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Critical Infrastructure & Ecosystems

Many of our built infrastructures are
networked together:

«  Water Supply Sy | q
« Transportation - 2.3l 74 oS | e s
 Electricity Supply » /»/,/ X : P

« Telecommunications K sa'N

They combine local functional elements with cecricero - srioces

interdependent coupling elements. Together, areoms ™

they form the backbone of our modern }
civilization, providing services to billions. N

These often sit alongside natural ecosystems
with network dimensions:
 Food Webs

» Organizational Structure
« Gene Regulation
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Challenge of Cascades on Networks

Background: Cascade effects (undesirable, not designed)
are a common problem on networked systems.

Examples: virus (cyber and epidemic), pollution, false
information, circadian clock (see right)...etc.

Literature: we know how effects spread, but we don’t know
that well how it affects and is affected by the performance
and complex behaviour of the individual components.

Goal: What we want to understand is their individual
resilience behaviour and their coupled resilience behaviour.

Challenge: The dimensionality of the problem is huge
(networks with millions of nodes), and the behaviour can be
complex models. How do we gain meaningful insight?
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Examples of Cascades & Failures

Continuous and Discrete: Cascade effects can be
continuously affecting the network (pollution) or discretely
breaking down the network (attacks cause failure).

Node Centrality: we know node centrality (eigenvector
centrality, PageRank...etc.) identifies nodes with greatest
influence to spread cascades.

Graph Structure: we also know that targeted attacks
against high degree nodes is effective, and random attacks
against small-world networks is ineffective.

Rewiring: more recently, we know how mesoscale core-
periphery structure can best preserve integrity of a network
when subject to attacks and under a finite energy budget.
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A review of definitions and measures of system resilience

* School of Industrial and System:

B - f R - @ CrossMark
rl e eVI ew Seyedmohsen Hosseini?, Kash Barker ®*, Jose E. Ramirez-Marquez bie

, University of klahe P

istitute /, Unite s

® School of Systems and Enterprises, Ster
©Tec de Monterrey, School of Science an

Bouncing Back: systems that return to
their operating state after a negative shock
is the commonality in resilient behaviour.
Rate of return, asymptotic convergence, are
all important metrics.

Hasten & Bounce Forward using Networks:
couplings on the network can help individuals
bounce back faster, as well as move forward
by connecting them (rewiring) to new elements
that can improve their resilience in the future.
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Resilience Robustness

Resilience is important as systems Robustness is important as systems
constantly face stressors (demand spikes) constantly face complete failures at the sub-
and perturbations. system or connector level.
Each system has a desirable equilibrium Each sub-system requires connectivity to
state and want to avoid undesirable states. function properly. Failures can lead to
Cascades can cause system wide poor cascade failures.
performance.
o § l l Desirable
l l State
"\
q1 I
* Collapse of
Undesirable l Lo » Whole System
State 3 T :
'B '8> 90% 80% 70% 60% 50% 40% 30% 20% 10% >
c
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Brief Review of Resilience

Stability: defined as return to a desirable equilibrium after
some perturbation or shock.

Random Graphs: In random graphs, it was shown (May
1972) that instability (largest eigenvalue) scales with size of
the network (N) and average connectivity (C):

xVNC

Later expanded to random graphs with delays.

Linear Dynamics on Small Structured Graphs with
Defined I-O: we know that linear stability is defined by the
largest root of the transfer function.

Large Structured Graphs with No I-O: we don’t know. So
we currently check no. loops / trophic coherence (2" part of
talk), but we can also develop some new theories (15t part).

Ps(k) / Pa(k)

Trophic coherence determines food-web
stability

Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, and Miguel A. Mufioz

PNAS December 16, 2014 111 (50) 17923-17928; published ahead of print December 2, 2014
https://doi.org/10.1073/pnas.1409077111

Looplessness in networks is linked to
trophic coherence

Samuel Johnson and Nick S. Jones

PNAS published ahead of print May 16, 2017 https://doi.org/10.1073/pnas. 1613786114
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Brief Review of Robustness

Attack/Removal Process: random removal/targeted
removal leads to slow destruction of network.

Failure Process: loss of complete connectivity = loss
of functionality (assumes coupling determines
function).

Relation to Network Structure: easy to see the role
of network topology on the overall performance (e.g.
small world network robust to random attacks,
vulnerable to targeted attacks).

Cascades on Electricity Networks: cascade failure
on electricity grid networks (Gao et al. Nature: SI
2016).

Trophic structure b Spanning tree structure c Core/periphery structure
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Rewiring for Improvement RSy, SN 2L
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Rewiring: preserving mesoscale community structure s { e N

. . * ° °
can preserve continuous robustness against further . % A ., o “
) ® *° ®o00
removal (Lu et al. Nature Climate Change 2016). AT *a N
L A A A 4 “a A A
Rich club of connections makes unforeseen attacks P A S

less likely to lead to cascade failures.

Individual versus systemic risk and the
Regulator’s Dilemma

Nicholas Beale®", David G. Rand®’, Heather Battey, Karen Croxs

, Robert M. May®, and Martin A. Nowak""?

