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Abstract
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norm. We then use this formula to carry out computa-
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rings, perfect 𝔽𝑝-algebras and 2-torsion-free rings with
perfect modulo 2 reduction. Our calculations agree with
the normal L-theory spectrum in the cases where the
latter is known, as conjectured by Nikolaus.
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INTRODUCTION

The trace methods were introduced in [3] as an effective way of studying the algebraic K-theory
of suitable rings, by mapping it to more computable invariants which are typically constructed
from the topological Hochschild homology spectrum THH and its cyclic action. One particularly
successful invariant is the topological cyclic homology TC defined from suitably derived fixed
points of the cyclic structure of THH. If one tries to extend these methods to the algebraic K-
theory of forms or to cobordisms of forms (i.e. Grothendieck–Witt and L-theory, respectively),
one discovers the real topological Hochschild homology THR, a dihedral refinement of THH and
the real topological cyclic homology TCR.
The real topological Hochschild homology THR(𝐴) of a ring (or ring spectrum) with anti-

involution 𝐴 has been introduced in unpublished notes of Hesselholt and Madsen. It is an
𝑂(2)-equivariant spectrum whose underlying 𝑆1-spectrum is THH(𝐴), and where the subgroup
ℤ∕2 of 𝑂(2) generated by a reflection acts via a combination of a reflection of the circle and the
anti-involution of𝐴. Theℤ∕2-equivariant homotopy type ofTHR(𝐴)has been studied extensively:
In [20], it has been computed for spherical group rings in terms of free loop spaces. In [10], we
studied some of its fundamental structural properties and we computed it for 𝔽𝑝 and ℤ. In [21], it
has been related to equivariant factorisation homology and calculated for equivariant Thom spec-
tra. In [14], the Hopf algebroid structure on the homotopy groups of THR(𝔽2) is described and
used to give an independent proof of the Segal conjecture for the group of order 2. A key feature
which makes these calculations accessible is the description of THR(𝐴) as a derived tensor prod-
uct, and in particular of its ℤ∕2-geometric fixed-points spectrum as the derived tensor product of
module spectra

THR(𝐴)𝜙ℤ∕2 ≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2,

where𝐴 acts on𝐴𝜙ℤ∕2 on the left and on the right by the ‘Frobenius actions’, described informally,
respectively, by the formulas𝑎 ⋅ 𝑥 = 𝑎𝑥𝑤(𝑎) and𝑥 ⋅ 𝑎 = 𝑤(𝑎)𝑥𝑎, and𝑤 is the anti-involution of𝐴.
The real topological cyclic homology TCR(𝐴; 𝑝), for a prime number 𝑝, is a ℤ∕2-equivariant

spectrum introduced in [20], whose underlying spectrum is the𝑝-typical topological cyclic homol-
ogy TC(𝐴; 𝑝). Its construction is analogous to the classical definition of TC(𝐴; 𝑝) of [3], by taking
the homotopy limit over certain maps

𝑅, 𝐹∶ THR(𝐴)
𝐶𝑝𝑛+1 ⟶ THR(𝐴)𝐶𝑝𝑛

in the category of ℤ∕2-spectra, thus involving the equivariant structure of THR with respect to
the finite dihedral subgroups𝐷𝑝𝑛 of𝑂(2) and theWeyl actions ofℤ∕2 ≅ 𝐷𝑝𝑛∕𝐶𝑝𝑛 on THR(𝐴)

𝐶𝑝𝑛 .
Alternatively, Quigley and Shah give in [28] a construction of TCR for bounded below spectra as
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 3 of 68

an equaliser analogous to Nikolaus and Scholze’s definition of TC of [27]. The goal of this paper
is to describe the geometric fixed points TCR(𝐴; 𝑝)𝜙ℤ∕2 in terms of derived smash products in the
same spirit of the formula forTHR(𝐴)𝜙ℤ∕2 above, and use this description to carry out calculations
in some fundamental examples.
A ring spectrum with anti-involution 𝐴 is canonically a left and a right module over the Hill–

Hopkins–Ravenel norm (see [19]) of its underlying spectrum, by means of maps

(𝑁
ℤ∕2
𝑒 𝐴) ⊗ 𝐴⟶𝐴 𝐴⊗ (𝑁

ℤ∕2
𝑒 𝐴)⟶ 𝐴

described informally, respectively, by sending 𝑎 ⊗ 𝑏 ⊗ 𝑥 and 𝑥 ⊗ 𝑎 ⊗ 𝑏 to 𝑎𝑥𝑤(𝑏) and 𝑤(𝑎)𝑥𝑏.
By taking ℤ∕2-geometric fixed points, these give the left and right Frobenius 𝐴-module structure
on𝐴𝜙ℤ∕2mentioned above. By applying themonoidal functor𝑁𝐶2

𝑒 , we also obtain a left and a right
𝑁
𝐶2
𝑒 𝐴-module structure on𝑁

𝐶2
𝑒 (𝐴

𝜙ℤ∕2). Here, we are making the point of distinguishing between
the subgroups ℤ∕2 and 𝐶2 of 𝑂(2), generated, respectively, by a reflection and the rotation of
order 2.

Theorem A. Let 𝐴 be a ring s pectrum with anti-involution, and suppose that the underlying spec-
trumand theℤ∕2-fixed points of𝐴 are bounded below. Then, for every odd prime𝑝, there is a natural
equivalence of spectra

TCR(𝐴; 𝑝)𝜙ℤ∕2 ≃ THR(𝐴)𝜙ℤ∕2 ≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2.

For the prime 2, there is a natural equivalence with the homotopy equaliser

where𝑓 forgets the fixed points and 𝑟maps to the𝐶2-geometric fixed points, followed by the respective
identifications of𝐴⊗𝐴⊗𝐴 (𝐴

𝜙ℤ∕2 ⊗ 𝐴𝜙ℤ∕2) and (𝐴 ⊗
𝑁
𝐶2
𝑒 𝐴

𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2))𝜙𝐶2 with𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2.

We prove this Theorem in §2.1 for odd primes, and in §2.2 for the prime 2. Our proof pro-
ceeds by identifying theℤ∕2-geometric fixed points ofTHR(𝐴)𝐶𝑝𝑛 inductively over𝑛 ⩾ 0, together
with the structure maps 𝑅, 𝐹∶ THR(𝐴)

𝐶𝑝𝑛+1 → THR(𝐴)𝐶𝑝𝑛 . The key ingredient is a result of [25]
which gives a certain pushout decomposition of the universal space of the family of reflections of
𝑂(2). We suspect that our theorem could also be proved starting from the description of TCR for
bounded below spectra given in [28] using the same technique. Our proof of Theorem A is given
more generally for bounded-below real 𝑝-cyclotomic spectra, see Theorem 2.14.
We use the formula of Theorem A to compute the geometric fixed points of TCR in some

fundamental examples, starting with spherical group rings. Every topological monoid 𝑀 with
anti-involution 𝑤∶ 𝑀𝑜𝑝 → 𝑀 has an underlying ℤ∕2-equivariant homotopy type. The genuine
ℤ∕2-equivariant suspension spectrum 𝕊[𝑀] ∶= Σ∞+𝑀 of the latter gets canonically the structure
of a ring spectrum with anti-involution. The monoid𝑀 acts on its fixed-points subspace𝑀ℤ∕2 by
𝑚 ⋅ 𝑥 = 𝑚𝑥𝑤(𝑚) and 𝑥 ⋅𝑚 = 𝑤(𝑚)𝑥𝑚, and the corresponding two-sided bar construction admits
a ‘Frobenius endomorphism’

𝜓∶ 𝐵(𝑀ℤ∕2,𝑀,𝑀ℤ∕2)⟶ 𝐵(𝑀ℤ∕2,𝑀,𝑀ℤ∕2)
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4 of 68 DOTTO et al.

defined simplicially by 𝜓(𝑥,𝑚1, … ,𝑚𝑛, 𝑦) = (𝑥,𝑚1, … ,𝑚𝑛, 𝑦𝑚𝑛 …𝑚1𝑥𝑤(𝑚1)…𝑤(𝑚𝑛)𝑦). It also
has an involution which reverses the order of the factors of the bar construction and applies 𝑤 to
each component. The following is analogous to the classical description of TC of spherical group
rings of [3] and [27, Theorem IV.3.6].

Theorem B. Let 𝑀 be a well-pointed topological monoid with anti-involution. Then, there is a
pullback square

where the right vertical map is the transfer. In particular, for𝑀 =∗, there is an equivalence

TCR(𝕊; 2)𝜙ℤ∕2 ≃ 𝕊 ⊕ ℝ𝑃∞−1,

where ℝ𝑃∞
−1
is the homotopy fibre of the transfer trf ∶ Σ∞+ ℝ𝑃

∞ = 𝕊ℎ𝐶2 → 𝕊.

Let us point out that the pullback square of Theorem B does not require any 2-completion.
In particular, the calculation of TCR(𝕊; 2)𝜙ℤ∕2 of Theorem B confirms the expected equivari-
ant homotopy type of TCR(𝕊; 2), which appeared in unpublished work of Høgenhaven [20]. We
prove this theorem in Section §3.1, and we calculate this pullback in §3.2 in the case where 𝑀
is a discrete group with various assumptions on the involution and the 2-torsion. In particu-
lar, we determine it fully for 𝑀 = ℤ with the minus involution and with the trivial involution,
and for 𝑀 = 𝐶2. In Corollary 3.4 for every pointed ℤ∕2-space 𝑋, we consider the special case of
the equivariant loop space𝑀 = Ω𝜎𝑋 = Map∗(𝑆

𝜎, 𝑋), where 𝑆𝜎 is the sign representation sphere,
and ℤ∕2 acts on the loop space by conjugation. We use Theorem B to describe the cofibre of an
assembly map

Σ∞+ (𝑋
ℤ∕2) ⊗ (𝕊 ⊕ ℝ𝑃∞−1)⟶ TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2

in terms of the cofibre of the diagonal Δ∶ 𝑋ℤ∕2 → 𝑋ℤ∕2 ×𝑋 𝑋
ℤ∕2, where the homotopy pullback

is along the fixed-points inclusions. In particular, if the involution on 𝑋 is trivial, these cofibres
vanish and we obtain a splitting

TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2 ≃ Σ∞+ 𝑋 ⊗ (𝕊 ⊕ ℝ𝑃∞−1).

This calculation shows that TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2 is equivalent to Weiss and Williams’ hyper-
quadratic L-theory of the pointed space 𝑋, which satisfies the same decomposition by [33,
Theorem 4.3, Corollary 4.4].
There is, in fact, a deeper relationship between TCR and L-theory, especially in view of

the following result, which we explain in more details at the end of the introduction. Given
a discrete commutative ring 𝐴, and we write TCR(𝐴; 2) for the TCR spectrum of the ℤ∕2-
equivariant Eilenberg–MacLane commutative ring spectrum of 𝐴 equipped with the trivial
involution.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 5 of 68

TheoremC. Let 𝑘 a perfect field of characteristic 2, andℤ the ring of integers. There are equivalences
of spectra

TCR(𝑘; 2)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

(Σ2𝑛−1𝐻𝑘∕⟨𝑥 + 𝑥2| 𝑥 ∈ 𝑘⟩⊕ Σ2𝑛𝐻𝔽2),

TCR(ℤ; 2)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

(
Σ4𝑛−1𝐻𝔽2 ⊕ Σ4𝑛𝐻ℤ∕8 ⊕ Σ4𝑛+1𝐻𝔽2

)
.

In the case of perfect fields, we are, in fact, able to calculate the full ℤ∕2-equivariant homotopy
type of TCR(𝑘; 2): In §4.2, we use the description of TRR(𝑘; 2)𝜙ℤ∕2 from Theorem 2.7 to show that
TRR(𝑘; 2) is the Eilenberg–MacLane spectrum of the constant Mackey functor on the ring of 2-
typical Witt vectors𝑊(𝑘; 2), where 𝐹 corresponds to its Frobenius. In particular, in Theorem 4.9,
we show that 𝜋0 THR(𝑘; 2)𝐷2𝑛 is isomorphic to the (𝑛 + 1)-truncated 2-typical Witt vectors of 𝑘
(this is true for all commutative rings at odd primes by [11, Theorem C], but it fails in general at
the prime 2, see Remark 4.10). We are then able to conclude the following.

TheoremD. For every perfect field 𝑘 of characteristic 2, there is an equivalence of ℤ∕2-equivariant
spectra

TCR(𝑘; 2) ≃ 𝐻ℤ2 ⊕ Σ−1𝐻coker(1 − 𝐹),

where 𝐹∶ 𝑊(𝑘; 2) → 𝑊(𝑘; 2) is the 2-typical Witt vector Frobenius and the underline denotes the
constant Mackey functor.

A similar decomposition holds for odd primes by a much easier argument, see Proposition 4.2.
Finally, we prove a flat base-change result for TCR𝜙ℤ∕2, showing that if 𝑓∶ 𝐴 → 𝐵 is a flat map
of discrete commutative rings such that the geometric fixed points of 𝐵 are base-changed along
𝑓 from those of 𝐴, then TCR(𝐵; 2)𝜙ℤ∕2 is ‘almost’ base-changed from TCR(𝐴; 2)𝜙ℤ∕2, up to some
care with the differentmodule structures on𝐻𝐴𝜙ℤ∕2 (see Corollary 5.11 for the precise statement).
This allows us to extend the calculations above as follows.

Theorem E. For every perfect 𝔽2-algebra 𝐴, there is an equivalence of spectra

TCR(𝐴; 2)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

(
Σ2𝑛−1𝐻(coker(id+(−)2))

)
⊕

(
Σ2𝑛𝐻(ker(id+(−)2))

)
,

where (−)2 ∶ 𝐴 → 𝐴 is the Frobenius of 𝐴. For every ring 𝐵 with no 2-torsion and perfect modulo 2
reduction, TCR(𝐵; 2)𝜙ℤ∕2 is a wedge of Eilenberg–MacLane spectra with homotopy groups

𝜋𝑛 TCR(𝐵; 2)
𝜙ℤ∕2 ≅

⎧⎪⎪⎨⎪⎪⎩

𝐵∕⟨𝑥 + 𝑥2| 𝑥 ∈ 𝐵⟩ 𝑛 = 4𝑙 − 1

ker
(
pr+pr2 ∶ 𝐵∕⟨4(𝑥 + 𝑥2)| 𝑥 ∈ 𝐵⟩→ 𝐵∕2

)
𝑛 = 4𝑙

ker
(
id+(−)2 ∶ 𝐵∕2 → 𝐵∕2

)
𝑛 = 4𝑙 + 1

0 𝑛 = 4𝑙 + 2

for all 𝑙 ⩾ 0, and zero for 𝑛 ⩽ −2.
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6 of 68 DOTTO et al.

