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Brief Introduction
Background 
• Cambridge: MEng General Engineering (2001-05)
• Cambridge: PhD Computer Science (2007-10)
• T-Mobile International: Radio Network Engineer (2005-07)
• Sheffield Uni: Post-Doc (2010-12)
• Warwick Uni: Assistant Prof (2012-17) Associate Prof (2017-19)
• Cranfield Uni: Chair in Human Machine Intelligence (2019-)

Interests:
• Networked Dynamics, Machine Learning for 5G, 

Molecular Signal Processing
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• EPSRC, H2020, InnovateUK, DSTL/MOD/GCHQ, USAF, LRF, 

Royal Society, British Council 
• National Infra. Comm., LEP, IEEE Standardization
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Outline of Talk

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

1. Motivation & Review of Networked Resilience
2. Functional Analysis of Resilience with Uncertainty
3. Data Driven Analysis of Resilience
4. Optimal Sampling of Networked Dynamics via 

Graph Fourier Transform
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Critical Infrastructure & Ecosystems
Many of our built infrastructures are 
networked together:
• Water Supply 
• Transportation
• Electricity Supply
• Telecommunications

They combine local functional elements with 
interdependent coupling elements. Together, 
they form the backbone of our modern 
civilization, providing services to billions.

These often sit alongside natural ecosystems 
with network dimensions:
• Food Webs
• Organizational Structure
• Gene Regulation

401/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).



The Alan Turing Institute & University of Warwick 5

Part 1/4. 
Networked Resilience arises from both 

Local Dynamics & Global Topology

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).
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Challenge of Cascades on Networks

6

Background: Cascade effects (undesirable, not designed) 
are a common problem on networked systems. 

Examples: virus (cyber and epidemic), pollution, false 
information, circadian clock (see right)…etc.

Literature: we know how effects spread, but we don’t know 
that well how it affects and is affected by the performance 
and complex behaviour of the individual components. 

Goal: What we want to understand is their individual 
resilience behaviour and their coupled resilience behaviour.

Challenge: The dimensionality of the problem is huge 
(networks with millions of nodes), and the behaviour can be 
complex models. How do we gain meaningful insight?
01/08/2018
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Examples of Cascades & Failures

7

Continuous and Discrete: Cascade effects can be 
continuously affecting the network (pollution) or discretely 
breaking down the network (attacks cause failure).

Node Centrality: we know node centrality (eigenvector 
centrality, PageRank…etc.) identifies nodes with greatest 
influence to spread cascades.

Graph Structure: we also know that targeted attacks 
against high degree nodes is effective, and random attacks 
against small-world networks is ineffective.

Rewiring: more recently, we know how mesoscale core-
periphery structure can best preserve integrity of a network 
when subject to attacks and under a finite energy budget.

01/08/2018
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What is Networked Resilience & 
Robustness

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

1. Simple Graphs
2. Dynamical Systems
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Brief Review

Bouncing Back: systems that return to 
their operating state after a negative shock 
is the commonality in resilient behaviour. 
Rate of return, asymptotic convergence, are 
all important metrics. 

901/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

Hasten & Bounce Forward using Networks: 
couplings on the network can help individuals 
bounce back faster, as well as move forward 
by connecting them (rewiring) to new elements 
that can improve their resilience in the future.
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Resilience

Resilience is important as systems 
constantly face stressors (demand spikes) 
and perturbations.

Each system has a desirable equilibrium 
state and want to avoid undesirable states. 
Cascades can cause system wide poor 
performance. 

1001/08/2018
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Robustness is important as systems 
constantly face complete failures at the sub-
system or connector level.

Each sub-system requires connectivity to 
function properly. Failures can lead to 
cascade failures.
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Brief Review of Resilience

11

Stability: defined as return to a desirable equilibrium after 
some perturbation or shock. 

Random Graphs: In random graphs, it was shown (May 
1972) that instability (largest eigenvalue) scales with size of 
the network (N) and average connectivity (C):

∝ 𝑵𝑪
Later expanded to random graphs with delays.

Linear Dynamics on Small Structured Graphs with 
Defined I-O: we know that linear stability is defined by the 
largest root of the transfer function.

Large Structured Graphs with No I-O: we don’t know. So 
we currently check no. loops / trophic coherence (2nd part of 
talk), but we can also develop some new theories (1st part).
01/08/2018
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Brief Review of Robustness
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Attack/Removal Process: random removal/targeted 
removal leads to slow destruction of network.

