TUTORIAL #2: STATISTICAL PHYSICS AND LARGE DEVIATIONS

CHRISTIAN BORGS AND HENRY COHN

We'll begin with some definitions from statistical physics. Let G be a graph. We will randomly color the vertices of G with q colors; i.e., we will consider random maps $\phi: V(G) \rightarrow$ $[q] := \{1, 2, \ldots, q\}$. We allow for all possible maps, not just proper colorings, and call such a map a *spin configuration*. To make the model nontrivial, different spin configurations get different weights, based on a symmetric $q \times q$ matrix J with entries $J_{ij} \in \mathbb{R}$ called the *coupling matrix*. Given G and J, a map $\phi: V(G) \rightarrow [q]$ then gets an *energy*

$$E_{\phi}(G,J) = -\frac{1}{|E(G)|} \sum_{\substack{u,v \in V(G) \\ (u,v) \in E(G)}} J_{\phi(u)\phi(v)}.$$

Given a vector $\mathbf{a} = (a_1, \ldots, a_q)$ of nonnegative real numbers adding up to 1 (we denote the set of these vectors by Δ_q), we consider configurations ϕ such that the (weighted) fraction of vertices mapped onto a particular color $i \in [q]$ is near to a_i . More precisely, we consider configurations ϕ in

$$\Omega_{\mathbf{a},\varepsilon}(G) = \left\{ \phi \colon [q] \to V(G) \colon \left| \frac{\#\{v \in V(G) : \phi(v) = i\}}{|V(G)|} - a_i \right| \le \varepsilon \text{ for all } i \in [q] \right\}.$$

On $\Omega_{\mathbf{a},\varepsilon}(G)$ we then define a probability distribution

$$\mu_{G,J}^{(\mathbf{a},\varepsilon)}(\phi) = \frac{1}{Z_{G,J}^{(\mathbf{a},\varepsilon)}} e^{-|V(G)|E_{\phi}(G,J)},$$

where $Z_{G,J}^{(\mathbf{a},\varepsilon)}$ is the normalization factor

$$Z_{G,J}^{(\mathbf{a},\varepsilon)} = \sum_{\phi \in \Omega_{\mathbf{a},\varepsilon}(G)} e^{-|V(G)|E_{\phi}(G,J)}$$

The distribution $\mu_{G,J}^{(\mathbf{a},\varepsilon)}$ is usually called the *microcanonical Gibbs distribution of the model J* on G, and $Z_{G,J}^{(\mathbf{a},\varepsilon)}$ is called the *microcanonical partition function*.

We will not analyze the particular properties of the distribution $\mu_{G,J}^{(\mathbf{a},\varepsilon)}$, but we will be interested in the normalization factor, or more precisely its normalized logarithm

$$F_{\mathbf{a},\varepsilon}(G,J) = -\frac{1}{|V(G)|} \log Z_{G,J}^{(\mathbf{a},\varepsilon)},$$

which is called the *microcanonical free energy*. We will also be interested in the dominant term contributing to $Z_{G,J}^{(\mathbf{a},\varepsilon)}$, or more precisely its normalized logarithm, the *microcanonical ground state energy*

$$E_{\mathbf{a},\varepsilon}(G,J) = \min_{\substack{\phi \in \Omega_{\mathbf{a},\varepsilon}(G)\\1}} E_{\phi}(G,J).$$

Let $(G_n)_{n\geq 0}$ be a sequence of weighted graphs. We say that $(G_n)_{n\geq 0}$ has convergent microcanonical ground state energies if the limit

$$E_{\mathbf{a}}(J) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} E_{\mathbf{a},\varepsilon}(G,J) = \lim_{\varepsilon \to 0} \liminf_{n \to \infty} E_{\mathbf{a},\varepsilon}(G,J)$$

exists for all $q \in \mathbb{N}$, $\mathbf{a} \in \Delta_q$, and symmetric $J \in \mathbb{R}^{q \times q}$, and $(G_n)_{n \geq 0}$ has convergent microcanonical free energies if the limit

$$F_{\mathbf{a}}(J) = \limsup_{\varepsilon \to 0} \limsup_{n \to \infty} F_{\mathbf{a},\varepsilon}(G,J) = \liminf_{\varepsilon \to 0} \liminf_{n \to \infty} F_{\mathbf{a},\varepsilon}(G,J)$$

exists for all $q \in \mathbb{N}$, $\mathbf{a} \in \Delta_q$, and symmetric $J \in \mathbb{R}^{q \times q}$.

