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1 Introduction

Our objective in this paper is to prove a rather broad generalization of some classical theorems
in Iwasawa theory. We begin by recalling two of those old results. The first is a theorem of
Iwasawa, which we state in terms of Galois cohomology. Suppose that K is a totally real
number field and that ψ is a totally odd Hecke character for K of finite order. We can view ψ
as a character of the absolute Galois group GK . LetKψ be the corresponding cyclic extension
of K and let ∆ = Gal(Kψ/K). Then ψ becomes a faithful character of ∆ and Kψ is a CM
field. Now let p be an odd prime. For simplicity, we will assume that the order of ψ divides
p − 1. We can then view ψ as a character with values in Z×

p . Let D be the Galois module
which is isomorphic to Qp/Zp as a group and on which GK acts by ψ. Let K∞ denote the
cyclotomic Zp-extension of K. Thus Γ = Gal(K∞/K) is isomorphic to Zp. Define S(K∞, D)
to be the subgroup of H1(K∞, D) consisting of everywhere unramified cocycle classes. As is
usual in Iwasawa theory, we can view S(K∞, D) as a discrete Λ-module, where Λ = Zp[[Γ]] is
the completed group algebra for Γ over Zp. Iwasawa’s theorem asserts that the Pontryagin
dual of S(K∞, D) has no nonzero, finite Λ-submodules.

The Selmer group for the above Galois moduleD overK∞, as defined in [Gr1], is precisely
S(K∞, D). Let K∞,ψ = KψK∞, the cyclotomic Zp-extension of Kψ. Under the restriction
map H1(K∞, D) → H1(K∞,ψ, D)∆, one can identify S(K∞, D) with Hom(X(ψ), D), where
X is a certain Galois group on which ∆ acts. To be precise, one takes X = Gal(L∞/K∞,ψ),
where L∞ denotes the maximal, abelian pro-p extension of K∞,ψ which is unramified at all
primes of K∞,ψ. There is a canonical action of G = Gal(K∞,ψ/K) on X (defined by con-
jugation). Furthermore, we can identify ∆ and Γ with Gal(K∞,ψ/K∞) and Gal(K∞,ψ/Kψ),
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respectively, so that G ∼= ∆× Γ. We define X(ψ) to be eψX, where eψ ∈ Zp[∆] is the idem-
potent for ψ. Iwasawa proved that X(ψ) has no nonzero, finite Λ-submodules. The theorem
stated above is equivalent to that result.

To state the second classical result, suppose that K is any number field and that E is
an elliptic curve defined over K with good, ordinary reduction at the primes of K lying
above p. The p-primary subgroup SelE(K∞)p of the Selmer group for E over K∞ is again a
discrete Λ-module. If D = E[p∞], then SelE(K∞)p can again be identified with the Selmer
group for the Galois module D over K∞ as defined in [Gr1]. Its Pontryagin dual XE(K∞)
is a finitely-generated Λ-module. Mazur conjectured that XE(K∞) is a torsion Λ-module. If
this is so, and if one makes the additional assumption that E(K) has no element of order p,
then one can show that XE(K∞) has no nonzero, finite Λ-submodule.

The above results take the following form: S is a certain discrete Λ-module. The Pon-
tryagin dual X = Hom(S,Qp/Zp) is finitely generated as a Λ-module. The results assert
that X has no nonzero finite Λ-submodule. An equivalent statement about S is the follow-
ing: There exists a nonzero element θ ∈ Λ such that πS = S for all irreducible elements
π ∈ Λ not dividing θ. We then say that S is an “almost divisible” Λ-module. Note that
Λ is isomorphic to Zp[[T ]], a formal power series ring over Zp in one variable, and hence is
a unique factorization domain. Thus, one can equivalently say that λS = S for all λ ∈ Λ
which are relatively prime to θ. This definition makes sense in a much more general setting,
as we now describe.

Suppose that Λ is isomorphic to a formal power series ring over Zp, or over Fp, in a
finite number of variables. Suppose that S is a discrete Λ-module and that its Pontryagin
dual X is finitely generated. We then say that S is a cofinitely generated Λ-module. We
say that S is an almost divisible Λ-module if any one of the five equivalent statements given
below is satisfied. In the statements, the set of prime ideals of Λ of height 1 is denoted by
Specht=1(Λ). Note that since Λ is a UFD, all such prime ideals Π are principal. Also, if we
say almost all, we mean all but finitely many. The notation X [Π] denotes the Λ-submodule
of X consisting of elements annihilated by Π. This is also denoted by X [π], where π is a
generator of Π. In the fifth statement, recall that a finitely-generated Λ-module Z is said to
be pseudo-null if there exist two relatively prime elements of Λ which annihilate Z.

• We have ΠS = S for almost all Π ∈ Specht=1(Λ).

• There exists a nonzero element θ in Λ such that πS = S for all irreducible elements π of
Λ not dividing θ.

• We have X [Π] = 0 for almost all Π ∈ Specht=1(Λ).

• The set AssΛ(Y) of associated prime ideals for the torsion Λ-submodule Y of X contains
only prime ideals of height 1.
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• The Λ-module X has no nonzero, pseudo-null submodules.

We refer the reader to [Gr4] (and proposition 2.4, in particular) for further discussion, in-
cluding an explanation of the equivalence of all of the above statements.

We will consider Selmer groups that arise in the following very general context. Suppose
that K is a finite extension of Q and that Σ is a finite set of primes of K. Let KΣ denote the
maximal extension ofK unramified outside of Σ. We assume that Σ contains all archimedean
primes and all primes lying over some fixed rational prime p. The Selmer groups that we
consider in this article are associated to a continuous representation

ρ : Gal(KΣ/K)−→GLn(R)

where R is a complete Noetherian local ring. Let M denote the maximal ideal of R. We
assume that the residue field R/M is finite and has characteristic p. Hence R is compact in
its M-adic topology. Let T be the underlying free R-module on which Gal(KΣ/K) acts via

ρ. We define D = T ⊗R R̂, where R̂ = Hom(R,Qp/Zp) is the Pontryagin dual of R with a
trivial action of Gal(KΣ/K). That Galois group acts on D through its action on the first

factor T . Thus, D is a discrete abelian group which is isomorphic to R̂n as an R-module
and which has a continuous R-linear action of Gal(KΣ/K).

The Galois cohomology group H1(KΣ/K,D) can be considered as a discrete R-module
too. It is a cofinitely generated R-module in the sense that its Pontryagin dual is finitely
generated as an R-module. (See Prop. 3.2 in [Gr4].) Suppose that one specifies an R-
submodule L(Kv,D) of H1(Kv,D) for each v ∈ Σ. We will denote such a specification by L
for brevity. Let

P (K,D) =
∏

v∈Σ

H1(Kv,D) and L(K,D) =
∏

v∈Σ

L(Kv,D) .

Thus, L(K,D) is an R-submodule of P (K,D). Let QL(K,D) = P (K,D)
/
L(K,D). Thus,

QL(K,D) =
∏

v∈Σ

QL(Kv,D), where QL(Kv,D) = H1(Kv,D)
/
L(Kv,D) .

The natural global-to-local restriction maps for H1( · ,D) induce a map

(1) φL : H1(KΣ/K,D) −→ QL(K,D) .

The kernel of φL will be denoted by SL(K,D). It is the “Selmer group” for D over K
corresponding to the specification L.
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It is clear that SL(K,D) is an R-submodule of H1(KΣ/K,D) and so is also a discrete,
cofinitely generated R-module. For a fixed set Σ, the smallest possible Selmer group occurs
when we take L(Kv,D) = 0 for all v ∈ Σ. The Selmer group corresponding to that choice
will be denoted by X

1(K,Σ,D). That is,

X
1(K,Σ,D) = ker

(
H1(KΣ/K,D) −→

∏

v∈Σ

H1(Kv,D)
)

Obviously, we have X
1(K,Σ,D) ⊆ SL(K,D) for any choice of the specification L.

In addition to the above assumptions about R, suppose that R is a domain. Let d = m+1
denote the Krull dimension of R, where m ≥ 0. (We will assume that R is not a field. Our
results are all trivial in that case.) A theorem of Cohen [Coh] implies that R is a finite,
integral extension of a subring Λ which is isomorphic to one of the formal power series
rings Zp[[T1, ..., Tm]] or Fp[[T1, ..., Tm+1]], depending on whether R has characteristic 0 or
p. Although such a subring is far from unique, it will be convenient to just fix a choice.
A cofinitely generated R-module S will also be a cofinitely generated Λ-module. All the
results that we will prove in this paper could be viewed as statements about the structure of
the Selmer groups as R-modules. But they are equivalent to the corresponding statements
about their structure as Λ-modules and that is how we will formulate and prove them. Those
equivalences are discussed in some detail in [Gr4], section 2. In particular, if S is a discrete,
cofinitely generated R-module, then we say that S is divisible (resp., almost divisible) as
an R-module if PS = S for all (resp., almost all) P ∈ Specht=1(R). One result is that S
is almost divisible as an R-module if and only if S is almost divisible as a Λ-module. (See
statement 1 on page 350 of [Gr4].) A similar equivalence is true for divisibility, but quite
easy to prove.

One basic assumption that we will make about R is that it contain a subring Λ of the
form described in the previous paragraph, that R is finitely-generated as a Λ-module, and
that R is also reflexive as a Λ-module. If these assumptions are satisfied, we say that R is a
“reflexive ring”. In the case where R is also assumed to be a domain, one can equivalently
require that R is the intersection of all its localizations at prime ideals of height 1. See part
D, section 2 in [Gr4] for the explanation of the equivalence. In the literature, one sometimes
finds the term “weakly Krull domain” for such a domain. The class of reflexive domains is
rather large. For example, if R is integrally closed or Cohen-Macaulay, then it turns out that
R is reflexive. There are important examples (from Hida theory), where R is not necessarily
a domain, but is still a free (and hence reflexive) module over a suitable subring Λ.