Failure Process: loss of complete connectivity = loss 
of functionality (assumes coupling determines 
function).

Relation to Network Structure: easy to see the role 
of network topology on the overall performance (e.g. 
small world network robust to random attacks, 
vulnerable to targeted attacks).

Cascades on Electricity Networks: cascade failure 
on electricity grid networks (Gao et al. Nature: SI 
2016).
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Rewiring for Improvement

1301/08/2018
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Rewiring: preserving mesoscale community structure 
can preserve continuous robustness against further 
removal (Lu et al. Nature Climate Change 2016).

Rich club of connections makes unforeseen attacks 
less likely to lead to cascade failures.

Limited Capture of Local Connections: a pure 
connectivity analysis leads to conclusions that weakly 
entities are not important (e.g. Malaria fly can be 
eliminated from ecosystem without cascade damage)…

Regulatory Paradox: a small at a peripheral part can 
upset the whole ecosystem in the opposite way, e.g. 
saving a small bank can collapse the the whole 
financial system (May et al. PNAS 2011).
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Gap in Knowledge

01/08/2018 CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC 
(EP/R041725/1). 14

1

Just Networks: 
Current knowledge 
is mostly limited to 
weighted or 
unweighted graphs 
(they may change 
over time). 

2

The nodes and 
edges do not have 
dynamical 
behaviours.

3

Dynamics Matter: 
many (most?!) 
dynamical systems 
have non-linear 
behaviours and 
multiple 
equilibrium states. 

4

In stable 
equilibriums, they 
cannot be easily 
disturbed, whereas 
in unstable 
equilibriums, they 
can be easily 
disturbed. 

5

This already allows 
you to understand 
how modeling 
dynamics is 
important.



The Alan Turing Institute & University of Warwick

What do we know already?
Engineers and ecologists have a good understanding of:
• Local Dynamics & Governing Equations
• Stability and Control
• Data and Experience 
• Stressors & Perturbations

But, as we connect systems in increasingly larger networks, 
we don’t know:
• Gives Insight over Pure Predictive Approaches (ARIMAs, 

HMMs, DGPs, CNNs).
• Relationship between: Topology and Dynamics
• How Local Effects affect Network Wide Cascades

15

Open Questions: 
Is system resilience more sensitive to network topology or component dynamics?
How can this knowledge inform the design of new critical infrastructure systems?
What are the wider applications of this framework (ecology, biology, society)?
01/08/2018
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Part 2/4: Functional Analysis with 
Uncertainty Quantification

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

1. Telecommunications (Engineered)
2. Bee Pollination (Natural)
3. Gene Regulation (Natural)
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(i) Coupled Dynamics in a Complex Network
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a. Resilience Function of an Isolated 

Node in Terms of Parameter β

c. Approximating the Resilience Function 
of a Connected Node in Terms of its

Weighted Degree wi
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Increasing Perturbation
(ii) Characteristic Functions
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Mapping Resilience to Robustness

Familiar notions of dynamic time response (bounce back) is mapped to changing 
equilibrium states and a resilience margin. Networked systems can have cascade 
dynamics (resilience), but when it causes cascade unrecoverable failures (robustness).
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Current Literature

Discovering the explicit relationship 
between:

• Average Network Dynamics as a 
function:

• Local Node Dynamics
• Network Topology

This was applied to a variety of ecological 
and biological dynamics in 2 key papers 
(Nature Physics 2013) and (Nature 
2016).

Basic idea is to develop a mean field 
approximation. Topology Mapped to Dynamics 

(Network Average)



The Alan Turing Institute & University of Warwick 2001/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

Mean Network Dynamics Hides 
Node Level Behaviour
Near identical networks and dynamics can hide 
different node level dynamics.

Here we show how the resilience of node 4 can vary 
between being resilient (bouncing back) to collapsing.

The overall network dynamics (Nat. Phy.13 & Nat16 
papers) predicts would be the same. Indeed, one 
expects mean field to give similar expectations.

What we wish to do is to improve on this and give 
node level accurate predictions, because most 
interventions are made at the node level.