(1) As motivation for the Gibbs distribution, prove the following characterization. Let E_1, \ldots, E_n be real numbers called *energies*, and let \overline{E} satisfy $\min_i E_i < \overline{E} < \max_i E_i$. Suppose the probability distribution p_1, \ldots, p_n on $1, \ldots, n$ maximizes the entropy

$$\sum_i -p_i \log p_i$$

(with $0 \log 0$ interpreted as 0) subject to $\sum_i p_i E_i = \overline{E}$. Prove that there exists a constant β such that

$$p_i = e^{-\beta E_i} / Z$$

for all *i*, where $Z = \sum_{i} e^{-\beta E_i}$. In other words, if we maximize entropy subject to constraining the expected energy of a system, we get a Gibbs distribution.

- (2) Compute the limiting microcanonical ground state energies and free energies for the Ising model on the complete graph K_n as $n \to \infty$. For this model, q = 2 and $J_{ij} = (-1)^{i+j}$.
- (3) Let X be a random variable whose moment generating function $M(t) = E(e^{tX})$ exists for all t. The cumulant generating function for X is $\log M(t)$. Prove that it is a convex and C^{∞} function of t.
- (4) Let X be a random variable whose moment generating function $M(t) = E(e^{tX})$ exists for all t. Let $f(t) = \log M(t)$ be the cumulant generating function. The n-th cumulant $\kappa_n(X)$ is $f^{(n)}(0)$; in other words, the Taylor series of f(t) is

$$\sum_{n=1}^{\infty} \kappa_n(X) \frac{t^n}{n!}.$$

Prove that $\kappa_1(X) = E(X)$ and $\kappa_2(X) = Var(X)$. Prove that if X and Y are independent, then $\kappa_n(X + Y) = \kappa_n(X) + \kappa_n(Y)$ for all n (a generalization the additivity of variance for independent random variables).

(5) Suppose $f : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ is a convex function (i.e., $\{(x, y) \in \mathbb{R}^2 : y \ge f(x)\}$ is a convex set) that is not identically equal to ∞ . Its Legendre transform $f^* : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ is defined by

$$f^*(u) = \sup_{v} \left(uv - f(v) \right).$$

Prove that f^* is convex, that $f \leq g$ implies $g^* \leq f^*$, and that $f^{**} \leq f$. Under the assumption that

 $f(v) = \sup\{\ell(v) : \ell \text{ is an affine function satisfying } \ell \leq f \text{ everywhere}\},\$

prove that $f^{**} = f$. (This assumption is very mild; for example, it is equivalent to lower semicontinuity.)

[For intuition regarding the Legendre transform, note that the tangent line to f at v is $x \mapsto f'(v)(x-v) + f(v)$ when f is differentiable. If we choose v so f'(v) = u, then the tangent line is $x \mapsto ux - f^*(u)$. Thus, taking the Legendre transform amounts to describing the tangent lines of a convex function in terms of their slope, and we can reconstruct the function as the envelope of those lines.]

(6) Let X be a random variable whose moment generating function $M(t) = E(e^{tX})$ exists for all t, and let X_1, X_2, \ldots be i.i.d. copies of X. Prove that if $x \ge E(X)$, then

$$\operatorname{Prob}\left(\frac{\sum_{i=1}^{n} X_i}{n} \ge x\right) \le e^{-nf^*(x)},$$

where f^* is the Legendre transform of the cumulant generating function $f(y) = \log M(y)$.

In fact, this bound is essentially sharp, in the sense that

$$\lim_{n \to \infty} \frac{1}{n} \log \operatorname{Prob}\left(\frac{\sum_{i=1}^{n} X_i}{n} \ge x\right) = -f^*(x),$$

but you needn't prove that.