TCC Homological Algebra: Assignment #3 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

15/1/20

Note that rings are not necessarily commutative, but are always assumed to be unital (i.e. having a multiplicative identity element 1), and ring homomorphisms are assumed to map 1 to 1. The notation \underline{Ab} denotes the category of abelian groups, and $\underline{R}\text{-}\underline{Mod}$ the category of left modules over the ring R. If $\mathcal C$ is an abelian category, then $\mathrm{Ch}(\mathcal C)$ denotes the category of cochain complexes over $\mathcal C$, and $\mathrm{Ch}^+(\mathcal C)$ the full subcategory of bounded-below complexes.

1. (Borrowed from Pete Clark) Let R be a commutative ring and M, N be R-modules.

(a) [1 point] Show that the groups $\operatorname{Ext}_R^i(M,N)$ are also naturally *R*-modules.

Solution: Since R is commutative, there is a natural R-module structure on $\operatorname{Hom}_R(M,N)$ for any R-modules M, N, given by $(r \cdot \phi)(m) = \phi(rm) = r\phi(m)$. This gives a functor $\operatorname{Hom}: \underline{R\operatorname{-Mod}} \times \underline{R\operatorname{-Mod}} \to \underline{R\operatorname{-Mod}}$ from which the usual Hom functor is obtained by composing with the forgetful functor $\underline{R\operatorname{-Mod}} \to \underline{Ab}$.

We have defined $\operatorname{Ext}^i_R(M,N)$ as the i-th homology of the complex $\operatorname{Hom}_R(M,I^{\bullet})$, where I^{\bullet} is an injective resolution of N in $\underline{R\operatorname{-Mod}}$. By the above, this complex naturally lives in $\operatorname{Ch}(\underline{R\operatorname{-Mod}})$, and the forgetful functor commutes with taking homology. So the homology (in $\operatorname{\underline{Ab}}$) of $\operatorname{Hom}_R(M,I^{\bullet})$ is also naturally an $R\operatorname{-module}$.

(b) [2 points] Let $r \in R$ and let $\mu : N \to N$ be the map $x \mapsto rx$. Show that for any i, the map $\operatorname{Ext}^i_R(M,N) \to \operatorname{Ext}^i_R(M,N)$ induced by μ via the functoriality of $\operatorname{Ext}^i(M,-)$ is also multiplication by r. Show a similar result for the multiplication-by-r map $M \to M$.

Solution: By definition, the map $\operatorname{Ext}_R^i(M,N) \to \operatorname{Ext}_R^i(M,N)$ induced by μ is the i-th homology of the map of complexes $\operatorname{Hom}_R(M,I^{\bullet}) \to \operatorname{Hom}_R(M,I^{\bullet})$ given by composing a homomorphism with $\tilde{\mu}$, where $\tilde{\mu}$ is a lifting of μ to a map of complexes $I^{\bullet} \to I^{\bullet}$. However, one valid choice of $\tilde{\mu}$ is the map given by multiplication by r on each I^j , which is exactly the R-module structure on Ext^i defined above (using the formula $(r \cdot \phi)(x) = r\phi(x)$)

The second statement is rather simpler: if ν denotes the multiplication-by-R map on M [apologies for the notation!] then the map $\operatorname{Ext}^i_R(M,N) \to \operatorname{Ext}^i_R(M,N)$ induced by ν is given by pre-composing homomorphisms with ν ; using the other formula $(r \cdot \phi)(x) = \phi(rx)$, this again recovers the R-module structure of $\operatorname{Ext}^i_R(M,N)$.

2. Let *G* be a group and $H \leq G$ a subgroup isomorphic to $(\mathbf{Z}, +)$.

(a) [1 point] Show that for any *G*-module *M*, we have $H^i(H, M) = 0$ for $i \notin \{0, 1\}$.

Solution: Let h be a generator of H. Then $\mathbf{Z}[H] \cong \mathbf{Z}[X, X^{-1}]$, by mapping h to X. Since $\mathbf{Z}[X, X^{-1}]$ is an integral domain, multiplication by X-1 is injective as a map $\mathbf{Z}[X, X^{-1}] \to \mathbf{Z}[X, X^{-1}]$, and its cokernel is \mathbf{Z} . So the complex

$$\left[\mathbf{Z}[H] \xrightarrow{h-1} \mathbf{Z}[H]\right]$$

is a projective resolution of **Z** in $\mathbf{Z}[H]$ -Mod, and thus for any H-module M, the cohomology $H^*(H, M)$ is computed by the complex

$$M \xrightarrow{h-1} M$$

which is nontrivial only in degrees 0 and 1.

