
Property Testing∗

Instructor: Asaf Shapira Scribed by Guy Rutenberg †

Spring 2015 ‡

1 Graph property testing

We say that a graph G on n vertices is ε-far from satisfying a property P if one needs to
add or remove at least εn2 edges in order to get a graph G′ ∈ P. For example, if P is
the property of triangle-free graphs, then we need to remove edges. For induced C4-free
graphs we may need both remove and add edges.

We say a property P is testable if for every ε there exists f(ε) such that one can
distinguish between G ∈ P and G which is ε-far from P using f(ε) queries on the graph.

Fact 1.1. For every graph H, the propery of H-freeness is testable.

Lemma 1.1 (Removal Lemma). Suppose G is ε-far from being H-free then G contains
f(ε, H)nh copies of H (where h = |V (H)|).

The Removal Lemma gives us a good test for H-freeness, because it implies a constant
probability (not depending on n) that h random vertices form a copy of H. This check
can be repeated 1/f(ε, H) times to get a probability ≥ 1/2 to distinguish correctly.

Exercise 1.1. Prove in a simple way that if G is ε-far from being H-free, then G contains
εn2/h2 edge disjoint copies of H.

Conjecture 1.1 (Erdős). Suppose G is ε-far from being k-colorable, then G contains a
subgraph of size f(k, ε) which is not k-colorable.

The existence of f(2, ε) was proved in by Bollobas-Erdős-Simonovits-Szemerédy (1978)
and for general k by Rödl-Duke (1985). Both proofs used the Regularity Lemma, and as
a result the bounds are very large, however it still proves that k-colorability is a testable
property. Komlós (1997) showed that f(2, ε) = Θ(

√

1/ε), by showing that if G is ε-far
from being 2-colorable then G must contain an odd cycle of length O(

√

1/ε). To show
that Komlós’ bound is tight consider a blowup of an odd

√

1/ε cycle.

∗Part of a course on Topics in Combinatorics.
†guyrutenberg@mail.tau.ac.il
‡Typeset on June 29, 2015.

1

Exercise 1.2. Show that f(2, ε) = O(1/ε). (Hint: Consider a minimal odd length cycle
and count the number of edges to any other vertex and remove them, repeat the process).

Exercise 1.3. Show that Komlós’ bound of O(
√

1/ε) mentioned above is tight. (Hint:
Consider a blowup of an appropriate odd cycle.)

Exercise 1.4. Show that there is a graph which is ε-far from being bipartite, and such
that, with probability at least 2/3, a random sample of 1

100ε vertices does not span an
odd cycle. (Hint: Consider an appropriate blow-up of C3.)

Goldreich, Goldwasser and Ron (1996) obtained a significant improvement, by showing
that a sample of size O(1/ε3) suffices. This was later improved by Alon-Krivelevich
(2002) to O(1/ε2) (with Õ(1/ε) for k = 2) and recently Sohler (2014) obtained a near
tight Õ(1/ε) bound for every fixed k. We give the argument of Goldreich, Goldwasser
and Ron for k = 2.

Theorem 1.1. If G is ε-far from being bipartite, then a random vertex-set of size
O(log(1/ε)/ε2) spans a non-bipartite subgraph with probability ≥ 1/2.

The proof will follow from the next two lemmas. Let us say that a set S is good if all
but at most εn/10 of the vertices of degree at least εn/10 have at least one neighbor in S.

Lemma 1.2. If S is a random sample of vertices of size 10 log(100/ε)
ε (allowing repetitions),

then with probability ≥ 9/10 S is good.

Lemma 1.3. Suppose S is a good vertex set of size at most 10 log(100/ε)
ε . Then with

probability ≥ 9/10 a random set T of 20 log(200/ε)
ε2 pairs satisfies G[S ∪ T] not a bipartite

graph.

