
TCC Homological Algebra: Assignment #3 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

15/1/20

Note that rings are not necessarily commutative, but are always assumed to be unital (i.e. having a
multiplicative identity element 1), and ring homomorphisms are assumed to map 1 to 1. The notation
Ab denotes the category of abelian groups, and R-Mod the category of left modules over the ring R. If C
is an abelian category, then Ch(C) denotes the category of cochain complexes over C, and Ch+(C) the
full subcategory of bounded-below complexes.

1. (Borrowed from Pete Clark) Let R be a commutative ring and M, N be R-modules.

(a) [1 point] Show that the groups Exti
R(M, N) are also naturally R-modules.

Solution: Since R is commutative, there is a natural R-module structure on HomR(M, N)
for any R-modules M, N, given by (r · φ)(m) = φ(rm) = rφ(m). This gives a functor
Hom : R-Mod × R-Mod → R-Mod from which the usual Hom functor is obtained by
composing with the forgetful functor R-Mod→ Ab.
We have defined Exti

R(M, N) as the i-th homology of the complex HomR(M, I•), where
I• is an injective resolution of N in R-Mod. By the above, this complex naturally lives in
Ch(R-Mod), and the forgetful functor commutes with taking homology. So the homology
(in Ab) of HomR(M, I•) is also naturally an R-module.

(b) [2 points] Let r ∈ R and let µ : N → N be the map x 7→ rx. Show that for any i, the map
Exti

R(M, N)→ Exti
R(M, N) induced by µ via the functoriality of Exti(M,−) is also multiplica-

tion by r. Show a similar result for the multiplication-by-r map M→ M.

Solution: By definition, the map Exti
R(M, N) → Exti

R(M, N) induced by µ is the i-th
homology of the map of complexes HomR(M, I•)→ HomR(M, I•) given by composing a
homomorphism with µ̃, where µ̃ is a lifting of µ to a map of complexes I• → I•. However,
one valid choice of µ̃ is the map given by multiplication by r on each I j, which is exactly the
R-module structure on Exti defined above (using the formula (r · φ)(x) = rφ(x))
The second statement is rather simpler: if ν denotes the multiplication-by-R map on M
[apologies for the notation!] then the map Exti

R(M, N)→ Exti
R(M, N) induced by ν is given

by pre-composing homomorphisms with ν; using the other formula (r · φ)(x) = φ(rx), this
again recovers the R-module structure of Exti

R(M, N).

2. Let G be a group and H P G a subgroup isomorphic to (Z,+).

(a) [1 point] Show that for any G-module M, we have Hi(H, M) = 0 for i /∈ {0, 1}.

Solution: Let h be a generator of H. Then Z[H] ∼= Z[X, X−1], by mapping h to X. Since
Z[X, X−1] is an integral domain, multiplication by X− 1 is injective as a map Z[X, X−1]→
Z[X, X−1], and its cokernel is Z. So the complex[

Z[H]
h−1−−→ Z[H]

]

1



is a projective resolution of Z in Z[H]-Mod, and thus for any H-module M, the cohomology
H∗(H, M) is computed by the complex

M h−1−−→ M

which is nontrivial only in degrees 0 and 1.

(b) [1 point] Show that there is a long exact sequence

· · · → Hn(G/H, H0(H, M))→ Hn(G, M)→ Hn−1(G/H, H1(H, M))→ Hn+1(G/H, H0(H, M))→ . . .

Solution: Applying Hochschild–Serre to G and H, we find that there is a spectral sequence
with E2 terms Epq

2 = Hp(G/H, Hq(H, M)) converging to Hp+q(G, M).
By part (a), the E2 page has only two non-zero rows, namely the q = 0 and q = 1 rows. So
by a result from §5.6 of the lectures, the E2 terms and the abutments Xn = Hn(G, M) fit into
a long exact sequence

· · · → E(n,0)
2 → Xn → E(n−1,1)

2
d(n−1,1)

2−−−−→ E(n+1,0)
2 → Xn+1 → . . .

as required.
[Several of you fell into the trap of thinking that this long exact sequence is actually the composition
of a bunch of short exact sequences. This is false, in general, since there is no particular reason why
the E2 differentials should vanish. The “lots of short exact sequences” case would occur if we had
G/H ∼= Z, not if H ∼= Z.]