Limited Capture of Local Connections: a pure
connectivity analysis leads to conclusions that weakly

entities are not important (e.g. Malaria fly can be A individualrisk B Systemic risk
eliminated from ecosystem without cascade damage)... = {-&/wm
Regulatory Paradox: a small at a peripheral part can J\\
upset the whole ecosystem in the opposite way, e.g. S “, o Y i
saving a small bank can collapse the the whole ol e T e
financial system (May et al. PNAS 2011). b
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Gap in Knowledge

v @ @

Just Networks:
Current knowledge
is mostly limited to
weighted or
unweighted graphs
(they may change
over time).

The nodes and
edges do not have
dynamical
behaviours.

Dynamics Matter:
many (most?!)
dynamical systems
have non-linear
behaviours and
multiple
equilibrium states.

In stable
equilibriums, they
cannot be easily
disturbed, whereas
in unstable
equilibriums, they
can be easily
disturbed.

This already allows
you to understand
how modeling
dynamics is
important.

The Alan Turing Institute & University of Warwick



What do we know already?

Engineers and ecologists have a good understanding of:
* Local Dynamics & Governing Equations

« Stability and Control

« Data and Experience

» Stressors & Perturbations

But, as we connect systems in increasingly larger networks,

we don’t know:

* Gives Insight over Pure Predictive Approaches (ARIMAs,
HMMs, DGPs, CNNs).

* Relationship between: Topology and Dynamics

 How Local Effects affect Network Wide Cascades % = f(x) N 29,:1 a; g(xi’xj)

Open Questions:

Is system resilience more sensitive to network topology or component dynamics?
How can this knowledge inform the design of new critical infrastructure systems?
What are the wider applications of this framework (ecology, biology, society)?

01/08/2018 The Alan Turing Institute & University of Warwick
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).

15



3 ’C_@' Ny \ X )

o)
( j’iﬁfim @-“h&ctlo hal Analysis with

certalnty Quantlflcatlon

B

|
//
y ‘

1. Telecommunications (Engi{’nfé/ered) |
2. Bee Pollination (Natural) /=~

3. Gene Regulation (Natural) - \

—

(1)

/\\L

01/08/2018 The Alan Turing Institute & U ty of Warwick g
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC /R041725/1).



(i) Coupled Dynamics in a Complex Network X A | | |
L
) a1 ]
X v
Be B

a. Resilience Function of an Isolated
Node in Terms of Parameter 3

b. Coupling Individual
Dynamics Shifts their
Resilience Functions

docs : c. Approximating the Resilience Function
d—tl = f(xi) + 29’:1 aij g(xi, xj) of a Connected Node in Terms of its
Weighted Degree w;
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Mapping Resilience to Robustness

Familiar notions of dynamic time response (bounce back) is mapped to changing
equilibrium states and a resilience margin. Networked systems can have cascade
dynamics (resilience), but when it causes cascade unrecoverable failures (robustness).

(ii) Characteristic Functions
. Increasing Perturbation
X Desirable . ) Desirable >
A X Potential Equilibrium o
15t Undesirable e
el e ()
o Equilibriums =
10} -(3 2
f: - %
5} - Resilience @
e t S w
10 20 30 40 B
a. Dynamic Response: b. Rate Dynamics: Equilibriums c. Resilience Function: Under
Recovery of Resilience Shift with Perturbations Perturbations (w)
01/08/2018 The Alan Turing Institute & University of Warwick 18
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Current Literature LETTER

Discovering the explicit relationship Universal resilience patterns in complex networks
betwee n : Tianxi Gao', Baruch Barzel? & Albert-Lészl6 Barabdsil:345

* Average Network Dynamics as a

function: dx; A
) —IZF X —+ A,G Xi, Xj
* Local Node Dynamics dt (xi) JZ::l O (% %)
* Network Topology
This was applied to a variety of ecological
and biological dynamics in 2 key papers

(Nature Physics 2013) and (Nature
2016).

) | (Bete> Xefr ) = F(Xefr) 4 Bett G (Xefr Xefr )
Basic idea is to develop a mean field

approximation. Topology Mapped to Dynamics

(Network Average)

01/08/2018 The Alan Turing Institute & University of Warwick 19
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Mean Network Dynamics Hides
Node Level Behaviour

Near identical networks and dynamics can hide
different node level dynamics.

Here we show how the resilience of node 4 can vary

between being resilient (bouncing back) to collapsing.

The overall network dynamics (Nat. Phy.13 & Nat16
papers) predicts would be the same. Indeed, one
expects mean field to give similar expectations.

What we wish to do is to improve on this and give
node level accurate predictions, because most
interventions are made at the node level.

(i) Similar Effective Dynamic Response at Network Level

a. Parent Network

b. Random Link Removal

c. Targeted Link Removal

RIS

15]
|

10D
5|

Resilience

Recovery of 10}
5

15|

Recovery of
Resilience

Recovery of
Resilience

10 20 30 40

t

10 20 30 40 4

10 20 30 40 4

(ii) Different Dynamic Response at Node Level

a. Parent Network

X
Mean Dynamic
15) ‘ -
[
10 ‘ Eventual
Recovery in
Node 4

5|
{

b. Random Link Removal
X

Mean Dynamic

15
10 Eventual
| Recovery in
5| r Node 4

c. Targeted Link Removal

Mean Dynamic

10 20 30 40

t

10 20 30 40

t

10 20 30 40

(iii) Different Rate Dynamics at Node Level
a. Parent Network

b. Random Link Removal

c. Targeted Link Removal

01/08/2018 The Alan Turing Institute & University of Warwick
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Sequential Estimation: Heterogeneous

Mean Field

We first take a homogeneous
estimate to give a mean field
understanding of equilibrium states.
The trick here is finding a network
wide topological measure.