Proof (Theorem 1.1). Lemma 1.2 and Lemma 1.3 imply Theorem 1.1: Sample 10 log(100/ε)
ε

vertices, denote those by S, and another 40 log(200/ε)
ε2 , denote those T . Let A be the even

that S is good, B is the event that S ∪ T is not bipartite. By the lemmas we have
Pr[A] ≥ 9/10 and Pr[B | A] ≥ 9/10. Hence

Pr[B] ≥ Pr[B | A] Pr[A] ≥ 8/10.

Proof (Lemma 1.2). Suppose a vertex v has degree at least εn/10. The probability that
S does not contain any neighbor of v is at most

(1 − ε/10)|S| ≤ (1 − ε/10)
10 log(100/ε)

ε ≤ e− log(100/ε) ≤ ε/100

Therefore, the expected number of vertices with degree at least εn/10 and without any
neighbor in S is at most εn/100. By Markov’s inequality we thus get that there are more
than εn/10 such vertices is less than 1/10.

2

Proof (Lemma 1.3). Suppose S is a good set of at most 10 log(100/ε)/ε vertices and fix
a 2-coloring, c : S → {0, 1}, of the graph spanned by S (not necessarily a valid coloring).
Let H be the set of vertices with at least one neighbor in S. For each vertex x ∈ H pick
one of its neighbors in S and assign x the opposite color.

We claim that this coloring induces at least εn2/2 edges within H which are improperly
colored. To see this, suppose otherwise and remove from G any edge incident with
a vertex not in H. There are at most εn2/10 edges incident with a vertex of degree
≤ εn/10 (true for every graph). There are εn2/10 edges incident with a vertex of degree
≥ εn/10 not in H (because S is good). There are ≤ |S|n ≤ εn2/10 edges incident with
S. Additionally, remove the improperly colored edges in H. In total, we removed less
than εn2 edges and got a 2-colorable graph, a contradiction to the ε-farness of G.

We conclude that for every 2-coloring c there are at least εn2/2 pairs of vertices {x, y}
such that it is impossible to extend c to a valid coloring of S ∪{x, y}. Therefore, a random

pair from G "invalidates" c with probability ε/2. Because T is made up of 20 log(200/ε)
ε2

pairs, the probability that c can be extended to a valid coloring of S ∪ T is at most

(1 − ε/2)
20 log(200/ε)

ε2 ≤ e−10 log(200/ε) =

(

ε

200

)
10
ε

Namely, for a fixed c, the probablity that c can be extended to cover S ∪ T entirely is
less than (ε/200)(10/ε). Because there are only 2|S| ≤ (100/ε)10/ε 2-colorings of S, we get
(using a union bound) that with high probability S ∪ T is not bipartite.

3

2 Testing H-freeness

The removal lemma implies that for any fixed H, the property of being H-free is testable
with 1/f(ε, h) queries. Let us say that H is easily testable if f(ε, H) ≤ poly(1/ε). We
will prove the following precise characterization.

Theorem 2.1 (Alon (2001)). H is easily testable if and only if H is bipartite.

We first show that to prove the above it is enough to consider graphs H of a certain
type. We write f : H Ô→ K to denote a homomorphism from H to K, that is (x, y) ∈
E(H) → (f(x), f(y)) ∈ E(K).

Lemma 2.1 (Erdős-Simonovits (1983)). The following holds for every k, t, ε > 0 and

n ≥ n0(k, t, ε): If a k-uniform hypergraph contains εnk edges, then it contains Cεtk
nkt

copies of the complete k-partite k-graph with each class of size t, for some C = C(k, t).

Exercise 2.1. Suppose that there is a homomorphism H Ô→ K, and K is a subgraph of
H.

1. If K is easily testable then so is H.

2. The removal lemma and Erdős-Simonovits imply that if K is not easily testable,
then so is H.

3. Suppose F is an m-vertex graph which is ε-far from being K-free and contains
only f(ε)mk copies of K (where k = |V (K)|). Then if G is a n/m-blowup of
K then G is ε/h2-far from being H-free and contains at most f(ε)nh + nh/m
copies of H. Actually, note that it is enought to show that for every ε there is
m ≥ superpoly(1/ε) for which it is possible to construct a k-vertex graph which is
ε-far from being K-free and contains a few copies of K.