The main results of this paper assert that if we make certain hypotheses about D and L,
then SL(K,D) will be almost divisible. Some of the hypotheses are those needed for theorem
1 in [Gr4] which gives sufficient conditions for H1(KΣ/K,D) itself to be almost divisible.
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That theorem will be stated later (as proposition 2.6.1.) and is our starting point. The basic
approach for deducing the almost divisibility of a Λ-submodule of H1(KΣ/K,D), defined
by imposing local conditions corresponding to a specification L, will be described in section
3. Some of the needed hypotheses will be discussed in section 2. We also state there some
results from [Gr5] concerning the surjectivity of the map φL. We will apply those results not
just to D, but also to the corresponding map for D[Π], where Π ∈ Specht=1(Λ). Our main
results concerning the almost divisibility of SL(K,D) will be proved in section 4.1. We show
in section 4.2 how to prove the classical theorems mentioned above from the point of view
of this paper.

This paper is part of a series of papers concerning foundational questions in Iwasawa
theory. The results discussed above depend on the results proved in [Gr4] and [Gr5], the
first papers in this series. A subsequent paper will use the results we prove here to study the
behavior of Selmer groups under specialization. In particular, one would like to understand
how the “characteristic ideal” or “characteristic divisor” for a Selmer group associated to
the representation ρP : Gal(KΣ/K) −→ GLn(R/P ), the reduction of ρ modulo a prime ideal
P of R, is related to the characteristic ideal or divisor associated to a Selmer group for ρ
itself. Such a question has arisen many times in the past. Consequently, for the purpose
of studying exactly that question, one can find numerous special cases of the results of this
paper in the literature on Iwasawa theory.

2 Various Hypotheses.

The R-module T is a free R-module and so we say that D is a cofree R-module. We also
define T ∗ = Hom(D, µp∞). We can consider T ∗ as a module over the ring Rop, which is just
R since that ring is commutative. It is clear that T ∗ is also a free R-module and that the
discrete R-module D∗ = T ∗ ⊗R R̂ is cofree. It will be simpler and more useful to formulate
the hypotheses in terms of their structure as Λ-modules rather than R-modules.

2.1. Hypotheses involving reflexivity. Recall that Λ is isomorphic to a formal power
series ring in a finite number of variables over either Zp or Fp. Reflexive Λ-modules play an
important role here. A detailed discussion of the definition can be found in section 2, part
C, of [Gr4]. We almost always will assume the following hypothesis.

RFX(D): The Λ-module T is reflexive.

Equivalently, since T is free as an R-module, RFX(D) means that the ring R is reflexive as
a Λ-module. That is, R is a reflexive ring in the sense defined in the introduction. We are
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still always assuming that R is a complete Noetherian local ring with finite residue field of
characteristic p.

We will say that D is a coreflexive Λ-module if RFX(D) holds. This terminology is

appropriate because D is isomorphic to the Λ-module R̂n (ignoring the Galois action) and
its Pontryagin dual is the reflexive Λ-module Rn. One important role of RFX(D) is to
guarantee that D[π] is a divisible (Λ/Π)-module for all prime ideals Π = (π) in Λ of height
1. That property is equivalent to requiring that D be coreflexive as a Λ-module. See corollary
2.6.1 in [Gr4] for the proof.

The next two hypotheses involve T ∗ and are of a local nature. They could be formulated
just in terms of D, but the statements would become more complicated. Note that if RFX(D)
holds, then T ∗ is also a reflexive Λ-module. We suppose that v is a prime of K and that Kv

is the completion of K at v. We usually consider just the primes v ∈ Σ.

LOC
(1)
v (D): (T ∗)GKv = 0 .

LOC
(2)
v (D): The Λ-module T ∗/(T ∗)GKv is reflexive.

Assumptions LOC
(1)
v (D) and LOC

(2)
v (D) play a crucial role in proving theorem 1 in [Gr4].

Just as in that result, we will usually assume LOC
(1)
v (D) for at least one non-archimedean

prime v ∈ Σ and LOC
(2)
v (D) for all v ∈ Σ. One can find a general discussion of when those

hypotheses are satisfied in part F, section 5 of [Gr4]. One obvious remark is that since T ∗

is a torsion-free Λ-module, LOC
(1)
v is satisfied if and only if rankΛ

(
(T ∗)GKv

)
= 0. It is also

obvious that T ∗/(T ∗)GKv is at least torsion-free as a Λ-module. Furthermore, note that if

RFX(D) is true, then LOC
(2)
v (D) follows from LOC

(1)
v (D). Notice also that if LOC

(1)
v (D)

and LOC
(2)
v (D) are both true for some prime v, then RFX(D) is also true. Nevertheless,

our propositions will often include RFX(D) as a hypothesis even though it may actually be
implied by other hypotheses.

2.2. Locally trivial cocycle classes. The following much more subtle hypothesis is
also needed in the proof of theorem 1 in [Gr4], where it is referred to as Hypothesis L. As
we explain there, it can be viewed as a generalization of Leopoldt’s Conjecture for number
fields. That special case occurs when Λ = Zp, D = Qp/Zp, and GK acts trivially on D. For
the formulation, we define

X
2(K,Σ,D) = ker

(
H2(KΣ/K,D) −→

∏

v∈Σ

H2(Kv,D)
)
,

which is a discrete, cofinitely-generated Λ-module.
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LEO(D): The Λ-module X
2(K,Σ,D) is cotorsion.

A long discussion about the validity of the above hypothesis can be found in the last few
pages of section 6, part D, in [Gr4]. There are situations where it fails to be satisfied. Also,
section 4 of that paper derives a natural lower bound on the Λ-corank of H1(KΣ/K,D) from
the duality theorems of Poitou and Tate. Hypothesis LEO(D) is equivalent to the statement
that corankΛ

(
H1(KΣ/K,D)

)
is equal to that lower bound. That equivalence is the content

of propositions 4.3 and 4.4 in [Gr4]. Furthermore, one part of theorem 1 in that paper asserts

that if RFX(D) is satisfied, and if we assume LOC
(1)
v (D) for at least one non-archimedean

prime v ∈ Σ and LOC
(2)
v (D) for all v ∈ Σ, then LEO(D) means that X2(K,Σ,D) actually

vanishes.

2.3. Hypotheses involving L. None of the hypotheses stated above involves the
specification L. We now mention two hypotheses which do involve L, one of which implies
the other. They are statements about the cokernel of the map φL defined in the introduction.
The first plays an important role in studying Selmer groups. The second appears weaker,
but often is sufficient to imply the first.

SUR(D,L): The map φL defining SL(K,D) is surjective.

An obvious necessary condition for this to be satisfied is the following equality for the coranks:

CRK(D,L): corankΛ
(
H1(KΣ/K,D)

)
= corankΛ

(
SL(K,D)

)
+ corankΛ

(
QL(K,D)

)
.

This just means that coker
(
φL

)
is a cotorsion Λ-module. Proposition 3.2.1 in [Gr5] shows

that CRK(D,L), together with various additional assumptions, actually implies SUR(D,L).
One has the following obvious inequality:

(2) corankΛ
(
SL(K,D)

)
≥ corankΛ

(
H1(KΣ/K,D)

)
− corankΛ

(
QL(K,D)

)

Thus, CRK(D,L) is equivalent to having equality here. Of course, CRK(D,L), and hence
SUR(D,L), can fail simply because the quantity on the right side is negative. Verifying
CRK(D,L) is quite a difficult problem in many interesting cases.

It is worth recalling what the formulas for global and local Euler-Poincaré characteristics
tell us about the coranks on the right side of (2). One can find proofs in section 4 of [Gr4].
For any prime v of K, we use the notation D(Kv) as an abbreviation for H0(Kv,D), a
Λ-submodule of D. Similarly, D(K) will denote H0(K,D). Let r1(K) and r2(K) denote
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the number of real primes and complex primes of K, respectively. We give formulas for the
Λ-coranks of the global and local H1’s. For the global H1, we have

corankΛ
(
H1(KΣ/K,D)

)
= corankΛ

(
D(K)

)
+ corankΛ

(
H2(KΣ/K,D)

)
+ δΛ(K,D) ,

where δΛ(K,D) =
(
r1(K) + r2(K)

)
corankΛ

(
D
)
−

∑
v real corankΛ

(
D(Kv)

)
.

Now assume that v is a non-archimedean prime. Recall that D∗ denotes T ∗ ⊗R R̂. If v
does not lie over p, then the local Euler-Poincaré characteristic is 0 and we have

corankΛ
(
H1(Kv,D)

)
= corankΛ

(
D(Kv)

)
+ corankΛ

(
D∗(Kv)

)
.

To justify replacing the Λ-corank of H2(Kv,D) by that of D∗(Kv) in the above formula
as well as the formula below, one uses the fact that the Pontryagin dual of H2(Kv,D) is
isomorphic to H0(Kv, T

∗). Proposition 3.10 in [Gr4] implies that the Λ-rank of H0(Kv, T
∗)

is equal to the Λ-corank of H0(Kv,D
∗). If v lies over p, then we have

corankΛ
(
H1(Kv,D)

)
= corankΛ

(
D(Kv)

)
+ corankΛ

(
D∗(Kv)

)
+ [Kv : Qp]corankΛ

(
D
)

.

If v is archimedean, then H1(Kv,D) vanishes unless p = 2 and v is real. Even for p = 2,
its Λ-corank is 0 unless Λ is a power series ring over F2. In that case, one has the following
formula when v is real:

corankΛ
(
H1(Kv,D)

)
= 2corankΛ

(
D(Kv)

)
− n .

Here n = corankΛ
(
D
)
. See page 380 of [Gr4] for the simple justification.

