
Lecture 1 - The regularity lemma

In this lecture, we will prove the famous regularity lemma of Szemerédi. Roughly speaking, Szemerédi’s

regularity lemma says that any graph may be partitioned into a finite number of sets such that most

of the bipartite graphs between different sets are random-like. To be absolutely precise, we will need

some notation and some definitions.

Let G be a graph and let A and B be subsets of the vertex set. If we let E(A,B) be the set of edges

between A and B, the density of edges between A and B is given by

d(A,B) =
|E(A,B)|
|A||B|

.

Definition 1 Let G be a graph and let A and B be two subsets of the vertex set. The pair (A,B) is

said to be ε-regular if, for every A′ ⊂ A and B′ ⊂ B with |A′| ≥ ε|A| and |B′| ≥ ε|B|,

|d(A′, B′)− d(A,B)| ≤ ε.

We say that a partition V (G) = X1 ∪X2 ∪ · · · ∪Xk is ε-regular if∑ |Xi||Xj |
n2

≤ ε,

where the sum is taken over all pairs (Xi, Xj) which are not ε-regular.

That is, a bipartite graph is ε-regular if all small induced subgraphs have approximately the same

density as the full graph and a partition of the vertex set of a graph G into smaller sets is ε-regular if

almost every pair forms a bipartite graph which is ε-regular. The regularity lemma is now as follows.

Theorem 1 (Szemerédi’s regularity lemma) For every ε > 0, there exists an M such that, for

every graph G, there is an ε-regular partition of the vertex set of G with at most M pieces.

In order to prove the regularity lemma, we will associate a function, known as the mean square density,

with each partition of V (G). We will prove that if a particular partition is not ε-regular it may be

further partitioned in such a way that the mean square density increases. But, as we shall see, the

mean square density is bounded above by 1, so we eventually reach a contradiction.

Definition 2 Let G be a graph. Given a partition V (G) = X1 ∪X2 ∪ · · · ∪Xk of the vertex set of G,

the mean square density of this partition is given by∑
1≤i,j≤k

|Xi||Xj |
n2

d(Xi, Xj)
2.

We now observe that since
∑

1≤i,j≤k
|Xi||Xj |
n2 = 1 and 0 ≤ d(Xi, Xj) ≤ 1, the mean square density also

lies between 0 and 1.

Lemma 1 For every partition of the vertex set of a graph G, the mean square density lies between 0

and 1.
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Another important property of mean square density is that it cannot increase under refinement of a

partition. That is, we have the following.

Lemma 2 Let G be a graph with vertex set V (G). If X1, X2, . . . , Xk is a partition of V (G) and

Y1, Y2, . . . , Y` is a refinement of X1, X2, . . . , Xk, then the mean square density of Y1, Y2, . . . , Y` is at

least the mean square density of X1, X2, . . . , Xk.

Proof Because the Yi partition is a refinement of the Xi partition, every Xi may be rewritten as

a disjoint union Xi1 ∪ · · · ∪ Xiai , where each Xiai = Yj , for some j. Now, by the Cauchy-Schwarz

inequality,

d(Xi, Xj)
2 =

(∑
s,t

|Xis||Xjt|
|Xi||Xj |

d(Xis, Xyt)

)2

≤

(∑
s,t

|Xis||Xjt|
|Xi||Xj |

)(∑
s,t

|Xis||Xjt|
|Xi||Xj |

d(Xis, Xyt)
2

)

=
∑
s,t

|Xis||Xjt|
|Xi||Xj |

d(Xis, Xyt)
2.

Therefore,
|Xi||Xj |
n2

d(Xi, Xj)
2 ≤

∑
s,t

|Xis||Xjt|
n2

d(Xis, Xyt)
2.

Adding over all values of i and j implies the lemma. 2

An analogous result also holds for bipartite graphs G. That is, if G is a bipartite graph between two

sets X and Y , ∪iXi and ∪iYi are partitions of X and Y and ∪iZi and ∪iWi refine these partitions,

then ∑
i,j

|Xi||Yj |
n2

d(Xi, Yj)
2 ≤

∑
i,j

|Zi||Wj |
n2

d(Zi,Wj)
2.

We will now show that if X and Y are two sets of vertices and the graph between them is not-regular

then there is a partition of each of X and Y for which the mean square density increases.