We then iteratively substitute this
back into the network using local
network measures to create
heterogeneous solutions.

Improves over current methods [1]
by giving node level prediction,
which helps to inform action [2].

(iii) Step 0: Homogeneous
Mean Field Approximation

MI>‘_'

Step Oa. Example Network with
Homogeneous Weighted Degree w,,

z—fz F(x) :f(x) + Wy g(X,X)

f(eO) + Wy g(eo' eo)zo

Step Ob. Solve for a
Homogeneous Equilibrium Solution (e°)

(iv) Step 1 to s: Sequential Estimation of
Heterogeneous Equilibrium State

Equilibrium
Shifted

wip = z Qii

=

Step 1. Substitute in Equilibrium Solution from Step 1 to Update
Estimate in Step s with a Heterogeneous Local Weighed Degree

Rate Dynamics Resilience Function

X x x el
X X X *
Wi
G(30,x) G(39,x) G(50,x) 30 39 50
—— —
Increasing Perturbations Increasing Perturbations
dx;

=G, wy) = f(x) +w; g(x;,e°)

f(el) +w; g(e}, e®)=0

dat

Step s. Repeatedly Substitute in Equilibrium
Solution (e';) from Step s-1 to Update Estimate

01/08/2018 The Alan Turing Institute & University of Warwick
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Accuracy of Equilibrium on Two Networks

A A
13} 30}
27}
12} 24}
21}
11} 18}
15}
L L L L L L L > .l L L L L L L
12 15 18 21 24 27 30 12 15 18 21 24 27 30

(a) Mutualistic interactions dynamics. (b) Gene regulatory dynamics.

Fig. 3: The first order approximation of two dynamical systems on the same Erdos-Rényi graph with 100
vertices and p = 0.2. The horizontal axis is the weighted in-degree of a vertex, w;, and the vertical axis
is the value of the equilibrium at this vertex. The equilibrium computed numerically is shown in black
and the blue line is the graph of the function y{!}.

01/08/2018 The Alan Turing Institute & University of Warwick 22
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Case Study: Telecommunications
(Wireless Load Balancing)

Here we study a mobile network, whereby the load
demand (/) dynamics is governed by [7]:
* Load balancing inside a cell
(capacity scaling using adaptive modulation coding
schemes / power control / antenna switching)
* Load balancing between coupled cells
« Data demand from consumers

The load dynamics in each cell can be described by its

own attempt to satisfy demand (RHS 1st term) and the
coupling with other cells (RHS 2" term).

N
li=f()+ Y ajigly = 1),
j=1

N
j=1

Mutual Information
Saturation

dl
E = f(l' ﬁ)
l Overloaded ’ ’
t

Underloaded d

T >

a. Capacity Scaling to Meet Demand

' d. Coupled
via Power & Antenna Control Dynamics

dl

3 Desirable

dt Equilibrium

b. Self Load Control

in BS Node i
dl
- Offload to
dt BS/
0 Li =1

Offload
fromBS j

c. Offloading
Between BS Nodes i and j

dl;
= =W +Z a9l y)

01/08/2018 The Alan Turing Institute & University of Warwick
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Stability Criteria for Load and Capacity Dynamics

A. Stability

In order to determine the stability of the equilibrium we
compute the eigenvalues of the Jacobian at the equilibrium.
Let F; be the i-th component of the function F' of equation
(4), then we have

P N
—F(L)| = f(r) = a;g 0)
l; L=r1 ;
r j=1
, N (6)
= f'(r) - “Zﬂjz‘
j=1
= f'(r) — aw;
where we define w; = Zjvzl aji

When k # i we have

r

N
/

= E djkajig (0) = aak;,

L=rl j=1

Fi(L)

Ay

where dy; is the Kronecker delta. This equation together with
equation (6) shows that the Jacobian has the form

J(r1) = f'(r)ld — aD + oA = f'(r)ld — oA,

where Id is the identity matrix, D is the weighted in-degree
matrix and A the weighted in-Laplacian of the graph. Notice
that the spectrum of J(r1) is a spectral shift of the spectrum
of aA.

We assume that ¢;(l;) = d;/l;. This implies that qﬁi_l(ci) =
d;/c; and ¢.(l;) = —d;/I?. Then the system (7) becomes

j=1
¢ N c;d;
— RBes _ o _
= Be; (1 di) + jz;aaﬂcl <1 dez) : (®)

At first glance it seems that the above equation implies that
the self-dynamics of a BS is given by f(c;) = Bei(1 —¢;/d;)
and it has two equilibria, d; which is stable and 0 which is
unstable. The equilibrium (d;,...,dy) corresponds to the
stable equilibrium of the system (3) and from this we deduce
that it is not just asymptotically stable but also a global
attractor of the system. The equilibrium 0, however, is not an
admittable one because it appears also as a denominator and
in this case the right-hand side of (8) cannot be evaluated. In

a sense the 0 “equilibrium” of the system (8) corresponds to
infinity in the system (3).

