Lecture 3 - Fox's proof of the removal lemma

The graph removal lemma states that for any graph H and any $\epsilon>0$, there exists $\delta>0$ such that any graph on n vertices with at most $\delta n^{v(H)}$ copies of H can be made H-free by removing at most ϵn^{2} edges. The original proof of this uses the regularity lemma and gives a bound on δ^{-1} which is a tower of twos of height polynomial in ϵ^{-1}. In this lecture, we will discuss an alternative proof of this result, given by Fox, which improves the bound on δ^{-1} to a tower of twos of height logarithmic in ϵ^{-1}. While still huge, this result is interesting because it bypasses the lower bound for the regularity lemma.
The first ingredient we will need in the proof is a variant of the iterated weak regularity lemma which we proved in the previous lecture. Rather than fixing on the mean square density, it will be useful to define a mean- q density for any convex function q. If $\mathcal{A}=X_{1} \cup \cdots \cup X_{k}$ is a partition of the vertex set of a graph on n vertices, this is defined by

$$
q(\mathcal{A})=\sum_{1 \leq i, j \leq k} \frac{\left|X_{i}\right|\left|X_{j}\right|}{n^{2}} q\left(d\left(X_{i}, X_{j}\right)\right)
$$

We note that for any convex function q and any partition \mathcal{A} of a graph with density d,

$$
q(d) \leq q(\mathcal{A}) \leq d q(1)+(1-d) q(0)
$$

The proof of the next lemma is essentially the same as that given in the previous lecture.
Lemma 1 Let $q:[0,1] \rightarrow \mathbb{R}$ be a convex function, G be a graph with density $d, f: \mathbb{N} \rightarrow[0,1]$ be a decreasing function and $r=(d q(1)+(1-d) q(0)-q(d)) / \gamma$. Then there are equitable partitions P and Q with Q a refinement of P satisfying $q(Q) \leq q(P)+\gamma, Q$ is weak $f(|P|)$-regular and $|Q| \leq t_{r}$, where $t_{0}=1, t_{i}=t_{i-1} R\left(f\left(t_{i-1}\right)\right)$ for $1 \leq i \leq r$ and $R(x)=2^{c x^{-2}}$ as in the Frieze-Kannan weak regularity lemma.

Rather than using the usual $q(x)=x^{2}$, we will use the convex function q on $[0,1]$ defined by $q(0)=0$ and $q(x)=x \log x$ for $x \in(0,1]$. This entropy function is central to the proof since it captures the extra structural information coming from Lemma 3 below in a concise fashion. Note that $d \log d \leq q(P) \leq 0$ for every partition P.
The next lemma is a counting lemma that complements the Frieze-Kannan weak regularity lemma. As one might expect, this lemma gives a global count for the number of copies of H, whereas the counting lemma associated with the usual regularity lemma gives a means of counting copies of H between any $v(H)$ parts of the partition which are pairwise regular. Its proof, which we omit, is by a simple telescoping sum argument.

Lemma 2 Let H be a graph on $\{1, \ldots, h\}$ with m edges. Let $G=(V, E)$ be a graph on n vertices and $Q: V=V_{1} \cup \ldots \cup V_{t}$ be a vertex partition which is weak ϵ-regular. The number of homomorphisms from H to G is within $\epsilon m n^{h}$ of

$$
\sum_{1 \leq i_{1}, \ldots, i_{h} \leq t} \prod_{(r, s) \in E(H)} d\left(V_{i_{r}}, V_{i_{s}}\right) \prod_{a=1}^{h}\left|V_{i_{a}}\right|
$$

Let P and Q be vertex partitions of a graph G with Q a refinement of P. A pair $\left(V_{i}, V_{j}\right)$ of parts of P is (α, c)-shattered by Q if at least a c-fraction of the pairs $(u, v) \in V_{i} \times V_{j}$ go between pairs of parts of Q with edge density between them less than α.
The key component in the proof is the following lemma, which says that if P and Q are vertex partitions like those given by Lemma 1, then there are many pairs of vertex sets in P which are shattered by Q.

Lemma 3 Let H be a graph on $\{1, \ldots, h\}$ with m edges and let $\alpha>0$. Suppose G is a graph on n vertices for which there are fewer than δn^{h} homomorphisms of H into G, where $\delta=\frac{1}{4} \alpha^{m}(2 k)^{-h}$. Suppose P and Q are equitable vertex partitions of G with $|P|=k \leq n$ and Q is a refinement of P which is weak $f(k)$-regular, where $f(k)=\frac{1}{4 m} \alpha^{m}(2 k)^{-h}$. For every h-tuple V_{1}, \ldots, V_{h} of parts of P, there is an edge (i, j) of H for which the pair $\left(V_{i}, V_{j}\right)$ is $\left(\alpha, \frac{1}{2 m}\right)$-shattered by Q.