(b) [1 point] Show that there is a long exact sequence

$$\cdots \to H^n(G/H, H^0(H, M)) \to H^n(G, M) \to H^{n-1}(G/H, H^1(H, M)) \to H^{n+1}(G/H, H^0(H, M)) \to \cdots$$

Solution: Applying Hochschild–Serre to G and H, we find that there is a spectral sequence with E_2 terms $E_2^{pq} = H^p(G/H, H^q(H, M))$ converging to $H^{p+q}(G, M)$.

By part (a), the E_2 page has only two non-zero rows, namely the q = 0 and q = 1 rows. So by a result from §5.6 of the lectures, the E_2 terms and the abutments $X^n = H^n(G, M)$ fit into a long exact sequence

$$\cdots \to E_2^{(n,0)} \to X^n \to E_2^{(n-1,1)} \xrightarrow{d_2^{(n-1,1)}} E_2^{(n+1,0)} \to X^{n+1} \to \cdots$$

as required.

[Several of you fell into the trap of thinking that this long exact sequence is actually the composition of a bunch of short exact sequences. This is false, in general, since there is no particular reason why the E_2 differentials should vanish. The "lots of short exact sequences" case would occur if we had $G/H \cong \mathbf{Z}$, not if $H \cong \mathbf{Z}$.]

3. [2 points] Let E be a (first-quadrant, cohomological) spectral sequence in \underline{Ab} converging to $(X^n)_{n\geq 0}$, and suppose there is some r such that $E_r^{p,q}$ is finitely-generated for all (p,q) and zero for almost all (p,q). Show that X^n is finitely-generated for all n and zero for almost all n, and we have

$$\sum_{p,q} (-1)^{p+q} \operatorname{rank}\left(E_r^{p,q}\right) = \sum_n (-1)^n \operatorname{rank}\left(X^n\right).$$

Solution: Suppose that E_r^{pq} is fg for all (p,q) and zero for almost all (p,q) for some specific $r=r_0$. Since E_{r+1}^{pq} is a subquotient of E_r^{pq} , we see by induction that this holds for all $r \geq r_0$, and hence that E_∞^{pq} is fg for all (p,q) and zero for almost all. Hence, for every n, the group X^n has a filtration having finitely many graded pieces, each of which is fg, so it is itself fg. Moreover, each pair (p,q) contributes to X^n for a single n (namely n=p+q) so there are only finitely many n such that any graded piece of X^n is nonzero, so almost all X^n are zero.

Let us now evaluate the sums. We first note that if A^{\bullet} is a bounded complex of finitely-generated abelian groups, then we have

$$\begin{split} \operatorname{rank}(A^n) &= \operatorname{rank}(\operatorname{im} d_A^{n-1}) + \operatorname{rank} H^n(A^\bullet) + \operatorname{rank}(A/\ker(d_A^n)) \\ &= \operatorname{rank}(\operatorname{im} d_A^{n-1}) + \operatorname{rank} H^n(A^\bullet) + \operatorname{rank}(\operatorname{im} d_A^n). \end{split}$$

Taking the alternating sum over i, the im d_A^n terms cancel out, and thus

$$\sum_{i} (-1)^{i} \operatorname{rank}(A^{i}) = \sum_{i} (-1)^{i} \operatorname{rank} H^{i}(A^{\bullet}).$$

We apply this to the complexes A_r^{\bullet} given by $A_r^n = \bigoplus_{p+q=n} E_r^{pq}$, with differentials given by summing the differentials d_r^{pq} of the spectral sequence. Since A_{r+1}^{\bullet} is the cohomology of A_r^{\bullet} ,

we deduce that the quantity $\chi_r := \sum_{p,q} (-1)^{p+q} \operatorname{rank} E_r^{pq}$ satisfies $\chi_{r+1} = \chi_r$ for all $r \ge r_0$. Thus $\chi_{\infty} = \chi_{r_0}$. However, since X^n has a filtration with graded pieces $\{E_{\infty}^{pq} : p+q=n\}$, we have

$$\operatorname{rank} X^n = \sum_{p+q=n} \operatorname{rank} E_{\infty}^{pq} \ \forall n$$

and hence

$$\sum_{n} (-1)^n \operatorname{rank} X^n = \sum_{n} \sum_{p+q=n} (-1)^{p+q} \operatorname{rank} E_{\infty}^{pq} = \chi_{\infty} = \chi_{r_0}$$

as required.

