Modular Curves (TCC) Problem Sheet 1

David Loeffler

2nd February 2014

This is the first of 3 problem sheets, which will be distributed after lectures 3, 5, and 7 of the course. This problem sheet will be marked out of a total of 25; the number of marks available for each question is indicated.

Work should be submitted, on paper or by email, on or before Friday 14th February. Throughout this sheet a *level* should be understood to mean a finite-index subgroup of $SL_2(\mathbb{Z})$.

- 1. [2 points] Let X be a topological space and G a group acting on X by homeomorphisms (i.e. for any $g \in G$, the map $X \to X$ given by g is a homeomorphism). Equip $G \setminus X$ with the quotient topology. Show that the image of an open subset of X is an open subset of $G \setminus X$. Is the same statement true with 'open' replaced by 'closed'? Give a proof or counterexample as appropriate.
- 2. [3 points] Let Γ be a level and let $\gamma_1, \ldots, \gamma_r$ be such that $\operatorname{SL}_2 \mathbb{Z} = \bigsqcup_j \Gamma \gamma_j$. Show that $[\gamma_j i] \in Y(\Gamma)$ is elliptic if and only if $\gamma_j \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \gamma_j^{-1} \in \Gamma$. Hence show that $Y_0(p)$, for p an odd prime, has either 0 or 2 elliptic points of order 2 depending on the congruence class of p modulo 4.
- 3. [2 points] Calculate the genus of $X_0(17)$. (You may assume an analogue of the preceding question for points of order 3 as long as it is stated clearly.)
- 4. [1 point] Does there exist a level Γ which is neat (i.e. Γ has no elements of finite order and all cusps are regular), but $X(\Gamma)$ has genus 0?
- 5. [3 points] Let $\Gamma = \Gamma_0(5)$. Show that $S_4(\Gamma)$ is one-dimensional, and that if F is a basis vector of $S_4(\Gamma)$, then multiplication by F is an isomorphism $M_k(\Gamma) \to S_{k+4}(\Gamma)$ for all $k \in \mathbb{Z}$.
- 6. [3 points] Let X be a compact Riemann surface, \mathcal{L} an invertible sheaf on X, and P_1, \ldots, P_n any finite set of points on X. Show that there exists a meromorphic section of \mathcal{L} which is holomorphic and non-vanishing at all the P_j .
- 7. [3 points] Let $f: X \to Y$ be a non-constant morphism of Riemann surfaces. Let $P \in X$ and $Q = f(P) \in Y$. Show that if ω is a differential on Y which is holomorphic and nonvanishing at Q, then the pullback $f^*\omega$ vanishes to order $e_P(f) 1$ at P.
 - Hence deduce the Riemann-Hurwitz formula, assuming that the sheaf of holomorphic differentials on a compact Riemann surface of genus g has degree 2g 2.
- 8. [4 points] Let X be a Riemann surface and ω a meromorphic differential on X. Define the *residue* of ω at a point $P \in X$. Show that if X is compact, then $\sum_{P \in X} \operatorname{Res}_P(\omega) = 0$. (Hint: Use Stokes' theorem.)
- 9. [4 points] Let Γ be a level, and let $\rho : \mathcal{H} \to \mathcal{H}$ be a homeomorphism such that $\rho(z) \in \Gamma z$ for every $z \in \mathcal{H}$. Show that $\rho(z) = \gamma z$ for a unique $\gamma \in \overline{\Gamma}$ (the image of Γ in $\mathrm{PSL}_2 \mathbb{Z}$). Suppose $\overline{\Gamma}$ has no elements of finite order. Show that the fundamental group of $Y(\Gamma)$ (in the sense

of algebraic topology) is isomorphic to $\bar{\Gamma}$.

The following questions are optional and wil not be assessed.

- 10. Show that for any Γ there exists an R such that the graded ring $\bigoplus_{k\geq 0} M_k(\Gamma)$ is generated by forms of weight $\leq R$. What is the best bound you can find for R?
- 11. Does there exist a proper finite-index subgroup of $SL_2(\mathbb{Z})$ with only one cusp?
- 12. Show that there are infinitely many levels such that $X(\Gamma)$ has genus 1. (Hint: Consider subgroups of $\Gamma_0(11)$.)