Proof As $|P|=k \leq n$, we have $\left|V_{i}\right| \geq \frac{n}{2 k}$ for each i. Let Q_{i} denote the partition of V_{i} which consists of the parts of Q which are subsets of V_{i}. Consider an h-tuple $\left(v_{1}, \ldots, v_{h}\right) \in V_{1} \times \cdots \times V_{h}$ picked uniformly at random. Also consider the event E that, for each edge (i, j) of H, the pair $\left(v_{i}, v_{j}\right)$ goes between parts of Q_{i} and Q_{j} with density at least α. If E occurs with probability at least $1 / 2$, as Q is weak $f(k)$-regular, Lemma 2 implies that the number of homomorphisms of H into G where the copy of vertex i is in V_{i} for $1 \leq i \leq h$ is at least

$$
\frac{1}{2} \alpha^{m} \prod_{i=1}^{h}\left|V_{i}\right|-m f(k) n^{h} \geq\left(\frac{1}{2} \alpha^{m}(2 k)^{-h}-m f(k)\right) n^{h}=\delta n^{h}
$$

contradicting that there are fewer than δn^{h} homomorphisms of H into G. So E occurs with probability less than $1 / 2$. Hence, for at least $1 / 2$ of the h-tuples $\left(v_{1}, \ldots, v_{h}\right) \in V_{1} \times \cdots \times V_{h}$, there is an edge (i, j) of H such that the pair $\left(v_{i}, v_{j}\right)$ goes between parts of Q_{i} and Q_{j} with density less than α. This implies that for at least one edge (i, j) of H, the pair $\left(V_{i}, V_{j}\right)$ is $\left(\alpha, \frac{1}{2 m}\right)$-shattered by Q.

We will need the following lemma which tells us that if a pair of parts from P is shattered by Q then there is an increment in the mean-entropy density. Its proof, which we again omit, is a simple application of Jensen's inequality.

Lemma 4 Let $q:[0,1] \rightarrow \mathbb{R}$ be the convex function given by $q(0)=0$ and $q(x)=x \log x$ for $x>0$. Let $\epsilon_{1}, \ldots, \epsilon_{r}$ and d_{1}, \ldots, d_{r} be nonnegative real numbers with $\sum_{i=1}^{r} \epsilon_{i}=1$ and $d=\sum_{i=1}^{r} \epsilon_{i} d_{i}$. Suppose $\beta<1$ and $I \subset[r]$ is such that $d_{i} \leq \beta d$ for $i \in I$ and let $s=\sum_{i \in I} \epsilon_{i}$. Then

$$
\sum_{i=1}^{r} \epsilon_{i} q\left(d_{i}\right) \geq q(d)+(1-\beta+q(\beta)) s d
$$

We are now ready to prove the theorem in the following precise form.
Theorem 1 Let H be a graph on $\{1, \ldots, h\}$ with m edges. Let $\epsilon>0$ and δ^{-1} be a tower of twos of height $8 h^{4} \log \epsilon^{-1}$. If G is a graph on n vertices in which at least ϵn^{2} edges need to be removed to make it H-free, then G contains at least δn^{h} copies of H.

Proof Suppose for contradiction that there is a graph G on n vertices in which at least ϵn^{2} edges need to be removed from G to delete all copies of H, but G contains fewer than δn^{h} copies of H. If
$n \leq \delta^{-1 / h}$, then the number of copies of H in G is less than $\delta n^{h} \leq 1$, so G is H-free, contradicting that at least ϵn^{2} edges need to be removed to make the graph H-free. Hence, $n>\delta^{-1 / h}$. Note that the number of mappings from $V(H)$ to $V(G)$ which are not one-to-one is $n^{h}-h!\binom{n}{h} \leq h^{2} n^{h-1}<h^{2} \delta^{1 / h} n^{h}$. Let $\delta^{\prime}=2 h^{2} \delta^{1 / h}$, so the number of homomorphisms from H to G is at most $\delta^{\prime} n^{h}$.
The graph G contains at least $\epsilon n^{2} / m$ edge-disjoint copies of H. Let G^{\prime} be the graph on the same vertex set which consists entirely of the at least $\epsilon n^{2} / m$ edge-disjoint copies of H. Then $d\left(G^{\prime}\right) \geq$ $m \cdot \epsilon / m=\epsilon$ and G^{\prime} consists of $\frac{d\left(G^{\prime}\right)}{m} n^{2}$ edge-disjoint copies of H. We will show that there are at least $\delta^{\prime} n^{h}$ homomorphisms from H to G^{\prime} (and hence to G as well). For the rest of the argument, we will assume the underlying graph is G^{\prime}.
Let $\alpha=\frac{\epsilon}{8 m}$. Apply Lemma 1 to G^{\prime} with $f(k)=\frac{1}{4 m} \alpha^{m}(2 k)^{-h}$ and $\gamma=\frac{d\left(G^{\prime}\right)}{2 h^{4}}$. Note that r as in Lemma 1 is

