
Lecture 4 - A little sparse regularity

In this lecture, we will prove a counting lemma for sparse graphs, concentrating on the case of triangles,

since this case contains all the important ideas and is notationally simpler.

For graphs, the counting lemma says that if two weighted graphs are close in cut norm, then they have

similar triangle densities. To be more specific, we consider weighted tripartite graphs on the vertex

set X ∪ Y ∪Z, where X, Y and Z are finite sets. Such a weighted graph g is given by three functions

gXY : X × Y → R, gXZ : X × Z → R and gY Z : Y × Z → R, although we often drop the subscripts if

they are clear from context. We write ‖g‖� = max{‖gXY ‖� , ‖gXZ‖� , ‖gY Z‖�}.
For dense graphs, the counting lemma is as follows. Typically, g̃ will be a low complexity approximation

to g given by applying the weak regularity lemma.

Proposition 1 (Triangle counting lemma, dense setting) Let g and g̃ be weighted tripartite graphs

on X ∪ Y ∪ Z with weights in [0, 1]. If ‖g − g̃‖� ≤ ε, then

|Ex∈X,y∈Y,z∈Z [g(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)]| ≤ 3ε.

Proof Unless indicated otherwise, all expectations are taken over x ∈ X, y ∈ Y , z ∈ Z uniformly

and independently. From the definition of the cut norm, we have that

|Ex∈X,y∈Y [(g(x, y)− g̃(x, y))a(x)b(y)]| ≤ ε (1)

for every function a : X → [0, 1] and b : Y → [0, 1]. It follows that

|E[g(x, y)g(x, z)g(y, z)− g̃(x, y)g(x, z)g(y, z)]| ≤ ε,

since the expectation has the form (1) if we fix any value of z. Similarly, we have

|E[g̃(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g(y, z)]| ≤ ε

and

|E[g̃(x, y)g̃(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)]| ≤ ε.

The result then follows from telescoping and the triangle inequality. 2

When considering sparse graphs G, it will be useful to think of G as being a subgraph of a highly

pseudorandom graph Γ. If Γ has density p, we write ν for the measure of Γ, given by

ν(x, y) =

{
0 if xy 6∈ E(Γ);

p−1 if xy ∈ E(Γ).

The subgraph G is then represented by a function g which is given by

g(x, y) =

{
0 if xy 6∈ E(G);

p−1 if xy ∈ E(G).

In what follows, we will not need to assume that G or Γ are graphs. It will be sufficient to assume

that 0 ≤ g ≤ ν, where ν is a sufficiently well-behaved function. Here, we will assume that ν satisfies

the following pseudorandomness condition, which we call the 3-linear forms condition.
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Definition 1 (3-linear forms condition) A weighted tripartite graph ν with vertex sets X, Y and

Z satisfies the 3-linear forms condition if

Ex,x′∈X, y,y′∈Y, z,z′∈Z [ν(y, z)ν(y′, z)ν(y, z′)ν(y′, z′)ν(x, z)ν(x′, z)ν(x, z′)ν(x′, z′)

· ν(x, y)ν(x′, y)ν(x, y′)ν(x′, y′)] = 1 + o(1) (2)

and also (2) holds when one or more of the twelve ν factors in the expectation are erased.

This essentially says that the weighted graph ν has asymptotically the expected H-density for any sub-

graph H of K2,2,2. For example, triangle density in ν is given by the expression E[ν(x, y)ν(x, z)ν(y, z)],

where x, y, z vary independently and uniformly over X, Y , Z, respectively. The pseudorandomness

assumption requires, amongst other things, that this triangle density be 1 + o(1), the normalization

having accounted for the other factors.

The counting lemma for sparse graphs is now as follows. Again, we think of g̃ as being a low complexity

approximation to g coming from a weak regularity lemma. While we have not proved that a regularity

lemma holds in the sparse context, it is not particularly difficult to prove that any graph satisfying

the 3-linear forms condition is also upper regular and it is well known that subgraphs of upper regular

graphs satisfy analogues of the regularity lemma. This shows that for any ε > 0 and any g with

0 ≤ g ≤ ν, there will be g̃ with 0 ≤ g̃ ≤ 1 such that ‖g − g̃‖� ≤ ε.

Theorem 1 (Triangle counting lemma, sparse setting) Let ν, g, g̃ be weighted tripartite graphs

on X ∪ Y ∪ Z. Assume that ν satisfies the 3-linear forms condition, 0 ≤ g ≤ ν, and 0 ≤ g̃ ≤ 1. If

‖g − g̃‖� = o(1), then

|Ex∈X,y∈Y,z∈Z [g(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)]| = o(1).