(i) Similar Effective Dynamic Response at Network Level

(ii) Different Dynamic Response at Node Level
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Sequential Estimation: Heterogeneous 
Mean Field

Resilience FunctionRate Dynamics

(iv) Step 1 to s: Sequential Estimation of 
Heterogeneous Equilibrium State

(iii) Step 0: Homogeneous 
Mean Field Approximation

Step 0a. Example Network with 
Homogeneous Weighted Degree wav

Step 0b. Solve for a 
Homogeneous Equilibrium Solution (e0)
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We first take a homogeneous 
estimate to give a mean field 
understanding of equilibrium states. 
The trick here is finding a network 
wide topological measure.

We then iteratively substitute this 
back into the network using local 
network measures to create 
heterogeneous solutions.

Improves over current methods [1] 
by giving node level prediction, 
which helps to inform action [2].
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Accuracy of Equilibrium on Two Networks
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Case Study: Telecommunications
(Wireless Load Balancing) 

2301/08/2018
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Here we study a mobile network, whereby the load 
demand (l) dynamics is governed by [7]:
• Load balancing inside a cell 

(capacity scaling using adaptive modulation coding 
schemes / power control / antenna switching) 

• Load balancing between coupled cells
• Data demand from consumers

The load dynamics in each cell can be described by its 
own attempt to satisfy demand (RHS 1st term) and the 
coupling with other cells (RHS 2nd term).



The Alan Turing Institute & University of Warwick

Stability Criteria for Load and Capacity Dynamics

2401/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).
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Stochastic Geometry Networks with Eigenvalues Bounded by 
Gershgorin Circle

2501/08/2018
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a1. PPP Distributed Cells & Random 
Neighbor Association
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Eigenvalues are bounded by disks centred on 
the diagonal of the matrix:

• Sum the absolute value of other row or 
column members

• Smallest determines radius of circle
• Each circle contains one eigenvalue.

In our case, all the Laplacian eigenvalues are 
positive. We show with any PPP & PCP 
networks.

As such, load balancing is always stable, 
irrespective of: dynamics, and topology; 
provided that our measurements are accurate.
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Probabilistic Uncertainty under Measurement Noise

2601/08/2018
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In the case of many systems, noise can arise from:
• Real stochasticity in the environment 
• Noisy behaviour in the components / sub-system
• Measurement noise in the sensor

In our case, we assume that there is both noise in the system measurement of load balancing data flow 
and an underlying stochasticity in the process. 

We elegantly show that provided the measurement noise has a smaller variance than the underlying 
stochastic process, then the system is always stable for: (1) all dynamics, and (2) all network topologies.
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Case Study: Bee Pollination

2701/08/2018
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Here we study bee pollination network, whereby the 
population dynamics is governed by:
• Carrying Capacity of Bees (K)
• Allee Effect (critical hive threshold, C)
• Mutualistic Interactions

We show excellent predictability of both the resilience 
collapse subject to 3 standard perturbation simulations:
• Node Removal: dying of bee colonies
• Link Removal: cut-off from interactions/migration
• Weight Reduction: lowering of interactions

Gives insight into colony collapse disorder.
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Case Study: Gene 
Regulation

2801/08/2018
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Resilience Loss in Biological Network (Regulatory Gene Dynamics)
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Michaelis-Menten Kinetics 
infer gene regulatory 
network.

Smoother collapse profile 
leads to more accurate 
predictions.

Error increases towards 
collapse regime (as 
network becomes very 
small and mean field 
estimation becomes less 
meaningful).
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Part 3/4: Data-Driven* Analysis

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

1. Rail Transportation (Engineered)
2. Water Networks (Engineered)

*Suitable for High-Dimensional Dynamics
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Resilience

In absence of well defined measures of 
resilience, we must use data to help us find 
proxy measures. We use hierarchical 
coherence as a proxy for measuring the 
stability of feedback loops on large complex 
networks. The hierarchical level* (trophic 
level) is defined as:

The incoherence of the network (instability) 
is defined as [3]:

3001/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

Robustness can be well simulated using 
random and targeted node/link removal. 

Identifying the average number of steps 
until collapse or decay to 50% is quite 
common. Other mesoscopic proxies such 
as core-periphery size and rich club 
coefficient can also be used [4].