Real TC and L-theory
The relationship between TC and L-theory was originally observed by Weiss and Williams and
studied by Weiss and Rognes. They were investigating whether, under certain conditions on a
ring spectrum with anti-involution 𝐴, the quadratic L-theory L𝑞(𝐴) is equivalent to the ℤ∕2-Tate
construction of the fibre of the trace map K(𝐴) → TC(𝐴) after 2-completion. Nikolaus then for-
mulated an uncompleted version of this statement, conjecturing that TCR(𝐴; 2)𝜙ℤ∕2 should be
equivalent to the genuine normal L-theory of 𝐴, defined as the cofibre

L𝑛(𝐴) ∶= cof (L𝑞(𝐴)⟶ L(Mod𝜔𝐴,Ϙ𝐴))

of the canonical symmetrisation map. Here, Mod𝜔𝐴 is the ∞-category of compact 𝐴-modules,
and Ϙ𝐴 ∶ (Mod𝜔𝐴)

𝑜𝑝 → Sp is a certain Poincaré structure in the sense of Lurie’s formalism of
L-theory, which is defined using the Frobenius module structure of 𝐴𝜙ℤ∕2 (see [8, 3.2.6 and
3.2.10] for the details). A proof of this conjecture will appear in work of Harpaz, Nikolaus and
Shah [15].
By construction,L(Mod𝜔𝐴,Ϙ𝐴) is the symmetric L-theory spectrumL𝑠(𝐴) if𝐴 is Borel-complete,

that is, if the canonical map 𝐴𝜙ℤ∕2 → 𝐴𝑡ℤ∕2 is an equivalence. One can then see that Nikolaus’
conjecture implies the original conjecture of Weiss and Williams, provided the fibre of the trace
map becomes Borel-complete after 2-completion.
In the case of spherical group rings, L𝑛(𝕊[Ω𝜎𝑋]) is the hyperquadratic L-theory of [33] by [6,

Corollary 4.6.1], and as mentioned above, it is equivalent to TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2 by [33, Theorem
4.3, Corollary 4.4] and Corollary 3.4. The normal L-theory L𝑛(𝑘) is also well understood if 𝑘 is
a perfect field of characteristic 2, for example, by work of Kato and Ranicki, and its homotopy
groups agree with the ones of the geometric fixed points of TCR of Theorem C (see Remark 4.6
for more details on the description of these L-groups). Finally, L𝑛(ℤ) is calculated by Taylor
and Williams in [32] (see also [16, Corollary 3.9 and 6.2]) and agrees with our calculation of
TCR(ℤ; 2)𝜙ℤ∕2 of Theorem C. We are not aware of a flat base-change type of result analogous
to Corollary 5.11 for these normal L-spectra, nor if they have been computed for all the rings of
Theorem E.

1 PRELIMINARIES

1.1 Equivariant spectra

Let 𝐺 be a compact Lie group. In this paper, we will be interested in the case where 𝐺 is the
orthogonal group 𝑂(2), or one of its subgroups. We write Sp𝐺 for the stable model category of
orthogonal spectra with an action of 𝐺, equipped with the flat model structure of [31]. This is a
model for the homotopy theory of genuine 𝐺-spectra. We recall that the weak equivalences are
the 𝜋

∗
-isomorphism, where 𝜋

∗
is the equivariant homotopy groups Mackey functor.

We denote by ⊗ the derived smash product of 𝐺-spectra and of modules in 𝐺-spectra, which
can be obtained by applying the smash product to a flat replacement of the orthogonal 𝐺-spectra
(i.e. to a cofibrant replacement in the flat model structure). We also denote by ⊗ the tensor of a
pointed 𝐺-space 𝑍 and a 𝐺-spectrum 𝑋:

𝑍 ⊗ 𝑋 ∶= (Σ∞𝑍) ⊗ 𝑋.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 7 of 68

For every closed subgroup 𝐻 ⩽ 𝐺, we denote the genuine fixed points (which is the strict fixed
points of a fibrant replacement) and the geometric fixed-points functors, respectively, by

(−)𝐻, (−)𝜙𝐻 ∶ Sp𝐺 → Sp𝑊𝐺(𝐻),

where𝑊𝐺(𝐻) = 𝑁𝐺(𝐻)∕𝐻 is the Weyl group of𝐻 in 𝐺. We recall that the geometric fixed-points
functor can be defined from the genuine fixed-points functor as

𝑋𝜙𝐻 = (𝐸(⊉ 𝐻) ⊗ 𝑋)𝐻,

where (⊉ 𝐻) is the family of subgroups of 𝑁𝐺(𝐻) which do not contain𝐻, the 𝑁𝐺(𝐻)-space 𝐸(⊉
𝐻) is its universal space and 𝐸(⊉ 𝐻) is the pointed𝑁𝐺(𝐻)-space defined as the cofibre of the map
(𝐸(⊉ 𝐻))+ → 𝑆0which collapses𝐸(⊉ 𝐻) to the non-basepoint of 𝑆0. This induces a fibre sequence
of𝑊𝐺(𝐻)-spectra

((𝐸(⊉ 𝐻))+ ⊗ 𝑋)𝐻 ⟶ 𝑋𝐻 ⟶𝑋𝜙𝐻

called the isotropy separation sequence.
Wewill be particularly interested in the casewhere𝐺 = 𝑂(2) and𝐻 = 𝐶𝑝 is the cyclic subgroup

of 𝑂(2) of rotations of order 𝑝, for some prime 𝑝. Then, for any 𝑂(2)-spectrum 𝑋, we have a fibre
sequence of 𝑂(2)∕𝐶𝑝-spectra

((𝐸(⊉ 𝐶𝑝))+ ⊗ 𝑋)𝐶𝑝 ⟶ 𝑋𝐶𝑝 ⟶ 𝑋𝜙𝐶𝑝 ,

and hence, for any 𝑛 ⩾ 0, there is a fibre sequence of 𝑂(2)∕𝐶𝑝𝑛+1 -spectra

((𝐸(⊉ 𝐶𝑝))+ ⊗ 𝑋)
𝐶𝑝𝑛+1 ⟶ 𝑋

𝐶𝑝𝑛+1 ⟶ (𝑋𝜙𝐶𝑝)
𝐶𝑝𝑛+1∕𝐶𝑝 .

By choosing the reflection over the real coordinate axis, we can identify 𝑂(2)with the semi-direct
product ℤ∕2⋉ 𝑆1. Here, the nontrivial element 𝜏 of ℤ∕2 corresponds to the latter reflection. In
particular, one has the dihedral subgroups 𝐷𝑝𝑛 = ℤ∕2⋉ 𝐶𝑝𝑛 ⩽ ℤ∕2⋉ 𝑆1 = 𝐺. If we restrict the
family (⊉ 𝐶𝑝) to the dihedral group𝐷𝑝𝑛+1 for 𝑛 ⩾ 0, then it becomes the family consisting of the
trivial group and of those subgroups generated by the reflections in 𝐷𝑝𝑛+1 . Hence, by restricting
to 𝐷𝑝𝑛+1∕𝐶𝑝, we get a fibre sequence of 𝐷𝑝𝑛+1∕𝐶𝑝-spectra

(𝐸+ ⊗ 𝑋)𝐶𝑝 ⟶ 𝑋𝐶𝑝 ⟶ 𝑋𝜙𝐶𝑝 ,

and by taking fixed points a fibre sequence of 𝐷𝑝𝑛+1∕𝐶𝑝𝑛+1 = ℤ∕2-spectra

(𝐸+ ⊗ 𝑋)
𝐶𝑝𝑛+1 ⟶ 𝑋

𝐶𝑝𝑛+1 ⟶ (𝑋𝜙𝐶𝑝)
𝐶𝑝𝑛+1∕𝐶𝑝 . (1)

Wewill abuse notation and alwayswrite for the family of reflections in𝐷𝑝𝑛+1 , for different𝑝 and
𝑛. Although these families are different, their classifying spaces 𝐸 are always modelled by the
restriction to the appropriate dihedral group of the 𝑂(2)-space defined by the unit sphere 𝑆(ℂ∞).
In what follows we will always consider homotopy limits and homotopy colimits of spaces and

spectra and will just refer to them as limits and colimits.
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8 of 68 DOTTO et al.

1.2 Ring spectra with anti-involution and real topological
Hochschild homology

We give a short recollection of the construction and main properties of the dihedral structure on
topological Hochschild homology, mainly from [3] and [10].
We recall that a ring spectrumwith anti-involution is an orthogonal ring spectrum𝐴 equipped

with amorphismof orthogonal ring spectra𝑤∶ 𝐴𝑜𝑝 → 𝐴 such that𝑤2 = id.We endow𝐴with the
genuineℤ∕2-equivariant homotopy type defined by𝑤. More precisely, amorphism of ring spectra
𝑓∶ 𝐴 → 𝐵 commuting with the involutions𝑤 is an equivalence if it is a genuine ℤ∕2-equivariant
equivalence in the category Spℤ∕2 of orthogonal ℤ∕2-spectra (see [10, A1] for a model structure
on their category). Ring spectra with anti-involution are equivalent to 𝐸𝜎-algebras in equivariant
spectra, see [10, Remark 2.3], and presumably also to 𝐸1-rings with genuine anti-involution as
defined in [8, Example 3.2.9] (at least a ring spectrum with anti-involution defines an 𝐸1-ring
with genuine anti-involution, see [8, Example 3.2.10]).
The cyclic nerve of𝐴 in the category of orthogonal spectra inherits a levelwise involution,which

acts on 𝐴⊗𝐴⊗𝑛 by applying in each factor 𝑤, fixes the first tensor factor and reverses the order
of the remaining 𝑛 factors. This involution, together with the levelwise 𝐶𝑛+1-actions which rotate
the tensor factors, defines a dihedral spectrum in the sense of [13, S 1.5, Example 5] and [23] that
we denote by 𝑁𝑑𝑖𝐴. Its geometric realisation

THR(𝐴) ∶= |𝑁𝑑𝑖𝐴| = |[𝑛] ↦ 𝐴⊗𝑛+1|
is then an orthogonal spectrum with 𝑂(2)-action ([13, Theorem 5.3] and [23, Proposition 3.10]),
which we regard as a genuine 𝑂(2)-equivariant spectrum.
In [10], we studied the ℤ∕2-equivariant homotopy type of THR(𝐴), where ℤ∕2 is the subgroup

of 𝑂(2) generated by the reflection over the 𝑥-axis. In particular, we provided an equivalence of
ℤ∕2-spectra

THR(𝐴) ≃ 𝐵(𝐴,𝑁
ℤ∕2
𝑒 𝐴,𝐴) = 𝐴 ⊗

𝑁
ℤ∕2
𝑒 𝐴

𝐴

(under the standing assumption that 𝐴 is flat) where ⊗
𝑁
ℤ∕2
𝑒 𝐴

denotes the derived smash prod-

uct in the category of modules over the Hill–Hopkins–Ravenel norm construction 𝑁ℤ∕2
𝑒 𝐴 of the

underlying ring spectrum 𝐴 of [19]. The norm acts on 𝐴, respectively, on the left and on the right
by

𝑁
ℤ∕2
𝑒 𝐴 ⊗ 𝐴 = 𝐴⊗3

𝐴⊗𝜏
\\\\→ 𝐴⊗3

𝐴⊗2⊗𝑤
\\\\\\\→ 𝐴⊗3

𝜇
\→ 𝐴,

𝐴 ⊗𝑁
ℤ∕2
𝑒 𝐴 = 𝐴⊗3

𝜏⊗𝐴
\\\\→ 𝐴⊗3

𝑤⊗𝐴⊗2

\\\\\\\→ 𝐴⊗3
𝜇
\→ 𝐴,

where 𝜏∶ 𝐴⊗2 → 𝐴⊗2 is the symmetry isomorphism and 𝜇 is the multiplication map of 𝐴. Here,
𝐵(𝐴,𝑁

ℤ∕2
𝑒 𝐴,𝐴) is the two-sided bar construction of these actions, which computes the derived

smash product. We then deduced an equivalence of spectra

THR(𝐴)𝜙ℤ∕2 ≃ 𝐵(𝐴𝜙ℤ∕2, 𝐴,𝐴𝜙ℤ∕2) = 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2,
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 9 of 68

where𝐴 acts on𝐴𝜙ℤ∕2 via the geometric fixed points of the actions of𝑁ℤ∕2
𝑒 𝐴 on𝐴, using the diag-

onal equivalence (𝑁ℤ∕2
𝑒 𝐴)𝜙ℤ∕2 ≃ 𝐴. We refer to these actions as the Frobenius module structures

of 𝐴𝜙ℤ∕2.
The present paper will focus on the equivariant homotopy type of THR(𝐴) with respect to the

finite dihedral subgroups of 𝑂(2). We now give a recollection of materials on dihedral objects
and simplicial subdivisions, which we use to model the equivariant homotopy type of THR(𝐴)
with respect to the finite dihedral subgroups simplicially. We recall that a dihedral orthogonal
spectrum is a simplicial orthogonal spectrum 𝑋∙ ∶ Δ

𝑜𝑝 → Sp whose 𝑛-simplices 𝑋𝑛 are equipped
with an action of the dihedral group 𝐷𝑛+1 = ℤ∕2⋉ 𝐶𝑛+1, which is suitably compatible with the
simplicial structure [13, Proposition 3.4]. The geometric realisation of 𝑋∙ has an induced action
of 𝑂(2) = ℤ∕2⋉ 𝑆1 by [13, Theorem 5.3]. The action of the reflection generating ℤ∕2 on |𝑋∙| is
induced by the maps

𝑋𝑛 ⊗ Δ𝑛+
𝑤⊗𝜔𝑛
\\\\\\→ 𝑋𝑛 ⊗ Δ𝑛+,

where𝑤 is the action of the generator ofℤ∕2 ⩽ 𝐷𝑛+1 on the 𝑛-simplices, and𝜔𝑛 sends (𝑡0, … , 𝑡𝑛) ∈
Δ𝑛 to (𝑡𝑛, … , 𝑡0) [13, Lemma 5.6(ii)]. The description of the cyclic action is more involved, and it
requires simplicial subdivision.
Let sd𝑟 ∶ Δ𝑜𝑝 → Δ𝑜𝑝 be the functor which sends the finite totally ordered set [𝑛] = {0, 1, … , 𝑛} to

the 𝑟-fold join [𝑛] ⋆ [𝑛] ⋆⋯ ⋆ [𝑛], defined as the set [𝑟 − 1] × [𝑛]with the total order (𝑎, 𝑖) ⩽ (𝑏, 𝑗)
if either 𝑎 < 𝑏 or if 𝑎 = 𝑏 and 𝑖 ⩽ 𝑗. Given a dihedral spectrum 𝑋∙ ∶ Δ

