<u>Def:</u> A graphon is an integrable function $W: [0,1]^2 \rightarrow \mathbb{R}_+$ such that W(x,y) = W(y,x) for all $x, y \in [0,1]$

Embeding Graphs into Graphons: Given G on [n], let $I_1, ..., I_n$ be adjacent intervals of lengths 1/n. Define $W^G: [0,1]^2 \rightarrow [0,1]$ by setting W^G to $A_{ij}(G)$ on $I_i \times I_j$ where A(G) is the adjacency matrix of G

Cut norm and distance

$$|W||_{\Box} = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} W(x,y) dx dy \right|$$
$$d_{\Box}(W,W') = ||W - W'||_{\Box}$$
$$\delta_{\Box}(W,W') = \inf_{\sigma} d_{\Box}(W^{\sigma},W')$$

where the sup goes over measurable subsets $S, T \subset [0.1]$, the inf goes over invertible functions $\sigma: [0,1] \rightarrow [0,1]$ s.th. both σ and its inverse are measure preserving, and $W^{\sigma}(x, y)) = W(\sigma(x), \sigma(y))$.

<u>Def.</u>: G_n converges to W iff $\delta_{\Box}(G_n, W) \to 0$

<u>Thm</u> [LS] The L^{∞} ball of graphons equipped with the cut metric δ_{\Box} is a compact metric space. In particular, every graph sequence has a convergent subsequence.