Problem Set 3 - convexity, weak regularity and more

1. Show that for any convex function q and any partition \mathcal{A} of a graph with density d,

$$
q(d) \leq q(\mathcal{A}) \leq d q(1)+(1-d) q(0)
$$

2. Show that if \mathcal{A} and \mathcal{B} are partitions of a graph with \mathcal{B} a refinement of \mathcal{A} and q is a convex function, then $q(\mathcal{B}) \geq q(\mathcal{A})$. [In Fox's proof of the removal lemma, we used a defect version of this inequality.]
3. Given $g: X \times Y \rightarrow[0,1]$, viewed as an edge-weighted bipartite graph between X and Y, the cut norm of g is

$$
\|g\|_{\square}=\sup _{A \subseteq X, B \subseteq Y}\left|\mathbb{E}_{x \in X, y \in Y} g(x, y) 1_{A}(x) 1_{B}(y)\right| .
$$

[With this definition, the weak regularity lemma then says that for any g there exists a graph \tilde{g} with complexity bounded in terms of ϵ such that $\|g-\tilde{g}\|_{\square} \leq \epsilon$.]
Show that if $\|g\|_{\square} \leq \epsilon$, this implies that

$$
\left|\mathbb{E}_{x \in X, y \in Y} g(x, y) a(x) b(y)\right| \leq \epsilon
$$

for any functions $a: X \rightarrow[0,1]$ and $b: Y \rightarrow[0,1]$.
4. Show that if $f, \tilde{f}: X \times Y \rightarrow[0,1], g, \tilde{g}: Y \times Z \rightarrow[0,1]$ and $h, \tilde{h}: Z \times X \rightarrow[0,1]$ are functions such that $\|f-\tilde{f}\|_{\square} \leq \epsilon,\|g-\tilde{g}\|_{\square} \leq \epsilon$ and $\|h-\tilde{h}\|_{\square} \leq \epsilon$, then

$$
\left|\mathbb{E}_{x \in X, y \in Y, z \in Z} f(x, y) g(y, z) h(z, x)-\tilde{f}(x, y) \tilde{g}(y, z) \tilde{h}(z, x)\right| \leq 3 \epsilon .
$$

[This is the triangle counting lemma corresponding to the weak regularity lemma.]
5. How should one define a hypergraph cut norm so that a corresponding counting lemma holds?
6. The half graph is the bipartite graph between sets $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ with edge set $\left\{x_{i} y_{j}: i \leq j\right\}$. Show that any ϵ-regular partition of the half graph must contain an irregular pair.