A core of a graph H is a subgraph K so that there is some f : H Ô→ K but there is no
f ′ : H Ô→ K ′ for every K ′ ⊂ K. We say that H is a core if it is its only core1.

Exercise 2.2. Show that if H is a core then every f : H Ô→ H is an isomorphism.

Exercise 2.3. Show that all the cores of a graph are isomorphic.

It is enough to prove Theorem 2.1 when H is a core. Because K1,1 (an edge) is easily
testable (convince yourself) and because the core of every bipartite graph is an edge, we
infer that every bipartite graph is easily testable. This proves the “if part” of Theorem 2.1.

Since the core of a non-bipartite graph is not bipartite (right?), it is sufficient to show
that every non-bipartite core is not easily testable. Furthermore, it is sufficient to show
(3). So our current goal is to suppose that H is a non-bipartite core and given ε find
m ≥ superpoly(1/ε) and construct a m-vertex graph G such that G is ε-far from being

H-free and G contains mh

superpoly(1/ε) copies of H.

We will need the following well known fact (which appeared in the previous course):

1Note that we are not claiming (yet) that the core is unique. Actually, H might have many cores, but
we will soon prove that they are all isomorphic.

4

Fact 2.1 (Behrend (1964)). For every r ≥ 2 there and m there is an X ⊆ [m] of size at
least m/e10

√
log m log r that does not contain a (non-trivial) solution to the equation

x1 + x2 + · · · + xr = rxr+1 (2.1)

We now conclude the proof of the “only if” part of Theorem 2.1. Since H is not
bipartite it has an odd cycle. Rename the vertices of V (H) using {1, . . . , h} such that
1, . . . , r + 1, 1 is an odd cycle in H (in this order!). Given ε > 0 let m be the largest
integer satisfying

m/e10
√

log m log r ≥ εm .

It is easy to check that
m ≥ (1/ε)c log 1/ε

for some c = c(r). Let S ⊆ [m] be a subset satisfying (2.1) of size at least εm.
We define G to be an h-partite graph on h vertex sets U1, . . . , Uh as follows: We think

of Ui as the set of integers 1, . . . , i · m. Then, for every x ∈ [m] and every s ∈ S and
s ∈ S we put a copy of H on vertices x ∈ U1, x + s ∈ U2, . . . , x + (h − 1)s ∈ Uh and where
the vertex chosen from Ui plays the role of vertex i ∈ V (H). That is, we connect (vi, vj)
iff (i, j) ∈ E(H).

Observe that we placed εm2 copies of H.

Exercise 2.4. Those copies are edge-disjoint (exercise) and in particular εm2 edges need
to be removed to turn G into H-fre graph. Therefore, G is ε/h4-far from H-free.

It remains to prove that G contains few copies of H. We will actually prove that G
contains at most m2mh−(r+1) copies of H. Since r + 1 ≥ 3 this is at most mh−1 = mh

m .

1. Every copy of H in G contains a Cr+1 going “through” the sets U1, . . . , Ur+1 (in
this order).

2. G contains at most m2 cycles Cr+1 passing through the sets U1, . . . , Ur+1.

First note that the above two claims imply that G contains at most m2mh−(r+1) copies
of H. To prove (1), observe that every copy of H, spanned by vertices vi ∈ Uf(i) defines
a natural homomorphism f : H Ô→ H which sends i to f(i). Then (1) follows from
Exercise 2.2 because if f is an isomorphism then a cycle of length r + 1 is mapped to a
cycle of length r + 1 on the vertices 1, . . . , r + 1 and hence H contains a Cr+1 passing
through U1, . . . , Ur+1.