Lemma 3 Let G be a graph and suppose X and Y are subsets of the vertex set V (G). If d(X,Y ) = α

and the graph between X and Y is not ε-regular then there are partitions X = X1∪X2 and Y = Y1∪Y2
such that ∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj)
2 ≥ α2 + ε4.

Proof Since the graph between X and Y is not ε-regular, there must be two subsets X1 and Y1 of X

and Y , respectively, with |X1| ≥ ε|X|, |Y1| ≥ ε|Y | and |d(X1, Y1)−α| > ε. Let X2 = X\X1, Y2 = Y \Y1
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and u(Xi, Yj) = d(Xi, Yj)− α. Then

ε4 ≤
∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

u(Xi, Yj)
2

=
∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj)
2 − 2α

∑
1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj) + α2
∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

=
∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj)
2 − α2.

Note that the second line holds since∑
1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj) = d(X,Y ) = α.

The result therefore follows. 2

To complete the proof of the regularity lemma, we need to prove that if a partition is not ε-regular

there is a refinement of this partition which has a higher mean square density. This is taken care of

in the following lemma.

Lemma 4 Let G be a graph and let X1 ∪X2 ∪ · · · ∪Xk be a partition of the vertices of G which is not

ε-regular. Then there is a refinement X11 ∪ · · · ∪X1a1 ∪ · · · ∪Xk1 ∪ · · · ∪Xkak such that every ai is at

most 22k and the mean square density is at least ε5 larger.

Proof Let I = {(i, j) : (Xi, Xj) is not ε-regular}. Let α2 be the mean square density of G with

respect to X1 ∪ · · · ∪Xk.

For each (i, j) ∈ I, the previous lemma gives us partitions Xi = Aij1 ∪ A
ij
2 and Xj = Bij

1 ∪ B
ij
2 for

which ∑
1≤p,q≤2

|Aijp ||Bij
q |

|Xi||Xj |
d(Aijp , B

ij
q )2 ≥ d(Xi, Xj)

2 + ε4.

For each i, let Xi1 ∪ · · · ∪ Xiai be the partition of Xi which refines all partitions which arise from

partitioning Xi or Xj into Ais or Bis. Note that this partition has at most 22k pieces, that is,

ai ≤ 22k. Moreover, since refining bipartite partitions does not decrease the mean square density, we

have
ai∑
p=1

aj∑
q=1

|Xip||Xjq|
|Xi||Xj |

d(Xip, Xjq)
2 ≥ d(Xi, Xj)

2 + ε4,

for all (i, j) ∈ I. Multiplying both sides of the equation by
|Xi||Xj |
n2 and summing over all (i, j), we

have

∑
1≤i,j≤k

ai∑
p=1

aj∑
q=1

|Xip||Xjq|
n2

d(Xip, Xjq)
2 ≥

∑
1≤i,j≤k

|Xi||Xj |
n2

d(Xi, Xj)
2 + ε4

∑
(i,j)∈I

|Xi||Xj |
n2

≥ α2 + ε5.

The result follows. 2
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We now have all the ingredients necessary to finish the proof.

Proof of Szemerédi’s regularity lemma Start with a trivial partition into one set. If it is ε-

regular, we are done. Otherwise, there is a partition into at most 4 sets where the mean square

density increases by ε5.

If, at stage i, we have a partition into k pieces and this partition is not ε-regular, there is a partition

into at most k22k ≤ 22
k

pieces whose mean square density is at least ε5 greater. Because the mean

square density is bounded above by 1, this process must end after at most ε−5 steps. The number of

pieces in the final partition is at most a tower of 2s of height 2ε−5. 2

The tower function ti(x) is defined by t0(x) = x and, for i ≥ 0, ti+1(x) = 2ti(x). The bound given in

the proof above is t2ε−5(2), which is clearly enormous. Surprisingly, as was shown by Gowers, there

are graphs where, to get an ε-regular partition, one needs roughly that many pieces in the partition.

We note that sometimes the regularity lemma is stated with the additional condition that the partition

is equitable. This means that each piece in the partition is of the same order or, more accurately, that

||Xi| − |Xj || ≤ 1 for all i and j. When applying the lemma, it is occasionally useful to assume this

extra condition.
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