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CHRISTIAN BORGS AND HENRY COHN

We’ll begin with some definitions from statistical physics. Let G be a graph. We will
randomly color the vertices of G with q colors; i.e., we will consider random maps φ : V (G)→
[q] := {1, 2, . . . , q}. We allow for all possible maps, not just proper colorings, and call such a
map a spin configuration. To make the model nontrivial, different spin configurations get
different weights, based on a symmetric q×q matrix J with entries Jij ∈ R called the coupling
matrix. Given G and J , a map φ : V (G)→ [q] then gets an energy

Eφ(G, J) = − 1

|E(G)|
∑

u,v∈V (G)
(u,v)∈E(G)

Jφ(u)φ(v).

Given a vector a = (a1, . . . , aq) of nonnegative real numbers adding up to 1 (we denote the
set of these vectors by 4q), we consider configurations φ such that the (weighted) fraction
of vertices mapped onto a particular color i ∈ [q] is near to ai. More precisely, we consider
configurations φ in

Ωa,ε(G) =

{
φ : [q]→ V (G) :

∣∣∣∣#{v ∈ V (G) : φ(v) = i}
|V (G)|

− ai
∣∣∣∣ ≤ ε for all i ∈ [q]

}
.

On Ωa,ε(G) we then define a probability distribution

µ
(a,ε)
G,J (φ) =

1

Z
(a,ε)
G,J

e−|V (G)|Eφ(G,J),

where Z
(a,ε)
G,J is the normalization factor

Z
(a,ε)
G,J =

∑
φ∈Ωa,ε(G)

e−|V (G)|Eφ(G,J).

The distribution µ
(a,ε)
G,J is usually called the microcanonical Gibbs distribution of the model J

on G, and Z
(a,ε)
G,J is called the microcanonical partition function.

We will not analyze the particular properties of the distribution µ
(a,ε)
G,J , but we will be

interested in the normalization factor, or more precisely its normalized logarithm

Fa,ε(G, J) = − 1

|V (G)|
logZ

(a,ε)
G,J ,

which is called the microcanonical free energy. We will also be interested in the dominant

term contributing to Z
(a,ε)
G,J , or more precisely its normalized logarithm, the microcanonical

ground state energy

Ea,ε(G, J) = min
φ∈Ωa,ε(G)

Eφ(G, J).

1



Let (Gn)n≥0 be a sequence of weighted graphs. We say that (Gn)n≥0 has convergent
microcanonical ground state energies if the limit

Ea(J) = lim
ε→0

lim sup
n→∞

Ea,ε(G, J) = lim
ε→0

lim inf
n→∞

Ea,ε(G, J)

exists for all q ∈ N, a ∈ 4q, and symmetric J ∈ Rq×q, and (Gn)n≥0 has convergent
microcanonical free energies if the limit

Fa(J) = lim
ε→0

lim sup
n→∞

Fa,ε(G, J) = lim
ε→0

lim inf
n→∞

Fa,ε(G, J)

exists for all q ∈ N, a ∈ 4q, and symmetric J ∈ Rq×q.

(1) As motivation for the Gibbs distribution, prove the following characterization. Let
E1, . . . , En be real numbers called energies, and let E satisfy miniEi < E < maxiEi.
Suppose the probability distribution p1, . . . , pn on 1, . . . , n maximizes the entropy∑

i

−pi log pi

(with 0 log 0 interpreted as 0) subject to
∑

i piEi = E. Prove that there exists a
constant β such that

pi = e−βEi/Z

for all i, where Z =
∑

i e
−βEi . In other words, if we maximize entropy subject to

constraining the expected energy of a system, we get a Gibbs distribution.
(2) Compute the limiting microcanonical ground state energies and free energies for

the Ising model on the complete graph Kn as n → ∞. For this model, q = 2 and
Jij = (−1)i+j.

(3) Let X be a random variable whose moment generating function M(t) = E(etX) exists
for all t. The cumulant generating function for X is logM(t). Prove that it is a
convex and C∞ function of t.

(4) Let X be a random variable whose moment generating function M(t) = E(etX) exists
for all t. Let f(t) = logM(t) be the cumulant generating function. The n-th cumulant
κn(X) is f (n)(0); in other words, the Taylor series of f(t) is

∞∑
n=1

κn(X)
tn

n!
.

Prove that κ1(X) = E(X) and κ2(X) = Var(X). Prove that if X and Y are
independent, then κn(X + Y ) = κn(X) + κn(Y ) for all n (a generalization the
additivity of variance for independent random variables).

(5) Suppose f : R → R ∪ {∞} is a convex function (i.e., {(x, y) ∈ R2 : y ≥ f(x)} is a
convex set) that is not identically equal to∞. Its Legendre transform f ∗ : R→ R∪{∞}
is defined by

f ∗(u) = sup
v

(
uv − f(v)

)
.

Prove that f ∗ is convex, that f ≤ g implies g∗ ≤ f ∗, and that f ∗∗ ≤ f . Under the
assumption that

f(v) = sup{`(v) : ` is an affine function satisfying ` ≤ f everywhere},
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prove that f ∗∗ = f . (This assumption is very mild; for example, it is equivalent to
lower semicontinuity.)

[For intuition regarding the Legendre transform, note that the tangent line to f at
v is x 7→ f ′(v)(x− v) +f(v) when f is differentiable. If we choose v so f ′(v) = u, then
the tangent line is x 7→ ux− f ∗(u). Thus, taking the Legendre transform amounts to
describing the tangent lines of a convex function in terms of their slope, and we can
reconstruct the function as the envelope of those lines.]

(6) Let X be a random variable whose moment generating function M(t) = E(etX) exists
for all t, and let X1, X2, . . . be i.i.d. copies of X. Prove that if x ≥ E(X), then

Prob

(∑n
i=1 Xi

n
≥ x

)
≤ e−nf

∗(x),

where f ∗ is the Legendre transform of the cumulant generating function f(y) =
logM(y).

In fact, this bound is essentially sharp, in the sense that

lim
n→∞

1

n
log Prob

(∑n
i=1Xi

n
≥ x

)
= −f ∗(x),

but you needn’t prove that.
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