3. [2 points] Let E be a (first-quadrant, cohomological) spectral sequence in Ab converging to (Xn)n≥0,
and suppose there is some r such that Ep,q

r is finitely-generated for all (p, q) and zero for almost all
(p, q). Show that Xn is finitely-generated for all n and zero for almost all n, and we have

∑
p,q
(−1)p+q rank

(
Ep,q

r

)
= ∑

n
(−1)n rank (Xn) .

Solution: Suppose that Epq
r is fg for all (p, q) and zero for almost all (p, q) for some specific

r = r0. Since Epq
r+1 is a subquotient of Epq

r , we see by induction that this holds for all r ≥ r0, and
hence that Epq

∞ is fg for all (p, q) and zero for almost all. Hence, for every n, the group Xn has a
filtration having finitely many graded pieces, each of which is fg, so it is itself fg. Moreover, each
pair (p, q) contributes to Xn for a single n (namely n = p + q) so there are only finitely many n
such that any graded piece of Xn is nonzero, so almost all Xn are zero.

Let us now evaluate the sums. We first note that if A• is a bounded complex of finitely-generated
abelian groups, then we have

rank(An) = rank(im dn−1
A ) + rank Hn(A•) + rank(A/ ker(dn

A))

= rank(im dn−1
A ) + rank Hn(A•) + rank(im dn

A).

Taking the alternating sum over i, the im dn
A terms cancel out, and thus

∑
i
(−1)i rank(Ai) = ∑

i
(−1)i rank Hi(A•).

We apply this to the complexes A•r given by An
r =

⊕
p+q=n Epq

r , with differentials given by
summing the differentials dpq

r of the spectral sequence. Since A•r+1 is the cohomology of A•r ,
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we deduce that the quantity χr := ∑p,q(−1)p+q rank Epq
r satisfies χr+1 = χr for all r ≥ r0. Thus

χ∞ = χr0 . However, since Xn has a filtration with graded pieces {Epq
∞ : p + q = n}, we have

rank Xn = ∑
p+q=n

rank Epq
∞ ∀n

and hence
∑
n
(−1)n rank Xn = ∑

n
∑

p+q=n
(−1)p+q rank Epq

∞ = χ∞ = χr0

as required.

[*] Formulate and prove an analogous statement with “finitely-generated” replaced by “finite”.

Solution: The generalisation I had in mind was the following: if there is an r such that Epq
r is

finite for all (p, q) and trivial for almost all (p, q), then Xn is finite for all n and trivial for almost
all, and

∏
p,q

(
#Epq

r

)(−1)p+q

= ∏
n
(#Xn)(−1)n

.

(More generally still, one can formulate a version of this exercise in any abelian category that is
“essentially small”, i.e. isomorphism classes of objects form a set, using the idea of Grothendieck
groups.)

4. [2 points] Let G = SL2(k), where k is a finite field of characteristic 6= 2. Let M be k2, with G acting
via the standard left-multiplication action on column vectors. Show that Hi(G, M) = 0 for all i. [Hint:
Apply the Hochschild–Serre spectral sequence to Z(G) P G.]

Solution: The centre Z of G is ±1, with the generator σ acting as −1 on G. From Sheet 2 we
know that Hi(Z, M) is computed by the complex

M σ−1−−→ M σ+1−−→ M→ . . . .

Since σ + 1 is the zero map map and σ− 1 is multiplication by −2, which is invertible in k, this
complex is exact. Thus Hi(Z, M) is zero for all i, and from the Hochschild–Serre exact sequence
it follows that Hi(G, M) is 0 for all i.

5. Let R be a ring and let f : A• → B• be a morphism in Ch(R-Mod). Recall the definition of the
mapping cone C•f of f (with the corrected sign conventions given in Lecture 8).

(a) [1 point] Show that C•f is a cochain complex, and the obvious projection and inclusion maps
g : C•f → A•[1] and h : B• → C•f are cochain maps.

