
TUTORIAL #3: MULTIPLICATIVE CHERNOFF BOUND AND
CONVERGENCE OF W-RANDOM GRAPHS

CHRISTIAN BORGS AND HENRY COHN

For this tutorial, W : [0, 1]2 → R will always be a symmetric, integrable function, i.e., a
function such that

∫
|W | <∞ and W (x, y) = W (y, x). If W ≥ 0, we call it a graphon.

For a graphon W and a sequence ρn → 0, we define a sparse sequence of W -random graphs
Gn(ρnW ) as follows: Choose x1, . . . , xn i.i.d. uniformly at random from [0, 1], and define

a matrix P (n) = P (n)(W ) ∈ [0, 1]n×n by setting P
(n)
ij = min{1, ρnW (xi, xj)}. The graph

Gn(ρnW ) on [n] is then defined by choosing, independently for all i < j, an edge ij with

probability P
(n)
ij . In this tutorial, we will prove the following theorem. The analogous result

with ρn = 1 and W : [0, 1]2 → [0, 1] was used in Lecture 2 to prove the inverse counting
lemma.

Theorem 1. If W is a graphon and ρn is such that ρn → 0 and nρn →∞, then

E
[
δ�

( 1

ρn
Gn(ρnW ),W

)]
→ 0.

The theorem relies on two lemmas, which we will prove separately. To state the second
one, for an n× n matrices A and a graphon W : [0, 1]2 → R+ we define

δ̂1(A,W ) = min
σ
‖W −WAσ‖1,

where the min is taken over all permutations of [n], and Aσij = Aσ(i),σ(j). (Recall that WA

denotes the graphon corresponding to a matrix A.) Since such a permutation induces a
measure preserving bijection on [0, 1] in the obvious way, and since the cut-norm is bounded

by the L1 norm (see Tutorial 1), we clearly have that δ�(WA,W ) ≤ δ̂1(W
A,W ).

Lemma 2. Let P ∈ [0, 1]n×n be a symmetric matrix with empty diagonal, let ρ̃ = 1
n2

∑
i,j Pij ,

and let A ∈ {0, 1}n×n be the random, symmetric matrix with empty diagonal obtained from
P by setting Aij = Aji = 1 with probability Pij, independently for all i < j. If ρ̃n ≥ 6, then

‖WA −W P‖� ≤
√
ρ̃/n

with probability at least 1− e−n. As a consequence

E[‖WA −W P‖�] ≤
√
ρ̃/n+ 12/n,

whether or not nρ̃ ≥ 6.

Lemma 3. If W ∈ L1, and ρn → 0 then

E
[
δ̂1

( 1

ρn
P (n),W

)]
→ 0.
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(1) Prove the following multiplicative version of the Chernoff bound: Let X =
∑N

i=1Xi

where X1, . . . XN are independent random variable with values in [−1, 1]. If∑
i

E[|Xi|] ≤ B,

then

Pr
(
X − E[X] ≥ αB

)
≤ exp

(
−min{α, α2}

3
B
)
.

(2) Use (11) to prove Lemma 22. Hint: write the cut-norm as a maximum over sets
S, T ⊂ [n] and use that there are 4n such pairs, together with a union bound.

(3) Prove Lemma 33 for step functions. More precisely, let Pk be the partition of [0, 1] into
k intervals of length 1/k, and prove Lemma 33 for functions W which are constant on
the classes of Pk × Pk.
• Hint 1: In a first step, show that if W is bounded and ρn → 0, it is enough to

show that E
[
δ̂1(Hn(W ),W )

]
→ 0, where for an arbitrary integrable function

U : [0, 1]2 → R, Hn(U) is the random matrix obtained from x1, . . . , xn by setting
(Hn)ij = U(xi, xj).
• Hint 2: Reorder x1, . . . , xn in such a way that x1 < x2 < · · · < xn, and use that

for n� k, the fraction of variables xi that fall into the ith interval of the partition
Pk is concentrated around 1/k. Determine how large n has to be (as a function

of k), to get enough concentration to imply that E
[
δ̂1(Hn(W ),W )

]
→ 0.

(4) Reduce Lemma 33 to the case where W is a step function. To this end, define two
approximations to the graphon W : the truncated graphon Wρn = min{W, 1/ρn}, and
the graphon WPk obtained by averaging W over each class of Pk × Pk.
• Use the fact that P (n)(W ) = ρnHn(Wρn) to show that

E
[
δ̂1

( 1

ρn
P (n)(W ),W

)]
≤ ‖W −Wρn‖1 + E

[
δ̂1(Hn(W ),W )

]
.

Hint: It will we useful to calculate the expectation of ‖Hn(W −Wρn)‖1 and
express it in terms of ‖W −Wρn‖1.
• Show that for each graphon W , ‖W −Wρ‖1 → 0 as ρ→ 0.
• Prove that for all graphons W , WPk → W almost everywhere, and show that

this implies that ‖WPk −W‖1 → 0.
• Reduce the proof of Lemma 33 to the case analyzed under (33).

(5) Prove Theorem 11 from Lemmas 22 and 33.
(6) Challenge Problem: Prove that under the conditions of Theorem 11,

δ�

( 1

ρn
Gn(ρnW ),W

)
→ 0 with probability 1.

Hint: When proving the a.s. version of Lemma 33, use the law of large numbers for
two dimensional arrays, or, in the terms of the statistics literature, the law of large
numbers for U-statistics.
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