Problem Set 1 - counting lemmas and the triangle removal lemma

1. Suppose that $d>\epsilon>0$ and X and Y are disjoint sets such that (X, Y) is an ϵ-regular pair with density at least d. Prove that there are at least $(1-\epsilon)|X|$ vertices $x \in X$ such that $|N(x) \cap Y| \geq(d-\epsilon)|Y|$, where $N(x)$ is the neighbourhood of x.
2. Suppose that $d>2 \epsilon>0$ and X, Y and Z are disjoint set such that $(X, Y),(Y, Z)$ and (Z, X) are all ϵ-regular pairs with density at least d. Prove that there exists $\eta>0$ such that there are at least $\eta|X||Y||Z|$ triangles with one vertex in each of X, Y and Z.
3. Use the regularity lemma and the exercise above to prove the triangle removal lemma: for any $\epsilon>0$, there exists a $\delta>0$ such that if G is a graph on n vertices with fewer than δn^{3} triangles, it may be made triangle-free by removing at most ϵn^{2} edges.
4. Use the triangle removal lemma to prove Roth's theorem: for every $\delta>0$, there exists n_{0} such that, for $n \geq n_{0}$, every subset A of $\{1,2, \ldots, n\}$ of size δn contains a 3 -term arithmetic progression. [Hint: Consider the graph between three copies X, Y and Z of [3n], where $x y$ is an edge if $y-x \in A, y z$ is an edge if $z-y \in A$ and $z x$ is an edge if $z-x \in 2 A$.]
5. Use the triangle removal lemma to prove the induced matching lemma: any graph on n vertices which is the union of n induced matchings has $o\left(n^{2}\right)$ edges.
6. Give another proof of Roth's theorem using the induced matching lemma. [Hint: Consider the bipartite graph between X and Y, where X is a copy of $[2 n]$ and Y is a copy of [3n], and look at the matchings formed by fixing x and joining $x+a$ to $x+2 a$ for each $a \in A$.]