To prove (2), assume that x1 ∈ U1, . . . , xr+1 ∈ Ur+1 is one such Cr+1. Observe that
the way we defined G means that xi+1 − xi = si ∈ S for every 1 ≤ i ≤ r − 1 and
xr+1 − x1 = rsr+1 for some sr ∈ S. This means that

x1 + s1 + s2 + · · · + sr − rsr+1 = x1 ,

that is, that s1 + s2 + · · · + sr = rsr+1. But the fact that S contains no non-trivial
solution to such an equation means that s1 = s2 = . . . = sr+1 implying that G contains
precisely m|S| such copies of Cr+1.

5

3 Property Testing for Sparse Graphs

Suppose G is an n vertex graph of maximum degree d. We will think of d as fixed and
n large. We say that G is ε-far from satisfying P if one should add/delete at least εn
edges in order to turn G into a graph satisfying P. We will focus here on monotone
properties, that is, properties closed under vertex/edge removal, so being far means that
one should remove εn edges to make G satisfy P. In the setting of sparse graphs, what
the algorithm can do, is sample a vertex and look at its neighborhood. Note that while
in dense graph we ask what can we learn from looking at randomly selected induced
subgraphs of bounded size (i.e., we pick a set S of size f(ε) and look at G[S]) in the
setting of sparse graphs the question is what can we learn from randomly picking f(ε)
vertices and looking at the balls of radius g(ε) around them.

We say that property P is testable if there is a function f(ε, d) and an algorithm that
does the following: Given a graph G the algorithm can randomly/deterministically asks
for the neighborhood of at most q = f(ε, d) vertices. The questions are allowed to be
adaptive. Using this information the algorithm should distinguish, with probability at
least 2/3, between the case that G satisfies P from the case that G is ε-far from P . Recall
that we assume that G has bounded degree d for some fixed d.

Recall that H-freeness is testable in dense graphs. It turns out that for sparse graphs
the analogous question is very easy.

Exercise 3.1. Show that H-freeness is testable in sparse graphs.

Recall that in dense graphs k-colorability is testable. It turns out that in sparse graphs
the situation is very different. Erdős proved that there are bounded-degree graphs that
are ε-for from being (say) 10-colorable yet every induced subgraph on c(ε)n vertices is
3-colorable. Hence we cannot hope to test 10-colorability with o(n) queries, at least not
with one-sided error, that is, when we want to always accept graphs that are 10-colorable.
Note that intuitively, in order to test a property with one-sided error we need to show
that if G is far from satisfying P then we can find a “proof” of this fact using few queries
(with probability at least 2/3). It turns out that even when allowing two-sided error,
3-colorability cannot be tested in sparse graphs with o(n) queries (note that with O(n)
queries we have the entire graph).

Let us focus from now on testing planarity. Since any monotone graph property is
testable in dense graphs, we infer that planarity is testable. Actually, this is a simple
consequence of the fact that a planar graph contains at most 3n − 6 edges.

Exercise 3.2. Show that planarity is (easily) testable in dense graphs.

We now recall the so called Planar Separator Theorem.

Theorem (Lipton-Tarjan (1980)). Every planar graph G contains a vertex set of size
at most 10

√
n whose removal disconnects G into connected components of size at most

2n/3.

This can be used to prove the following:

6

Exercise 3.3. Show that there are bounded degree graphs that are ε-far from being
planar, yet any set of f(ε) vertices spans a planar graph. In other words, planarity is not
testable with one-sided error in sparse graphs.

Our aim now is to prove the following somewhat surprising fact:

Theorem 3.1 (Benjamini-Schramm-Shapira (2010)). Planarity is testable in sparse
graphs.

In other words, suppose we take two graphs G and G′ both of maximum degree d,
where G is planar and G′ is ε-far from being planar. Let D be the distribution obtained
by picking a random vertex v from G and looking at a ball of radius f(ε, d) around v.
Let D′ be the distribution obtained by the same process with respect to D′. Then D
and D′ have statistical difference at least c(ε).