𝑜𝑝 → Sp, we let

sd𝑟 𝑋∙ ∶= 𝑋∙◦ sd𝑟

be the 𝑟-fold subdivision of 𝑋. Let g𝑛 be the generator of 𝐶𝑛+1 and 𝑤 the generator of ℤ∕2. The
action of g𝑛+1

𝑟𝑛+𝑟−1
on the𝑛-simplices (sd𝑟 𝑋∙)𝑛 = 𝑋𝑟𝑛+𝑟−1 defines a simplicial action of𝐶𝑟 on sd𝑟 𝑋∙,

and there is a 𝐶𝑟-equivariant isomorphism

| sd𝑟 𝑋∙| ≅ |𝑋∙|
induced by the maps

(sd𝑟 𝑋)𝑛 ⊗ Δ𝑛 = 𝑋𝑟𝑛+𝑟−1 ⊗ Δ𝑛+
id⊗𝛿𝑟
\\\\\\→ 𝑋𝑟𝑛+𝑟−1 ⊗ Δ𝑟𝑛+𝑟−1+ ,

where 𝛿𝑟 sends 𝑡 ∈ Δ𝑛 to (𝑡, 𝑡, … , 𝑡)∕𝑟 ∈ Δ𝑟𝑛+𝑟−1 [3, §1]. This isomorphism is, moreover, ℤ∕2-
equivariant, where the action ofℤ∕2 on the left-hand side is defined from themaps𝑤 ⊗ 𝜔𝑛 above
as for |𝑋∙|. Let us finally make this ℤ∕2-action simplicial.
Let sd𝑒 ∶ Δ𝑜𝑝 → Δ𝑜𝑝 be the functor that sends [𝑛] to [𝑛] ⋆ [𝑛]𝑜𝑝, where [𝑛]𝑜𝑝 is the set

{0, 1, … , 𝑛} with the canonical order reversed. Let 𝑌∙ ∶ Δ𝑜𝑝 → Sp be a simplicial orthogonal
spectrum with involutions 𝑤𝑛 on 𝑌𝑛 for every 𝑛 ⩾ 0, such that for every 𝜃∶ [𝑛] → [𝑚]

𝜃∗◦𝑤𝑚 = 𝑤𝑛◦(𝜃
𝑜𝑝)∗.

For example, 𝑌∙ could be a dihedral object 𝑋∙ where 𝑤𝑛 acts by the action of the generator of
ℤ∕2 as a subgroup of 𝐷𝑛+1, or 𝑌∙ = sd𝑟 𝑋∙ where𝑤𝑛 acts as the generator of ℤ∕2 as a subgroup of
𝐷𝑟(𝑛+1). The geometric realisation of𝑌∙ has aℤ∕2-action defined as above from themaps𝑤𝑛 ⊗ 𝜔𝑛.
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10 of 68 DOTTO et al.

We now let

sd𝑒 𝑌∙ ∶= 𝑌∙◦ sd𝑒

be the corresponding subdivision. The action of 𝑤2𝑛+1 on the 𝑛-simplices (sd𝑒 𝑌∙)𝑛 = 𝑌2𝑛+1
defines a simplicial ℤ∕2-action on sd𝑒 𝑌∙. There is an isomorphism

| sd𝑒 𝑌∙| ≅ |𝑌∙|
induced by the maps

(sd𝑒 𝑌)𝑛 ⊗ Δ𝑛 = 𝑌2𝑛+1 ⊗ Δ𝑛+
id⊗𝛿𝑒
\\\\\\→ 𝑌2𝑛+1 ⊗ Δ𝑟𝑛+𝑟−1+ ,

where 𝛿𝑒 sends 𝑡 ∈ Δ𝑛 to (𝑡, 𝜔𝑛(𝑡))∕2 ∈ Δ2𝑛+1, and this isomorphism is clearly ℤ∕2-equivariant.
Combining these subdivisions, we obtain a 𝐷𝑟-equivariant isomorphism

| sd𝑒 sd𝑟 𝑋∙| ≅ |𝑋∙|
for every dihedral orthogonal spectrum 𝑋∙, and, in particular, an isomorphism

| sd𝑒 sd𝑟 𝑁𝑑𝑖𝐴| ≅ THR(𝐴)

of genuine orthogonal 𝐷𝑟-spectra for every 𝑟 ⩾ 1.

Remark 1.1. By the latest isomorphism, it follows thatTHR sends equivalences of ring spectrawith
anti-involution to equivalences of genuine 𝐷𝑟-spectra, for every 𝑟 ⩾ 1. Indeed, the 𝑛-simplices of
sd𝑒 sd𝑟 𝑁

𝑑𝑖𝐴 are the orthogonal spectrum

(sd𝑒 sd𝑟 𝑁
𝑑𝑖𝐴)𝑛 = (𝑁𝑑𝑖𝐴)𝑟(2𝑛+1)+𝑟−1 = 𝐴⊗𝑟(2𝑛+2),

where 𝐶𝑟 acts cyclically on 𝑟 and the generator of ℤ∕2 acts as described above (and we recall
that the tensor product indicates the smash product of a flat replacement). This indexed smash
product sends an equivalence of orthogonal spectra to a genuine 𝐷𝑟-equivalence by [5, Theorem
3.2.16] (see also [19, Proposition B.209]), and thus, its realisation is also a genuine 𝐷𝑟-equivalence
(since sd𝑒 sd𝑟 𝑁𝑑𝑖𝐴 is a good simplicial spectrum by the argument of [10, Lemma 2.14]).

The equivalence THR(𝐴)𝜙ℤ∕2 ≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2 above is, in fact, induced by the ℤ∕2-

equivariant isomorphism THR(𝐴) ≅ | sd𝑒 𝑁𝑑𝑖𝐴|. We can now refine this equivalence to an
equivariant equivalencewith respect to the action of theWeyl group. The normaliser ofℤ∕2 inside
of𝑂(2) isℤ∕2 × 𝐶2, where 𝐶2 is generated by the rotation of order 2, and therefore theWeyl group
of ℤ∕2 inside of 𝑂(2) is isomorphic to 𝐶2. In particular, THR(𝐴)𝜙ℤ∕2 is a genuine 𝐶2-spectrum,
that we now describe in terms of derived smash products.

Lemma 1.2. There is an equivalence of 𝐶2-spectra

THR(𝐴)𝜙ℤ∕2 ≃ 𝐵(𝐴,𝑁
𝐶2
𝑒 𝐴,𝑁

𝐶2
𝑒 (𝐴

𝜙ℤ∕2)) = 𝐴 ⊗
(𝑁

𝐶2
𝑒 𝐴)

(𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2)),
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 11 of 68

where 𝐴 is regarded as a 𝐶2-spectrum via the isomorphism ℤ∕2 ≅ 𝐶2, the norm 𝑁
𝐶2
𝑒 𝐴 acts on 𝐴 by

the right action defined above and on 𝑁𝐶2
𝑒 (𝐴

𝜙ℤ∕2) by applying the monoidal functor 𝑁𝐶2
𝑒 to the left

Frobenius action of 𝐴 on 𝐴𝜙ℤ∕2.

Proof. The equivalence of genuine 𝐷4 = 𝐶2 × ℤ∕2-equivariant spectra THR(𝐴) ≅ | sd𝑒 sd2 𝑁𝑑𝑖𝐴|
defined above gives rise to an equivalence of 𝐶2-spectra

THR(𝐴)𝜙ℤ∕2 ≅ | sd𝑒 sd2 𝑁𝑑𝑖𝐴|𝜙ℤ∕2 = |[𝑛] ↦ 𝐴𝜙ℤ∕2 ⊗ 𝐴2𝑛+1 ⊗ 𝐴𝜙ℤ∕2|
≅ |[𝑛] ↦ 𝐴⊗ (𝑁

𝐶2
𝑒 𝐴)

⊗𝑛 ⊗ 𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2)| = 𝐵(𝐴,𝑁
𝐶2
𝑒 𝐴,𝑁

𝐶2
𝑒 (𝐴

𝜙ℤ∕2))

= 𝐴 ⊗
(𝑁

𝐶2
𝑒 𝐴)

(𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2)),

where𝐶2 acts on the third termby reversing the order of the smash products, and the isomorphism
rearranges the factors by pairing the factors which are swapped. □

1.3 Real cyclotomic spectra and real topological cyclic homology

We now review the definitions of the main objects of study of the paper. These are completely
analogous to the classical definitions surrounding topological cyclic homology of [3], and are car-
ried out by carefully lifting all the constructions to the category of ℤ∕2-equivariant spectra. These
constructions were laid out in [20] using Bökstedt’s model for real topological Hochschild homol-
ogy, and we recast them here for the model of THR above. The two approaches are equivalent by
the comparison results of [10] and [9].

Definition 1.3. Let 𝑝 be a prime. A real 𝑝-cyclotomic spectrum is an 𝑂(2)-spectrum 𝑇 ∈ Sp𝑂(2)

equipped with a map of 𝑂(2)-spectra

𝑇𝜙𝐶𝑝
≃
⟶ 𝑇,

where𝑂(2) acts on the left-hand side by restriction along the root isomorphism𝑂(2) → 𝑂(2)∕𝐶𝑝,
and which is a 𝐷𝑝𝑛 -equivalence for all 𝑛 ⩾ 0.

The prime example of a real 𝑝-cyclotomic spectrum (for all prime 𝑝) is the real topological
Hochschild homology spectrum THR(𝐴) of a ring-spectrum with anti-involution 𝐴. The cyclo-
tomic structure maps are, in fact, isomorphisms, defined on the dihedral bar construction from
the diagonal isomorphisms

𝐴 ≅ (𝐴⊗𝑝)𝜙𝐶𝑝

(see, for example [2], or [9, §5], and we remind that this is an isomorphism since 𝐴 is assumed
to be flat). In particular, they induce a 𝑆1∕𝐶𝑝-equivalence and a ℤ∕2-equivalence on realisations,
and thus, an𝑂(2)-equivalence (see [11, §3.3]). For every real𝑝-cyclotomic spectrum𝑇, the isotropy
separation sequence (1) defines fibre sequences of ℤ∕2-spectra

(𝐸+ ⊗ 𝑇)
𝐶𝑝𝑛+1 ⟶ 𝑇

𝐶𝑝𝑛+1 ⟶ (𝑇𝜙𝐶𝑝)
𝐶𝑝𝑛+1∕𝐶𝑝 ≃ 𝑇𝐶𝑝𝑛
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12 of 68 DOTTO et al.

for every 𝑛 ⩾ 0, and the composite of the right-hand arrow and the equivalence is denoted by
𝑅∶ 𝑇

𝐶𝑝𝑛+1 → 𝑇𝐶𝑝𝑛 . Since the cyclotomic structuremap is𝑂(2)-equivariant, using appropriate root
isomorphisms, we see that 𝑅 is 𝑂(2)-equivariant.

Definition 1.4. Let 𝑇 be a real 𝑝-cyclotomic spectrum. For every integer 𝑛 ⩾ 0, we let
TRR𝑛+1(𝑇; 𝑝) be the ℤ∕2-spectrum

TRR𝑛+1(𝑇; 𝑝) ∶= 𝑇𝐶𝑝𝑛 ,

where ℤ∕2 is identified with the subgroup of 𝑂(2)∕𝐶𝑝𝑛 generated by the reflection of the 𝑥-axes,
and

TRR(𝑇; 𝑝) ∶= lim

(
…

𝑅
\→ TRR𝑛+1(𝑇; 𝑝)

𝑅
\→ TRR𝑛(𝑇; 𝑝)

𝑅
\→ …

𝑅
\→ TRR1(𝑇; 𝑝) = 𝑇

)
.

If 𝐴 is a ring spectrum with anti-involution, we write

TRR𝑛+1(𝐴; 𝑝) ∶= TRR𝑛+1(THR(𝐴); 𝑝) and TRR(𝐴; 𝑝) ∶= TRR(THR(𝐴); 𝑝).

The inclusion of subgroups 𝐶𝑝𝑛−1 ⩽ 𝐶𝑝𝑛 defines a map 𝐹∶ TRR𝑛+1(𝑇; 𝑝) → TRR𝑛(𝑇; 𝑝),
which is equivariant for the Weyl actions and thus, in particular, ℤ∕2-equivariant. It also
commuteswith themap𝑅 since𝑅 is𝑂(2)-equivariant and therefore induces amap ofℤ∕2-spectra

𝐹∶ TRR(𝑇; 𝑝)⟶ TRR(𝑇; 𝑝)

by passing to the limit, whose underlying map is the Frobenius of [3].

Definition 1.5. Let 𝑇 be a real 𝑝-cyclotomic spectrum. The real topological cyclic homology of
𝑇 is the ℤ∕2-spectrum defined as the equaliser

If 𝐴 is a ring spectrum with anti-involution, we let the real topological cyclic homology of 𝐴 be
the ℤ∕2-spectrum

As in the classical definition of TC, since 𝑅 and 𝐹 commute one can alternatively define

TFR(𝑇; 𝑝) ∶= lim

(
…

𝐹
\→ TRR𝑛+1(𝑇; 𝑝)

𝐹
\→ TRR𝑛(𝑇; 𝑝)

𝐹
\→ …

𝐹
\→ TRR1(𝑇; 𝑝) = 𝑇

)
and

The underlying spectrum of TCR(𝑇; 𝑝) is by construction the topological cyclic homol-
ogy spectrum TC(𝑇; 𝑝) of [3] (see also [9, Theorem 1.3]). The focus of the paper is to
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 13 of 68

understand the ℤ∕2-equivariant homotopy type of TCR(𝑇; 𝑝), and, in particular, its geometric
fixed-points spectrum.

2 THE GEOMETRIC FIXED POINTS OF 𝐓𝐂𝐑

The aim of this section is to give a simple formula for theℤ∕2-geometric fixed points ofTCR(𝐴; 𝑝),
when 𝐴 and its ℤ∕2-fixed points are bounded below. This object turns out to be interesting only
for the prime 𝑝 = 2, but we will start with the easier case of odd primes.