Finally, we have the obvious formula

corankΛ
(
QL(Kv,D)

)
= corankΛ

(
H1(Kv,D)

)
− corankΛ

(
L(Kv,D)

)

and so the above formulas for the Λ-coranks of H1(Kv,D) for v ∈ Σ, and the specification
L, determine the Λ-corank of QL(K,D).

2.4. Behavior under specialization. In some proofs, Selmer groups for D[Π], as
well as for D, will occur. Here Π is a prime ideal of Λ and D[Π] is a discrete, cofinitely-
generated module over the ring Λ/Π. Various other modules over Λ/Π will arise. Now Λ/Π
is a complete, Noetherian, local ring, and therefore (just as for R in the introduction), it
is a finite, integral extension of a subring Λ′ which is isomorphic to a formal power series
ring over Zp or Fp. We fix such a choice for each Π and denote Λ′ by ΛΠ. If Λ has Krull
dimension d, then ΛΠ has Krull dimension d − 1. Of course, some results could be easily
stated or proved just in terms of Λ/Π itself.
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Many of the above hypotheses are not preserved when the Λ-module D is replaced by the
ΛΠ-module D[Π]. For example, even if RFX(D) is satisfied, D[Π] may fail to be reflexive as
a ΛΠ-module and so RFX(D[Π]) may fail to be satisfied. In general, all one can say is that
RFX(D) implies that D[Π] is a divisible ΛΠ-module for all Π ∈ Specht=1(Λ). The situation

is better for LOC
(1)
v (D) and LEO(D). We have the following equivalences.

• Assume that RFX(D) is satisfied. Then LOC
(1)
v (D) is true if and only if LOC

(1)
v (D[Π])

is true for almost all Π ∈ Specht=1(Λ).

• LEO(D) is true if and only if LEO(D[Π]) is true for almost all Π ∈ Specht=1(Λ).

These assertions follow easily from results in [Gr4]. For the first statement, one should see

remarks 3.5.1 or 3.10.2 there. Note that LOC
(1)
v (D[Π]) and LOC

(2)
v (D[Π]) are statements

about the (Λ/Π)-module Hom(D[Π], µp∞), which is isomorphic to T ∗/ΠT ∗. The second of
the above equivalences follows from lemma 4.4.1 and remark 2.1.3 in [Gr4]. We will prove a
similar equivalence for CRK(D,L) in section 3.4.

2.5. A result about almost divisibility. In addition to SUR(D,L) and CRK(D,L),
there will be various other hypotheses concerning the specification L. If L(Kv,D) is Λ-
divisible (resp., almost Λ-divisible) for all v ∈ Σ, then we will say that L is Λ-divisible (resp,
almost Λ-divisible). Consider another specification L′ for D and let L′(Kv,D) denote the
corresponding subgroup of H1(Kv,D) for each v ∈ Σ. We write L′ ⊆ L if L′(Kv,D) ⊆
L(Kv,D) for all v ∈ Σ. In particular, if L′(Kv,D) = L(Kv,D)Λ-div for each v ∈ Σ, then
we will refer to the specification L′ as the maximal Λ-divisible subspecification of L, which
we denote simply by Ldiv. One assumption that we will usually make is that L is almost
divisible. Its importance is clear from the following proposition.

Proposition 2.5.1. Assume that L′ and L are specifications for D and that L′ ⊆ L. Assume
also that SUR(D,L′) is true. Then SUR(D,L) is also true, SL′(K,D) ⊆ SL(K,D), and

SL(K,D)
/
SL′(K,D) ∼=

∏

v∈Σ

L(Kv,D)
/
L′(Kv,D)

as Λ-modules. In particular, if SUR(D,Ldiv) is true and SLdiv
(K,D) is almost Λ-divisible,

then SL(K,D) is almost Λ-divisible if and only if L is almost Λ-divisible. If SUR(D,Ldiv) is
true and SL(K,D) is almost Λ-divisible, then L must be almost Λ-divisible.

Thus, under certain assumptions, the structure of SL(K,D) can be related to that of
SLdiv

(K,D) and the quotient Λ-modules L(Kv,D)
/
L(Kv,D)div for v ∈ Σ. Since all of
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those quotients are cofinitely-generated, cotorsion Λ-module for all v ∈ Σ, it follows that
CRK(D,L) is true if and only if CRK(D,Ldiv) is true.

Proof. Most of the statements are clear from the definitions. For the isomorphism, consider
the following maps:

H1(KΣ/K,D)
φ
L′

−→ QL′(K,D)
ψ

−→ QL(K,D)

where ψ is the natural map, the canonical homomorphism whose kernel is the direct product
in the proposition. The map ψ is surjective and the composition is φL. If φL′ is surjective,
then it follows that φL is also surjective and that SL(K,D)

/
SL′(K,D) is isomorphic to

ker(ψ). The stated isomorphism follows immediately. For the final statements, one takes
L′ = Ldiv. Note that if SL(K,D) is almost divisible, and if one assumes SUR(D,Ldiv), then
there is a surjective homomorphism from SL(K,D) to L(Kv,D)

/
L(Kv,D)Λ-div, which must

therefore be almost divisible too. This implies that L(Kv,D) is then almost divisible for all
v ∈ Σ. Thus, L is almost divisible. Moreover, if a discrete, cofinitely-generated Λ-module
S contains an almost divisible Λ-submodule S ′, then it is clear that S is almost divisible if
and only if S/S ′ is almost divisible. �

2.6. The main results in [Gr4] and [Gr5]. The following result is proved in [Gr4] .
It is part of the theorem 1 which we alluded to before. It plays a crucial role in this paper
because we will study when SL(K,D) is almost divisible as a Λ-module under the assumption
that H1(KΣ/K,D) is almost divisible, as outlined in the next section.

Proposition 2.6.1. Suppose that RFX(D) and LEO(D) are satisfied, that LOC
(2)
v (D) is

satisfied for all v in Σ, and that there exists a non-archimedean prime η ∈ Σ such that
LOC

(1)
η (D) is satisfied. Then H1(KΣ/K,D) is an almost divisible Λ-module.

Another part of theorem 1 is the following.

Proposition 2.6.2. Suppose that RFX(D) is satisfied, that LOC
(2)
v (D) is satisfied for all v

in Σ, and that there exists a non-archimedean prime η ∈ Σ such that LOC
(1)
η (D) is satisfied.

Then X
2(K,Σ,D) is a coreflexive Λ-module.

The conclusion in this result has the interesting consequence that the Pontryagin dual of
X

2(K,Σ,D) is torsion-free as a Λ-module. It follows that X2(K,Σ,D) is Λ-divisible. Hence
either X

2(K,Σ,D) has positive Λ-corank or X
2(K,Σ,D) = 0 under the assumptions in

proposition 2.6.2.

We now state the main result that we need from [Gr5]. It is proposition 3.2.1 there.
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Proposition 2.6.3. Suppose that D is divisible as a Λ-module. Assume that LEO(D),
CRK(D,L), and also at least one of the following additional assumptions is satisfied.

(a) D[m] has no subquotient isomorphic to µp for the action of GK,

(b) D is a cofree Λ-module and D[m] has no quotient isomorphic to µp for the action of
GK,

(c) There is a prime η ∈ Σ satisfying the following properties: (i) H0(Kη, T
∗) = 0, and

(ii) QL(Kη,D) is divisible as a Λ-module.

Then φL is surjective.

As mentioned in the introduction, we will apply the above result not just to D, but also to
D[Π] for prime ideals Π of Λ of height 1. Fortunately, if D is itself coreflexive as a Λ-module,
then D[Π] is divisible as a (Λ/Π)-module, and hence satisfies the first hypothesis in the above
proposition.

3 An Outline.

3.1. An exact sequence. Assume that SUR(D,L) is satisfied. We will denote φL

just by φ, although we will continue to indicate the L for other objects. We have an exact
sequence

(3) 0 −→ SL(K,D) −→ H1(KΣ/K,D)
φ

−→QL(K,D) −→ 0

of discrete Λ-modules. Suppose that Π ∈ Specht=1(Λ) and that π is a generator of Π.
Applying the snake lemma to the exact sequence (3) and to the endomorphisms of each of
the above modules induced by multiplication by π, we obtain the following important exact
sequence. We refer to it as the snake lemma sequence for Π.

H1(KΣ/K,D)[Π]
αΠ−→ QL(K,D)[Π]

SL(K,D)/ΠSL(K,D) −→ H1(KΣ/K,D)/ΠH1(KΣ/K,D)

✏
✑✓

✒ ✲
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Now assume additionally that H1(KΣ/K,D) is an almost divisible Λ-module. The last
term in the above exact sequence is then trivial for almost all Π ∈ Specht=1(Λ). Therefore,
under these assumptions, the assertion that SL(K,D) is almost divisible is equivalent to the
assertion that αΠ is surjective for almost all Π ∈ Specht=1(Λ). We study the surjectivity of
αΠ by considering the (Λ/Π)-module D[π].

