TUTORIAL \#1: BASIC CONCEPTS AND EXAMPLES

CHRISTIAN BORGS AND HENRY COHN

(1) A sequence of graphons $W_{n}:[0,1]^{2} \rightarrow[0,1]$ is weak* convergent to W if $\int_{S} W_{n} \rightarrow \int_{S} W$ for every measurable $S \subseteq[0,1]^{2}$. Does weak* convergence imply cut norm convergence? How about vice versa? Find a proof or counterexample for each direction. How do weak* and cut norm convergence compare with L^{1} convergence?
(2) Prove or disprove: the best cut norm approximation of a graphon $W:[0,1]^{2} \rightarrow[0,1]$ by a step function constant on $\mathcal{P}_{i} \times \mathcal{P}_{j}$ (where $\mathcal{P}=\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}\right\}$ is a partition of $[0,1])$ is the average $W_{\mathcal{P}}$ of W with respect to \mathcal{P}.
(3) Let S and T be finite sets, and let $f: S \times T \rightarrow \mathbb{R}$ be any function. Prove that

$$
\left(\sum_{\substack{s \in S \\ t \in T}} f(s, t)\right)^{2} \leq|S| \sum_{\substack{s \in S \\ t_{1}, t_{2} \in T}} f\left(s, t_{1}\right) f\left(s, t_{2}\right)
$$

(4) Let $\left(G_{n}\right)_{n \geq 0}$ be a sequence of graphs such that G_{n} has n vertices, and let $0<p<1$. Suppose the number of edges in G_{n} is $(1+o(1)) p n^{2} / 2$ as $n \rightarrow \infty$. Prove that the number of 4 -cycles in G_{n} (i.e., quadruples $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ of vertices with v_{i} adjacent to v_{i+1}, where $v_{5}=v_{1}$) is at least $p^{4} n^{4}(1+o(1))$.
(5) Let $\left(G_{n}\right)_{n \geq 0}$ be a sequence of graphs such that G_{n} has n vertices, and let $0<p<1$. Suppose the vertices of G_{n} have degrees $p n(1+o(1))$ as $n \rightarrow \infty$, and each pair of distinct vertices in G_{n} has $p^{2} n(1+o(1))$ common neighbors. Prove that G_{n} converges to the constant graphon p under the cut norm.
(6) Let $0<p<1$, and consider an Erdős-Rényi graph $G_{n, p}$ with edge probability p. In other words, we take n vertices and flip an independent coin to decide whether there's an edge between each pair of distinct vertices, with probability p of an edge. Prove that with probability 1 , these graphs converge to the constant graphon with value p on $[0,1]^{2}$ as $n \rightarrow \infty$.
(7) Let p be a prime congruent to 1 modulo 4, and define a graph on p vertices by connecting vertices i and j with an edge if $i-j$ is a nonzero square modulo p. Note that $p \equiv 1(\bmod 4)$ ensures that the edge relation is symmetric; the resulting graph is called a Paley graph. Prove that as $p \rightarrow \infty$, the Paley graphs converge to the constant $1 / 2$ graphon. (No special background is needed beyond the fact that $\mathbb{Z} / p \mathbb{Z}$ is a finite field.)