2.1 The odd primary case

In the odd primary case, the geometric fixed points of TRR admit a very simple description, as
they split as a product.

Theorem 2.1. For any odd prime 𝑝, real 𝑝-cyclotomic spectrum 𝑇 and 𝑛 ⩾ 1, there is a natural
equivalence

TRR𝑛(𝑇; 𝑝)𝜙ℤ∕2 ≃

𝑛⨁
𝑖=1

𝑇𝜙ℤ∕2,

under which themaps𝐹, 𝑅∶ TRR𝑛+1(𝑇; 𝑝)𝜙ℤ∕2 → TRR𝑛(𝑇; 𝑝)𝜙ℤ∕2, respectively, project off the first
and the (𝑛 + 1)-st summand.

Before diving into the proof, we observe that if 𝑇 = THR(𝐴) is the real topological Hochschild
homology of a ring spectrum with anti-involution 𝐴, we have an explicit description of the
geometric fixed points

THR(𝐴)𝜙ℤ∕2 ≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2.

In particular, if 𝐴 is the Eilenberg–MacLane ring spectrum of a discrete ring with anti-involution
and 1

2
∈ 𝐴, then we have that THR(𝐴)𝜙ℤ∕2 = 0, and we obtain the following.

Corollary 2.2. If 𝐴 is a discrete ring with anti-involution and 1

2
∈ 𝐴, then

TRR𝑛(𝐴; 𝑝)𝜙ℤ∕2 ≃ TRR(𝐴; 𝑝)𝜙ℤ∕2 ≃ TCR(𝐴; 𝑝)𝜙ℤ∕2 = 0

for every odd prime 𝑝.

The crucial combinatorial ingredient that makes the odd-primary case so simple compared to
the prime 2 is that for 𝑝 odd, any two reflections in 𝐷𝑝𝑛 are conjugate, and the Weyl group of a
reflection is trivial. Applying [25, Corollary 2.8] to the trivial family {1} ⊂ , one gets a pushout
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14 of 68 DOTTO et al.

square of ℤ∕2-spaces

(2)

This pushout is the main ingredient for establishing the following result, of which Theorem 2.1 is
an immediate consequence.

Proposition 2.3. Let 𝑇 be a real 𝑝-cyclotomic spectrum with 𝑝 odd. Then, for every 𝑛 ⩾ 1, the
square

is a pullback whose horizontal fibres are equivalent to 𝑇𝜙ℤ∕2. Here, we interpret TRR0(𝑇; 𝑝) = 0.

Proof. Let us start by identifying the fibre of themap𝑅. For any group𝐺 and𝐺-space𝐸, wewrite𝐸
for the cofibre of the based map 𝐸+ → 𝑆0 which takes 𝐸 to the non-basepoint of 𝑆0. By definition,
the geometric fixed points of the map 𝑅 fits into the commutative square

where the left vertical map and the bottom horizontal map are induced by the canonical maps
𝑆0 → 𝐸𝐷𝑝𝑛 → 𝐸. The left vertical map is an equivalence since its fibre is

((𝑇 ⊗ 𝐸𝐷𝑝𝑛+)
𝐶𝑝𝑛 )𝜙ℤ∕2 = ((𝑇 ⊗ 𝐸𝐷𝑝𝑛+)

𝐶𝑝𝑛 ⊗ 𝐸ℤ∕2)ℤ∕2 ≃ ((𝑇 ⊗ (𝜀∗𝐸ℤ∕2 ∧ 𝐸𝐷𝑝𝑛+))
𝐶𝑝𝑛 )ℤ∕2,

where 𝜀 ∶ 𝐷𝑝𝑛 → 𝐷𝑝𝑛∕𝐶𝑝𝑛 = ℤ∕2 is the quotient map, and 𝜀∗𝐸ℤ∕2 ∧ 𝐸𝐷𝑝𝑛+ is a contractible𝐷𝑝𝑛 -
space.
By mapping the pushout square (2) with additional disjoint base points to the pushout of

𝐷𝑝𝑛 ⋉ℤ∕2 𝑆
0 = 𝐷𝑝𝑛 ⋉ℤ∕2 𝑆

0 → 𝑆0 (where𝐷𝑝𝑛 ⋉ℤ∕2 − denotes the induction) and taking cofibres,
we get a pushout of pointed 𝐷𝑝𝑛 -spaces
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 15 of 68

The fibre of 𝑅 is therefore given by the spectrum

((𝑇 ⊗ (𝐷𝑝𝑛 ⋉ℤ∕2 𝐸ℤ∕2))
𝐶𝑝𝑛 )𝜙ℤ∕2 ≃ ((𝑇 ⊗ 𝜀∗𝐸ℤ∕2) ⊗ (𝐷𝑝𝑛 ⋉ℤ∕2 𝐸ℤ∕2))

𝐷𝑝𝑛

≃ (𝐷𝑝𝑛 ⋉ℤ∕2 (𝑇 ⊗ (𝐸ℤ∕2 ∧ 𝐸ℤ∕2)))𝐷𝑝𝑛

≃ (𝐷𝑝𝑛 ⋉ℤ∕2 (𝑇 ⊗ 𝐸ℤ∕2))𝐷𝑝𝑛

≃ (𝑇 ⊗ 𝐸ℤ∕2)ℤ∕2

≃ 𝑇𝜙ℤ∕2.

By restricting the map 𝐸𝐷𝑝𝑛 → 𝐸 to 𝐷𝑝𝑛−1 , we recover the map 𝐸𝐷𝑝𝑛−1 → 𝐸. Using this and
that the Frobenius map 𝐹∶ TRR𝑛+1(𝑇; 𝑝) → TRR𝑛(𝑇; 𝑝) is induced by the subgroup inclusion
𝐶𝑝𝑛−1 ⊂ 𝐶𝑝𝑛 , under the equivalences above the map between the horizontal fibres identifies with
the map

(𝐷𝑝𝑛 ⋉ℤ∕2 (𝑇 ⊗ 𝐸ℤ∕2))𝐷𝑝𝑛 ⟶ (𝐷𝑝𝑛 ⋉ℤ∕2 (𝑇 ⊗ 𝐸ℤ∕2))
𝐷𝑝𝑛−1

induced by the subgroup inclusion 𝐷𝑝𝑛−1 ⊂ 𝐷𝑝𝑛 . By applying the double coset formula on the
source and target, this map corresponds to the identity of 𝑇𝜙ℤ∕2, showing that the Frobenius on
horizontal fibres is an equivalence. □

Wewant to conclude the section with a similar splitting for TRR(𝑇; 𝑝)𝜙ℤ∕2, by commuting geo-
metric fixed points with an infinite limit. This can be done by means of the following well-known
result originally observed by Adams (see, for example [1, Section III.15.2]), and we sketch an argu-
ment for completeness. We say that a 𝐺-spectrum is bounded below if all of its fixed points are
bounded below, and in case 𝐺 is infinite, we also require that there is a uniform bound over all
the closed subgroups of 𝐺.

Lemma 2.4. Let …𝑋𝑛 → 𝑋𝑛−1 → …𝑋2 → 𝑋1 → 𝑋0 be a tower of uniformly bounded below 𝐺-
spectra, where 𝐺 is finite. Then (lim𝑛 𝑋𝑛)

𝜙𝐺 ≃ lim𝑛 (𝑋𝑛)
𝜙𝐺 .

Proof. Since equivariant homotopy groups commute with infinite products, it suffices to show
that 𝐸𝐺 ⊗ lim𝑛 𝑋𝑛 ≃ lim𝑛(𝐸𝐺 ⊗ 𝑋𝑛). This reduces to showing that

𝐸𝐺 ⊗
∏
𝑛

𝑋𝑛 ≃
∏
𝑛

(𝐸𝐺 ⊗ 𝑋𝑛).

For a fixed homotopy group only the finite skeleta of 𝐸𝐺 matter since the 𝑋𝑖 are uniformly
bounded below, and using that 𝐸𝐺 is of finite type, the statement reduces to showing that 𝕊 ⊗ −

and𝐺+ ⊗ − commute with infinite products. The first is obvious and the second follows from the
Wirthmüller isomorphism. □

Corollary 2.5. Let 𝑇 be a bounded below real 𝑝-cyclotomic spectrum, with 𝑝 odd. Then there are
natural equivalences

TRR(𝑇; 𝑝)𝜙ℤ∕2 ≃

∞∏
𝑖=1

𝑇𝜙ℤ∕2 and TCR(𝑇; 𝑝)𝜙ℤ∕2 ≃ 𝑇𝜙ℤ∕2.
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16 of 68 DOTTO et al.

Proof. The first equivalence follows from Lemma 2.4 and Theorem 2.1, since the tower defin-
ing TRR(𝑇; 𝑝) is uniformly bounded below since the spectra 𝑇𝐶𝑝𝑛 and 𝑇𝐷𝑝𝑛 are by assumption
bounded below with a uniform bound over 𝑛. For the second equivalence, we observe that by the
same results, the Frobenius of TRR(𝑇; 𝑝)𝜙ℤ∕2 is equivalent to the map

𝐹∶

∞∏
𝑖=1

𝑇𝜙ℤ∕2 ⟶

∞∏
𝑖=1

𝑇𝜙ℤ∕2,

which projects off the first component. The equaliser of 𝐹 and the identity is thus 𝑇𝜙ℤ∕2 mapping
diagonally to the infinite product. □

2.2 The prime 2

2.2.1 The geometric fixed points of TRR

In this section, we give a formula for TRR𝑛(𝑇; 2)𝜙ℤ∕2 for any bounded below real 2-cyclotomic
spectrum 𝑇. As mentioned earlier, the subgroups structure of the dihedral groups 𝐷2𝑛 is more
involved than the one of 𝐷𝑝𝑛 for odd 𝑝, and this makes our formula for TRR𝑛(𝑇; 2)𝜙ℤ∕2 more
interesting. The idea of the proof is again to compute TRR𝑛(𝑇; 2)𝜙ℤ∕2 inductively, by finding a
suitable replacement for the square of Proposition 2.3.
Recall that we have chosen the reflection along the 𝑥-axis 𝜏 inside 𝐷2𝑛 = ℤ∕2⋉ 𝐶2𝑛 , where

ℤ∕2 is the subgroup generated by 𝜏. If we denote by 𝜎𝑛 = 𝑒2𝑖𝜋∕𝑛 the generator of 𝐶2𝑛 , then 𝜎𝑛𝜏 is
a reflection which is not conjugate to 𝜏. The normaliser and Weyl group of ℤ∕2 inside 𝐷2𝑛∕𝐶2𝑛−1
are identified as follows:

𝑁𝐷2𝑛∕𝐶2𝑛−1
(ℤ∕2) = ℤ∕2 × 𝐶2𝑛∕𝐶2𝑛−1 ≅ ℤ∕2 × 𝐶2, 𝑊𝐷2𝑛∕𝐶2𝑛−1

(ℤ∕2) = 𝐶2𝑛∕𝐶2𝑛−1 ≅ 𝐶2,

where 𝐶2𝑛∕𝐶2𝑛−1 is generated by the image of 𝜎𝑛, which we denote again by 𝜎𝑛. In particular,
when 𝑛 = 1, we have𝑊𝐷2

(ℤ∕2) = 𝐶2 which is generated by the rotation of degree 𝜋. The group
𝐶2𝑛∕𝐶2𝑛−1 acts on the spectrum TRR𝑛(𝑇; 2)𝜙ℤ∕2, for all 𝑛 ⩾ 1 and any real 2-cyclotomic spectrum
𝑇.
In the case 𝑛 = 1, we are interested in two maps

𝑟∶ (𝑇𝜙ℤ∕2)𝐶2 ⟶ (𝑇𝜙ℤ∕2)𝜙𝐶2 ≃ 𝑇𝜙ℤ∕2 and 𝑓∶ (𝑇𝜙ℤ∕2)𝐶2 ⟶ 𝑇𝜙ℤ∕2

analogous to the restriction and the Frobenius. The map 𝑟 is induced by the canonical map from
the fixed points to the geometric fixed points, followed by the equivalence given by the cyclotomic
structure of 𝑇, and 𝑓 is the canonical map induced by the subgroup inclusion 1 ⊂ 𝐶2.

Example 2.6. Suppose that 𝑇 = THR(𝐴) is the real topological Hochschild homology spectrum
of a ring spectrum with anti-involution 𝐴. Under the equivalence

THR(𝐴)𝜙ℤ∕2 ≃ 𝐴 ⊗
(𝑁

𝐶2
𝑒 𝐴)

(𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2))
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 17 of 68

of Lemma 1.2, the identification (𝑇𝜙ℤ∕2)𝜙𝐶2 ≃ 𝑇𝜙ℤ∕2 coming from the cyclotomic structure
corresponds to the equivalence

(
𝐴⊗

(𝑁
𝐶2
𝑒 𝐴)

(𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2))
)𝜙𝐶2

≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2 ≃ 𝐴 ⊗(𝐴⊗𝐴) (𝐴

𝜙ℤ∕2 ⊗ 𝐴𝜙ℤ∕2),

where the first equivalence is the monoidality of the geometric fixed points combined with the
diagonal isomorphism (𝑁

𝐶2
𝑒 𝐴)

𝜙𝐶2 ≅ 𝐴, and the second is the general canonical equivalence𝑋 ⊗𝐴

𝑌 = 𝐴⊗𝐴⊗𝐴 (𝑋 ⊗ 𝑌) for, respectively, right and left𝐴-modules 𝑋 and 𝑌, where 𝑋 is regarded as
a left 𝐴-module via the anti-involution.

Themaps 𝑓 and 𝑟 are related to𝐹 and 𝑅 respectively, in the followingmanner. Let 𝑐 be themap

𝑐∶ TRR2(𝑇; 2)𝜙ℤ∕2 = (𝑇𝐶2 ⊗ 𝐸ℤ∕2)ℤ∕2 ≃ (𝑇 ⊗ 𝜀∗𝐸ℤ∕2)𝐶2×ℤ∕2 → (𝑇 ⊗ ˜𝐸(⊉ ℤ∕2))𝐶2×ℤ∕2

= (𝑇𝜙ℤ∕2)𝐶2 ,

where 𝜀 ∶ 𝐶2 × ℤ∕2 → ℤ∕2 is the projection, and the arrow is induced by including families of
subgroups, by noticing that 𝜀∗𝐸ℤ∕2 = 𝐸{1, 𝐶2} as universal spaces of subgroups of 𝐶2 × ℤ∕2. The
naturality of the canonical map from fixed points to geometric fixed points gives canonical homo-
topies 𝑟◦𝑐 ≃ 𝑅 and 𝑓◦𝑐 ≃ 𝐹. In particular, for every 𝑛 ⩾ 1, the iterated Frobenius map factors
as

𝐹𝑛 ∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2
𝐹𝑛−1

⟶ TRR2(𝑇; 2)𝜙ℤ∕2
𝑐
⟶ (𝑇𝜙ℤ∕2)𝐶2

𝑓
⟶ 𝑇𝜙ℤ∕2.