Robustness
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Case Study: Transport (Rail)
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Here we study morning commuter rail travel, using 
census data and transport planning API to examine [5]:

• Which railway route I(include which train and what 
service) people will take (if any)

• How long it will take to get there

We construct a hierarchical multi-scale graph, where:

• Multiple transport links overlap on common stations
• Minor flows are removed (counter commuter flow 

<30 passengers).
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Data Processing

3201/08/2018
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Overall and Individual Rail Network Topologies

3301/08/2018
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Hierarchical Graph (Example: Thameslink)
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Results

3501/08/2018
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We analyse [5]:

• Resilience vs. Robustness against 
consumer satisfaction & late train data

• Greater London ~1 Hour Commuter 
Range

As a pure data-driven study, we show:

• Rail performance is strongly correlated to 
resilience, but not robustness;

• Pointing towards a pathway to reduce 
interdependency between rail services to 
reduce cascade effects.
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Minimum Change for Improvement (Example: Thameslink)

3601/08/2018
CHANCE funded by Lloyds Register Foundation. EPSRC ENCORE+

Denmark Hill to 
Elephant & Castle 
(Divert to Victoria)

New Link Reduces Incoherence from 
1.05 to 0.73. (20-25% Reduction in 
Complaints & Delays)

Remove Link Reduces Incoherence from 
1.05 to 0.61. (25-30% Reduction in 
Complaints & Delays, 10% increase in 
average journey time) 

Sutton Common & 
Crofton Park
(Avoid Streatham)
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Case Study: Water Distribution Network

3701/08/2018
CHANCE funded by Lloyds Register Foundation. 

Here we study different urban and rural water 
distribution networks (WDN) from the world with data 
from [6] and using EPANET to simulate the WDN 
performance:
• WDN topology and units
• Simulate demand variation across WDN
• Define failures in terms of pressure in pipes.

Nodes:
Junctions have water demand, Reservoirs provide 
water, Pumps increase pressure, Valves manage flows. 

Edges:
Pipes that connect nodes. Pipe properties include 
diameter, length, roughless and minor loss.
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Water Distribution Cascade Failure

3801/08/2018
CHANCE funded by Lloyds Register Foundation. 

As a pure data-driven study, we show:
• Cascade failure performance is strongly correlated 

to resilience (data driven structural parameter).
• Pointing towards a pathway to improve topological 

structure by increasing WDN structural coherence.
• This can be achieved using dynamic topology 

reconfiguration.
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Water Distribution Pressure Deficit & Pollution

3901/08/2018
CHANCE funded by Lloyds Register Foundation. 

Trophic incoherence impacts a variety of dynamics on WDNs, more so many other 
recognised resilience measures.
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Impact of Trophic Incoherence on Variety of WDNs with 
Different Demand Scenarios

4001/08/2018
CHANCE funded by Lloyds Register Foundation. 
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Part 4/4: Optimal Data Collection

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

1. New Sampling Theory for Graphs with Explicit Nonlinear Dynamics
2. Fourier Basis Sampling on Unknown Nonlinear Dynamic Graphs
3. Some Examples of Case Studies
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Digital Twins
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Increased affordability

Predictive maintenance

Environmental protection

Reduced operational expenditure

Increased resilience

Increased revenue

Infrastructure Digital Twins
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Current Limitations
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Sensor installation

Data transmission and processing

Maintenance and replacement

Process information
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New Sampling Theorem

4401/08/2018
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A key challenge faced by stakeholders is:
• Where (graph) do we collect data?
• What sampling rate (node) do I need?

Whilst individual graph (spectral properties) and 
dynamic sampling (Nyquist rate) are well governed 
by established theorems, we do not have a joint 
dynamic graph sampling theorem. This may seem 
similar to the problem of compressed sensing 
(tensor), but here we have explicit non-linear 
dynamics (causal relations between data).

Here we create a joint optimal sampling theorem 
mapping frequency of graph, frequency of 
dynamics, to the graph structure and the nonlinear 
dynamics.
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Infrastructure Networks with Nonlinear Dynamics
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Dynamical elements connected via a large-scale networks.

How to optimally sample networked 
dynamical elements?

node connected nodes

1) Topology

2) Dynamics
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Case Study: Digital Water
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UK water distribution network:
• 1,433 water treatment works
• 5,950 service reservoirs
• 9,000 sewage treatment works
• 416,175 km of water mains
• 393,460 km of sewers

Data source: https://www.gov.uk/government/publications/water-and-treated-water/water-and-treated-water

• Digital water will represent a £9.7 billion to 14 billion market 
opportunity by 2019 to 2020

• 20 to 40% - the reduction in water pipe leakage through smart 
pressure monitoring

Remote sensing and digital twin technologies 
provide connectivity between an utility and its 
diversified water supply. 