01/08/2018 The Alan Turing Institute & University of Warwick
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Stochastic Geometry Networks with Eigenvalues Bounded by
Gershgorin Circle

Eigenvalues are bounded by disks centred on
the diagonal of the matrix:

« Sum the absolute value of other row or
column members

« Smallest determines radius of circle
« Each circle contains one eigenvalue. al. PPP Distributed Cells & Random a2. Eigenvalue
Neighbor Association Distribution

In our case, all the Laplacian eigenvalues are
positive. We show with any PPP & PCP
networks.

As such, load balancing is always stable, )
irrespective of: dynamics, and topology;

provided that our measurements are accurate.

b1. PCP Distributed Cells & Random a2. Eigenvalue
Neighbor Association Distribution

01/08/2018 The Alan Turing Institute & University of Warwick
CHANCE funded by Lloyds Register Foundation. CoTRE funded by EPSRC (EP/R041725/1).
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Probabilistic Uncertainty under Measurement Noise

In the case of many systems, noise can arise from:

* Real stochasticity in the environment

* Noisy behaviour in the components / sub-system
* Measurement noise in the sensor

In our case, we assume that there is both noise in the system measurement of load balancing data flow
and an underlying stochasticity in the process.
N

(J)ii=—-B—GC — E(Ui(”f + ;i)

j=1
(J)ij = ajiy + aji&ji-
We elegantly show that provided the measurement noise has a smaller variance than the underlying
stochastic process, then the system is always stable for: (1) all dynamics, and (2) all network topologies.

N

@)= (‘) (L=7/)"(1+7/e)¥ "
n=1

01/08/2018 The Alan Turing Institute & University of Warwick 26
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Case Study: Bee Pollination

Here we study bee pollination network, whereby the
population dynamics is governed by:

» Carrying Capacity of Bees (K)

» Allee Effect (critical hive threshold, C)

* Mutualistic Interactions

dx; Tl
L = 1—— ——1 ; i B;,
dt ( +Zaj Dz +EZ$Z -I—Hj.%‘j +

We show excellent predictability of both the resilience
collapse subject to 3 standard perturbation simulations:

* Node Removal: dying of bee colonies
» Link Removal: cut-off from interactions/migration
» Weight Reduction: lowering of interactions

Gives insight into colony collapse disorder.

Simulation

a. Node Removal

Upper- Resilience Loss

Bound Uncertainty Region

Loss of Resilience

Theory

a. Node Removal

x; Upper- Resilience Loss
Bound Uncertainty Region

N N
b. Link Removal b. Link Removal
xS Upper- Resilience Loss x5 Upper- Resilience Loss
i Bound Uncertainty Region ! Bound Uncertainty Region
Loss of
Resilience
L L

= Bound

c. Coupling Weight Reduction

Upper-

Resilience Loss
Uncertainty Region

Loss of
Resilience

c. Coupling Weight Reduction

Resilience Loss
Upper- Uncertainty Region
Bound

" 90% 80% 70% 60% 50% 40% 30% 20% 10%

" 90% 80% 70% 60% 50% 40% 30% 20% 10%
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Resilience Loss in Biological Network (Regulatory Gene Dynamics)

Case Study: Gene

Simulation Theory Accuracy Error
L]
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i error

Uncertainty Region
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N o 8
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Resilience

In absence of well defined measures of
resilience, we must use data to help us find
proxy measures. We use hierarchical
coherence as a proxy for measuring the
stability of feedback loops on large complex
networks. The hierarchical level* (trophic
level) is defined as:

1
§; = 1—}-@261,']6]'.
toJ

The incoherence of the network (instability)
is defined as [3]:

1
ij

Robustness

Robustness can be well simulated using
random and targeted node/link removal.

|dentifying the average number of steps
until collapse or decay to 50% is quite
common. Other mesoscopic proxies such
as core-periphery size and rich club
coefficient can also be used [4].

Collapse of
Whole System

A
90% 80% 70% 60% 50% 40% 30% 20% 10%
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Case Study: Transport (Rail)

Here we study morning commuter rail travel, using
census data and transport planning APl to examine [5]:

* Which railway route I(include which train and what
service) people will take (if any)
* How long it will take to get there

We construct a hierarchical multi-scale graph, where:
* Multiple transport links overlap on common stations

* Minor flows are removed (counter commuter flow
<30 passengers).