The proof uses repeated application of the Cauchy–Schwarz inequality, a standard technique in this

area, popularized by Gowers. The key additional idea is what we call densification. After several

applications of the Cauchy–Schwarz inequality, it becomes necessary to analyze the 4-cycle density:

Ex,y,z,z′ [g(x, z)g(x, z′)g(y, z)g(y, z′)]. To do this, one introduces an auxiliary weighted graph g′ : X ×
Y → [0,∞) defined by g′(x, y) := Ez[g(x, z)g(y, z)] (this is basically the codegree function). The

expression for the 4-cycle density now becomes Ex,y,z[g
′(x, y)g(x, z)g(y, z)].

At first glance, it seems that our reasoning is circular. Our aim was to estimate a certain triangle

density expression but we have now returned to a triangle density expression. However, g′ behaves

much more like a dense weighted graph with bounded edge weights, so what we have accomplished is

to replace one of the “sparse” gXY by a “dense” g′XY . If we do this two more times, replacing gY Z

and gXZ with dense counterparts, the problem reduces to the dense case, which we already know how

to handle.

The next lemma is crucial to what follows. It shows that in certain expressions a factor ν can be

deleted from an expectation while incurring only a o(1) loss.

Lemma 1 (Strong linear forms) Let ν, g, g̃ be weighted tripartite graphs on X ∪ Y ∪ Z. Assume

that ν satisfies the 3-linear forms condition, 0 ≤ g ≤ ν, and 0 ≤ g̃ ≤ 1. Then

Ex∈X,y∈Y,z,z′∈Z [(ν(x, y)− 1)g(x, z)g(x, z′)g(y, z)g(y, z′)] = o(1)

and the same statement holds if any subset of the four g factors are replaced by g̃.
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Proof We give the proof when none of the g factors are replaced. The other cases require only a

simple modification. By the Cauchy-Schwarz inequality, we have∣∣Ex,y,z,z′ [(ν(x, y)− 1)g(x, z)g(x, z′)g(y, z)g(y, z′)]
∣∣2

≤ Ey,z,z′ [(Ex[(ν(x, y)− 1)g(x, z)g(x, z′)])2g(y, z)g(y, z′)] Ey,z,z′ [g(y, z)g(y, z′)]

≤ Ey,z,z′ [(Ex[(ν(x, y)− 1)g(x, z)g(x, z′)])2ν(y, z)ν(y, z′)] Ey,z,z′ [ν(y, z)ν(y, z′)].

The second factor is at most 1 + o(1) by the linear forms condition. So it remains to analyze the first

factor. We have, by another application of the Cauchy-Schwarz inequality,∣∣Ey,z,z′ [(Ex[(ν(x, y)− 1)g(x, z)g(x, z′)])2ν(y, z)ν(y, z′)]
∣∣2

=
∣∣Ex,x′,y,z,z′ [(ν(x, y)− 1)(ν(x′, y)− 1)g(x, z)g(x, z′)g(x′, z)g(x′, z′)ν(y, z)ν(y, z′)]

∣∣2
=

∣∣Ex,x′,z,z′ [Ey[(ν(x, y)− 1)(ν(x′, y)− 1)ν(y, z)ν(y, z′)]g(x, z)g(x, z′)g(x′, z)g(x′, z′)]
∣∣2

≤ Ex,x′,z,z′ [(Ey[(ν(x, y)− 1)(ν(x′, y)− 1)ν(y, z)ν(y, z′)])2g(x, z)g(x, z′)g(x′, z)g(x′, z′)]

· Ex,x′,z,z′ [g(x, z)g(x, z′)g(x′, z)g(x′, z′)]

≤ Ex,x′,z,z′ [(Ey[(ν(x, y)− 1)(ν(x′, y)− 1)ν(y, z)ν(y, z′)])2ν(x, z)ν(x, z′)ν(x′, z)ν(x′, z′)]

· Ex,x′,z,z′ [ν(x, z)ν(x, z′)ν(x′, z)ν(x′, z′)].

Using the 3-linear forms condition, the second factor is 1 + o(1) and the first factor is o(1) (expand

everything and notice that all the terms are 1 + o(1) and the signs make all the 1’s cancel). 2

Proof of Theorem 1: If ν is identically 1, we are in the dense setting, in which case the theorem

follows from Proposition 1. Now we apply induction on the number of νXY , νXZ , νY Z which are

identically 1. By relabeling if necessary, we may assume without loss of generality that νXY is not

identically 1. We define auxiliary weighted graphs ν ′, g′, g̃′ : X × Y → [0,∞) by

ν ′(x, y) := Ez[ν(x, z)ν(y, z)],

g′(x, y) := Ez[g(x, z)g(y, z)],

g̃′(x, y) := Ez[g̃(x, z)g̃(y, z)].