The first step in the proof of Theorem 3.1 is the following. A partition of V (G) into
sets {V1, . . . , Vp} is called an (ε, k)-partition if each Vi spans a connected subgraph of G
of size at most k, and at most εn edges of G connect distinct Vi, Vj . In what follows we
will use C1, C2, . . . to denote constants that depend on d but are independent of n and ε.

Exercise 3.4. Use the separator theorem to prove that for every d there is C1 so that
any planar graph of maximum degree d has an (ε, C1/ε2)-partition. (Hint: Divide an
conquer)

Let us say that a set of vertices S is an (ε, k)-set if |S| ≤ k and there are at most ε|S|
edges connecting S to V \ S.

Exercise 3.5. Show that if G is a planar graph of maximum degree d, then a randomly
chosen vertex belongs to some (ε/4, C2/ε4)-set with probability at least 1 − ε/40d.

We now prove Theorem 3.1 based on the proof of Hasidim-Kelner-Nguyen-Onak (2009).
Consider the following greedy partition algorithm for constructing a partition P of

V (G):

Algorithm 1 Random Greedy Partition Algorithm

Input: ε, d and a graph G of maximum degree d
Output: Partition P of V (G)

1. Pick a random permutation σ ∈ Sn

2. Iteratively pick the “first” among the remaining vertices and look2 for an
(ε/4, C2/ε4)-set containing v. If such a set S is found then add S to P , remove S
from the graph and continue. If not, then add {v} to P , remove v from the graph
and continue.

2Here we “fix” some way of taking a vertex v and looking for an (ε/4, C2/ε4)-set containing it. In what
follows when we refer to such a procedure we will mean the same procedure fixed here.

7

Note that for any graph G of bounded degree d, the algorithm constructs a partition
with clusters of size at most C2/ε4. For what follows, let us say that a vertex v in a
cluster of P is a “leader” if v is the first vertex of the cluster according to σ.

Exercise 3.6. Show that if G is a planar graph of maximum degree d, then with
probability at least 9/10 (over the choice of σ), the greedy algorithm produces an
(ε/2, C2/ε4)-partition. (Hint: Use the previous exercise)

Theorem 3.2 (Partiton Oracle). There is an algorithm that given ε, d and a graph G of
bounded degree d does/satisfies the following:

1. The algorithm (implicitly) picks a random permutation σ ∈ Sn which (implicitly)
determines a partition P = P (σ) of V (G).

2. For any σ, the partition P consists of clusters of size at most C2/ε4.

3. Given a vertex v, the algorithm returns the connected component of P to which v

belongs by making 22C4/ε4

queries to G.

4. If G is planar, then with probability at least 4/5, P (σ) is a (ε, C2/ε4)-partition.

Exercise 3.7. Use the above theorem together with Exercise 3.4 to deduce that planarity
is testable (Theorem 3.1).

Proof (Theorem 3.2). Set k = C2/ε4. Let us pick a random permutation of V (G) by
assigning each vertex a random number r(v) ∈ [0, 1]. Given a permutation σ, let P ′

be the partition resulting from running the greedy partition algorithm described above.
For each vertex v let P ′[v] be the cluster of vertices to which v belongs to in P ′. We
now describe a recursive “local” algorithm for finding P ′[v]. Let us first assume that v
is a leader. Observe (crucially) that in order to compute P ′[v] we first need to know
which vertices at distance at most k from v belong to some other cluster, whose leader
w satisfies r(w) < r(v). Hence, in order to properly compute P ′[v] it is enough3 to
first recursively compute P [w′] for all w′ within distance at most 2k from v that satisfy
r(w′) < r(v). Once we compute all these values, we can look for an (ε/2, k)-set as in the
greedy algorithm. Now, if v is not a leader, then P ′[v] = P ′[w] where w is the leader of
the cluster to which v belongs. Hence in this case it is enough to compute P ′[w] for all w
at distance at most k satisfying r(w) < r(v). We conclude, that for all v, in order to find
P ′[v] it is enough to recursively compute P ′[w] for w within distance 2k from v which
satisfy r(w) < r(v). If v ∈ P ′[w] for one of these w′s then we know P ′[v], otherwise, we
look for an (ε/2, k)-set as in the greedy algorithm.