3.2. The cokernel of αΠ. If D arises from a representation ρ as described in the
introduction, and if R is a domain, then D will be Λ-divisible. However, here we will just
assume that D is divisible by π and cofinitely generated as a Λ-module. We then have an
exact sequence

0 −→ D[Π] −→ D −→ D −→ 0

induced by multiplication by π. As a consequence, the following global and local “special-
ization” maps are surjective:

hΠ : H1(KΣ/K,D[Π]) −→ H1(KΣ/K,D)[Π], hΠ,v : H
1(Kv,D[Π]) −→ H1(Kv,D)[Π]

We can compare the exact sequence (3) with an analogous sequence for D[Π], viewed as a
(Λ

/
Π)-module. For this purpose, we define a specification LΠ for D[Π] as follows: For each

v ∈ Σ, let us take
L(Kv,D[Π]) = h−1

Π,v

(
L(Kv,D)[Π]

)

which is a (Λ/Π)-submodule of H1(Kv,D[Π]). If we think of L as fixed, we will refer to the
specification LΠ just defined as the “L-maximal specification for D[Π]”. Using the analogous
notation to that for D, we define

P (K,D[Π]) =
∏

v∈Σ

H1(Kv,D[Π]), QLΠ
(K,D[Π]) = P (K,D[Π])

/
L(K,D[Π])

where L(K,D[Π]) =
∏

v∈Σ L(Kv,D[Π]). We can then define the corresponding global-to-
local map

φLΠ
: H1(KΣ/K,D[Π]) −→ QLΠ

(K,D[Π])

We will usually denote the map φLΠ
simply by φΠ. The product of the hΠ,v’s for v ∈ Σ defines

a map bΠ : P (K,D[Π]) → P (K,D)[Π]. The image of L(K,D[Π]) under bΠ is contained in
L(K,D) and so we get a well-defined map

qΠ : QLΠ
(K,D[Π]) −→ QL(K,D)[Π] .

Lemma 3.2.1. Assume that D is divisible by π and that L(Kv,D) is divisible by π for all
v ∈ Σ. Then qΠ is an isomorphism.
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Proof. The definition of LΠ implies that qΠ is injective without any assumptions. Fur-
thermore, a snake lemma argument shows that if L(K,D) is divisible by π, then the map
cΠ : P (K,D)[Π] → QL(K,D)[Π] will be surjective. Since the map bΠ is also surjective, it
would then follow that cΠ ◦ bΠ is also surjective. This would imply that qΠ is surjective. �

Consequently, if we assume that D is almost Λ-divisible and that L is almost Λ-divisible,
we see that qΠ is then an isomorphism for almost all Π ∈ Specht=1(Λ).

The map αΠ is induced by the map φ and is defined without making any assumptions.
We have the following commutative diagram whose rows are exact:

0 // SLΠ
(K,D[Π]) //

sΠ

��

H1(KΣ/K,D[Π])
φΠ

//

hΠ
��

QLΠ
(K,D[Π])

qΠ

��

0 // SL(K,D)[Π] // H1(KΣ/K,D)[Π]
αΠ

// QL(K,D)[Π]

The second and third vertical maps have been defined and make that part of the diagram
commutative, and so the map sΠ is induced from hΠ. Although it is not needed now, we
remark in passing that the injectivity of the map qΠ and the surjectivity of the map hΠ
imply that sΠ is also surjective. But the important consequence for us is that qΠ maps
im(φΠ) isomorphically to im(αΠ) and therefore induces an isomorphism

(4) coker(αΠ) ∼= coker(φΠ)

under the assumptions in lemma 3.2.1. In particular, the surjectivity of αΠ and φΠ would
then be equivalent,

To summarize, if we assume that D, H1(KΣ/K,D), and the specification L are almost
Λ-divisible, and that SUR(D,L) holds, then SL(K,D) is almost Λ-divisible if and only if φΠ

is surjective for almost all Π ∈ Specht=1(Λ).

Remark 3.2.2. Divisibility by m. One can ask if mSL(K,D) = SL(K,D), where m

denotes the maximal ideal of Λ. This would mean that the Pontryagin dual X of SL(K,D)
has no nonzero, finite Λ-submodules. For if Z is the maximal finite Λ-submodule of X , then
Z[m] = X [m] is the Pontryagin dual of SL(K,D)

/
mSL(K,D). This is trivial if and only if

Z itself is trivial.
Assume that SUR(D,L) is satisfied and that H1(KΣ/K,D) is almost Λ-divisible. One

sees easily that if Z 6= 0, then Z[Π] 6= 0 for all Π ∈ Specht=1(Λ). As a consequence of
the snake lemma sequence, if one can show that αΠ is surjective for infinitely many Π’s in
Specht=1(Λ), then it would follow that mSL(K,D) = SL(K,D). This observation is especially
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useful if Λ has Krull dimension 2. In that case, it follows that SL(K,D) is almost divisible
if and only if αΠ is surjective for infinitely many Π’s in Specht=1(Λ). ♦

3.3. Behavior of the corank hypothesis under specialization. We can now complete
the discussion in section 2.4. We want to justify the following equivalence.

• CRK(D,L) is true if and only if CRK(D[Π],LΠ) is true for almost all Π ∈ Specht=1(Λ).

According to remark 2.1.3 in [Gr4], coker(φ) is Λ-cotorsion if and only if coker
(
αΠ) is

(Λ/Π)-cotorsion for almost all Π ∈ Specht=1(Λ). If we assume that L is almost Λ-divisible,
then we have the isomorphism (4) for almost all Π’s. Since Λ/Π is a finitely-generated ΛΠ-
module, it follows that coker(φ) is Λ-cotorsion if and only if coker

(
φΠ) is ΛΠ-cotorsion for

almost all Π ∈ Specht=1(Λ), which is the stated equivalence.
The assumption that L is almost Λ-divisible is not needed. Suppose that Π = (π) is

an arbitrary element of Specht=1(Λ). Referring to the discussion in section 3.2, we have an
injective map

(5) coker
(
φΠ

)
−→ coker

(
αΠ

)
.

induced by qΠ. Furthermore, the cokernel of (5) is isomorphic to coker
(
qΠ

)
. The stated

equivalence will follow if we show that coker
(
qΠ

)
is (Λ/Π)-cotorsion for almost all Π’s. Using

the notation from section 3.2, we have coker
(
qΠ

)
= coker

(
cΠ
)
. We then obtain another

injective map
coker

(
qΠ

)
−→ L(K,D)

/
πL(K,D) .

Thus, it suffices to show that L(K,D)
/
ΠL(K,D) is (Λ/Π)-cotorsion for almost all Π ∈

Specht=1(Λ).

In general, suppose that A is a discrete, cofinitely-generated Λ-module and that X is the
Pontryagin dual of A. Thus, we have a perfect pairing A× X → Qp/Zp. Let Z denote the
maximal pseudo-null Λ-submodule of X and let B denote the orthogonal complement of Z
under that pairing. Thus, B ⊆ A. Let C = A/B. The Pontryagin duals of B and C are
X /Z and Z, respectively. It follows that B is the maximal almost Λ-divisible Λ-submodule
of A. Furthermore, by definition, Z is annihilated by a nonzero element of Λ relatively
prime to π, and so Z[Π] is a torsion (Λ/Π)-module. Thus, C

/
ΠC is (Λ/Π)-cotorsion. If we

choose Π so that ΠB = B, it follows that A/ΠA ∼= C/ΠC. Applying these considerations
to A = L(K,D), we see that L(K,D)

/
ΠL(K,D) is indeed (Λ/Π)-cotorsion for almost all

Π ∈ Specht=1(Λ).
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3.4. The case where φL is not surjective. We assume in this section thatD,H1(KΣ/K,D),
and the specification L are almost Λ-divisible, but not that SUR(D,L) holds. In the exact
sequence (3), we can simply replace QL(K,D) by the image of φ = φL, which we will denote
by Q′

L(K,D). We then can consider the map

α′

Π : H1(KΣ/K,D)[Π] −→ Q′

L(K,D)[Π] .

Applying the snake lemma as before, and using the assumption that H1(KΣ/K,D) is almost
Λ-divisible, we see that SL(K,D) is almost Λ-divisible if and only if α′

Π is surjective for
almost all Π ∈ Specht=1(Λ).

We have an exact sequence

(6) 0 −→ Q′

L(K,D) −→ QL(K,D) −→ coker(φ) −→ 0 .

The kernel of the natural map ξΠ : QL(K,D)[Π] → coker(φ)[Π] is Q′
L(K,D)[Π] which clearly

contains im(αΠ) = im(α′
Π). We then obtain a map

ξ̃Π : coker(αΠ) −→ coker(φ)[Π]

whose kernel is coker(α′
Π). Thus, α

′
Π is surjective if and only if ker(ξ̃Π) is trivial.

Choose Π ∈ Specht=1(Λ) so that the assumptions in lemma 3.2.1 are satisfied. Then qΠ
induces the isomorphism (4) and hence determines an isomorphism from ker

(
ξ̃Π
)
to a certain

subgroup of coker(φΠ), namely the subgroup

(7) q−1
Π

(
ker(ξΠ)

)/
im(φΠ) = ker

(
ξΠ ◦ qΠ

)/
im(φΠ) .

Note that ξΠ ◦ qΠ is a map from QLΠ
(K,D[Π]) to coker(φ)[Π] and induces a map from

coker(φΠ) to coker(φ)[Π] whose kernel is (7). We can conclude that α′
Π is surjective if and

only if the map

(8) coker(φΠ) −→ coker(φ)[Π]

is injective.
Consequently, SL(K,D) is almost Λ-divisible if and only if (8) is injective for almost

all Π ∈ Specht=1(Λ). Note that (8) is surjective for almost all Π’s. To see this, note that
Q′

L(K,D) is a quotient of H1(KΣ/K,D) and hence is almost Λ-divisible. Applying the snake
lemma to (6), it follows that ξΠ is surjective for almost all Π ∈ Specht=1(Λ). The same is
true for the map qΠ, hence for ξΠ ◦ qΠ, and therefore for the map (8) .

Examples exist where φ is not surjective, but α′
Π is surjective for almost all Π ∈ Specht=1(Λ).

This is discussed in the next section. The type of example considered there involves choos-
ing a suitable Zp-extension K∞ of K and a suitable β in the maximal ideal of Λ to define a
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Galois module T ∗ of Λ-rank 1. The Galois module D is then Hom(T ∗, µp∞). When we take
Λ = Zp[[T ]], both groups in (8) are finite for almost all Π ∈ Specht=1(Λ). Hence injectivity
follows from surjectivity by simply showing that their orders are equal.

