_1, \ldots, hk_n and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
 - (d) Let $h \in \mathbb{R}$ be a nonzero scalar. Show that (A+hI) has eigenvalues $(k_1+h), \ldots, (k_n+h)$ and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- a) By definition, $A\underline{v}_i = k_i \underline{v}_i$ for all $i \in \{1,...,n\}$. We want to show $A^2\underline{v}_i = k_i^2\underline{v}_i$ for all $i \in \{1,...,n\}$.

Multiplying by A gives
$$A^2 \underline{y} = A ki \underline{y}$$

= $ki A \underline{y} i$ (since $ki is a$
= $ki(ki\underline{y} i)$ scalar)
= $ki^2 \underline{y} i$

Hence, \underline{V}_i is an eigenvector corresponding to the eigenvalue K_i for A^2 for all $i \in \{1, ..., n\}$.

Ideas

b) Generalising (a),

$$A^{m}\underline{v}_{i} = A^{m-1}(A\underline{v}_{i}) = A^{m-1}\underline{k}_{i}\underline{v}_{i} = \underline{k}_{i}A^{m-1}\underline{v}_{i} = ... = \underline{k}_{i}^{m}\underline{v}_{i}$$

- c) (hA) vi = h (Avi) = hki vi
- d) $(A+hI_n)\underline{v}_i = A\underline{v}_i + hI_n\underline{v}_i = A\underline{v}_i + h\underline{v}_i = K\underline{i}\underline{v}_i + h\underline{v}_i$ = $(K\underline{i}+h)\underline{v}_i$