Finally, we recall from Section 1.3 that the maps 𝑅 and 𝐹 commute since 𝑅 is 𝑂(2)-equivariant.

Theorem 2.7. For every real 2-cyclotomic spectrum 𝑇 and 𝑛 ⩾ 1, the square

is a pullback of spectra, where the square commutes by the homotopies 𝑅𝐹 = 𝐹𝑅, 𝜎𝑛𝑅 = 𝑅𝜎𝑛+1
and 𝑟◦𝑐 ≃ 𝑅. The Weyl action of 𝜎𝑛+1 on TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 is given inductively by the strictly
commutative diagram
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18 of 68 DOTTO et al.

where 𝜏 is the flip action. The Frobenius 𝐹∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 → TRR𝑛(𝑇; 2)𝜙ℤ∕2 is induced
inductively on pullbacks by

for all 𝑛 ⩾ 2, where the left-hand square commutes since 𝜎𝑛𝐹 = 𝐹. For 𝑛 = 1, the Frobenius is the
composite

𝐹∶ (𝑇𝜙ℤ∕2)𝐶2𝑟×𝜎1𝑟 (𝑇
𝜙ℤ∕2)𝐶2

proj1
\\\\→ (𝑇𝜙ℤ∕2)𝐶2

𝑓
\→ 𝑇𝜙ℤ∕2.

where 𝑟×𝜎1𝑟 denotes the fibre product over 𝑇
𝜙ℤ∕2 along the maps 𝑟 and 𝜎1𝑟.

Remark 2.8. By inductively unravelling the formula of Theorem 2.7, we obtain an equivalence

TRR𝑛+1(𝑇; 2)𝜙ℤ∕2

≃ (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛

𝑟×𝜎1𝑟 (𝑇
𝜙)𝐶2𝑓×𝜎1𝑟 ⋯ 𝑓×𝜎1𝑟 (𝑇

𝜙)𝐶2𝑓×𝜎1𝑟 (𝑇
𝜙)𝐶2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑛

,

for all 𝑛 ⩾ 1, where we wrote 𝑇𝜙 ∶= 𝑇𝜙ℤ∕2 for short and all the products denote fibre products
over 𝑇𝜙, subscripts indicating along which maps we are taking the pullbacks. We can then fur-
ther unravel the structure maps. The restriction map 𝑅∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 → TRR𝑛(𝑇; 2)𝜙ℤ∕2

corresponds to projecting away the outer two factors for 𝑛 ⩾ 2, and for 𝑛 = 1 to the composite

𝑅∶ (𝑇𝜙)𝐶2𝑟×𝜎1𝑟 (𝑇
𝜙)𝐶2

proj1
\\\\→ (𝑇𝜙)𝐶2

𝑟
\→ 𝑇𝜙.

The Weyl action 𝜎𝑛+1 ∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 → TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 is induced by the map which
reverses the order of the product factors.
The Frobenius 𝐹∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 → TRR𝑛(𝑇; 2)𝜙ℤ∕2 is slightly more delicate to describe.

For 𝑛 = 1, we have alreadymentioned the description. For 𝑛 ⩾ 2, it is induced by themap defined
schematically on the product by

(𝑥−𝑛, … , 𝑥−3, 𝑥−2, 𝑥−1, 𝑥1, 𝑥2, … , 𝑥𝑛) ↦ (𝑥−𝑛, … , 𝑥−3, 𝑥−2, 𝑥−2, 𝑥−3, … , 𝑥−𝑛),

interpreted as follows. In order to map into the pullback TRR𝑛(𝑇; 2)𝜙ℤ∕2, we need to exhibit
homotopies 𝛾−𝑖 ∶ 𝑟(𝑥−𝑖) ∼ 𝑓(𝑥−𝑖+1) and 𝛾𝑖 ∶ 𝜎1𝑟(𝑥−𝑖) ∼ 𝑓(𝑥−𝑖+1) for 𝑖 = 𝑛,… , 3, as well as a
homotopy 𝛾0 ∶ 𝑟(𝑥−2) ∼ 𝜎1𝑟(𝑥−2). The identifications 𝛾−𝑖 are already present in the pullback
TRR𝑛+1(𝑇; 2)𝜙ℤ∕2, and 𝛾𝑖 is the composite

𝛾𝑖 ∶ 𝜎1𝑟(𝑥−𝑖)
𝜎1𝛾−𝑖
∼ 𝜎1𝑓(𝑥−𝑖+1) ∼ 𝑓(𝑥−𝑖+1),

where the second is the canonical homotopy provided by the equivariance of 𝑓 with respect to the
Weyl action. Similarly, 𝛾0 is given by

𝛾0 ∶ 𝑟(𝑥−2)
𝛾−2
∼ 𝑓(𝑥−1) ∼ 𝜎1𝑓(𝑥−1)

𝜎1𝛾−2
∼ 𝜎1𝑟(𝑥−2),

where 𝛾−2 is the identification present in TRR𝑛+1(𝑇; 2)𝜙ℤ∕2.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 19 of 68

The rest of the sectionwill be devoted to the proof of Theorem 2.7. Our proof relies on a pushout
relating 𝐸𝐷2𝑛 and 𝐸 which we now deduce from [25, Corollary 2.8].
Recall that 𝜏 and 𝜎𝑛 are the respective generators of ℤ∕2 and 𝐶2𝑛 inside 𝐷2𝑛 ≅ ℤ∕2⋉ 𝐶2𝑛 , and

that 𝜎𝑛𝜏 is a reflection which is not conjugate to 𝜏. We let 𝐻𝑛 be the subgroup generated by 𝜎𝑛𝜏.
We denote the respective normalisers and Weyl groups inside 𝐷2𝑛 by

𝑁(ℤ∕2) = ℤ∕2 × 𝐶2, 𝑊(ℤ∕2) ≅ 𝐶2, 𝑁(𝐻𝑛) = {1, 𝜎𝑛𝜏, 𝜎
2𝑛−1

𝑛 , 𝜎2
𝑛−1+1
𝑛 𝜏}, 𝑊(𝐻𝑛) ≅ 𝐶2.

We observe that 𝑁(𝐻𝑛) is abstractly isomorphic to ℤ∕2 × 𝐶2 but one has to be careful with this
identification, sinceℤ∕2 and𝐻𝑛 represent different conjugacy classes. By [25, Corollary 2.8], there
is a pushout of 𝐷2𝑛 -spaces

(3)

We observe that the classifying spaces that showup in [25, Corollary 2.8] at the lower left corner are
indeed equivalent to 𝐸𝑊(𝐻𝑛) and 𝐸𝑊(ℤ∕2). This pushout square leads to the following analogue
of Proposition 2.3.

Proposition 2.9. For every 𝑛 ⩾ 2, the Frobenius induces a commutative diagram

where the rows are fibre sequences, and 𝜎𝑛 ∶ (𝑇𝜙ℤ∕2)ℎ𝑊(ℤ∕2)

≃
\→ (𝑇𝜙𝐻𝑛−1)ℎ𝑊(𝐻𝑛−1)

is induced by the
generator 𝜎𝑛 ∈ 𝐶2𝑛 which conjugates ℤ∕2 to𝐻𝑛−1 in 𝐷2𝑛 .

Remark 2.10. We note that the spectra (𝑇𝜙ℤ∕2)ℎ𝑊(ℤ∕2), (𝑇𝜙𝐻𝑛)ℎ𝑊(𝐻𝑛)
and (𝑇𝜙𝐻𝑛−1)ℎ𝑊(𝐻𝑛−1)

are
all equivalent. This is because 𝐻𝑛−1 and ℤ∕2 become conjugated in 𝐷2𝑛 , and consequently, 𝐻𝑛

and 𝐻𝑛−1 are conjugated in 𝐷2𝑛+1 . It is, however, important to point out that 𝐻𝑛−1 and ℤ∕2

are not conjugated in 𝐷2𝑛−1 , and this plays a role while identifying the map 𝐹 on the fibres
of 𝑅.

Proof of 2.9. Let us start by calculating the fibres of the horizontal maps. The pushout square (3)
induces a pushout square of pointed 𝐷2𝑛 -spaces

(4)
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20 of 68 DOTTO et al.

The map 𝑅 is, just as in the proof of Proposition 2.3, given by the map

𝑅∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 ≃ ((𝑇 ⊗ 𝐸𝐷2𝑛)
𝐶2𝑛 )𝜙ℤ∕2 ⟶ ((𝑇 ⊗ 𝐸)𝐶2𝑛 )𝜙ℤ∕2 ≃ TRR𝑛(𝑇; 2)𝜙ℤ∕2

induced by the right vertical map of square (4) (this part of 2.3 does not use that 𝑝 is odd). Since
square (4) is a pushout, the cofibre of 𝑅 is equivalent to

((𝑇 ⊗ 𝐷2𝑛 ⋉𝑁(ℤ∕2) Σ𝐸⟨ℤ∕2⟩)𝐶2𝑛 )𝜙ℤ∕2 ⊕ ((𝑇 ⊗ 𝐷2𝑛 ⋉𝑁(𝐻𝑛)
Σ𝐸⟨𝐻𝑛⟩)𝐶2𝑛 )𝜙ℤ∕2,

where 𝐸⟨ℤ∕2⟩ and 𝐸⟨𝐻𝑛⟩ are pointed 𝑁(ℤ∕2) and 𝑁(𝐻𝑛)-spaces which fixed points
𝑆0 only at ℤ∕2 and 𝐻𝑛, respectively, and have contractible fixed points at all other
subgroups. Let us now identify the first summand, the identification of the second
one being similar. By the projection formula and untwisting the action on 𝑇, we see
that

(((𝑇 ⊗ 𝐷2𝑛 ⋉𝑁(ℤ∕2) Σ𝐸⟨ℤ∕2⟩))𝐶2𝑛 )𝜙ℤ∕2 ≃ (𝐷2𝑛 ⋉𝑁(ℤ∕2) (𝑇 ⊗ (𝜀∗𝐸ℤ∕2 ∧ Σ𝐸⟨ℤ∕2⟩)))𝐷2𝑛
≃ (𝑇 ⊗ (𝜀∗𝐸ℤ∕2 ∧ Σ𝐸⟨ℤ∕2⟩))𝑁(ℤ∕2),

where 𝜀 ∶ 𝑁(ℤ∕2) ≅ 𝐶2 × ℤ∕2 → ℤ∕2 is the projection. Nowwe observe that since (𝜀∗𝐸ℤ∕2)ℤ∕2 =
𝑆0 and 𝐸⟨ℤ∕2⟩ has fixed points 𝑆0 at ℤ∕2 and contractible otherwise, we have that
𝜀∗𝐸ℤ∕2 ∧ 𝐸⟨ℤ∕2⟩ ≃ 𝐸⟨ℤ∕2⟩, and therefore, that the first summand of the fibre of 𝑅 is
equivalent to

(𝑇 ⊗ 𝐸⟨ℤ∕2⟩)𝑁(ℤ∕2).
The other summand is identified similarly. Now the 𝑁(ℤ∕2)-space 𝐸⟨ℤ∕2⟩ is equiva-
lent to ˜𝐸(⊉ ℤ∕2) ∧ 𝜋∗𝐸𝑊(ℤ∕2)+, where (⊉ ℤ∕2) is the family of subgroups of 𝑁(ℤ∕2)
not containing ℤ∕2 and 𝜋∶ 𝑁(ℤ∕2) → 𝑊(ℤ∕2) is the projection, again by observ-
ing that this smash product also has fixed points 𝑆0 at ℤ∕2 and contractible at all
other subgroups (using Elmendorf’s theorem [12]). By definition of the geometric fixed
points with respect to a normal subgroup, we get that one summand of the fibre of 𝑅
is

(𝑇 ⊗ 𝐸⟨ℤ∕2⟩)𝑁(ℤ∕2) ≃ (𝑇 ⊗ ( ˜𝐸(⊉ ℤ∕2) ∧ 𝜋∗𝐸𝑊(ℤ∕2)+))
𝑁(ℤ∕2)

≃ ((𝑇 ⊗ ( ˜𝐸(⊉ ℤ∕2) ∧ 𝜋∗𝐸𝑊(ℤ∕2)+))
ℤ∕2)𝑊(ℤ∕2)

≃ (𝑇𝜙ℤ∕2 ⊗ 𝐸𝑊(ℤ∕2)+)
𝑊(ℤ∕2) ≃ (𝑇𝜙ℤ∕2)ℎ𝑊(ℤ∕2),

where the last equivalence uses the Adams isomorphism.
Let us now identify the map 𝐹 on the fibres of 𝑅. As we have just seen 𝑅∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 →

TRR𝑛(𝑇; 2)𝜙ℤ∕2 is equivalent to the appropriate fixed points of themap 𝑇 ⊗ 𝐸𝐷2𝑛 → 𝑇 ⊗ 𝐸. For
simplicity, let us denote the summands of its fibre by

𝐴𝑛 ⊕ 𝐵𝑛 ∶= (𝑇 ⊗ 𝐷2𝑛 ⋉𝑁(ℤ∕2) 𝐸⟨ℤ∕2⟩) ⊕ (𝑇 ⊗ 𝐷2𝑛 ⋉𝑁(𝐻𝑛)
𝐸⟨𝐻𝑛⟩).
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 21 of 68

Since 𝐸𝐷2𝑛 and 𝐸𝐷2𝑛−1 are equivalent as 𝐷2𝑛−1 -spaces, the diagram of Proposition 2.9 is then
equivalent to the outer diagram of

where the maps 𝐹 are the restriction maps on fixed points, and the vertical arrows are induced
by the inclusion 𝐷2𝑛−1 ⊂ 𝐷2𝑛 . Let us analyse the bottom left vertical equivalence. The summand
(𝐵

𝐶2𝑛−1
𝑛 )𝜙ℤ∕2 is contractible, since there is a single double coset𝐷2𝑛−1∖𝐷2𝑛∕𝑁(𝐻𝑛), and therefore,

(𝐵
𝐶2𝑛−1
𝑛 )𝜙ℤ∕2 ≃ (𝐷2𝑛 ⋉𝑁(𝐻𝑛)

(𝑇 ⊗ 𝐸⟨𝐻𝑛⟩))𝐷2𝑛−1 ≃ (𝑇 ⊗ 𝐸⟨𝐻𝑛⟩)𝐶2 = 0,

where we used that 𝑁(𝐻𝑛) ∩ 𝐷2𝑛−1 = 𝐶2 and that 𝐸⟨𝐻𝑛⟩ is trivial when restricted to 𝐶2. The first
equivalence follows from the projection formula as in the identification of the summands of the
fibre of𝑅 above. This shows that𝐹 is trivial on the second summand of the fibres. Let us now apply
the double coset formula to the first summand (𝐴𝐶2𝑛−1𝑛 )𝜙ℤ∕2. This time there are two double cosets
𝐷2𝑛−1∖𝐷2𝑛∕𝑁(ℤ∕2) = {1, 𝜎𝑛}, where 𝜎𝑛 is the generator of 𝐶2𝑛 , with 𝑁(ℤ∕2) ∩ 𝐷2𝑛−1 = 𝑁(ℤ∕2)

and 𝜎𝑛 conjugating ℤ∕2 and𝐻𝑛−1. We therefore find that

(𝐴
𝐶2𝑛−1
𝑛 )𝜙ℤ∕2 ≃ (𝐷2𝑛 ⋉𝑁(ℤ∕2) (𝑇 ⊗ 𝐸⟨ℤ∕2⟩))𝐷2𝑛−1 ≃ (𝑇 ⊗ 𝐸⟨ℤ∕2⟩)𝑁(ℤ∕2) ⊕ (𝑇 ⊗ 𝐸⟨𝐻𝑛−1⟩)𝑁(𝐻𝑛−1),

and 𝐹∶ (𝐴𝐶2𝑛𝑛 )𝜙ℤ∕2 → (𝐴
𝐶2𝑛−1
𝑛 )𝜙ℤ∕2 corresponds to (1, 𝜎𝑛). □

The previous proposition holds as stated only for 𝑛 ⩾ 2. The correct analogue for 𝑛 = 1 is the
following.