Note that the recursive local algorithm for finding P ′[v] might potentially compute
P ′[w] for all vertices of G. Let us then compute the expected number of recursive calls
made by the algorithm when computing P ′[v]. Consider the recursion tree T of the
execution of the above local algorithm. Since computing P ′[v] invokes recursive calls

3Note that it is enough to first compute P [w] for all w within distance k from v but that approach
would turn out to be inefficient.

8

only for vertices at distance at most 2k from v we conclude that T has degree at most
d2k. In particular, for each t there are at most (d2k)t vertices in T at distance t from the
root v. Now note that in order for the algorithm to reach a vertex xt at depth t in T ,
connected to v by a path v = x1, x2, . . . , xt we must have r(x1) > r(x2) > · · · > r(xt).
Since the probability of this event is 1/t!, we infer that the expected number of recursive
calls the algorithm makes when computing P ′[v] is at most

∞
∑

t=1

(d2k)t

t!
= ed2k

= ed2C2/ε4

.

By Markov’s Inequality, the probability of making more than 20d
ε · ed2C2/ε4

≤ 22C3/ε4

recursive calls when computing P ′[v] is at most ε/20d.

Let us say that a vertex v is bad if computing P ′[v] requires more than 22C3/ε4

recursive
calls. We conclude that the expected number of bad vertices is at most εn/20d. By
Markov’s Inequality, the number of bad vertices does not exceed εn/2d with probability
at least 9/10.

Let us now define the partition P and the algorithm in the statement of Theorem 3.2.
Given vertex v the algorithm runs the local algorithm described above for computing
P ′[w] for all vertices w within distance at most k from v with the restriction that whenever

we try to compute P ′[w] we stop the execution after 22C3/ε4

recursive calls. If one of
these recursive calls found a cluster containing v we return this cluster; otherwise, we
return {v} (that is, v will be in a cluster of size 1). Let P be the resulting partition.
Observe that if P ′[v] = P ′[w] = S then the above algorithm will either return S when
the input is either v,w or will return {v},{w} in these cases, respectively. This means
that P is well defined. Note that for each cluster S ∈ P ′ either S ∈ P or P breaks S into
singletons. Also, the latter happens if and only if all vertices in S are bad.

Note that since σ determines P ′ as well as the bad vertices, it also determines P . This
justifies item (1) of Theorem 3.2. Since P refines P ′ and all clusters of P ′ have size at
most k we get item (2). As to item (3), the algorithm above clearly runs in time at most

dk22C3/ε4

≤ 22C4/ε4

. We now prove item (4). First, observe that by Exercise 3.6, with
probability at least 9/10 the partition P ′ has at most εn/2 edges connecting different
clusters. Hence, it is enough to show that with probability at least 9/10 partition P
has no more than εn/2 additional edges connecting different clusters. Since P breaks
a cluster S of P ′ into singletons only if all vertices of S were bad, we conclude that
the number of additional edges connecting different clusters of P is at most d times the
number of bad vertices. Since we know that with probability at least 9/10 the number of
bad vertices does not exceed εn/2d we are done.

Now the above discussion assumed that we first picked a random permutation σ by
assigning a random number r(v) to all vertices. Since we cannot allow this if we want
to implement the algorithms queries in constant time, we instead pick the the random
number r(v) “on the fly”. That is, each vertex is assigned a random number r(v) ∈ [0, 1]
the moment we first encounter v. This value is then kept for in case this vertex is visited
again, either when computing the answer to the same query P [v] or when answering

9

another query P [v′].

The best result on testing planarity is by Levi-Ron who designed a version of Theo-
rem 3.2 where each query is answered by making (1/ε)C log 1/ε queries to the graph.

10