% ~F \Workers Commiiting 1
0 OF VWOrkers commuting to

Greater London

South West
Trains
London

Overground

London Urban Rail Network

Southeastern

Chiltren
Railways
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Data Processing
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vulnerabilities in
rail networks
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a. Morning Journeys Dataset

i) Single Journey

Home

ii) Cluster Locations
to Stations &
Overlap Journeys
using Optimal Path

Work

b. Filter Out Minor Flow Data

c. Resilience Analysis

O Level 12

Level 7

i) Feedback Can
Increase Instability

Level 1

P Trophic levels

ii) Network Hierarchical
® Coherence Measures Stability

i) Nodes removal

@
° @

. periphery Core

o]
Periphery

NodeDecree-Rank ° .

ii) Core-periphery analysis
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Overall and Individual Rail Network Topologies
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Hierarchical Graph (Example: Thameslink)

Energy (Commuter) Transfer
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Results
We analyse [9]:

* Resilience vs. Robustness against
consumer satisfaction & late train data

* Greater London ~1 Hour Commuter
Range

As a pure data-driven study, we show:

» Rail performance is strongly correlated to
resilience, but not robustness;

* Pointing towards a pathway to reduce
interdependency between rail services to
reduce cascade effects.
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Minimum Change for Improvement (Example: Thameslink)

New Link Reduces Incoherence from Remove Link Reduces Incoherence from
"~ 1.05to 0.73. (20-25% Reduction in -~ 1.05 to 0.61. (25-30% Reduction in
\ Complaints & Delays) \ Complaints & Delays, 10% increase in

Denmark Hill to
Sutton Common &
Crofton Park Elephant & Castle

(Avoid Streatham) . (Divert to Victoria)
& & g "\.'._.
" e ————. % ¢ e —————
B A '\/ &t e \/
/ { 4 3
/ / / /
Vs Ve
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Case Study: Water Distribution Network

Here we study different urban and rural water
distribution networks (WDN) from the world with data
from [6] and using EPANET to simulate the WDN
performance:

« WDN topology and units

» Simulate demand variation across WDN

» Define failures in terms of pressure in pipes.

Nodes:
Junctions have water demand, Reservoirs provide

water, Pumps increase pressure, Valves manage flows.

Edges:
Pipes that connect nodes. Pipe properties include

diameter, length, roughless and minor loss.

ATI/WN_datasets/kentucky/ky5.inp

01/08/2018 The Alan Turing Institute & University of Warwick
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Water Distribution Cascade Failure

As a pure data-driven study, we show:

« Cascade failure performance is strongly correlated
to resilience (data driven structural parameter).

* Pointing towards a pathway to improve topological

structure by increasing WDN structural coherence.

« This can be achieved using dynamic topology
reconfiguration.

Pressure at 1 hours

°c588888

35
30
N
o 25
i) 0
g o 15
o = 20
5 5
'_g (D 15
- 2 10
2 &
3 05 3
o
0.0 14
10 15 20 25
Demand Incoherence parameter
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Water Distribution Pressure Deficit & Pollution

Trophic incoherence impacts a variety of dynamics on WDNs, more so many other
recognised resilience measures.
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(a) Average pressure difference compared

with standard condition. Each line is a  (b) Average pressure deficit VS trophic (a) Average expulsion time of a chemical. () Average chemical expulsion time VS

Each line is a different injection junction.  trophic incoherence.

different junction closure. incoherence.
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(c) Pressure deficit rank VS trophic inco- (d) 10 most significant pressure deficits (c) Expulsion time rank VS trophic inco- (d) 10 most disruptive nodes VS trophic

herence. VS trophic incoherence. herence. incoherence.
Figure 2: Pressure deficit Figure 4: Chemical
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Impact of Trophic Incoherence on Variety of WDNs with
Different Demand Scenarios

Synthetic WDNs  Kent. WDNs
SD VD
Junction breakage
Mean % nodes with deficit >25% -0.66 -0.65 -0.55
Mean % nodes with deficit >50% -0.66 -0.66 -0.56
Mean % pop. impacted (deficit >25%) | -0.66 -0.65 -0.39
% Pop. impacted (deficit >50%) -0.66 -0.66 -0.39
Mean time to recover 0.62 0.39 0.44
Chemical injection
Mean Time to recover 0.52 0.48 0.21
Mean % chemical Extent -0.29 -0.30 -0.52
Mean % pop. impacted -0.40 -0.37 -0.46

Table 1: Summary of the results. Synthetic networks are tested with static
(SD) and variable (VD) demand patterns. Kentucky WDNs are tested with the
pattern provided. In variable demand mode, the disruptions are created during
the time of the day with peak water demand.

01/08/2018 The Alan Turing Institute & University of Warwick 40
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Digital Twins

Q
‘ Increased affordability
\
‘ Predictive maintenance

=
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Current Limitations

Process information

Without wheel

\‘ =P

With wheel
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New Sampling Theorem

A key challenge faced by stakeholders is: a-D':di"“i'“a'
« Where (graph) do we collect data? ramies « 0

. dx
« What sampling rate (node) do | need? — =F@) Qn
Whilst individual graph (spectral properties) and
dynamic sampling (Nyquist rate) are well governed xle
by established theorems, we do not have a joint l >
dynamic graph sampling theorem. This may seem o
similar to the problem of compressed sensing — T
(tensor), but here we have explicit non-linear 2 | > ¢
dynamics (causal relations between data). o PR
Here we create a joint optimal sampling theorem b. Networked >
mapping frequency of graph, frequency of Dynamics

dynamics, to the graph structure and the nonlinear 2 _ r(x ) + 5%, a,, Wrn, x)
dynamics.