Proposition 2.11. The map 𝑐 induces id⊕0 of horizontal fibres in the following diagram:

Proof. The top horizontal fibre sequence is from 2.9, and the bottom one is immediate from the
isotropy separation sequence of the 𝐶2-spectrum 𝑇𝜙ℤ∕2 and the definition of 𝑟.
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22 of 68 DOTTO et al.

In order to describe 𝐹 on the fibre, we observe that there is a commutative diagram of pointed
𝐷22 -spaces

where 𝜀 ∶ 𝐷22 = 𝐶2 × ℤ∕2 → ℤ∕2 is the projection, (⊉ ℤ∕2) and (⊉ 𝐷22) are the families of sub-
groups of 𝐷22 which do note contain ℤ∕2 and𝐷22 , respectively, and the arrows in the diagram are
induced by the inclusions of families. ByElmendorf’s theorem [12], the inducedmaponhorizontal
cofibres is the projection

id ∨0∶ Σ𝐸⟨ℤ∕2⟩ ∨ Σ𝐸⟨𝐻1⟩⟶Σ𝐸⟨ℤ∕2⟩,
where we have used the identifications of Proposition 2.9. By the calculations of Proposition 2.9,
by smashing the square above with 𝑇 and taking 𝐶2 × ℤ∕2-fixed points, we obtain the diagram of
the statement. □

The identification of the Weyl action follows immediately from the proof of Proposition 2.9:

Lemma 2.12. For any 𝑛 ⩾ 1, the Weyl action on fibres is described by the diagram

Proof. As seen in the proof of Proposition 2.9, the fibre of 𝑅 consists of two summands

(
𝐴
𝐶2𝑛
𝑛+1

)𝜙ℤ∕2
⊕

(
𝐵
𝐶2𝑛
𝑛+1

)𝜙ℤ∕2
,

where 𝐴𝑛+1 ∶= (𝑇 ⊗ 𝐷2𝑛+1 ⋉𝑁(ℤ∕2) 𝐸⟨ℤ∕2⟩) and 𝐵𝑛+1 ∶= (𝑇 ⊗ 𝐷2𝑛+1 ⋉𝑁(𝐻𝑛+1)
𝐸⟨𝐻𝑛+1⟩), and

(𝐵
𝐶2𝑛
𝑛+1

)
𝜙ℤ∕2

vanishes. The first summand (𝐴𝐶2𝑛
𝑛+1

)
𝜙ℤ∕2

decomposes into thewedge of two summands
according to the double cosets 𝐷2𝑛∖𝐷2𝑛+1∕𝑁(ℤ∕2) = {1, 𝜎𝑛+1}, and the action of 𝜎𝑛+1 permutes
these two summands. □

Proof of Theorem 2.7. By iterating Proposition 2.9 and Proposition 2.11, the map 𝐹𝑛−1 induces an
equivalence between the first summands of the horizontal fibres of the diagram of Theorem 2.7.
Similarly, by Lemma 2.12, the maps 𝐹𝑛−1𝜎𝑛+1 and 𝐹𝑛−1𝜎𝑛 induce an equivalence between the
second summands of the horizontal fibres.
Let us now identify the Frobenius 𝐹∶ TRR𝑛+1(𝑇; 2)𝜙ℤ∕2 → TRR𝑛(𝑇; 2)𝜙ℤ∕2 for 𝑛 ⩾ 1. The

identification for 𝑛 = 1 follows from the pullback description and the canonical homotopy
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 23 of 68

𝑐◦𝑓 ≃ 𝐹. For 𝑛 ⩾ 2, we consider the following diagramwhose front and back faces are pullbacks:

This diagram is a homotopy commutative cube, since its front and back faces and its arrows are
equivalent to those of the outer part of the strictly commutative diagram

where themaps 𝜙 are induced by the canonical map 𝑆0 → 𝐸. This identifies the Frobeniusmap.
The Weyl action can be identified with a similar argument. □

2.2.2 The geometric fixed points of TFR and TCR

In this section, we use Theorem 2.7 to identify the ℤ∕2-geometric fixed points of TCR(𝑇; 2) for
every bounded-below real 2-cyclotomic spectrum 𝑇.
It turns out that it is simpler to describe the endomorphism 𝑅 on the limit

TFR(𝑇; 𝑝) ∶= lim

(
…

𝐹
\→ TRR𝑛+1(𝑇; 𝑝)

𝐹
\→ TRR𝑛(𝑇; 𝑝)

𝐹
\→ …

𝐹
\→ TRR1(𝑇; 𝑝) = 𝑇

)

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12862 by T

est, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 of 68 DOTTO et al.

taken over the Frobenius, rather than describing the Frobenius on TRR(𝑇; 2). For simplicity, we
will again write 𝑇𝜙 for 𝑇𝜙ℤ∕2.

Theorem 2.13. Let 𝑇 be a bounded below real 2-cyclotomic spectrum. Then, TFR(𝑇; 2)𝜙ℤ∕2 is
equivalent to the homotopy inverse limit

TFR(𝑇; 2)𝜙ℤ∕2 ≃ lim
𝑛
((𝑇𝜙)𝐶2𝑟×𝑓 (𝑇

𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇
𝜙)𝐶2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑛

)

along themapsproj𝑙 ∶ (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛+1

→ (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2 ,
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛

which project away the last factor, that is, given by (𝑥1, 𝑥2, … , 𝑥𝑛+1) ↦ (𝑥1, … , 𝑥𝑛). Under this iden-
tification, the endomorphism 𝑅∶ TFR(𝑇; 2)𝜙ℤ∕2 → TFR(𝑇; 2)𝜙ℤ∕2 corresponds to the map induced
on limits by the projection

proj𝑓 ∶ (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛+1

→ (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛

off the first factor (𝑥1, 𝑥2, … , 𝑥𝑛+1) ↦ (𝑥2, … , 𝑥𝑛+1).

Proof. Let us first observe that since 𝑇 is bounded-below, by Lemma 2.4, TFR(𝑇; 2)𝜙ℤ∕2 is
equivalent to the homotopy inverse limit of

For convenience, we introduce the notation:

𝐴𝑛 ∶= (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛

𝑟×𝜎1𝑟 (𝑇
𝜙)𝐶2𝑓×𝜎1𝑟 ⋯ 𝑓×𝜎1𝑟 (𝑇

𝜙)𝐶2𝑓×𝜎1𝑟 (𝑇
𝜙)𝐶2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑛

and

𝐵𝑛 ∶= (𝑇𝜙)𝐶2𝑟×𝑓 (𝑇
𝜙)𝐶2𝑟×𝑓 ⋯ 𝑟×𝑓 (𝑇

𝜙)𝐶2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛

.

Projecting onto the first 𝑛 factors gives maps 𝐴𝑛 → 𝐵𝑛. These maps commute with the Frobenius
𝐹 on 𝐴𝑛 and the projection proj𝑙 on 𝐵𝑛 by the description of 𝐹 in Remark 2.8, thus defining a
morphism of towers. We will now show that this morphism is a pro-equivalence and thus induces
an equivalence on homotopy inverse limits. Hence, by Theorem 2.7 and Remark 2.8, we obtain
the description of TFR(𝑇; 2)𝜙ℤ∕2.
Let us define a homotopy pro-inverse 𝐵𝑛+1 → 𝐴𝑛, for 𝑛 ⩾ 2, by the map induced by

(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1)⟼ (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛, … , 𝑥2, 𝑥1).

The identifications between the components in the pullback 𝐴𝑛 are defined exactly as in
Remark 2.8 for the Frobenius, in particular,

𝑟𝑥𝑛 ≃ 𝑓𝑥𝑛+1 ≃ 𝜎1𝑓𝑥𝑛+1 ≃ 𝜎1𝑟𝑥𝑛,
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 25 of 68

where the middle homotopy is the canonical one and the last path is just 𝜎1 applied to the first
homotopy. That this map is indeed a pro-inverse [4, Section III-§2], follows immediately from the
description of 𝐹 in Remark 2.8.
Let us now identify 𝑅 on TFR(𝑇; 2)𝜙ℤ∕2. By the description of the map 𝑅 in Remark 2.8, we see

that for any 𝑛 ⩾ 1, the diagram

commutes. Since the horizontal maps are entries of a pro-equivalence, passing to limits along 𝐹
gives the desired result. □

Finally, we are ready to prove the main result of this section.

Theorem 2.14. Let 𝑇 be a bounded-below real 2-cyclotomic spectrum. Then, there is a natural
equivalence

Proof. Recall that TCR(𝑇; 2)𝜙ℤ∕2 is equivalent to the equaliser

Now consider the commutative diagram

By Theorem 2.13, if we pass to the inverse limits horizontally and then take the equaliser we get
TCR(𝑇; 2)𝜙ℤ∕2. Equivalently, we can take equalisers in each degree vertically and then pass to the
inverse limit. In general, given maps 𝑎, 𝑏∶ 𝑋 → 𝑌, the equaliser of the projections
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26 of 68 DOTTO et al.

off the first and last component (and where all the products denote fibre products over 𝑌), is
equivalent to the equaliser of 𝑎 and 𝑏. Thus, each vertical equaliser above is equivalent to

and the induced maps are equivalences. □

3 TCR OF SPHERICALMONOID RINGS

We apply the formulas of the previous section to calculate the geometric fixed points of the real
topological cyclic homology of sphericalmonoid rings, and, in particular, for the sphere spectrum.
In §3.1, we give the general formula and analyse a certain assembly map, and in §3.2, we carry out
some calculations for discrete groups.

3.1 TCR of spherical monoid rings and assembly

Let 𝑀 be a topological monoid with anti-involution, that is, a map of monoids 𝑤∶ 𝑀𝑜𝑝 → 𝑀

such that𝑤2 = id (for example𝑀 is a group and𝑤 is inversion). The ℤ∕2-equivariant suspension
spectrum of the underlying ℤ∕2-equivariant space

𝕊[𝑀] ∶= Σ∞+𝑀

is then a ring spectrum with anti-involution, where the multiplication is inherited from the mul-
tiplication of𝑀. We recall that, since 𝕊 is the monoidal unit of the tensor product of spectra, there
is an equivalence of 𝑂(2)-spectra

THR(𝕊[𝑀]) ≃ Σ∞+ 𝐵
𝑑𝑖𝑀,

where 𝐵𝑑𝑖𝑀 is the dihedral bar construct of the monoid𝑀 with respect to the product of spaces
(see [10, Proposition 5.12]). Thus, from Corollary 2.5, we immediately obtain that for every odd
prime 𝑝

TCR(𝕊[𝑀]; 𝑝)𝜙ℤ∕2 ≃ THR(𝕊[𝑀])𝜙ℤ∕2 ≃ Σ∞+ (𝐵
𝑑𝑖𝑀)ℤ∕2 ≅ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2),

where the two-sided bar construction is for the left and right actions of 𝑀 on its fixed-points
subspace𝑀ℤ∕2 defined, respectively, by 𝑚 ⋅ 𝑥 = 𝑚𝑥𝑤(𝑚) and 𝑥 ⋅𝑚 = 𝑤(𝑚)𝑥𝑚. The right-hand
isomorphism is the space-level analogue of the equivalence which describes THR(𝐴)𝜙ℤ∕2 as a
derived tensor product from [10], reviewed in §1.2. It is the composite

(𝐵𝑑𝑖𝑀)ℤ∕2 ≅ | sd𝑒 𝑁𝑑𝑖𝑀|ℤ∕2 ≅ |(sd𝑒 𝑁𝑑𝑖𝑀)ℤ∕2| ≅ 𝐵(𝑀ℤ∕2,𝑀,𝑀ℤ∕2)

of the isomorphism with the realisation of the subdivision of §1.2, the canonical isomorphism
commuting fixed points and geometric realisations and the simplicial isomorphism that sends
an 𝑛-simplex (𝑥,𝑚1, … ,𝑚𝑛, 𝑦, 𝑤(𝑚𝑛), … ,𝑤(𝑚1)) of (sd𝑒 𝑁𝑑𝑖𝑀)ℤ∕2, with 𝑥, 𝑦 ∈ 𝑀ℤ∕2, to the
𝑛-simplex (𝑥,𝑚1, … ,𝑚𝑛, 𝑦) of the two-sided bar construction.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 27 of 68

For the prime 2, the situation is more delicate, as the description of TCR of Theorem 2.14 now
involves the action of the Weyl group 𝐶2 on

THR(𝕊[𝑀])𝜙ℤ∕2 ≃ Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2).