[*] Formulate and prove an analogous statement with "finitely-generated" replaced by "finite".

Solution: The generalisation I had in mind was the following: if there is an r such that E_r^{pq} is finite for all (p,q) and trivial for almost all (p,q), then X^n is finite for all n and trivial for almost all, and

$$\prod_{p,q} \left(\# E_r^{pq} \right)^{(-1)^{p+q}} = \prod_n \left(\# X^n \right)^{(-1)^n}.$$

(More generally still, one can formulate a version of this exercise in any abelian category that is "essentially small", i.e. isomorphism classes of objects form a set, using the idea of *Grothendieck groups*.)

4. [2 points] Let $G = \operatorname{SL}_2(k)$, where k is a finite field of characteristic $\neq 2$. Let M be k^2 , with G acting via the standard left-multiplication action on column vectors. Show that $H^i(G, M) = 0$ for all i. [Hint: Apply the Hochschild–Serre spectral sequence to $Z(G) \leq G$.]

Solution: The centre Z of G is ± 1 , with the generator σ acting as -1 on G. From Sheet 2 we know that $H^i(Z,M)$ is computed by the complex

$$M \xrightarrow{\sigma-1} M \xrightarrow{\sigma+1} M \to \dots$$

Since $\sigma+1$ is the zero map map and $\sigma-1$ is multiplication by -2, which is invertible in k, this complex is exact. Thus $H^i(Z,M)$ is zero for all i, and from the Hochschild–Serre exact sequence it follows that $H^i(G,M)$ is 0 for all i.

- 5. Let R be a ring and let $f: A^{\bullet} \to B^{\bullet}$ be a morphism in $Ch(\underline{R\text{-Mod}})$. Recall the definition of the *mapping cone* C_f^{\bullet} of f (with the corrected sign conventions given in Lecture 8).
 - (a) [1 point] Show that C_f^{\bullet} is a cochain complex, and the obvious projection and inclusion maps $g: C_f^{\bullet} \to A^{\bullet}[1]$ and $h: B^{\bullet} \to C_f^{\bullet}$ are cochain maps.

Solution: Recall that we write [1] for the functor $Ch(\mathcal{C}) \to Ch(\mathcal{C})$ sending A to the complex A[1] defined by $A[1]^i = A^{i+1}$, $d^i_{A[1]} = -d^i_A$; and with these conventions, $(C_f)^i = A^{i+1} \oplus B^i$, with the differential given by

$$d^i_{C_f}((a,b)) = (-d^{i+1}_A(a), f^{i+1}(a) + d^i_B(b)).$$

We compute that

$$\begin{split} d_{C_f}^{i+1}(d_{C_f}^i((a,b))) \\ &= d_{C_f}^{i+1} \left(-d_A^{i+1}(a), f^{i+1}(a) + d_B^i(b) \right) \\ &= \left(-d_A^{i+2}(-d_A^{i+1}(a)), f^{i+2}(-d_A^{i+1}(a)) + d_B^{i+1}(f^{i+1}(a) + d_B^i(b)) \right) \\ &= \left(0, (-f^{i+2} \circ d_A^{i+1} + d_B^{i+1} \circ f^{i+1})(a)) \right) = 0 \end{split}$$

where the last equality follows from f being a cochain map. Thus C_f^{\bullet} is also a complex. For g,h as above, we compute that both $d_{A[1]}^i \circ g^i$ and $g^{i+1} \circ d_{C_f^{\bullet}}^i$ send (a,b) to $-d_A^{i+1}(a)$, so g is a cochain map; similarly, both $h^{i+1} \circ d_B^i$ and $d_{C_f^{\bullet}}^i \circ h^i$ map b to $(0,d_B^i(b))$, so h is a cochain map.

(b) [2 points] Show that all three compositions $f \circ g$, $g \circ h$, and $h \circ f$ are null-homotopic.

Solution: [This question was a little sloppily formulated, since $f \circ g$ doesn't quite make sense; it would have been more correct to write $f[1] \circ g$, where f[1] is the morphism $A[1] \to B[1]$ given by $f[1]^i = f^{i+1}$.]

One of these assertions is obvious: $g \circ h$ is the zero map, so it is certainly null-homotopic. So it suffices to prove the assertion for $f[1] \circ g$ and $h \circ f$.