3.5. A special case. We discuss a way to verify that (8) is injective in a very special
situation. A specific example will be given at the end of section 4.4. In general, suppose
that D satisfies the assumptions in proposition 2.6.2 and that LEO(D) and CRK(D,L) are
satisfied. Then X

1(K,Σ, T ∗) = 0. Suppose also that

(9) L(Kv,D) ⊆ H1(Kv,D)
Λ−div

for all v ∈ Σ. Under these assumptions, we have

̂coker(φ) ∼= H1(KΣ/K, T
∗)

Λ−tors
∼= H0(K, T ∗/θT ∗)

as Λ-modules, where θ ∈ Λ is any nonzero annihilator for H1(KΣ/K, T
∗)

Λ−tors
. The first

isomorphism follows from propositions 2.3.1 and 3.1.1 in [Gr5]. The second follows from
proposition 2.2.2 in that paper.

Now assume also that D is a cofree Λ-module of corank 1. Then T ∗ is a free Λ-module
of rank 1. Suppose that the action of GK on T ∗ factors through Γ = Gal(K∞/K), where
K∞ is a Zp-extension of K. Hence the image of GK in Λ× is generated topologically by an
element 1 + β, where β ∈ m. We assume that p ∤ β. Note that 1 + β has infinite order. We
can choose θ (as above) so that β|θ. We then have

(10) ̂coker(φ) ∼= (β−1θ)
/
θ ∼= Λ/(β)

as Λ-modules. Let B = (β). Therefore, coker(φ)[Π] is isomorphic to the Pontryagin dual of
Λ/(B +Π) as discrete Λ-modules.

In addition to the above assumptions, let us now assume that Λ ∼= Zp[[T ]]. Then Λ has
Krull dimension 2 and Λ/B is a free Zp-module of some rank. Furthermore, if Π 6= (p),
then Λ/Π is a finite integral extension of Zp and is free as a Zp-module. Note that D[Π] is
Zp-cofree and hence Zp-divisible. If B 6⊂ Π, then Λ/(B + Π) is finite. Since the map (8)
is surjective, injectivity will follow if one can verify that coker(φΠ) has the same order as
Λ/(B +Π).

We add one more assumption. For each v ∈ Σ, let Γv be the decomposition subgroup
of Γ for v. We will assume that Γv is nontrivial for all v ∈ Σ. Thus, [Γ : Γv] is finite.
A topological generator for Γv acts as multiplication by 1 + βv, where βv ∈ m. Note that
1+ βv = (1+ β)a, where a ∈ Zp and a 6= 0. Since p ∤ β, it follows that p ∤ βv. Let Bv = (βv).
Then H0(Kv,D) = D[Bv] is cofree as a Λ/Bv-module and hence is almost divisible as a
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Λ-module. It follows that hΠ,v is an isomorphism for almost all Π ∈ Specht=1(Λ) and all
v ∈ Σ. Also, as we show in the lemma below, H1(Kv,D)

Λ−div
is Λ-cofree. Consequently,

H1(Kv,D)
Λ−div

[Π] is Zp-cofree (e.g., Zp-divisible) if p 6∈ Π. Assuming that hΠ,v is injective,
the same is true for its inverse image under the map hΠ,v. Consequently, for almost all
Π ∈ Specht=1(Λ), the inclusion (9) holds when D is replaced by D[Π].

Note that if p 6∈ Π, then D[Π] is Zp-cofree of finite corank. It is just a divisible group.
Furthermore, for almost all Π ∈ Specht=1(Λ), LEO(D[Π]) and CRK(D[Π],LΠ) are both
satisfied. (See sections 2.4 and 3.3.) For such Π, X1(K,Σ, T ∗/ΠT ∗) vanishes, coker(φΠ) is
finite, and we can determine its order when the analogue of the inclusion (9) holds for D[Π].
In what follows, we will denote T ∗

/
ΠT ∗ more simply by T ∗

Π .
For Π as above, propositions 2.3.1 and 3.1.1 in [Gr5] imply that coker(φΠ) is isomorphic

to the Pontryagin dual of H1(KΣ/K, T
∗
Π )Zp−tors

. Since this last group is finite, we can choose
m sufficiently large so that pm annihilates that group. If we assume that β 6∈ Π, then
proposition 2.2.2 in [Gr5] implies that this last group is isomorphic to H0(K, T ∗

Π

/
pmT ∗

Π ).
Hence, coker(φΠ) has the same order as the kernel of multiplication by β on the finite group
T ∗
Π

/
pmT ∗

Π . This is the same as the order of the cokernel of multiplication by β on that group,
which is T ∗

Π

/
(β, pm)T ∗

Π . By taking m >> 0, one can conclude that coker(φΠ) has the same
order as T ∗

Π

/
βT ∗

Π since that group is finite. Since T ∗ is free of rank 1 over Λ, it follows that
coker(φΠ) has the same order as Λ/(Π +B) for almost all Π ∈ Specht=1(Λ), which is indeed
equal to the order of coker(φ)[Π]

To complete this discussion, we need the following lemma.

Lemma 3.5.1. With the above assumptions, H1(Kv,D)
Λ−div

is Λ-cofree.

Proof. Let cv = corankΛ
(
H1(Kv,D)

)
. Of course, we also have cv = corankΛ

(
H1(Kv,D)

Λ−div

)
.

It suffices to show that H1(Kv,D)
Λ−div

[Π] is (Λ/Π)-cofree of corank cv for at least one prime
ideal Π ∈ Specht=1(Λ). For it would then follow by Nakayama’s lemma that the Pontryagin
dual of H1(Kv,D)

Λ−div
can be generated by cv elements as a Λ-module and hence must be a

free Λ-module of rank cv.
For almost all Π ∈ Specht=1(Λ), the (Λ

/
Π)-coranks ofH1(Kv,D)

Λ−div
[Π] andH1(Kv,D)[Π]

are both equal to cv. This follows from remark 2.1.3 in [Gr4]. We will assume in this proof
that Π is chosen in that way. To simplify the discussion, we will also assume that Π is chosen
so that Λ/Π ∼= Zp. Define

Av = H1(Kv,D)
/
H1(Kv,D)

Λ−div
, AΠ,v = H1(Kv,D[Π])

/
H1(Kv,D[Π])

Zp−div
.

By Poitou-Tate duality, the Pontryagin dual of Av is isomorphic to H1(Kv, T
∗)

Λ−tors
. Just

as argued above in the global case, it follows that Av[Π] is finite and is isomorphic to the
Pontryagin dual of Λ/(Bv + Π) for almost all Π ∈ Specht=1(Λ). Furthermore, we have an
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isomorphism betweenH1(Kv, T
∗
/
ΠT ∗)

Zp−tors
and Λ/(Bv+Π) for almost all Π ∈ Specht=1(Λ).

By Poitou-Tate duality again, the Pontryagin dual of H1(Kv, T
∗
/
ΠT ∗)

Zp−tors
is in turn

isomorphic to AΠ,v. Thus, it follows that Av[Π] is finite and isomorphic to AΠ,v for almost
all Π ∈ Specht=1(Λ). We assume that Π is chosen in this way.

Since Π is principal, a snake lemma argument gives us the following exact sequence.

0 −→ H1(Kv,D)
Λ−div

[Π] −→ H1(Kv,D)[Π] −→ Av[Π] −→ 0 .

By definition, we also have the exact sequence

0 −→ H1(Kv,D[Π])
Zp−div

−→ H1(Kv,D[Π]) −→ AΠ,v −→ 0 .

Now the natural map H1(Kv,D[Π]) → H1(Kv,D)[Π] is an isomorphism for almost all Π
because H0(Kv,D) = D[βv] is an almost divisible Λ-module. For such Π, it is clear that the
image of H1(Kv,D[Π])

Zp−div
under that natural map is precisely the maximal Zp-divisible

submodule of H1(Kv,D)[Π] and hence is contained in H1(Kv,D)
Λ−div

[Π]. The fact that
Av[Π] and AΠ,v have the same order implies that the natural map induces an isomorphism

H1(Kv,D[Π])
Zp−div

−→ H1(Kv,D)
Λ−div

[Π]

of (Λ/Π)-modules. Since the Zp-coranks of each is cv, it then follows that H1(Kv,D)
Λ−div

[Π]
is indeed (Λ/Π)-cofree of corank cv. �

Remark 3.5.2. Suppose that Π ∈ Specht=1(Λ) and that Av[Π] has positive (Λ/Π)-corank.

Since Av is a cofinitely generated, cotorsion Λ-module, this means that Âv[Π] has positive
(Λ/Π)-rank, and so the same is true forH1(Kv, T

∗)
Λ−tors

[Π]. Consequently, H0(Kv, T
∗
/
ΠT ∗)

has positive (Λ/Π)-rank. Now

T ∗
/
ΠT ∗ ∼= Hom(D[Π], µp∞) .

If Π 6= (p), it follows Av[Π] has positive (Λ/Π)-corank if and only if HomGKv
(D[Π], µp∞) is

infinite.
Assume now that GKv

acts on D[Π] through a finite quotient group. Since p ∤ βv, one sees
easily that Π 6= (p). Note that Kv(µp∞)/Kv is an infinite extension. Consequently, it follows
that Av[Π] is finite. Furthermore, if J is a product of such prime ideals, then Av[J ] is also
finite. Therefore, if Lv is a Λ-submodule of H1(Kv,D) which is annihilated by such an ideal
J and if Lv is divisible as a group, then we must have the inclusion Lv ⊆ H1(Kv,D)

Λ−div
.
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4 Sufficient conditions for almost divisibility.

We will prove a rather general result in section 4.1. Section 4.2 discusses the verification of
various hypotheses in that result. Section 4.3 will concern a special case (although still quite
general) where several of the hypotheses are automatically satisfied.