This involution arises from the simplicial 𝐶2-action on the simplicial object (sd𝑒 sd2 𝑁𝑑𝑖𝑀)ℤ∕2,
as in Lemma 1.2, which is given levelwise by the rotation of order 2 of the product components.
The levelwise isomorphism (𝑀×4𝑛+4)ℤ∕2 ≅ 𝑀ℤ∕2 × 𝑀×2𝑛+1 × 𝑀ℤ∕2 described above determines
a simplicial 𝐶2-equivariant isomorphism

(sd𝑒 sd2 𝑁
𝑑𝑖𝑀)ℤ∕2 ≅ sd𝑒 𝑁(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2),

where the action of 𝐶2 on the right-hand side reverses levelwise the order of the product factors
and applies 𝑤 on the𝑀-factors. There are therefore isomorphisms

𝐵(𝑀ℤ∕2,𝑀,𝑀ℤ∕2)𝐶2 ≅ |(sd𝑒 𝑁(𝑀ℤ∕2,𝑀,𝑀ℤ∕2)𝐶2 | ≅ 𝐵(𝑀ℤ∕2,𝑀,𝑀ℤ∕2),

where the second one sends a fixed point (𝑥,𝑚1, … ,𝑚𝑛,𝑚𝑛+1, 𝑤(𝑚𝑛), … ,𝑤(𝑚1), 𝑥), with𝑚𝑛+1 =

𝑤(𝑚𝑛+1), to (𝑥,𝑚1, … ,𝑚𝑛,𝑚𝑛+1). This isomorphism corresponds to the residual cyclotomic struc-
ture on theℤ∕2-geometric fixed points of THR(𝕊[𝑀]) (cf. Example 2.6). Under this identification,
the fixed-points inclusion corresponds to the endomorphism 𝜓 of 𝐵(𝑀ℤ∕2,𝑀,𝑀ℤ∕2) given in
simplicial degree 𝑛 by

𝜓(𝑥,𝑚1, … ,𝑚𝑛, 𝑦) = (𝑥,𝑚1, … ,𝑚𝑛, 𝑦𝑤(𝑚𝑛)…𝑤(𝑚1)𝑥𝑚1 …𝑚𝑛𝑦),

that is to say that there is a homotopy commutative diagram

where the diagonal map is the fixed-points inclusion. This follows readily from the commutative
diagram

where the vertical arrows are the inclusions of the fixed points, by observing that the bottom
horizontalmap is homotopic to the realisation of the ‘last vertexmap’ (defined by iterating the last
face map of𝑁(𝑀ℤ∕2,𝑀,𝑀ℤ∕2)), and that the composite of the top right horizontal map followed
by the inclusion of fixed points and the last vertex map is by definition 𝜓.

Example 3.1. The typical example of a monoid with anti-involution is the signed loop space

𝑀 = Ω𝜎𝑋 ∶= Map∗(𝑆
𝜎, 𝑋),
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28 of 68 DOTTO et al.

where 𝑋 is a pointed ℤ∕2-space, 𝑆𝜎 is the sign representation sphere and ℤ∕2 acts on the loop
space by conjugation. In this case, the dihedral bar construction is equivalent to the free loop
space

𝐵𝑑𝑖Ω𝜎𝑋 ≃ Λ𝜎𝑋 ∶= Map(𝑆𝜎, 𝑋)

again with the conjugation action ofℤ∕2 (see [10, Remark 5.13]). Let us spell out the map 𝜓 under
this identification. By passing to the upper half-circle, the ℤ∕2-fixed points of Λ𝜎𝑋 can be identi-
fied with those paths in 𝑋 which start and end at a fixed point, or in other words the homotopy
pullback

(Λ𝜎𝑋)ℤ∕2 ≃ 𝑋ℤ∕2 ×𝑋 𝑋
ℤ∕2

of the fixed-points inclusion along itself. Since the 𝐶2-action on Λ𝜎𝑋 is given by the 180◦ degrees
rotation followed by the involution of 𝑋 pointwise, the residual 𝐶2-action on 𝑋ℤ∕2 ×𝑋 𝑋

ℤ∕2

flips the direction of the path and applies the involution of 𝑋 pointwise. Hence, there is an
isomorphism

(𝑋ℤ∕2 ×𝑋 𝑋
ℤ∕2)𝐶2 ≅ 𝑋ℤ∕2 ×𝑋 𝑋

ℤ∕2,

which restricts a𝐶2-fixed path 𝛾∶ [0, 1] → 𝑋 to [0, 1∕2]. Under this identification, the fixed-points
inclusion corresponds to the map

𝜓∶ 𝑋ℤ∕2 ×𝑋 𝑋
ℤ∕2 ⟶ 𝑋ℤ∕2 ×𝑋 𝑋

ℤ∕2,

which sends a path 𝛾 to the concatenation 𝛾 ⋆ 𝑤(𝛾), where 𝛾 is the inverse path. This is some sort
of squaring operation reminiscent of the Frobenius.

We are finally able to describe the geometric fixed points of TCR(𝕊[𝑀]; 2) (notice the analogy
with [3] and [27, Theorem IV.3.6]):

Theorem 3.2. Let 𝑀 be a well-pointed topological monoid with anti-involution. Then there is a
pullback square

where the right vertical map is the transfer from orbits to fixed points, followed by the forgetful map
to the underlying spectrum. In particular, for𝑀 =∗, there is an equivalence

TCR(𝕊; 2)𝜙ℤ∕2 ≃ 𝕊 ⊕ ℝ𝑃∞−1,

where ℝ𝑃∞
−1
is the fibre of the transfer trf ∶ Σ∞+ ℝ𝑃

∞ = 𝕊ℎ𝐶2 → 𝕊.

Proof. From the identification of THR(𝕊[𝑀]) with the dihedral bar construction of𝑀, we obtain
an equivalence of 𝐶2-spectra

THR(𝕊[𝑀])𝜙ℤ∕2 ≃ (Σ∞+ 𝐵
𝑑𝑖𝑀)𝜙ℤ∕2 ≃ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2).
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 29 of 68

By the tom-Dieck splitting (see, for example [30, Section 6]), the isotropy separation sequence

Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2 \→ (Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2))𝐶2 ⟶ (Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2))𝜙𝐶2

canonically splits, giving equivalences

(THR(𝕊[𝑀])𝜙ℤ∕2)𝐶2 ≃ (Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2))𝐶2

≃ (Σ∞+ (𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2))𝜙𝐶2 ⊕ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2

≃ Σ∞+ (𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2)𝐶2) ⊕ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2

≅ Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2) ⊕ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2 .

The map 𝑟 is by definition the projection map of the isotropy separation sequence, followed with
the cyclotomic structure which corresponds to the last two equivalences. Thus, 𝑟 identifies with
the projection

(1, 0)∶ Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2) ⊕ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2 → Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2)

onto the first summand. The map 𝑓 is by definition the restriction map to the underlying spec-
trum. Under the tom-Dieck splitting, this is the suspension of the fixed-points inclusion on the
first summand, and the transfer on the second. Since, after applying the cyclotomic structure on
the first summand, the fixed-points inclusion agrees with 𝜓, we obtain that 𝑓 is given by

(𝜓, trf )∶ Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2) ⊕ Σ∞+ 𝐵(𝑀

ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2 → Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2),

where trf is the transfer map.
It follows that the equaliser of 𝑟 and 𝑓 is computed by the pullback above, and it is equivalent

to TCR(𝕊[𝑀]; 2)𝜙ℤ∕2 by Theorem 2.1.
If 𝑀 =∗, the bottom horizontal map of the pullback square is zero, and the pullback splits as

the fibre of trf and 𝕊. □

Remark 3.3. The explicit identification of the maps 𝑟, 𝑓 of the proof of Theorem 3.2, in fact, gives
a description of the full TR-tower of 𝕊[𝑀]. Indeed, one can see by direct calculation that for every
2 ⩽ 𝑛 ⩽ ∞, there is an equivalence of spectra

TRR𝑛(𝕊[𝑀]; 2)𝜙ℤ∕2 ≃ Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2) ×

2𝑛−2∏
𝑗=1

Σ∞+ 𝐵(𝑀
ℤ∕2,𝑀,𝑀ℤ∕2)ℎ𝐶2 ,

and the maps 𝑅, 𝐹∶ TRR𝑛+1(𝕊[𝑀]; 2)𝜙ℤ∕2 → TRR𝑛(𝕊[𝑀]; 2)𝜙ℤ∕2 are given, respectively, by the
projection

𝑅(𝑎, 𝑥−𝑛, … , 𝑥−1, 𝑥1, … , 𝑥𝑛) = (𝑎, 𝑥−𝑛+1, … , 𝑥−1, 𝑥1, … , 𝑥𝑛−1)

and by

𝐹(𝑎, 𝑥−𝑛, … , 𝑥−1, 𝑥1, … , 𝑥𝑛) = (𝜓(𝑎) + trf (𝑥−1), 𝑥−𝑛, … , 𝑥−2, 𝑥−2, … , 𝑥−𝑛).
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30 of 68 DOTTO et al.

Let us now turn our attention to the case where 𝐺 is a group-like topological monoid with
involution, that is a topological monoid with involution 𝐺 such that 𝜋0𝐺 is a group. In this case,
the canonical map

𝐺⟶Ω𝜎𝐵𝜎𝐺

is an equivalence (see [26]), where 𝐵𝜎𝐺 is the subdivision of 𝐵𝐺 with the simplicial involution
that sends (g1, … , g2𝑛+1) to (𝑤(g2𝑛+1), … ,𝑤(g1)). The fixed-points space of 𝑋 = 𝐵𝜎𝐺 is then the
one-sided bar construction

(𝐵𝜎𝐺)ℤ∕2 ≃ 𝐵(𝐺ℤ∕2, 𝐺)

of 𝐺 acting on its fixed-points set by 𝑥 ⋅ g = 𝑤(g)𝑥g . We will therefore phrase the next results in
terms of signed loop spaces 𝐺 = Ω𝜎𝑋, where 𝑋 is any pointed ℤ∕2-space. We also note that the
fixed-points subspace of 𝐺 = Ω𝜎𝑋 is the fibre of the inclusion

𝐺ℤ∕2 = (Ω𝜎𝑋)ℤ∕2 = f ib(𝑋ℤ∕2 → 𝑋),

where 𝛼 ∈ Ω𝑋 acts on a path 𝛾 from the base-point to a fixed point by concatenation 𝛾 ⋅ 𝛼 =
𝜔(𝛼) ⋆ 𝛾.

Corollary 3.4. For every well-pointed ℤ∕2-space 𝑋, there is a fibre sequence

(Σ∞+ 𝑋
ℤ∕2) ⊗ (𝕊 ⊕ ℝ𝑃∞−1)

Δ
\→ TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2 → 𝑄,

where 𝑄 is the pullback of Σ∞+ 𝐶
id−Σ∞+ 𝜓
\\\\\\\\→ Σ∞+ 𝐶

trf
←\\ Σ∞+ 𝐶ℎ𝐶2 and 𝐶 the cofibre of the diagonal

Δ∶ 𝑋ℤ∕2 → 𝑋ℤ∕2 ×𝑋 𝑋
ℤ∕2.

If the involution of 𝑋 is trivial, 𝑄 is zero and there is a natural equivalence

TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2 ≃ (Σ∞+ 𝑋) ⊗ (𝕊 ⊕ ℝ𝑃∞−1).

Proof. The diagonal Δ∶ 𝑋ℤ∕2 → 𝑋ℤ∕2 ×𝑋 𝑋
ℤ∕2 is clearly equivariant for the Weyl 𝐶2-action on

the pullback and the trivial action on 𝑋ℤ∕2. It therefore induces a commutative diagram

where the bottom left map is zero since 𝜓 is the identity on constant paths. Example 3.1, and
the limit of the top row is TCR(𝕊[Ω𝜎𝑋]; 2)𝜙ℤ∕2 by Theorem 3.2 and Example 3.1 the limit of the
bottom row is (Σ∞+ 𝑋

ℤ∕2) ⊗ (𝕊 ⊕ ℝ𝑃∞
−1
). By taking cofibres vertically, we obtain the fibre sequence

of the statement.
If the involution on 𝑋 is trivial, the diagonal map Δ∶ 𝑋 → 𝑋 ×𝑋 𝑋 is an equivalence and thus

𝑄 is trivial. □

If the involution of𝑋 is not trivial, the cofibre𝑄 need not be zero, as illustrated in the following
example.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 31 of 68

Example 3.5. Suppose that 𝑋 is a pointed space, and let us consider the pointed free ℤ∕2-space
𝑋𝑏 = 𝑋 ∧ 𝐸ℤ∕2+. Since its fixed points are contractible, the fixed points of 𝐺 = Ω𝜎𝑋𝑏 are

𝐺ℤ∕2 = (Ω𝜎𝑋𝑏)ℤ∕2 ≃ Ω𝑋,

since this is the space of paths from the base-point to a fixed point of 𝑋𝑏. In this case,

𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2) ≃ 𝐵(Ω𝑋,Ω𝑋,Ω𝑋) ≃ Ω𝑋,

and the map 𝜓∶ Ω𝑋 → Ω𝑋 sends a loop 𝛾 to 𝛾 ⋆ 𝛾 and it is therefore null. By Theorem 3.2, there
is a pullback

where 𝐶2 acts on Ω𝜎𝑋 by the loop inversion. There is therefore a splitting

TCR(𝕊[Ω𝜎𝑋𝑏]; 2)𝜙ℤ∕2 ≃ 𝕊 ⊕ ℝ𝑃∞−1 ⊕ (Σ∞Ω𝜎𝑋)ℎ𝐶2 .

In this case, the map Δ of Corollary 3.4 is easily seen to split, and the homotopy orbits summand
corresponds to the summand 𝑄.

3.2 TCR of spherical group rings for some discrete groups

Let us now consider a discrete group 𝐺 with anti-involution. The map Δ of Corollary 3.4
corresponds to the simplicial map

𝐵(𝐺ℤ∕2, 𝐺)⟶ 𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2),

which sends (𝑥, g1, … , g𝑛) to (𝑥, g1, … , g𝑛, g−1𝑛 … g−1
1
𝑥−1𝑤(g−1𝑛 … g−1

1
)). This follows from identify-

ing

𝐵(𝐺ℤ∕2, 𝐺) ×𝐵𝐺 𝐵(𝐺
ℤ∕2, 𝐺)

with 𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2) via the map

(𝑥, g1, … , g𝑛, 𝑦, ℎ1, … , ℎ𝑛) ↦ (𝑥, g1, … , g𝑛, ℎ
−1
𝑛 …ℎ−11 𝑦−1𝑤(ℎ−1𝑛 …ℎ−11 )).