We refer to this step as densification. The idea is that even though ν and g are possibly unbounded,

the new weighted graphs ν ′ and g′ behave like dense graphs. The weights on ν ′ and g′ are not

necessarily bounded by 1, but they almost are. To correct this, we will cap the weights by setting

g′∧1 := max{g′, 1} and ν ′∧1 := max{ν ′, 1} and show that this capping operation has negligible effect.

We have

E[g(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)] = E[gg′ − g̃g̃′] = E[g(g′ − g̃′)] + E[(g − g̃)g̃′], (3)

where the first expectation is taken over x ∈ X, y ∈ Y, z ∈ Z and the other expectations are taken over

X × Y (we will use these conventions unless otherwise specified). The second term on the right-hand

side of (3) equals E[(g(x, y)− g̃(x, y))g̃(x, z)g̃(y, z)] and its absolute value is at most ‖g − g̃‖� = o(1)

(here we use 0 ≤ g̃ ≤ 1 as in the proof of Proposition 1). So it remains to bound the first term on the

right-hand side of (3). By the Cauchy–Schwarz inequality, we have

(E[g(g′ − g̃′)])2 ≤ E[g(g′ − g̃′)2] E[g] ≤ E[ν(g′ − g̃′)2] E[ν]

= Ex,y[ν(x, y)(Ez[g(x, z)g(y, z)− g̃(x, z)g̃(y, z)])2] Ex,y[ν(x, y)].
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The second factor is 1 + o(1) by the linear forms condition. By Lemma 1, the first factor differs from

Ex,y[(Ez[g(x, z)g(y, z)− g̃(x, z)g̃(y, z)])2] = E[(g′ − g̃′)2] (4)

by o(1) (take the difference, expand the square, and then apply the lemma term-by-term).

The 3-linear forms condition implies that E[ν ′] = 1 + o(1) and E[ν ′2] = 1 + o(1). Therefore, by the

Cauchy-Schwarz inequality, we have

E[|ν ′ − 1|] ≤ E[(ν ′ − 1)2] = o(1). (5)

We want to show that (4) is o(1). We have

E[(g′ − g̃′)2] = E[(g′ − g̃′)(g′ − g′∧1)] + E[(g′ − g̃′)(g′∧1 − g̃′)]. (6)

Since 0 ≤ g′ ≤ ν ′, we have

0 ≤ g′ − g′∧1 = max{g′ − 1, 0} ≤ max{ν ′ − 1, 0} ≤ |ν ′ − 1|. (7)

Using (5) and (7), the absolute value of the first term on the right-hand side of (6) is at most

E[(ν ′ + 1)|ν ′ − 1|] = E[(ν ′ − 1)|ν ′ − 1|] + 2E[|ν ′ − 1|] = o(1).

Next, we claim that ∥∥g′∧1 − g̃′∥∥� = o(1). (8)

Indeed, for any A ⊆ X and B ⊆ Y , we have

Ex,y[(g′∧1 − g̃′)(x, y)1A(x)1B(y)] = E[(g′∧1 − g̃′)1A×B] = E[(g′∧1 − g′)1A×B] + E[(g′ − g̃′)1A×B].

By (7) and (5), the absolute value of the first term is at most E[|ν ′ − 1|] = o(1). The second term can

be rewritten as

Ex,y,z[1A×B(x, y)g(x, z)g(y, z)− 1A×B(x, y)g̃(x, z)g̃(y, z)],

which is o(1) by the induction hypothesis (replace νXY , gXY , g̃XY by 1, 1A×B, 1A×B, respectively, and

note that this increases the number of {νXY , νXZ , νY Z} which are identically 1). This proves (8).

We now expand the second term on the right-hand side of (6) as

E[(g′ − g̃′)(g′∧1 − g̃′)] = E[g′g′∧1]− E[g′g̃′]− E[g̃′g′∧1] + E[g̃′2]. (9)

We claim that each of the expectations on the right-hand side is E[(g̃′)2] + o(1). Indeed, we have

E[g′g′∧1]− E[(g̃′)2] = Ex,y,z[g
′
∧1(x, y)g(x, z)g(y, z)− g̃′(x, y)g̃(x, z)g̃(y, z)],

which is o(1) by the induction hypothesis (replace νXY , gXY , g̃XY by 1, g′∧1, g̃
′, respectively, which by

(8) satisfies ‖g′∧1 − g̃′‖� = o(1), and note that this increases the number of {νXY , νXZ , νY Z} which

are identically 1). One can similarly show that the other expectations on the right-hand side of (9)

are also E[(g̃′)2] + o(1). Thus (9) is o(1) and the theorem follows. 2
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