Firstly, $h \circ f : A \to C_f$ is given by

$$a \in A^i \longrightarrow f(a) \in B^i \longrightarrow (0, f(a)) \in C_f^i$$

Let $s: A^i \to C_f^{i-1}$ be given by $a \mapsto (a,0)$. Then we have ds(a) = (-da, f(a)) and sd(a) = (da,0). Hence $h \circ f = sd + ds$, so $h \circ f$ is null-homotopic.

Similarly, $f[1] \circ g : C_f \to B[1]$ is given by

$$(a,b) \in C_f^i \longmapsto a \in A^{i+1} \longmapsto f(a) \in B^{i+1}.$$

If we let $s: C^i_f \to B[1]^{i-1} = B^i$ be the map given by $(a,b) \mapsto b$, then sd((a,b)) = db + f(a), while ds((a,b)) = -db (the sign is because this is the differential of A[1], not A). Thus $ds + sd = f \circ g$.

(c) [2 points] Show that if $g: A^{\bullet} \to B^{\bullet}$ is another morphism homotopic to f, then the complex C_g^{\bullet} is homotopy-equivalent to C_f^{\bullet} , compatibly with the morphisms from B^{\bullet} and to $A^{\bullet}[1]$.

Solution: Suppose that $s^i:A^i\to B^{i-1}$ are the components of the homotopy, so that f-g=ds+sd (omitting unnecessary indices and brackets).

By definition both C_f^i and C_g^i are given by $A^{i+1} \oplus B^i$. We define a map $\lambda: C_f^i \to C_g^i$ by sending (a,b) to (a,b+sa). Then we have

$$(d_{C_g} \circ \lambda)(a,b) = (-da, ga + db + dsa)$$

and

$$(\lambda \circ d_{C_f})(a,b) = \lambda (-da,fa+db) = (-da,fa+db-sda).$$

Since f = g + ds + sd these are equal. Thus λ is a morphism of cochain complexes. Interchanging the role of f and g, and replacing s with -s, we obtain a map of complexes λ' in the other direction which is the inverse of λ . Thus C_f and C_g are isomorphic in Ch(R-Mod), and in particular are homotopy equivalent.

[This was a trick question, in some sense, because the natural argument actually proves something much stronger than I asked you for. But the weaker assertion that C_f and C_g are homotopic is enough to show that the mapping fibre is a well-defined operation on the homotopy category.]

- 6. Let $F: \mathcal{C} \to \mathcal{D}$ be a left-exact functor between abelian categories, with \mathcal{C} having enough injectives. We defined the hyperderived functors $\mathbf{R}^i(F)$ as functors $\mathrm{Ch}^{\geqslant 0}(\mathcal{C}) \to \mathcal{D}$, where $\mathrm{Ch}^{\geqslant 0}(\mathcal{C})$ is the full subcategory of $\mathrm{Ch}^+(\mathcal{C})$ consisting of complexes that are zero in degrees < 0.
 - (a) [1 point] Show that there is a unique extension of the functors $\mathbf{R}^i(F)$ to $\mathrm{Ch}^+(\mathcal{C})$ satisfying $\mathbf{R}^i(F)(X) = \mathbf{R}^0(F)(X[i])$.

Solution:

Lemma. Let $X \in \operatorname{Ch}^{\geqslant 0}(\mathcal{C})$. Then $X[-1] \in \operatorname{Ch}^{\geqslant 0}(\mathcal{C})$ as well, and we have $\mathbf{R}^i(F)(X[-1]) = \mathbf{R}^{i-1}(F)(X)$ (understood as 0 for i=0).

Proof of Lemma. Let $I^{\bullet \bullet}$ be a Cartan-Eilenberg resolution of X^{\bullet} , and let $J^{\bullet \bullet}$ be the complex obtained by shifting this entire double complex one step to the right, and flipping the signs of all of the differentials. Then $J^{\bullet \bullet}$ is a CE resolution of X[-1]; and Tot $F(J^{\bullet \bullet}) = (\text{Tot } F(I^{\bullet \bullet}))[-1]$. Taking homology we deduce the lemma.

Now, let $X \in \operatorname{Ch}^+(\mathcal{C})$. Then we have $X[-n] \in \operatorname{Ch}^{\geqslant 0}(\mathcal{C})$ for all sufficiently large n. If we define $R^i(F)(X) = R^{i+n}(F)(X[-n])$ for such an n, this is well-defined; and the lemma shows that this is independent of the choice of n.

