Problem Set 2 - from weak regularity to strong regularity

1. Prove the Frieze-Kannan weak regularity lemma. That is, show that for any $\epsilon > 0$, there is a partition $V(G) = X_1 \cup \ldots X_k$ into $k \leq K$ parts such that for all $A, B \subseteq V(G)$,

$$|e(A,B) - \sum_{1 \le i,j \le k} d(X_i, X_j)|A \cup X_i||B \cap X_j|| \le \epsilon |V|^2$$

- 2. The Frieze–Kannan regularity lemma was developed to give an approximation algorithm for the max cut of a dense graph. How might this work?
- 3. Show that if a partition is weak ϵ -regular than any refinement is weak 2ϵ -regular. Show that this implies that we may assume the Frieze–Kannan regularity partition is equitable.
- 4. Is it true that if a partition is ϵ -regular, in the usual sense, then any refinement is 2ϵ -regular?
- 5. Use the strong regularity lemma to prove the induced removal lemma: for any $\epsilon > 0$, there exists $\delta > 0$ such that any graph on *n* vertices containing at most $\delta n^{v(H)}$ copies of *H* may be made induced-*H*-free by changing at most ϵn^2 edges.
- 6. Why is it not sufficient to remove edges in the induced removal lemma?