01/08/2018 The Alan Turing Institute & University of Warwick
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Infrastructure Networks with Nonlinear Dynamics

Dynamical elements connected via a large-scale networks.

1) Topology

How to optimally sample networked
dynamical elements?

2) Dynamics N
dx, (t) _
— = fo(xi(), - an(t)) =Fn(zn(t)) ¥ Ze Qn,m Wn,m(xfrz(t))@ Tn

node connected nodes
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Case Study: Digital Water

Rem_ote sensing a}nd digital twin teghnologlgs UK water distribution network:
provide connectivity between an utility and its . 1,433 water treatment works

diversified water supply. - 5,950 service reservoirs
« 9,000 sewage treatment works
* 416,175 km of water mains

« Water resource planning « 393,460 km of sewers

* Real-time water network pump scheduling
« Water and wastewater network control
« Capital and operational intervention planning

« Digital water will represent a £9.7 billion to 14 billion market
opportunity by 2019 to 2020

« 20 to 40% - the reduction in water pipe leakage through smart
pressure monitoring

Data source: https://www.gov.uk/government/publications/water-and-treated-water/water-and-treated-water

04/07/2019 The Alan Turing Institute
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Classical Method (Time-Series): Nyquist-
Shannon

A XN(S) 3 T T T T

A I

o -B f+B f-B B /. f

e, YU

1
2

| |
-2 -1

: 1 7

Problems: 1) How can we sample at sub-Nyquist, 2) How does it work on a graph?
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Classical Method (Graph): Laplacian

L =D — A Dde.gree matrix |
A adjacency matrix

>r, <N sampling nodes needed

N\
Lynxn - @@ A

eigenvalues

Laplacian matrix

Problem: constructed Laplacian Matrix does not consider Dynamics

[1]1 1. Pesenson, “Sampling in paley-wiener spaces on combinatorial graphs,” Transactions of the American Mathematical Society, vol. 360, no. 10, pp. 5603-5627, 2008.

[2] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE Transactions on Signal Processing, vol.
64, no. 14, pp. 3775-3789, 2016
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Dynamic Graphs: Compressed Sensing

Observed Randomized Inverse Fourier Few active 2(N+K-I')I"/[<, <N

projections beamforming weights Matrix frequencies : ;
l l Time-step sampling nodes
12 K 171
Nodes 12 N 12 K neede
- i ' 1[0 = i
= u_u ..
-:ﬁ" n
: ||

|

X = Puxn |4 _Op DD
N | ) [ ) D D r-
y=Ax problem, ill Networked data, rank(X)=r Samplingnode sets, ~ € € = € | @
defined, but (c3sampling nodes) s.t., P satisfies 2yRIP V_REI{T}?fK}"Ck Il
constraint is find x| Y (CInonzeros)

most sparse X.

restricted isometry HP ) CH2
property R. I. P. 1 — 6y < SV Iy
(near orthonormal 7= cl?
in sparse vectors): 2

<1446 =
<1+ 27y Y Iglea%HCkHlo

[11R. Du, L. Gkatzikis, C. Fischione, and M. Xiao, “Energy efficient sensor activation for water distribution networks based on compressive sensing,” IEEE Journal on Selected
Areas in Communications, vol. 33, no. 12, pp. 2997-3010, 2015.

[2] Xu, X. Qi, Y. Wang, and T. Moscibroda, “Efficient data gathering using compressed sparse functions,” in 2013 Proceedings IEEE INFO-COM 2013, pp. 310-314.

[3] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing, compression, and recovery for wsns: Sparse signal modeling and monitoring framework,” IEEE
Transactions on Wireless Communications, vol. 11, no. 10, pp. 3447-3461, 2012
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Compressed Sensing Approaches

Discrete Cosine Transform (DCT)
* Approximates the dynamics using sum of cosine functions oscillating at different
frequencies.

Principal Component Analysis (PCA)
* Reconstruct the signal using correlation.

Dictionary Learning
* Reconstruct the signal using linear combination of basic elements.

Benefit:
* Universal approach to compressing tensors

Problems:
« Compression is limited because RIP is strict and WDNSs are relatively high rank.

04/07/2019 The Alan Turing Institute
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=

Practical Methods used in industry

. . situation B1 I B2
Genetic algorithms |
-  Community detection A1 :><§§
* Numerical optimization =1 :
(genetic algorithm, ant colony) A1 | B2
cross-over B1 &

Numerical optimization and experience

« For example, optimizing the number of
sensors that minimize an objective
(energy consumption, population
impacted).

[1] M. Guerrero, F.G. Montoya, R. Bafos, A. Alcayde, C. Gil “Adaptive community detection in complex networks using genetic algorithms”
[2] G. Morcous, Z. Lounis “Maintenance optimization of infrastructure networks using genetic algorithms”
[3] J.W. Berry, L. Fleischer, L W.E. Hart, C.A. Phillips, J.P. Watson “Sensor Placement in Municipal Water Networks”
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Equation-Driven

Explicit mapping: optimal
sampling locations and rates
to the graph properties and
the governing dynamics.