4.1. The main theorem. We prove the following result.

Proposition 4.1.1. Suppose that RFX(D) and LEO(D) are satisfied, that LOC
(2)
v (D)

is satisfied for all v in Σ, and that there exists a non-archimedean prime η ∈ Σ such that
LOC

(1)
η (D) is satisfied. Suppose also that L is almost divisible, that CRK(D,L) is satisfied,

and also that at least one of the following additional assumptions is satisfied.

(a) D[m] has no subquotient isomorphic to µp for the action of GK,

(b) D is a cofree Λ-module and D[m] has no quotient isomorphic to µp for the action of
GK,

(c) There is a prime η ∈ Σ which satisfies LOC
(1)
η (D) and such that QL(Kη,D) is core-

flexive as a Λ-module.

Then SL(K,D) is an almost divisible Λ-module.

Proof. First of all, RFX(D), LEO(D), and the assumptions about LOC
(1)
v and LOC

(2)
v are

sufficient to imply that H1(KΣ/K,D) is an almost divisible Λ-module. This follows from
proposition 2.6.1. Secondly, since RFX(D) holds, D is certainly Λ-divisible. We can apply
proposition 2.6.3 to conclude that SUR(D,L) is satisfied too.

Thus, as described in section 3.1, it suffices to show that the map

αΠ : H1(KΣ/K,D)[Π] −→ QL(K,D)[Π]

is surjective for almost all Π = (π) in Specht=1(Λ). In the rest of this proof, we will exclude
finitely many Π’s in Specht=1(Λ) in each step, and altogether just finitely many. We will
follow the approach outlined in section 3, reducing the question to studying coker(φΠ) and
then applying proposition 2.6.3. We want to apply that proposition to D[Π] and so must
verify the appropriate hypotheses. At each step, we consider just the Π’s which have not been
already excluded. As described in section 2, we regard various (Λ/Π)-modules as modules
over a certain subring ΛΠ.

Since RFX(D) holds for D, it follows that D[Π] is a divisible (Λ/Π)-module. Corollary
2.6.1 in [Gr4] justifies that assertion. Therefore, D[Π] is also divisible as a ΛΠ-module. Fur-
thermore, the assumption LEO(D) means that X2(K,Σ,D) is Λ-cotorsion. Consequently,
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X
2(K,Σ,D)[Π] is a cotorsion (Λ/Π)-module for almost all Π ∈ Specht=1(Λ). This follows

from remark 2.1.3 in [Gr4]. The same is true for X2(K,Σ,D[Π]) according to lemma 4.1.1
in [Gr4]. Recall that Λ/Π is finitely-generated as a ΛΠ-module. It follows that LEO(D[Π])
holds for almost all Π ∈ Specht=1(Λ).

The fact that CRK(D,L) is satisfied implies that CRK(D[Π],LΠ) is satisfied for almost
all Π ∈ Specht=1(Λ). This follows from section 3.4. Thus, we can assume from here on that
coker(φΠ) is ΛΠ-cotorsion. Now we consider the additional assumptions. Each implies the
corresponding assumption in proposition 2.6.3. Once we verify that, it will then follow that
φΠ is surjective for almost all Π ∈ Specht=1(Λ). Hence the same thing will be true for αΠ.
This will prove that SL(K,D) is indeed almost divisible as a Λ-module.

First assume that (a) is satisfied. Let mΠ denote the maximal ideal of ΛΠ. Using
proposition 3.8 in [Gr4], it follows that D[Π][mΠ] indeed has no subquotient isomorphic to
µp. Now assume that (b) is satisfied. Then D[Π] is cofree as a (Λ/Π)-module. Since Π is
principal, Λ/Π is a complete intersection. According to proposition 3.1.20 in [BH], it follows
that Λ/Π is a Cohen-Macaulay domain. Proposition 2.2.11 in [BH] then implies that Λ/Π
is a free ΛΠ-module. Hence D[Π] is cofree as a ΛΠ-module. Furthermore, D[m] = D[Π][m]
has no quotient isomorphic to µp for the action of GK . Remark 3.2.2 in [Gr5] implies that
the same thing is true for D[Π][mΠ]. Thus, the assumption (b) in proposition 2.6.3 for the
ΛΠ-module D[Π] is indeed satisfied.

Now assume that (c) is satisfied. As pointed out in section 2.4, LOC
(1)
η (D[Π]) is satisfied

for almost all Π ∈ Specht=1(Λ). Since D is Λ-divisible and L(Kη,D) is almost Λ-divisible,
we have

QLΠ
(Kη,D[Π]) ∼= QL(Kη,D)[Π]

for almost all Π’s. It suffices to have L(Kη,D) divisible by π. The assumption thatQL(Kη,D)
is a coreflexive Λ-module then implies that QLΠ

(Kη,D[Π]) is (Λ/Π)-divisible, and hence ΛΠ-
divisible, which is the only assumption in proposition 2.6.3(c) left to verify. �

4.2. Non-primitive Selmer groups. Suppose that Σ
0
is a subset of Σ consisting of

non-archimedean primes. Consider the map

φ
L,Σ0

: H1(KΣ/K,D) −→
∏

v∈Σ−Σ0

QL(Kv,D) .

We denote the kernel of φ
L,Σ0

by SΣ0

L
(K,D). We refer to this group as the non-primitive

Selmer group corresponding to the specification L and the set Σ
0
. It is defined just as

SL(K,D), but one omits the local conditions for the specification L corresponding to the
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primes v ∈ Σ
0
. Of course, we have the obvious inclusion SL(K,D) ⊆ SΣ0

L
(K,D) and the cor-

responding quotient SΣ0

L
(K,D)

/
SL(K,D) is isomorphic to a Λ-submodule of

∏
v∈Σ0

QL(Kv,D).

In effect, SΣ0

L
(K,D) is the Selmer group corresponding to a new specification L′, where we

simply replace L(Kv,D) by L′(Kv,D) = H1(Kv,D) for all v ∈ Σ
0
. Thus, we now have

QL′(Kv,D) = 0 for v ∈ Σ
0
.

If we assume that that SUR(D,L) is satisfied, then obviously follows that SUR(D,L′) is
satisfied. Furthermore, we have

SΣ0

L
(K,D)

/
SL(K,D) ∼=

∏

v∈Σ0

QL(Kv,D) .

In general, coker
(
φL′

)
is clearly a quotient of coker

(
φL

)
, and hence if we assume that

CRK(D,L) is satisfied, then so is CRK(D,L′). The following proposition then follows im-
mediately from proposition 4.1.1(c).

Proposition 4.2.1 Suppose that RFX(D) and LEO(D) are satisfied, that LOC
(2)
v (D) is satis-

fied for all v in Σ, and that there exists a non-archimedean prime η ∈ Σ
0
such that LOC

(1)
η (D)

is satisfied. Suppose also that L is almost divisible and that CRK(D,L) is satisfied. Then
SΣ0

L
(K,D) is an almost divisible Λ-module.

Remark 4.2.2. Suppose that η is a non-archimedean prime not dividing p. Regarding
D[m] as an Fp-representation space for GKη

, suppose that it has no subquotients isomorphic
to µp or to Z/pZ (with trivial action of GKη

). According to proposition 3.1 in [Gr4], the
GKη

-module D[mt] has the same property for all t ≥ 1. The local duality theorems imply
that H0(Kη,D[mt]) and H2(Kη,D[mt]) both vanish, and therefore that H1(Kη,D[mt]) = 0.
It follows that H1(Kη,D) = 0. If we let Σ

0
= {η}, then we have SΣ0

L
(K,D) = SL(K,D). The

hypothesis LOC
(1)
η (D) is also satisfied. Consequently, if the other assumptions in proposition

4.2.1 are satisfied, it follows that SL(K,D) is almost divisible as a Λ-module. Alternatively,
in this case, QL(Kη,D) vanishes and so is certainly coreflexive, making assumption (c) in
proposition 4.1.1 satisfied.

4.3. Verifying the hypotheses. We will discuss the various hypotheses in proposition
4.1.1. Some of them are already needed for propositions 2.6.1 and 2.6.3, and we may simply
refer to discussions in [Gr4] and [Gr5]. We have nothing additional to say about RFX(D).
If D is R-cofree, then that hypothesis is just that R is a reflexive ring.

The local hypotheses. There is a discussion of the verification of LOC
(1)
v (D) and LOC

(2)
v (D)

in section 5, part F of [Gr4]. Most commonly, LOC
(1)
v (D) is satisfied for all non-archimedean
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primes v ∈ Σ simply because H0(Kv, T
∗) = 0 for those v’s. That is a rather mild condition,

although we mention one kind of example in section 4.4 where it may fail to be satisfied. Such
examples were one motivation for introducing LOC

(2)
v (D) as a hypothesis in [Gr4]. Another

motivation is that for archimedean primes, H0(Kv, T
∗) is often nontrivial, but LOC

(2)
v (D)

may still be satisfied. The archimedean primes are only an issue when p = 2.

The hypotheses CRK(D,L) and LEO(D). As mentioned before, a discussion of
LEO(D) can be found in section 6, part D of [Gr4]. It is called hypothesis L there. Of
course, the validity of CRK(D,L) is related to the choice of the specification L. We will
discuss one rather natural way of choosing a specification below. Let cL(K,D) denote the
Λ-corank of the cokernel of φL. Thus, CRK(D,L) means that cL(K,D) = 0. As discussed
in the introduction to [Gr5], one has an equation

sL(K,D) = b1(K,D)− qL(K,D) + cL(K,D) + corankΛ
(
X

2(K,Σ,D)
)
,

where sL(K,D) and qL(K,D) are the Λ-coranks of SL(K,D) and QL(K,D), respectively.
The integer b1(K,D) is defined just in terms of the Euler-Poincaré characteristic for D and
the Λ-coranks of some local Galois cohomology groups, and does not depend on L. It occurs
in proposition 4.3 in [Gr4]. One then has a lower bound

sL(K,D) ≥ b1(K,D)− qL(K,D)

and equality means that both CRK(D,L) and LEO(D) are satisfied. The simplest case
is where L is chosen so that qL(K,D) = b1(K,D). In this case, the equality means that
SL(K,D) is a cotorsion Λ-module.

