Problem Set 1 - counting lemmas and the triangle removal lemma

- 1. Suppose that $d > \epsilon > 0$ and X and Y are disjoint sets such that (X, Y) is an ϵ -regular pair with density at least d. Prove that there are at least $(1 \epsilon)|X|$ vertices $x \in X$ such that $|N(x) \cap Y| \ge (d \epsilon)|Y|$, where N(x) is the neighbourhood of x.
- 2. Suppose that $d > 2\epsilon > 0$ and X, Y and Z are disjoint set such that (X, Y), (Y, Z) and (Z, X) are all ϵ -regular pairs with density at least d. Prove that there exists $\eta > 0$ such that there are at least $\eta |X||Y||Z|$ triangles with one vertex in each of X, Y and Z.
- 3. Use the regularity lemma and the exercise above to prove the triangle removal lemma: for any $\epsilon > 0$, there exists a $\delta > 0$ such that if G is a graph on n vertices with fewer than δn^3 triangles, it may be made triangle-free by removing at most ϵn^2 edges.
- 4. Use the triangle removal lemma to prove Roth's theorem: for every $\delta > 0$, there exists n_0 such that, for $n \ge n_0$, every subset A of $\{1, 2, ..., n\}$ of size δn contains a 3-term arithmetic progression. [Hint: Consider the graph between three copies X, Y and Z of [3n], where xy is an edge if $y x \in A$, yz is an edge if $z y \in A$ and zx is an edge if $z x \in 2A$.]
- 5. Use the triangle removal lemma to prove the induced matching lemma: any graph on n vertices which is the union of n induced matchings has $o(n^2)$ edges.
- 6. Give another proof of Roth's theorem using the induced matching lemma. [Hint: Consider the bipartite graph between X and Y, where X is a copy of [2n] and Y is a copy of [3n], and look at the matchings formed by fixing x and joining x + a to x + 2a for each $a \in A$.]