Solution: Recall that we write [1] for the functor Ch(C)→ Ch(C) sending A to the complex
A[1] defined by A[1]i = Ai+1, di

A[1] = −di
A; and with these conventions, (C f )

i = Ai+1 ⊕ Bi,
with the differential given by

di
C f
((a, b)) = (−di+1

A (a), f i+1(a) + di
B(b)).
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We compute that

di+1
C f

(di
C f
((a, b)))

= di+1
C f

(
− di+1

A (a), f i+1(a) + di
B(b)

)
=
(
− di+2

A (−di+1
A (a)), f i+2(−di+1

A (a)) + di+1
B ( f i+1(a) + di

B(b))
)

=
(

0, (− f i+2 ◦ di+1
A + di+1

B ◦ f i+1)(a))
)
= 0

where the last equality follows from f being a cochain map. Thus C•f is also a complex. For

g, h as above, we compute that both di
A[1] ◦ gi and gi+1 ◦ di

C•f
send (a, b) to −di+1

A (a), so g is

a cochain map; similarly, both hi+1 ◦ di
B and di

C•f
◦ hi map b to (0, di

B(b)), so h is a cochain
map.

(b) [2 points] Show that all three compositions f ◦ g, g ◦ h, and h ◦ f are null-homotopic.

Solution: [This question was a little sloppily formulated, since f ◦ g doesn’t quite make sense; it
would have been more correct to write f [1] ◦ g, where f [1] is the morphism A[1]→ B[1] given by
f [1]i = f i+1.]
One of these assertions is obvious: g ◦ h is the zero map, so it is certainly null-homotopic.
So it suffices to prove the assertion for f [1] ◦ g and h ◦ f .
Firstly, h ◦ f : A→ C f is given by

a ∈ Ai 7−→ f (a) ∈ Bi 7−→ (0, f (a)) ∈ Ci
f .

Let s : Ai → Ci−1
f be given by a 7→ (a, 0). Then we have ds(a) = (−da, f (a)) and sd(a) =

(da, 0). Hence h ◦ f = sd + ds, so h ◦ f is null-homotopic.
Similarly, f [1] ◦ g : C f → B[1] is given by

(a, b) ∈ Ci
f 7−→ a ∈ Ai+1 7−→ f (a) ∈ Bi+1.

If we let s : Ci
f → B[1]i−1 = Bi be the map given by (a, b) 7→ b, then sd((a, b)) = db + f (a),

while ds((a, b)) = −db (the sign is because this is the differential of A[1], not A). Thus
ds + sd = f ◦ g.

(c) [2 points] Show that if g : A• → B• is another morphism homotopic to f , then the complex C•g
is homotopy-equivalent to C•f , compatibly with the morphisms from B• and to A•[1].

Solution: Suppose that si : Ai → Bi−1 are the components of the homotopy, so that
f − g = ds + sd (omitting unnecessary indices and brackets).
By definition both Ci

f and Ci
g are given by Ai+1 ⊕ Bi. We define a map λ : Ci

f → Ci
g by

sending (a, b) to (a, b + sa). Then we have

(dCg ◦ λ)(a, b) = (−da, ga + db + dsa)

and
(λ ◦ dC f )(a, b) = λ(−da, f a + db) = (−da, f a + db− sda).

Since f = g + ds + sd these are equal. Thus λ is a morphism of cochain complexes.
Interchanging the role of f and g, and replacing s with −s, we obtain a map of complexes
λ′ in the other direction which is the inverse of λ. Thus C f and Cg are isomorphic in
Ch(R-Mod), and in particular are homotopy equivalent.
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[This was a trick question, in some sense, because the natural argument actually proves something
much stronger than I asked you for. But the weaker assertion that C f and Cg are homotopic is enough
to show that the mapping fibre is a well-defined operation on the homotopy category.]

6. Let F : C → D be a left-exact functor between abelian categories, with C having enough injectives.
We defined the hyperderived functors Ri(F) as functors Ch>0(C) → D, where Ch>0(C) is the full
subcategory of Ch+(C) consisting of complexes that are zero in degrees < 0.