The additional assumptions in proposition 4.1.1. Remark 3.2.2 in [Gr5] discusses the
additional assumptions (a) and (b). It includes some observations when D arises from an
n-dimensional representation ρ of Gal(KΣ/K) over a ring R, as in the introduction. One
observation is that if n ≥ 2 and if the residual representation ρ̃ is irreducible over the finite
field R/M, then hypothesis (a) is satisfied. The residual representation gives the action
of Gal(KΣ/K) on D[M]. Another observation in that remark is that D[m] has a quotient
isomorphic to µp if and only if D[M] has such a quotient.

We now discuss hypothesis (c). This will be useful if D[m] has a quotient or subquotient
isomorphic to µp for the action of GK . We will assume that η is a non-archimedean prime in

Σ and that LOC
(1)
η (D) is satisfied. The issue is the coreflexivity of QL(Kη,D) as a Λ-module.

Let us now make the following two assumptions: (i) H1(Kη,D) is Λ-coreflexive, (ii)
L(Kη,D) is almost Λ-divisible. The coreflexivity of the discrete Λ-module QL(Kη,D) then
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follows easily. To see this, suppose that A is a cofinitely generated, coreflexive, discrete Λ-
module and that B is an almost divisible Λ-submodule of A. Let X be the Pontryagin dual of
A and let Y be the orthogonal complement of B under the perfect pairing A×X → Qp/Zp.
Then X is a finitely-generated, reflexive Λ-module. Furthermore, X /Y is the Pontryagin
dual of B and hence has no nonzero pseudo-null Λ-submodules. However, the reflexive hull
Ỹ of Y must be contained in X and the quotient Ỹ

/
Y is a pseudo-null Λ-module, and so

must be zero. It follows that Y is reflexive as a Λ-module and hence that its Pontryagin dual
A/B is a coreflexive Λ-module.

Section 5, part D, of [Gr4] gives some sufficient conditions forH1(Kη,D) to be coreflexive.
One condition requires the assumption that µp is not a quotient of D[m] as a GKη

-module.
However, that assumption clearly implies assumption (a) in proposition 4.1.1. Another more

subtle sufficient condition is given in proposition 5.9 in [Gr4]. It involves T ∗ ⊗Λ Λ̂ which is
denoted by D∗ there. We are assuming that H0(Kη, T

∗) = 0. Equivalently, that means that

D∗(Kη) = H0(Kη,D
∗) is Λ-cotorsion. Its Pontryagin dual D̂∗(Kη) is a torsion Λ-module.

The result from [Gr4] is that if D is Λ-cofree and if every associated prime ideal for the

torsion Λ-module D̂∗(Kη) has height at least 3, then H
1(Kη,D) is coreflexive as a Λ-module.

Some interesting cases where this criterion is satisfied will be discussed in [Gr6].

Even if H1(Kη,D) fails to be coreflexive, it is still possible for the quotient Λ-module
QL(Kη,D) to be coreflexive. Consider the following natural way to specify a choice of
L(Kη,D). Suppose that Cη is a GKη

-invariant Λ-submodule of D and that H2(Kη, Cη) van-
ishes. Then we can define

L(Kη,D) = im
(
H1(Kη, Cη) −→ H1(Kη,D)

)
.

Let Eη = D/Cη. The map H1(Kη,D) → H1(Kη, Eη) is surjective and its kernel is L(Kη,D).
If η ∤ p, then one can take Cη = 0 and hence L(Kη,D) = 0. This is often a useful choice.
If η|p, then one often will make a nontrivial choice of Cη. This kind of definition occurs
in [Gr2] for primes above p when a Galois representation ρ satisfies something we called a
“Panchiskin condition.” (See section 4 in [Gr2].) Under the stated assumptions, we have

QL(Kη,D) ∼= H1(Kη, Eη)

as Λ-modules. Propositions 5.8 and 5.9 from [Gr4] then give the following result.

Proposition 4.3.1. In addition to the assumption that H2(Kη, Cη) = 0, suppose that either
one of the following assumptions is satisfied.

(i) Eη is Λ-coreflexive and Eη[m] has no subquotient isomorphic to µp as a GKη
-module,
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(ii) Eη is Λ-cofree and every associated prime ideal for the Λ-module Ê∗
η (Kη) has height at

least 3.

Then the Λ-module QL(Kη,D) is coreflexive.

Concerning (i), note that it may be satisfied even if assumption (a) in proposition 4.1.1 fails
to be satisfied. One such situation will be mentioned in section 4.4.

We will also want L(Kη, Cη) to be almost Λ-divisible. The following result follows imme-
diately from proposition 5.3 in [Gr4].

Proposition 4.3.2. Assume that Cη is Λ-coreflexive and that H2(Kη, Cη) = 0. Then
H1(Kη, Cη) is almost Λ-divisible. Hence the image of H1(Kη, Cη) in H

1(Kη,D) is also almost
Λ-divisible.

4.4. The two classical results. Let p be an odd prime. Suppose that T is a free Zp-module
of rank n which has an action of Gal(KΣ/K). Thus, we have a continuous homomorphism
Gal(KΣ/K) → AutZp

(T ). Suppose also that K∞ is the cyclotomic Zp-extension of K and let
Γ = Gal(K∞/K). Let Λ = Zp[[Γ]] denote the completed group ring for Γ over Zp. Thus, Λ is
isomorphic to a formal power series ring Zp in one variable. In this situation, one can define
a free Λ-module T of rank n together with a homomorphism ρ : Gal(KΣ/K) → AutΛ(T ).
This is described in section 5 of [Gr5] in detail, where T is denoted by T ⊗ κ, and also in
[Gr2] where it is called the cyclotomic deformation of T . Here κ is the natural embedding
of Γ into Λ× and one thinks of T as the twist of T by the Λ×-valued character κ.

Just as in the introduction, taking R = Λ, one can define D = T ⊗Λ Λ̂. This discrete,
Λ-cofree Gal(KΣ/K)-module D is denoted by D ⊗ κ in [Gr5], where D = T ⊗Zp

(Qp/Zp).
We think of D as the Gal(KΣ/K)-module obtained from D by inducing from Gal(KΣ/K∞)
up to Gal(KΣ/K). We have D ∼= D[I] as Gal(KΣ/K), where I denotes the augmentation
ideal in Λ, Consequently, D[p] ∼= D[m], where m is the maximal ideal of Λ.

Many of our hypothesis are automatically satisfied. Obviously, RFX(D) is satisfied.

Furthermore, lemma 5.2.2 in [Gr5] shows that LOC
(1)
η (D) is satisfied for all non-archimedean

primes η in Σ. This is so because only the archimedean primes can split completely inK∞/K.
Since p is assumed to be odd, if η is archimedean, then (T ∗)GKη is a direct summand in T ∗

and hence LOC
(2)
η (D) is satisfied. It is reasonable to conjecture that LEO(D) is always

satisfied. This is stated as conjecture 5.2.1 in [Gr5] and is equivalent to conjecture L stated
in the introduction to [Gr4]. Section 5.2 in [Gr4] discusses its validity. It is proved in certain
special cases. In the examples that we will discuss below, LEO(D) is indeed satisfied as well
as CRK(D,L) .

Consider the case where T = Tp(E), the p-adic Tate module for an elliptic curve defined
over K. We then have T/pT ∼= E[p]. Let Σ be a finite set of primes of K including the
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primes dividing p, the infinite primes, and the primes where E has bad reduction. The
properties of the Weil pairing E[p]×E[p] → µp show that assumption (b) is satisfied if and
only if E(K) has no element of order p. Assume that E has good, ordinary reduction at
the primes of K lying over p. There is a natural choice of a specification L in this case
because the Panchiskin condition is satisfied. See the discussion in section 4.3. One chooses
L(Kη,D) = 0 if η ∤ p. If η|p, let Cη denote the kernel of the reduction map E[p∞] → Eη[p

∞],
where Eη is the reduction of E at η. Let Cη = Cη ⊗ κ. Then Eη = Eη[p

∞]⊗ κ. Note that L
is almost divisible.

The formulas in section 2.3 show that δΛ(K,D) = [K : Q], which is a lower bound on
corankΛ

(
H1(KΣ/K,D)

)
. However, the local formulas show easily that QL(Kv,D) has Λ-

corank 0 when v ∤ p and Λ-corank [Kv : Qp] when v|p. Therefore, corankΛ
(
QL(K,D)

)
=

[K : Q]. Thus, if SL(K,D) is Λ-cotorsion, then inequality (2) shows that both LEO(D) and
CRK(D,L) are satisfied.

The above discussion shows that if E(K) has no element of order p and if SL(K,D) is
Λ-cotorsion, then proposition 4.1.1 implies that SL(K,D) is an almost divisible Λ-module.
The second classical result stated in the introduction follows from this because SelE(K∞)
can be identified with the Selmer group attached to D over K∞. However, proposition 3.2
in [Gr2] gives an isomorphism between that Selmer group and SL(K,D) (with a Λ-module
structure modified by the involution of Λ induced from γ → γ−1 for γ ∈ Γ).

