TCC Homological Algebra: Assignment #1

David Loeffler, d.a.loeffler@warwick.ac.uk

1/11/19

This is the first of 3 problem sheets. Solutions should be submitted to me (by email, or via my pigeonhole for Warwick students) by **noon on 22nd November**. This problem sheet will be marked out of a total of 20; the number of marks available for each question is indicated. Questions marked [*] are optional and not assessed.

Note that rings are not necessarily commutative, but are always assumed to be unital (i.e. having a multiplicative identity element 1), and ring homomorphisms are assumed to map 1 to 1.

Categories, functors, and natural transformations

- 1. [3 points] Let C be a category admitting a faithful functor $F : C \to \underline{Set}$, and $\phi : X \to Y$ a morphism in C.
 - (a) Show that:
 - i. If $F(\phi)$ is injective, then ϕ is a monomorphism.
 - ii. If $F(\phi)$ is surjective, then ϕ is an epimorphism.
 - (b) Show that if C = Ring and *F* is the forgetful functor, then the converse of (i) is true: if ϕ is a monomorphism, then ϕ is set-theoretically injective. (*Hint*: Hom_{Ring}($\mathbb{Z}[X], R$) = *R*.)
 - (c) By considering the inclusion map $Z \rightarrow Q$, or otherwise, show that the converse of (ii) is false in this case.
- 2. Let Ring be the category of rings and ring homomorphisms, and $u : Ring \to Grp$ the functor sending a ring R to the group R^{\times} of invertible elements of R (and acting on morphisms in the obvious way).
 - (a) [1 point] Is *u* full?
 - (b) [*] Is *u* faithful?
- 3. Let *k* be a field. Let C denote the category with objects $\{0, 1, ...\}$ and Hom_C(*m*, *n*) defined to be the space of *n* × *m* matrices over *k* (with composition defined as matrix multiplication); and let D denote the category of all finite-dimensional *k*-vector spaces.
 - (a) [1 point] Verify that there is a functor $F : C \to D$ sending *n* to \mathbb{R}^n (you should explain what it does to morphisms).
 - (b) [*] Show (directly, without quoting the general criterion from $\S1.4$) that *F* has a quasi-inverse.

Limits and adjunctions

- 4. [2 points] Prove the following result (part B of a lemma stated in §1.6): if $f_1, f_2 : X \to Y$ are two morphisms in a category C, and $g : Y \to Z$ is a monomorphism in C, then the pair $(g \circ f_1, g \circ f_2)$ has an equaliser if and only if (f_1, f_2) has an equaliser, and the two equalisers coincide.
- 5. Let (\mathcal{P}, \succ) be a partially ordered set, and \mathcal{J} the category with objects \mathcal{P} and a single homomorphism $x \to y$ if $x \succ y$.
 - (a) [2 points] Show that if there exists a greatest element in \mathcal{P} , then \mathcal{J} -diagrams have limits in any category. Formulate and prove a similar statement for colimits.

(b) [1 point] Suppose $(\mathcal{P}, \succ) = (\mathbb{N}, \geq)$. Show that a \mathcal{J} -diagram in <u>Ab</u> is equivalent to the data of a collection of abelian groups A_i and morphisms $\phi_i : A_{i+1} \to A_i$ for all $i \in \mathbb{N}$, and that the inverse limit

$$\varprojlim_{i} A_{i} = \left\{ (x_{i}) \in \prod_{i \in I} A_{i} : \phi_{i}(x_{i+1}) = x_{i} \forall i \right\}$$

satisfies the universal property of the category-theoretic limit.

- [2 points] Show that the forgetful functor Top → Set has both a left and a right adjoint, and describe both of these explicitly.
- 7. [3 points] Let $L : C \to D$ and $R : D \to C$ be a pair of adjoint functors (*L* the left adjoint, *R* the right adjoint).
 - (a) Show that if J is a small category, and D is a J-diagram in D which has a limit, then R(D) also has a limit and R(lim D) = lim R(D) (i.e. R is *continuous*).
 [*Hint: Use L to construct a map from cones of R(D) to cones of D.*]
 - (b) Show that the opposite functor $L^{\text{op}} : \mathcal{C}^{\text{op}} \to \mathcal{D}^{\text{op}}$ is **right** adjoint to R^{op} . By applying part (a) to the opposite functors, or otherwise, show that *L* is *cocontinuous*, i.e. preserves all colimits.

Additive categories, kernels, cokernels

- 8. [2 points] Let C be an additive category. Show that there is an isomorphism $X_1 \oplus (X_2 \oplus X_3) \cong (X_1 \oplus X_2) \oplus X_3$ for any three objects X_1, X_2, X_3 of C.
- 9. [3 points] Let C be the full subcategory of <u>Ab</u> consisting of torsion-free abelian groups. Show that all morphisms in C have kernels and cokernels. Give an example to show that the cokernel of a morphism in C may not coincide with the cokernel of the same morphism in <u>Ab</u>. Is C an abelian category?