TUTORIAL #2: STATISTICAL PHYSICS AND LARGE DEVIATIONS

CHRISTIAN BORGS AND HENRY COHN

We'll begin with some definitions from statistical physics. Let G be a graph. We will
randomly color the vertices of G with ¢ colors; i.e., we will consider random maps ¢: V(G) —
lq] :=={1,2,...,q}. We allow for all possible maps, not just proper colorings, and call such a
map a spin configuration. To make the model nontrivial, different spin configurations get
different weights, based on a symmetric ¢ x ¢ matrix J with entries J;; € R called the coupling
matriz. Given G and J, a map ¢: V(G) — [g| then gets an energy
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Given a vector a = (ay,...,a,) of nonnegative real numbers adding up to 1 (we denote the
set of these vectors by A,), we consider configurations ¢ such that the (weighted) fraction
of vertices mapped onto a particular color i € [g] is near to a;. More precisely, we consider
configurations ¢ in

Qa(G) = {gb: lq] = V(G) : v € V|<VG()G)<|Z§(U) =i a;| <eforallie [q]} :

On Q,.(G) we then define a probability distribution
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) is the normalization factor
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The distribution ,ug‘j) is usually called the microcanonical Gibbs distribution of the model J

on GG, and Z(Gatf) is called the microcanonical partition function.

We will not analyze the particular properties of the distribution M(C:’j), but we will be

interested in the normalization factor, or more precisely its normalized logarithm
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which is called the microcanonical free energy. We will also be interested in the dominant

Fare(G,J) =

term contributing to Z(Gif), or more precisely its normalized logarithm, the microcanonical

ground state enerqy
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Let (Gn)n>0 be a sequence of weighted graphs. We say that (G,,),>0 has convergent
macrocanonical ground state energies if the limit
E.(J) = ll_r)l(l) hqunﬁsolip E..(G,J) = ll_r}l(l) h,?i}}.}f Ea..(G,J)
exists for all ¢ € N, a € A,, and symmetric J € R%9 and (G,),>o has convergent
microcanonical free energies if the limit
Fa(J) = limlimsup F, .(G, J) = lim liminf F, . (G, J)
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exists for all ¢ € N, a € A, and symmetric J € R,

(1) As motivation for the Gibbs distribution, prove the following characterization. Let
Ei, ..., E, be real numbers called energies, and let E satisfy min; £; < E < max; F;.
Suppose the probability distribution py,...,p, on 1,... n maximizes the entropy
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(with 0log0 interpreted as 0) subject to Y., p;iE; = E. Prove that there exists a
constant 3 such that

pi=e Pz

for all 4, where Z = 3, e #Fi. In other words, if we maximize entropy subject to
constraining the expected energy of a system, we get a Gibbs distribution.

(2) Compute the limiting microcanonical ground state energies and free energies for
the Ising model on the complete graph K, as n — oo. For this model, ¢ = 2 and
Ji; = (1),

(3) Let X be a random variable whose moment generating function M(t) = E(e'X) exists
for all t. The cumulant generating function for X is log M(t). Prove that it is a
convex and C'* function of ¢.

(4) Let X be a random variable whose moment generating function M (t) = E(e!™) exists
for all t. Let f(t) = log M (t) be the cumulant generating function. The n-th cumulant
kn(X) is f™(0); in other words, the Taylor series of f(t) is

n=1
Prove that x1(X) = E(X) and k2(X) = Var(X). Prove that if X and Y are
independent, then r,(X +Y) = k,(X) + k,(Y) for all n (a generalization the
additivity of variance for independent random variables).
(5) Suppose f: R — R U {co} is a convex function (i.e., {(z,y) € R? : y > f(z)} is a
convex set) that is not identically equal to co. Its Legendre transform f*: R — RU{co}
is defined by

J*(w) = sup (uwv = f(v)).

Prove that f* is convex, that f < g implies ¢* < f*, and that f** < f. Under the
assumption that

f(v) = sup{l(v) : £ is an affine function satisfying ¢ < f everywhere},
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prove that f** = f. (This assumption is very mild; for example, it is equivalent to
lower semicontinuity.)

[For intuition regarding the Legendre transform, note that the tangent line to f at
visx — f'(v)(x—v)+ f(v) when f is differentiable. If we choose v so f'(v) = u, then
the tangent line is  — uz — f*(u). Thus, taking the Legendre transform amounts to
describing the tangent lines of a convex function in terms of their slope, and we can
reconstruct the function as the envelope of those lines.]

Let X be a random variable whose moment generating function M(t) = E(e'Y) exists
for all ¢, and let X7, X,... be i.i.d. copies of X. Prove that if x > E(X), then
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where f* is the Legendre transform of the cumulant generating function f(y) =
log M (y).

In fact, this bound is essentially sharp, in the sense that
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lim — log Prob (h > x) = —f*(x),
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but you needn’t prove that.