Node dynamics
o x(t)
dx

E=F(X)

VS

Data-Driven

Implicit mapping: determine
which set of nodes are
optimal to recover the full
network’s dynamics.

Node sensor

readings “ ‘
‘ g | H H ‘ i, t
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Equation-Driven

a) Dynamic Network b) Sampling Process c) Recovered Dynamics
xn(t) X,
7 Optimal Sampling L _ ()
4 t(s) || » 1. Linearize dynamic equations, derive ’ 2 M{‘(s)
Node of i linearized matrix J ¢ (%e) o I]/Dynamics Recovered
Interest » 2. Compute sampling node set §, recovery o052 N e T atNode of Interest
matrix ®, and cut-off frequency £, P woeaVA = N
» 3. Obtain samples as x5 (k/F;) k=0,1,.... ek %0/ via GFT
X0 ~ = domain
Recovery -\fm(k/Fs)
> 1. Recover x(k/F,) from x5 (k/F,). Critical
f(Hz)|| > 2. Recover x(t) from x(k/F;) k=0,1,.... SHmpie Node t(s)
ofr(t) .. OfH(@®)
d (t) (‘)Il(t) OIN(t)
y N Al , )
Y =350xe) y(t) +o(ly®I) = Ip0xe) y(H)  Tplxa)2 |

afn(®) . 8f,\.;(t) x(t)=x%e
dx1(t) Oz (1)

[1] Zhuangkun Wei, Bin Li, and Weisi Guo. "Optimal Sampling in Joint Time-and Graph-Domains for Dynamic Complex Networks." arXiv preprint arXiv:1901.11405 (2019)
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Equation-Driven

r=rank(]J s (X,))=N-d
sampling nodes needed

_—
Jr(xe) |— () B N M B

) L . Find approximated eigenvalues
Linearization matrix

. OF OF
J r(xe) @4 w(Xe) +dzag{a—xi,... : 6$JJED

T

topology Dynamic equations

e.g, exp(Al) o~ exp(/lz) ~ exp(/13) PR

~ exp(Ag+1)
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Explicit Mapping of Graph and Dynamics
Topology (Eigenvalues)

— Mapped to Dynamics

N Anj - 9(0) Sampling Fre
Y"(Q)_A@Z(A) —Re[\] +i(Q —Im[)\;])’ (Samplng Fred.)

Im [Yn ()]

network
stability area

b"

Re Im[A5)] Im[A4]

(b)
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Non-Linear Dynamics with Different Disturbances

[ 10° T 10° m-8Sample frequency Fy < Q./x
10° : ! [©-Sample frequency F, > Q /=
i i |==Benchmark: F, = 4Q./=
0° 10° :
Exzé] T
= - R D
2101 £105 Cut-off Q. /7 1™
& ;
10-|_:> 10-10 :
10 & Graph sample size |S| < [N, | i

200

400 300

100

-e-(;mpll sample size |S| > |AL,|
15| Benchmark: |S| = N

5 17 /500 Graph sample size |S 101o° 10’ 10° 10° 10°
Sample frequency F, (Hz) raph sample size |S| Sample frequency F, (Hz) Graph sample size |S|
10’ : : — 10°
10° :
10° 3
10-5 Mﬂ
= Bl om |
;‘ m10 ............ | E
=10 7 '
D T i
- T ut-o g
102 “o,,,. Cut-off: Q/7 |
ol — /o~ 3 : :
10 10'3 & Graph sample size |S| = 2N/5 ) : 10 I[&-Sample frequency F, < Q./7 \\
200 100 ©-Graph sample size |S| = 4N/5 : ©-Sample frequency Fy > Q. /7 \\\
500 400 300 10_4 = Benchmark: |S| = K | Benchmark: F, = 4Q,. /7 N
1 . ) . . 1 . I I .
Sample frequency F, (Hz) Graph sample size |S| 10° 10’ 10° 10 10* 0 100 200 400 500

Sample frequency F, (Hz) Graph sample size |S]|

(a) (b) ()



Data Driven Graph Fourier Transform

r sampling nodes needed

Time-step
12 K 1o p—"__ N

Noi:le LT
2 L J 2 )
X —l Frysn
( ) ! )
N ) N )
Networked data, rank(X)=r  Sampling node setS, X1 X,
(=>the sampling nodes) s.t., rank(Fsg)=r, are r-bandlimited
R={1,....r} (CJnonzeros)

[1] Zhuangkun Wei, Alessio Pagani, Guangtao Fu, lan Guymer, Wei Chen, Julie McCann, and Weisi Guo. "Optimal Sampling of Water Distribution Network Dynamics using
Graph Fourier Transform." arXiv preprint arXiv:1904.03437 (2019).

04/07/2019 The Alan Turing Institute 58



Recovery

Subset of WDN Nodes
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Performance Comparisons
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Performance Comparisons

COMPARISON OF SIZE OF SAMPLING NODE SET SUCH THAT
RMSE< 10~8 AMONG DIFFERENT SAMPLING METHODS.

Sampling node set size, s.t. RMSE<10~8

Methods Data with rank(X) =r < N
Graph Data-driven r
sampling Laplacian >r, <N
Compressed  DCT basis >(N+K—-r)yr/K>r, <N
sensing PCA basis >(N+K—-r)yr/K>r, <N
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Deep Sampling using Neural Networks

Further reduce sample size and recover features in high dimensions.