$$
r=d\left(G^{\prime}\right) \log \left(1 / d\left(G^{\prime}\right)\right) / \gamma=2 h^{4} \log \left(1 / d\left(G^{\prime}\right)\right) \leq 2 h^{4} \log \epsilon^{-1} .
$$

Hence, we get a pair of equitable vertex partitions P and Q, with Q a refinement of $P, q(Q) \leq q(P)+\gamma$, Q is weak $f(|P|)$-regular and $|Q|$ is at most a tower of twos of height $3 r \leq 6 h^{4} \log \epsilon^{-1}$. Let V_{1}, \ldots, V_{k} denote the parts of P and Q_{i} denote the partition of V_{i} consisting of the parts of Q which are subsets of V_{i}.
Suppose that $\left(V_{a}, V_{b}\right)$ is a pair of parts of P with edge density $d=d\left(V_{a}, V_{b}\right) \geq \epsilon / m$ which is $\left(\alpha, \frac{1}{2 m}\right)$ shattered by Q. Note that $\alpha \leq d / 8$. Arbitrarily order the pairs $U_{i} \times W_{i} \in Q_{a} \times Q_{b}$, letting $d_{i}=d\left(U_{i}, W_{i}\right)$ and $\epsilon_{i}=\frac{\left|U_{i}\right|\left|W_{i}\right|}{\left|V_{a}\right|\left|V_{b}\right|}$, so that the conditions of Lemma 4 with $\beta=1 / 8$ are satisfied. Applying Lemma 4 , we get, since $q(\beta)=-\frac{1}{8} \log 8=-\frac{3}{8}$, that

$$
q\left(Q_{a}, Q_{b}\right)-q\left(V_{a}, V_{b}\right) \geq(1-\beta+q(\beta)) \frac{1}{2 m} d\left(V_{a}, V_{b}\right)\left|V_{a}\right|\left|V_{b}\right| / n^{2} \geq \frac{1}{4 m} e\left(V_{a}, V_{b}\right) / n^{2}
$$

Note that

$$
q(Q)-q(P)=\sum_{1 \leq a, b \leq k}\left(q\left(Q_{a}, Q_{b}\right)-q\left(V_{a}, V_{b}\right)\right),
$$

which shows that $q(Q)-q(P)$ is the sum of nonnegative summands.
There are at most $\frac{\epsilon}{m} n^{2} / 2$ edges of G^{\prime} going between pairs of parts of P with density at most $\frac{\epsilon}{m}$. Hence, at least $1 / 2$ of the edge-disjoint copies of H making up G^{\prime} have all its edges going between pairs of parts of P of density at least $\frac{\epsilon}{m}$. By Lemma 3, for each copy of H, at least one of its edges goes between a pair of parts of P which is $\left(\alpha, \frac{1}{2 m}\right)$-shattered by Q. Thus,

$$
q(Q)-q(P) \geq \sum \frac{1}{4 m} e\left(V_{a}, V_{b}\right) / n^{2} \geq \frac{1}{4 m} \cdot \frac{d\left(G^{\prime}\right)}{2 m}=\frac{d\left(G^{\prime}\right)}{8 m^{2}}>\gamma
$$

where the sum is over all ordered pairs $\left(V_{a}, V_{b}\right)$ of parts of P which are $\left(\alpha, \frac{1}{2 m}\right)$-shattered by Q and with $d\left(V_{a}, V_{b}\right) \geq \frac{\epsilon}{m}$. This contradicts $q(Q) \leq q(P)+\gamma$ and completes the proof.