• Water resource planning
• Real-time water network pump scheduling
• Water and wastewater network control 
• Capital and operational intervention planning

https://www.gov.uk/government/publications/water-and-treated-water/water-and-treated-water
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Classical Method (Time-Series): Nyquist-
Shannon

04/07/2019 48

Problems: 1) How can we sample at sub-Nyquist, 2) How does it work on a graph?
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Classical Method (Graph): Laplacian
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𝐿 = 𝐷 − 𝐴

Problem: constructed Laplacian Matrix does not consider Dynamics
[1] I. Pesenson, “Sampling in paley-wiener spaces on combinatorial graphs,” Transactions of the American Mathematical Society, vol. 360, no. 10, pp. 5603–5627, 2008.
[2] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE Transactions on Signal Processing, vol. 
64, no. 14, pp. 3775–3789, 2016

D degree matrix
A adjacency matrix
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Dynamic Graphs: Compressed Sensing
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[1] R. Du, L. Gkatzikis, C. Fischione, and M. Xiao, “Energy efficient sensor activation for water distribution networks based on compressive sensing,” IEEE Journal on Selected 
Areas in Communications, vol. 33, no. 12, pp. 2997–3010, 2015.
[2] Xu, X. Qi, Y. Wang, and T. Moscibroda, “Efficient data gathering using compressed sparse functions,” in 2013 Proceedings IEEE INFO-COM 2013, pp. 310–314.
[3] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing, compression, and recovery for wsns: Sparse signal modeling and monitoring framework,” IEEE  
Transactions  on  Wireless  Communications, vol. 11, no. 10, pp. 3447–3461, 2012

restricted isometry 
property R. I. P.
(near orthonormal 
in sparse vectors):

y=Ax problem, ill 
defined, but 
constraint is find 
most sparse x.
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Compressed Sensing Approaches
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Discrete Cosine Transform (DCT)
• Approximates the dynamics using sum of cosine functions oscillating at different 

frequencies.

Principal Component Analysis (PCA)
• Reconstruct the signal using correlation.

Dictionary Learning
• Reconstruct the signal using linear combination of basic elements.

Benefit:
• Universal approach to compressing tensors

Problems:
• Compression is limited because RIP is strict and WDNs are relatively high rank.
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Practical Methods used in industry
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Numerical optimization and experience
• For example, optimizing the number of 

sensors that minimize an objective 
(energy consumption, population 
impacted).

Genetic algorithms
• Community detection
• Numerical optimization 

(genetic algorithm, ant colony)

[1] M. Guerrero, F.G. Montoya, R. Baños, A. Alcayde, C. Gil “Adaptive community detection in complex networks using genetic algorithms”
[2] G. Morcous, Z. Lounis “Maintenance optimization of infrastructure networks using genetic algorithms”
[3] J.W. Berry, L. Fleischer, L W.E. Hart, C.A. Phillips, J.P. Watson “Sensor Placement in Municipal Water Networks”
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Equation-Driven      vs       Data-Driven
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Explicit mapping: optimal 
sampling locations and rates 
to the graph properties and 
the governing dynamics.

Implicit mapping: determine 
which set of nodes are 
optimal to recover the full 
network’s dynamics.

Node sensor
readings

t

Node dynamics
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Equation-Driven
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[1] Zhuangkun Wei, Bin Li, and Weisi Guo. "Optimal Sampling in Joint Time-and Graph-Domains for Dynamic Complex Networks." arXiv preprint arXiv:1901.11405 (2019).
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Equation-Driven
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topology Dynamic equations
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Explicit Mapping of Graph and Dynamics

5601/08/2018
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Topology (Eigenvalues) 
Mapped to Dynamics 

(Sampling Freq.)
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Non-Linear Dynamics with Different Disturbances

5701/08/2018
CHANCE funded by Lloyds Register Foundation. 
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Data Driven Graph Fourier Transform
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[1] Zhuangkun Wei, Alessio Pagani, Guangtao Fu, Ian Guymer, Wei Chen, Julie McCann, and Weisi Guo. "Optimal Sampling of Water Distribution Network Dynamics using 
Graph Fourier Transform." arXiv preprint arXiv:1904.03437 (2019).
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Recovery of Full Network Dynamics from Sampling a 
Subset of WDN Nodes

5901/08/2018
CHANCE funded by Lloyds Register Foundation. 
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Performance Comparisons
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Performance Comparisons
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Deep Sampling using Neural Networks
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1. Training of artificial neural networks to learn high-dimensional features.