Moreover, if n works for X, then n + i works for X[i], and we thus have

$$R^{i}(F)(X) := R^{n+i}(F)(X[-n]) = R^{n+i}(F)(X[i][-n-i]) =: R^{0}(F)(X[i]).$$

(b) [1 point] Show that if $f: X^{\bullet} \to Y^{\bullet}$ is a quasi-isomorphism in $Ch^{\geqslant 0}(\mathcal{C})$, then it induces isomorphisms $\mathbf{R}^i(F)(X) \to \mathbf{R}^i(F)(Y)$ for all Y.

Solution: We have spectral sequences $E_2^{pq} = (R^p F)(H^q X) \Rightarrow \mathbf{R}^{p+q}(F)(X)$ and similarly for Y. Since f is a quasi-isomorphism, it induces isomorphisms between the E_2 pages of these spectral sequences, and hence on the E_∞ pages as well. Thus the map $f: \mathbf{R}^i(F)(X) \to \mathbf{R}^i(F)(Y)$ is compatible with the filtrations induced by the spectral sequences, and induces isomorphisms on each graded piece, so it is an isomorphism.

[Alternatively: It was mentioned in lecture 8 (during the discussion of derived categories) that $\mathbf{R}^i(F)(Y^{\bullet})$ could be computed as the i-th homology of $F(I^{\bullet})$, for any bounded-below complex of injectives I^{\bullet} that is quasi-isomorphic to Y^{\bullet} (and such complexes always exist). So one can simply take a quasi-iso $Y^{\bullet} \to I^{\bullet}$ with I^{\bullet} injective, and compose it with f to get a quasi-iso $X^{\bullet} \to I^{\bullet}$, to see that the i-th homology of $F(I^{\bullet})$ computes both $\mathbf{R}^i(F)(X)$ and $\mathbf{R}^i(F)(Y)$.

However, if you use this argument, you should explain – with a proof or a reference to the notes – why $F(I^{\bullet})$ computes the hyperderived functors.]

7. [4 points] (Suggested by Sarah Zerbes) Let C, D be abelian categories with C having enough injectives, $F: C \to D$ a left-exact functor, and $f: A^{\bullet} \to B^{\bullet}$ a morphism of complexes in $Ch^{\geqslant 0}(C)$. Let $C^{\bullet} = C_f^{\bullet}[-1]$, so we also have $C \in Ch^{\geqslant 0}(C)$; this shifted mapping cone is sometimes known as the mapping fibre.

Show that there is a spectral sequence in \mathcal{D} converging to $\mathbf{R}^{p+q}(F)(C^{\bullet})$, such that for each $q \geq 0$, the q-th row on the E_1 page, $E_1^{\bullet q}$, is the mapping fibre of the morphism $R^q(F)(f): R^q(F)(A^{\bullet}) \to R^q(F)(B^{\bullet})$ in $Ch^{\geqslant 0}(\mathcal{D})$.

Solution: Let $I^{\bullet \bullet}$, $J^{\bullet \bullet}$ be Cartan–Eilenberg resolutions of A^{\bullet} , B^{\bullet} . Then f lifts to a map of double complexes $\tilde{f}: I^{\bullet \bullet} \to J^{\bullet \bullet}$.

Let $K^{\bullet \bullet}$ be the double complex with (p,q) term $I^{pq} \oplus J^{p-1,q}$, with vertical differentials being the direct sums of those of I and J, and with the horizontal differentials defined so that the q-th row is the mapping fibre of $I^{\bullet q} \to J^{\bullet q}$. Then $K^{\bullet \bullet}$ is a Cartan–Eilenberg resolution of C^{\bullet} .

By definition, $\mathbf{R}^n(F)(C)$ is the n-th cohomology of $\operatorname{Tot} F(K^{\bullet \bullet})$; so it is the abutment of two spectral sequences, corresponding to the "rows" and "columns" filtrations of the total complex. One of these has $E_1^{pq} = H_v^q(F(K^{p\bullet}))$. Since $K^{p\bullet}$ is the direct sum of $I^{p,\bullet}$ and $J^{p-1,\bullet}$ (and the vertical differentials respect this direct sum decomposition), we see that $E_1^{pq} = R^q(F)(A^p) \oplus R^{q-1}(F)(B^p)$, with horizontal differentials as claimed.