(a) [1 point] Show that there is a unique extension of the functors Ri(F) to Ch+(C) satsfying
Ri(F)(X) = R0(F)(X[i]).

Solution:
Lemma. Let X ∈ Ch>0(C). Then X[−1] ∈ Ch>0(C) as well, and we have Ri(F)(X[−1]) =
Ri−1(F)(X) (understood as 0 for i = 0).
Proof of Lemma. Let I•• be a Cartan-Eilenberg resolution of X•, and let J•• be the complex
obtained by shifting this entire double complex one step to the right, and flipping the
signs of all of the differentials. Then J•• is a CE resolution of X[−1]; and Tot F(J••) =
(Tot F(I••)) [−1]. Taking homology we deduce the lemma.

Now, let X ∈ Ch+(C). Then we have X[−n] ∈ Ch>0(C) for all sufficiently large n. If we
define Ri(F)(X) = Ri+n(F)(X[−n]) for such an n, this is well-defined; and the lemma
shows that this is independent of the choice of n.
Moreover, if n works for X, then n + i works for X[i], and we thus have

Ri(F)(X) := Rn+i(F)(X[−n]) = Rn+i(F)(X[i][−n− i]) =: R0(F)(X[i]).

(b) [1 point] Show that if f : X• → Y• is a quasi-isomorphism in Ch>0(C), then it induces isomor-
phisms Ri(F)(X)→ Ri(F)(Y) for all Y.

Solution: We have spectral sequences Epq
2 = (RpF)(HqX) ⇒ Rp+q(F)(X) and similarly

for Y. Since f is a quasi-isomorphism, it induces isomorphisms between the E2 pages of
these spectral sequences, and hence on the E∞ pages as well. Thus the map f : Ri(F)(X)→
Ri(F)(Y) is compatible with the filtrations induced by the spectral sequences, and induces
isomorphisms on each graded piece, so it is an isomorphism.
[Alternatively: It was mentioned in lecture 8 (during the discussion of derived categories) that
Ri(F)(Y•) could be computed as the i-th homology of F(I•), for any bounded-below complex of
injectives I• that is quasi-isomorphic to Y• (and such complexes always exist). So one can simply
take a quasi-iso Y• → I• with I• injective, and compose it with f to get a quasi-iso X• → I•, to see
that the i-th homology of F(I•) computes both Ri(F)(X) and Ri(F)(Y).

However, if you use this argument, you should explain – with a proof or a reference to the notes –
why F(I•) computes the hyperderived functors.]

7. [4 points] (Suggested by Sarah Zerbes) Let C, D be abelian categories with C having enough injectives,
F : C → D a left-exact functor, and f : A• → B• a morphism of complexes in Ch>0(C). Let
C• = C•f [−1], so we also have C ∈ Ch>0(C); this shifted mapping cone is sometimes known as the
mapping fibre.

Show that there is a spectral sequence inD converging to Rp+q(F)(C•), such that for each q ≥ 0, the q-
th row on the E1 page, E•q1 , is the mapping fibre of the morphism Rq(F)( f ) : Rq(F)(A•)→ Rq(F)(B•)
in Ch>0(D).
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Solution: Let I••, J•• be Cartan–Eilenberg resolutions of A•, B•. Then f lifts to a map of double
complexes f̃ : I•• → J••.

Let K•• be the double complex with (p, q) term Ipq ⊕ Jp−1,q, with vertical differentials being the
direct sums of those of I and J, and with the horizontal differentials defined so that the q-th row
is the mapping fibre of I•q → J•q. Then K•• is a Cartan–Eilenberg resolution of C•.

By definition, Rn(F)(C) is the n-th cohomology of Tot F(K••); so it is the abutment of two
spectral sequences, corresponding to the “rows” and “columns” filtrations of the total complex.
One of these has Epq

1 = Hq
v(F(Kp•)). Since Kp• is the direct sum of Ip,• and Jp−1,• (and the

vertical differentials respect this direct sum decomposition), we see that Epq
1 = Rq(F)(Ap)⊕

Rq−1(F)(Bp), with horizontal differentials as claimed.
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