2. Rank of critical sampling nodes informs Deep Sampling input data size.

Further reduce sample size and recover features in high dimensions.

Nodes with 
sensors

Reconstructed 
dynamics in 
nodes with 
sensors

With 5x less sensor data than state-of-the-art, we can achieve a highly accurate reconstruction 
of the dynamic response.
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iii) Recovered Dynamicsii) Sampling Process

Ø1. Linearize dynamic equations, derive 
linearized matrix !

Ø2.  Compute cut-off frequency "#, and 
sampling set $. 

Ø3. Obtain samples as %$('/)*) k	= 0,1,…. 

Ø1. Recover %('/)*) from %$('/)*). 
Ø2. Recover %(.) from %('/)*) k	= 0,1,…. 

Optimal Sampling
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iii. Networked 
Dynamics

a) Explicit Dynamics b) Implicit (Data-Driven) Dynamics

i. Water Distribution Network 
with Reynolds-Averaged 
Navier-Stokes (RANS) Dynamics

ii. Sensors monitor water 
pressure and contamination

Heterogeneous functions governed by higher 
order PDE with dynamic parameters.

c) Graph Fourier Transform for Explicit Dynamics d) Graph Fourier Transform for Implicit Dynamics

i. Native network: 
each node’s dynamic 
has different spectral 
properties.

ii. Sampling theory to 
identify critical 
sampling nodes and 
their sampling rate.

iii. Sparse samples 
from critical nodes in 
(ii) enable recovery of 
all network dynamics. i. Proposed data-driven GFT 

yields potential for band-limited 
sampling, which improves over 
CS and Laplacian approaches.

ii. Recovery with arbitrarily low 
errors, reducing sampling size by 
10x compared to Laplacian and 2x
compared CS approaches.

e) Deep Sampling with Minimum Data

i. Training of artificial neural 
network to learn high-
dimensional features.

ii. Rank of critical sampling 
nodes from (c) and (d) 
informs Deep Sampling 
input data size.

f) Deep Sampling Recovery of Dynamics

i) Recovery with low errors for 
discrete classification. Pathway to 
reducing sensors by 10x compared 
to approaches in (c) and (d). 

ii) High impact in infrastructure 
sensing for Digital Twins, and 
reducing cost of data collection in 
social and biological sciences.

iv. Insight: Yields knowledge of how graph-time domain 
sampling relates to network structure and dynamics.

iii. Insight: Theory-driven input data can dramatically reduce 
sample size and recover features in high dimensions.

ii. Disturbance

2019 Bell Labs Prize Entry: Deep Sampling on Dynamic Networks 
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Main Contributions
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• Optimal sampling in dynamic dynamic networks
• Dynamics reconstruction using GFT and NNs
• Research in innovative neuroevolution techniques
• Green AI

Theoretical 
research

• Design of innovative infrastructure digital twins
• 10x reduction required sensors
• 10x improvement in dynamics reconstruction
• 10x reduction in data collection
• Task-specific applications: resources management, 

predictive maintenance, etc.

Engineering
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Summary & Looking at 
Current & Future Work

01/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

1. Currently: Working with Industrial & Gov. 
Stakeholders to Deliver Impact

2. Next Steps: Data to Inform Posterior Risk 
Estimates

3. Developing EPSRC Fellowship & EPSRC P. 
Grant (Co-I)
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Summary, Next Steps & Impact
We have only been working on these important 
questions for 12 months and have a long way to go.

Better understand the relationship between:
• Resilience & Robustness: Built & Natural 

Ecosystems
• Local Dynamics and Global Topology in 

Networked Ecosystems

6601/08/2018
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).
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Interventions:
• Maintenance
• Upgrade
• Protection
• Rewiring
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(
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We can identify vulnerable nodes at the risk of losing resilience and this may go on to 
inform infrastructure operators. 

We still need to couple ecosystems together and model higher dimensional dynamics. 

We want the work here to inform real-time sensing and control systems as well as the 
design of new systems (topology and components).
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