1. Training of artificial neural networks to learn high-dimensional features.

2. Rank of critical sampling nodes informs Deep Sampling input data size.

AL

< =TT | Reconstructed
X1 ] = : Y dynamics in
; ) nodes with
Nodes with X2 N
¢ sensors
¢

sSensors

With 5x less sensor data than state-of-the-art, we can achieve a highly accurate reconstruction
of the dynamic response.
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2019 Bell Labs Prize Entry: Deep Sampling on Dynamic Networks

a) Explicit Dynamics b) Implicit (Data-Driven) Dynamics e) Deep Sampling with Minimum Data

i. Water Distribution Network

Dynelllr:?cI: ¢ with Reynolds-Averaged ii. Sensors monitor water i. Training of artificial neural
e x() Navier-Stokes (RANS) Dynamics P network to learn high-
dac pressure and contamination [4
— =F(x) - . dimensional features.
o . . LT

* Nodel

/

", — (0 Time-step &
ii. Disturbance I 3
\ ) ¢ I ‘/Node3
NV x5(8) (MY
§ ? / Time-step k xm\_J—
t .——Node7
< 1 ii. Rank of critical sampling
x7(t) . nodes from (c) and (d
— Time-step k : e Ll
informs Deep Sampling
t - input data size.
iii. Networked P
Dynamics Heterogeneous functions governed by higher
order PDE with dynamic parameters. ) ) )
i o iii. Insight: Theory-driven input data can dramatically reduce
dxn N _ow - _. gu; O f— . P q 5
- = () + 2N 21 anm Wom Gen, X)) + 1 i cfi+ oz, [ = Poij + "(W + B ) - "“,“,} sample size and recover features in high dimensions.
c) Graph Fourier Transform for Explicit Dynamics d) Graph Fourier Transform for Implicit Dynamics f) Deep Sampling Recovery of Dynamics
{1) Dynamic Network i) Sampling Process iii) Recovered Dynamics a
() %, A

linearized matrix A o

= Prjciod on Dtwdven G doin : = ==_)
Optimal Sampling R0l « 1) \
> 1. Uinearize dynamic equations, derive M s ”” Sty p— 300 {
E D

> 2. Compute cut-off frequency 2, and

sampling set S. e w0 R
> 3. Obtain samples as x5 (k/F;) k=0,1, = VI I S 1s0] W
Recovery u| 100 N
> 1. Recover x(k/F) from x5 (k/Fy fane @ i W s0 L X SR
i) Recover x(t) from x(k /F; CS-PCA Y . o
i © Pt Gt Lo g . T W s W e o e =
e twork:  swmptogveeryto (o soarsecamales || - 1| QIO C <. e 3
each node’s dynamic  identify critical from critical nodes in UL L TR WAL MM, . == 90% of the subset o -
has different spectral sampling nodes and (i) enable recovery of Graph Laplacion operator domin Size of . 0 OI the subse -
properties. their sampling rate. all network dynamics. i. Proposed data-driven GFT ii. Recovery with arbitrarily low i) Recovery with low errors for ii) High impact in infrastructure
yields potential for band-limited errors, reducing sampling size by discrete classification. Pathway to  sensing for Digital Twins, and
iv. Insight: Yields knowledge of how graph-time domain sampling, which improves over 10x compared to Laplacian and 2x reducing sensors by 10x compared  reducing cost of data collection in
sampling relates to network structure and dynamics. CS and Laplacian approaches. compared CS approaches. to approaches in (c) and (d). social and biological sciences.
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Main Contributions

i » Optimal sampling in dynamic dynamic networks
Theoretical « Dynamics reconstruction using GFT and NNs

research * Research in innovative neuroevolution techniques
* Green Al

* Design of innovative infrastructure digital twins
» 10x reduction required sensors

» 10x improvement in dynamics reconstruction

* 10x reduction in data collection

» Task-specific applications: resources management,
predictive maintenance, etc.

Engineering

04/07/2019 The Alan Turing Institute
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é Looking at

Current & Future Work
(. l

. Currently: Working with Indust;iﬁl’ &; Gov. )
Stakeholders to Deliver Impact |

. Next Steps: Data to Inform Posterlor Risk
Estimates A

. Developing EPSRC Fellowship & SRC P.
Grant (Co-l)

(1)

/‘\\’U
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Summary, Next Steps & Impact

s Risk Identification

Network X

wi

We have only been working on these important

Forecast : _Node k
questions for 12 months and have a long way to go. | ) —_ ;{ _l

t w;

Better understand the relationship between: Interventions:
* Resilience & Robustness: Built & Natural . Maintenance
Ecosystems * Upgrade
« Local Dynamics and Global Topology in ' » Protection

Networked Ecosystems * Rewiring

We can identify vulnerable nodes at the risk of losing resilience and this may go on to
inform infrastructure operators.

We still need to couple ecosystems together and model higher dimensional dynamics.

We want the work here to inform real-time sensing and control systems as well as the
design of new systems (topology and components).
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