Now suppose that K is totally real, that T ∼= Zp, and that GK acts on T by a totally odd
character ψ. Since p is odd, the order of ψ divides p−1. Let Σ be a finite set of primes of K
including the primes dividing p, the infinite primes, and the primes dividing the conductor
of ψ. Define D and D as described above. Thus, D is Λ-cofree and has Λ-corank 1. We take
the following specification L:

L(Kv,D) = ker
(
H1(Kv,D) → H1(Kunr

v ,D)
)

for all v ∈ Σ. Here Kunr
v denotes the maximal unramified extension of Kv. Thus, SL(K,D)

consists of locally unramified cocycle classes in H1(KΣ/K,D) (or equivalently, cocycle classes
in H1(K,D) which are unramified at all primes v of K.). Just as in the elliptic curve case,
one can identify SL(K,D) (slightly modifying the Λ-module structure) with S(K∞.D) (as
defined in the introduction) and hence the Pontryagin dual of SL(K,D) can be identified with
X(ψ), where X = Gal(L∞/K∞,ψ). Iwasawa proved that X is a finitely generated, torsion
Λ-module. Hence, SL(K,D) is a cofinitely generated, cotorsion Λ-module. As we explain
below, L(Kv,D) is Λ-cotorsion for all v. Furthermore, the formulas in section 2.3 show that
the Λ-corank of H1(KΣ/K,D) is at least [K : Q] and the Λ-corank of QL(K,D) is equal to
[K : Q]. The fact that SL(K,D) has Λ-corank 0 implies that the Λ-corank of H1(KΣ/K,D)
is equal to [K : Q] and that CRK(D,L) is satisfied. It also follows that H2(KΣ/K,D) has
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Λ-corank 0, and hence the same is true for X2(K∞,Σ, D). Thus, LEO(D) is satisfied. We
now show that L is almost divisible.

Let D(Kunr
v ) denote H0(Kunr

v ,D). The inflation-restriction sequence shows that

L(Kv,D) ∼= H1
(
Kunr
v /Kv, D(Kunr

v )
)

as Λ-modules. Let ψv be the restriction of ψ to the decomposition subgroup ∆v of ∆ =
Gal(Kψ/K). Then ψv is a faithful character of ∆v and has order dividing p − 1. We can
regard ψv as a character of GKv

and it defines a faithful character of Gal(Kv,ψv
/Kv) for

a certain cyclic extension Kv,ψv
of Kv. Let Kv,∞ be the cyclotomic Zp-extension of Kv

and let Γv = Gal(Kv,∞/K). The action of GKv
on D factors through Gal(Kv,ψv

Kv,∞/Kv)
which is isomorphic to ∆v × Γv, where we have identified ∆v and Γv with subgroups of
Gal(Kv,ψv

Kv,∞/Kv) in an obvious way. Note that ∆v is a cyclic group of order dividing p−1.
The inertia subgroup of ∆v is also cyclic and a generator will act on D as multiplication by
a root of unity εv of order dividing p− 1.

If the restriction of ψv to GKunr
v

is nontrivial, then εv 6= 1 and hence D(Kunr
v ) = 0. It

follows that L(Kv,D) = 0 for such v. We assume now that ψv is unramified at v and hence
εv = 1. The restriction map

H1
(
Kunr
v /Kv, D(Kunr

v )
)

−→ H1
(
Kunr
v /Kv,ψv

, D(Kunr
v )

)∆v

is injective. Also, we have an isomorphism

(11) H1
(
Kunr
v /Kv,ψv

, D(Kunr
v )

)∆v ∼= Hom∆v

(
Γv, D(Kunr

v )
/
(γv − 1)D(Kunr

v )
)
.

The action of ∆v on Γv (by conjugation) is trivial. On the other hand, ∆v is cyclic and
a generator δv acts on D as multiplication by a root of unity ζv of order dividing p − 1.
Hence, if ψv is nontrivial, then ζv 6= 1 and H0

(
∆v,D(Kunr

v )
/
(γv − 1)D(Kunr

v )
)
must vanish.

It follows that the right side in (11) is trivial. Therefore, L(Kv,D) = 0 in this case too.

We assume now that ψv is trivial and hence the action of GKv
on D factors through

Gal(Kv,∞/Kv). If v ∤ p, then v is unramified in K∞/K and hence Kv,∞ ⊂ Kunr
v . Thus,

D(Kunr
v ) = D. Furthermore, Gal(Kunr

v /Kv) contains a unique subgroup P isomorphic to Zp
and the restriction map P → Γv is an isomorphism. The action of P on D is through this
isomorphism. Let γv be a topological generator for Γv. The restriction map

H1(Kunr
v /Kv,D) −→ H1(P,D)

is injective. Also, H1(P,D) ∼= D/(γv−1)D vanishes because γv−1 acts on D as multiplication
by a nonzero element of Λ and D is Λ-divisible. The above remarks show that L(Kv,D) = 0
for all v ∤ p.
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Now consider primes v of K lying over p. If ψv is nontrivial, then L(Kv,D) = 0, as shown
above. Assuming that ψv is trivial, the action of GKv

on D factors through Γv. By definition,
Γv ⊆ Γ is identified with a subgroup of Λ× = Zp[[Γ]]

× in a canonical way, and one sees that
γv acts on D as multiplication by 1 + βv, where βv ∈ Λ and p ∤ βv. The inertia subgroup of
Γv is topologically generated by γp

a

v for some a ≥ 0. Also, γp
a

v − 1 acts as multiplication by
βp

a

v − 1, an element of Λ which is not divisible by p. It follows that D(Kunr
v ) = D[βp

a

v − 1]
is a divisible group. It also follows that D(Kunr

v ) is a cotorsion Λ-module. Furthermore,
as before, H1

(
Kunr
v /Kv,D(Kunr

v )
)
is isomorphic to a certain quotient of D(Kunr

v ). Hence
L(Kv,D) is cotorsion as a Λ-module and is a divisible group. Hence, its Pontryagin dual
has no nonzero finite Λ-submodules. Thus, in this case, L(Kv,D) may be nontrivial, but it
is still almost divisible as a Λ-module.

Assume that ψ 6= ω. Now D[m] is a 1-dimensional Fp-vector space on which GK acts by
ψ. Hence, assumption (a) in proposition 4.1.1 is satisfied. It then follows that the Λ-module
SL(K,D) is indeed almost divisible, and hence Iwasawa’s theorem is proved when ψ 6= ω.

In the case ψ = ω, then we are in the setting of section 3.5 and must use the results from
sections 3.4 and 3.5. In this case, (10) shows that φL is not surjective. We must show that
L(Kv,D) ⊆ H1(Kv,D)

Λ−div
for all v ∈ Σ. Now, L(Kv,D) is nontrivial only when v|p and

and ψv is trivial. But in that case, L(Kv,D) is a quotient of D[βp
a

v − 1] and is annihilated
by J = (βp

a

v − 1). Now J is a product of prime ideals of height 1 which contain βp
a

v − 1.
Hence, GKv

acts on D[Π] through a finite quotient group. Remark 3.5.2 then implies that
L(Kv,D) ⊆ H1(Kv,D)

Λ−div
. This is true for all v ∈ Σ. Consequently, SL(K,D) is an almost

divisible Λ-module.

4.5. Examples where almost divisibility fails. We consider two variants of the classical
examples mentioned in section 4.4. We will follow the notation described there and the
Selmer groups will be defined in exactly the same way. In one example, all the hypotheses
in proposition 4.1.1 are satisfied, except that none of the additional assumptions (a), (b) or
(c) hold. In another example, it is CRK(D,L) which is not satisfied.

Let p = 5. Let E be the elliptic curve over Q of conductor 11 such that E(Q) = 0. It is
the second curve in Cremona’s tables and has good, ordinary reduction at p. The curve E
has an isogeny of degree p defined over Q whose kernel Φ is isomorphic to µp for the action of
GQ. Also, the action of GQ on E[p]/Φ ∼= Z/pZ is trivial. Let K = Q(µp) and let T = Tp(E)
as in section 4.4. Note that E(K) has a point of order p. A theorem of Kato, or a direct
calculation, implies that SL(K,D) is Λ-cotorsion, and hence CRK(D,L) is satisfied. It is
clear that D[m] = E[p] has a quotient E[p]/Φ isomorphic to µp for the action of GK . Thus,
assumptions (a) and (b) fail to hold. We take Σ to be the set of primes lying above ∞, p,
or 11. Assumption (c) fails to hold too. For if η lies over 11, one finds that QL(Kη,D) is
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Λ-cotorsion, but nontrivial, and hence cannot be coreflexive. If η lies over p, one finds that
QL(Kη,D) is not Λ-divisible and hence is not coreflexive. In this example, SL(K,D) can be
identified with SelE(K∞)p as Λ-modules (up to an involution of Λ). It is shown in [Gr3],
pages 127-128, that SelE(K∞)p has a direct summand as a Λ-module which is of order p.
Hence, the Pontryagin dual of SelE(K∞)p has a submodule isomorphic to Λ/m. And so, in
this example, SL(K,D) fails to be almost divisible as a Λ-module.

Let p be any odd prime. Suppose that K is a totally real number field, that T ∼= Zp,
and that GK acts on T by a totally even character ψ. In this case, Kψ is totally real. It is
conjectured that X = Gal(L∞/K∞,ψ) is finite. We refer the reader to [Gr7], pages 350, 351,
for more discussion and references concerning this conjecture. There are many examples
when K = Q, ψ has order 2, and p = 3, where X(ψ) turns out to be finite, but nonzero. It
would then follow that SL(K,D) is finite and nonzero, and hence fails to be almost divisible
as a Λ-module. The weak Leopoldt conjecture holds for the Zp-extension K∞,ψ/Kψ and this
implies that the Λ-corank of H1(KΣ/K,D) is zero. We refer the reader to page 344 in [Gr4]
for an explanation. In contrast, the local formula in section 2.3 implies that QL(K,D) has
positive Λ-corank. Therefore, CRK(D,L) cannot be satisfied.
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