Example 3.6. Suppose that the involution of 𝐺 is inversion 𝑤 = (−)−1 ∶ 𝐺𝑜𝑝 → 𝐺. Then, the
fixed-points space of 𝐺 consists of the set of elements of order 2. If 𝐺 has no 2-torsion, we are in
the situation of Corollary 3.4 where 𝐺ℤ∕2 = 1 and (𝐵𝜎𝐺)ℤ∕2 ≃ 𝐵𝐺, and

TCR(𝕊[𝐺]; 2)𝜙ℤ∕2 ≃ (Σ∞+ 𝐵𝐺) ⊗ (𝕊 ⊕ ℝ𝑃∞−1).
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32 of 68 DOTTO et al.

For example, let us consider the spherical Laurent polynomial ring 𝕊[𝑡, 𝑡−1] ∶= 𝕊[ℤ], where the
involution acts by inversion in ℤ, that is, swaps 𝑡 and 𝑡−1. Then,

TCR(𝕊[𝑡, 𝑡−1]; 2)𝜙ℤ∕2 ≃ (Σ∞+ 𝑆
1) ⊗ (𝕊 ⊕ ℝ𝑃∞−1).

Now suppose that 𝐺 is a discrete group with a general anti-involution 𝑤∶ 𝐺𝑜𝑝 → 𝐺. The
bar construction 𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2) is the nerve of a groupoid, and therefore, after a choice of
representatives for its isomorphism classes, it decomposes as

𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2) ≅
∐

[𝑥,𝑦]∈(𝐺ℤ∕2×𝐺ℤ∕2)∕∼

𝐵𝐴𝑢𝑡(𝑥, 𝑦),

where the equivalence relation identifies (𝑤(g)𝑥g , 𝑦) with (𝑥, g𝑦𝑤(g)), and the automorphism
group of (𝑥, 𝑦) ∈ 𝐺ℤ∕2 × 𝐺ℤ∕2 is the subgroup𝐴𝑢𝑡(𝑥, 𝑦) = {g ∈ 𝐺‖𝑤(g)𝑥g = 𝑥 g𝑦𝑤(g) = 𝑦}. Let
us now determine the map 𝜓 and the Weyl action, so that all the ingredients of Theorem 3.2 are
in place.

Lemma3.7. Themaps𝜓 and the action of the generator 𝜏 of theWeyl group (as a homotopy coherent
action) are given, under the decomposition of 𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2) above, respectively, by the maps

𝜓([𝑥, 𝑦], g) = ([𝑥, 𝑦𝑥𝑦], g) and 𝜏([𝑥, 𝑦], g) = ([𝑦, 𝑥], 𝑤(g−1)).

In particular, the homotopy orbits of𝐵(𝐺ℤ∕2, 𝐺, 𝐺ℤ∕2) for theWeyl action can be computed using this
strict action of 𝜏.

Proof. The description of 𝜓 is immediate from the formula before Example 3.1. The description
of the action of the generator follows from the well-known fact that if  is a groupoid with strict
duality, that is, a functor 𝑤∶ 𝑜𝑝 →  such that 𝑤2 = id, then the ℤ∕2-actions on 𝐵 defined,
respectively, by the levelwise duality together with inverting the order of the simplex coordinates,
as in §1.2, and the one defined by the endofunctor


(−)−1

\\\\\→ 𝑜𝑝
𝑤
\\→ ,

are homotopy coherently equivalent. We were not able to track down a proof, so we include an
argument for the reader’s convenience. After applying the subdivision functor sd𝑒 from §1.2 to the
nerve of , the two actions are, respectively, equivalent to the simplicial actions defined levelwise
on sd𝑒 𝑁 by 𝑤 and 𝑤◦(−)−1. The subdivided nerve sd𝑒 𝑁 is isomorphic to the nerve of the
twisted arrow category of , and the two actions correspond, respectively, to the ones induced by
the (covariant) endofunctors𝑤 and𝑤◦(−)−1, defined on the objects of the twisted arrow category,
respectively, by

𝑤(𝑥
g
\→ 𝑦) = (𝑤(𝑦)

𝑤(g)
\\\\→ 𝑤(𝑥)) and 𝑤((𝑥

g
\→ 𝑦)−1) = (𝑤(𝑥)

𝑤(g−1)
\\\\\\→ 𝑤(𝑦)).
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 33 of 68

Let us regard these actions as functors ℤ∕2 → Gpd to the category of groupoids, where both send
the unique object of ℤ∕2 to the twisted arrow category of . Then the diagram

exhibits the 2-cells of a pseudo-natural isomorphism on the identity transformation between
the functors ℤ∕2 → Gpd. Thus, the two actions on the geometric realisations are homotopy
coherently equivalent. □

With these formulas at hand, one should in principle be able to determine the pullback of Theo-
rem3.2, as itsmaps consist of products of diagonals and transfersΣ∞+ ℝ𝑃

∞ → 𝕊. The combinatorics
of which components are hit by the diagonals are complicated in this generality, but we compute
them fully in the following special cases.

Example 3.8. Suppose that the order-2 elements of𝐺 are included in the centre of𝐺, and that the
involution on 𝐺 is inversion. This is exactly the situation where the action of 𝐺 on 𝐺ℤ∕2 is trivial.
It follows that 𝐺ℤ∕2 = 𝐺2 consists of the elements of order 2, and

𝐵(𝐺2, 𝐺, 𝐺2) =
∐
𝐺2×𝐺2

𝐵𝐺.

The map 𝜓 sends the component (𝑥, 𝑦) to the component is (𝑥, 𝑥) via the identity of 𝐵𝐺, and the
involution freely permutes the components indexed by pairs (𝑥, 𝑦) with 𝑥 ≠ 𝑦, and is trivial on
the components (𝑥, 𝑥). There is therefore a splitting

TCR(𝕊[𝐺]; 2)𝜙ℤ∕2 ≃ ((Σ∞+ 𝐺2) ⊕ 𝑃) ⊗ Σ∞+ 𝐵𝐺,

where 𝑃 is the pullback

where Δ𝑐 ⊂ 𝐺2 × 𝐺2 is the complement of the diagonal with the involution that flips the factors,
and 𝑞 is the sum of the maps that send the component [𝑥 ≠ 𝑦], respectively, to the components 𝑥
and 𝑦.
For example, for 𝐺 = ℤ with the minus involution, we recover the calculation for 𝕊[𝑡, 𝑡−1] of

the example above, since in this case 𝐺2 = 1. On the other hand, for 𝐺 = 𝐶2, the map 𝑞 is the
diagonal, and 𝑃 is the pullback of the transfer Σ∞+ ℝ𝑃

∞ → 𝕊 along itself, and

TCR(𝕊[𝐶2]; 2)
𝜙ℤ∕2 ≃ ((Σ∞+ 𝐶2) ⊕ (Σ∞+ ℝ𝑃

∞ ×𝕊 Σ
∞
+ ℝ𝑃

∞)) ⊗ Σ∞+ 𝐵𝐶2.

Here, we also see that TCR(𝕊[𝐶2]; 2)𝜙ℤ∕2 splits off an ℝ𝑃∞−1 ⊗ Σ∞+ 𝐵𝐶2-summand, since the pull-
back of the two transfers splits as ℝ𝑃∞

−1
⊕ Σ∞+ ℝ𝑃

∞, but this splitting is, however, non-canonical.
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34 of 68 DOTTO et al.

Notice that𝑃 depends only on the order-2 elements of𝐺, so, in fact, for every even integer 𝑛 ⩾ 2

TCR(𝕊[𝐶𝑛]; 2)
𝜙ℤ∕2 ≃ ((Σ∞+ 𝐶2) ⊕ (Σ∞+ ℝ𝑃

∞ ×𝕊 Σ
∞
+ ℝ𝑃

∞)) ⊗ Σ∞+ 𝐵𝐶𝑛,

where again the involution on 𝐶𝑛 is inversion.

Example 3.9. Now suppose that 𝐺 is abelian and endowed with the trivial involution. Then
𝐺ℤ∕2 = 𝐺 with left and right 𝐺-actions g ⋅ 𝑥 ∶= 2g + 𝑥. The components of the two-sided bar
construction are described by a bijection

(𝐺 × 𝐺)∕ ∼ ≅ 𝐺 × 𝐺∕2,

which sends [𝑥, 𝑦] to (𝑥 + 𝑦, [𝑦]). Under this equivalence, the𝐶2-action sends (𝑥, 𝑧) to (𝑥, [𝑥] + 𝑧),
and 𝜓 to

𝜓(𝑥, 𝑧) = (2𝑥, [𝑥] + 𝑧).

The 𝐶2-fixed-points set of 𝐺 × 𝐺∕2 is therefore the set of pairs of the form (2g , 𝑥), and 𝐺 × 𝐺∕2
decomposes 𝐶2-equivariantly as

𝐺 × 𝐺∕2 ≅ (2𝐺 × 𝐺∕2) ⨿ (((𝐺 ⧵ 2𝐺) × 𝐺∕2)∕𝐶2) × 𝐶2.

If we assume additionally that 𝐺 has no 2-torsion, then the fundamental groups of the two-sided
bar construction vanish since the corresponding groupoid has only trivial automorphisms. The
pullback diagram describing TCR(𝕊[𝐺]; 2)𝜙ℤ∕2 then takes the form

where Δ sends the component of an orbit [g , 𝑥] with g ∉ 2𝐺 diagonally to the components (g , 𝑥)
and (g , [g] + 𝑥).
Let us now identify this pullback under the additional assumption that 𝐺 does not have ele-

ments infinitely divisible by 2, that is, for any 0 ≠ g ∈ 𝐺, there exists 𝑛 ∈ ℕ such that g = 2𝑛𝑥

does not have a solution. This, in particular, implies that 𝐺 is torsion-free (but not vice versa,
take, for example 𝐺 = ℚ). Under this assumption, we can easily compute the cofibre of id−Σ∞+ 𝜓.
Indeed, from the commutative diagram
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 35 of 68

we see that the lower horizontal map induced on cofibres is an equivalence. Hence, the cofibre of
id−Σ∞+ 𝜓 is equivalent to the cofibre of its restriction

id−Σ∞+ 𝜓∶ (2𝐺 × 𝐺∕2)+ ⊗ 𝕊 → (2𝐺 × 𝐺∕2)+ ⊗ 𝕊.

Since 𝜓(0, 𝑧) = (0, 𝑧), we see that the zero map 0∶ (𝐺∕2)+ ⊗ 𝕊 → (𝐺∕2)+ ⊗ 𝕊 splits off from the
givenmap, and hence, the cofibre contains the summand (𝐺∕2)+ ⊗ (𝕊 ⊕ 𝕊1). Let us now compute
the cofibre of

id−Σ∞+ 𝜓∶ ((2𝐺 ⧵ 0) × 𝐺∕2)+ ⊗ 𝕊 → ((2𝐺 ⧵ 0) × 𝐺∕2)+ ⊗ 𝕊.

By the non-divisibility condition, this morphism induces an injection on homotopy groups. The
morphism 𝜓maps the summand indexed by (g , 𝑥) identically to the summand indexed by (2g , 𝑥)
since g ∈ 2𝐺. By inspecting the cokernel of the difference on homotopy groups, all (2𝑛g , 𝑥) sum-
mands get identified with the (g , 𝑥) summand for 𝑛 ⩾ 0, g ∈ 2𝐺 ⧵ 4𝐺 and 𝑥 ∈ 𝐺∕2. Hence, we
see that the cofibre is ((2𝐺 ⧵ 4𝐺) × 𝐺∕2)+ ⊗ 𝕊. All in all we get a cofibre sequence

where 𝜁 includes (0 × (𝐺∕2))+ ⊗ 𝕊 into (𝐺∕2)+ ⊗ 𝕊, sends the (2𝑛ℎ × 𝐺∕2)+ ⊗ 𝕊-summand via
the identity to the summand (2ℎ × 𝐺∕2)+ ⊗ 𝕊 for any ℎ ∈ 𝐺 ⧵ 2𝐺 and 𝑛 ⩾ 1 and sends the
summand ((𝐺 ⧵ 2𝐺) × 𝐺∕2)+ ⊗ 𝕊) to (((2𝐺 ⧵ 4𝐺) × 𝐺∕2)+ ⊗ 𝕊) via (g , 𝑥) ↦ (2g , g + 𝑥).
From the pullback square above, we find that TCR(𝕊[𝐺]; 2)𝜙ℤ∕2 is the fibre of the map

𝜁◦(incl⊗ trf ⊕Δ) ∶((2𝐺 × 𝐺∕2)+ ⊗ Σ∞+ ℝ𝑃
∞) ⊕ (((𝐺 ⧵ 2𝐺) × 𝐺∕2)∕𝐶2)+ ⊗ 𝕊⟶

(((2𝐺 ⧵ 4𝐺) × 𝐺∕2)+ ⊗ 𝕊) ⊕ ((𝐺∕2)+ ⊗ (𝕊 ⊕ 𝕊1)),

which is given by the wedge

((𝐺∕2)+ ⊗ (𝕊 ⊕ ℝ𝑃∞−1)) ⊕ 𝑃,

where 𝑃 is the pullback

By using that any non-zero element g ∈ 𝐺 can be uniquely written as 2𝑛𝛾, where 𝑛 is a non-
negative integer and 𝛾 ∈ 𝐺 ⧵ 2𝐺, we can write 𝑃 as

𝑃 ≃ (((𝐺 ⧵ 2𝐺) × 𝐺∕2)∕𝐶2)+ ⊗ ((ℕ+ ⊗ Σ∞+ ℝ𝑃
∞) ×𝕊 (ℕ+ ⊗ Σ∞+ ℝ𝑃

∞)).

We note that ((ℕ+ ⊗ Σ∞+ ℝ𝑃
∞) ×𝕊 (ℕ+ ⊗ Σ∞+ ℝ𝑃

∞)) is non-canonically equivalent to

ℝ𝑃∞−1 ⊕ Σ∞+ ℝ𝑃
∞ ⊕ Σ∞+ ℝ𝑃

∞ ⊕ Σ∞+ ℝ𝑃
∞ ⊕… .
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36 of 68 DOTTO et al.

To summarise, for every abelian 𝐺 with trivial involution, no 2-torsion and no elements infinitely
divisible by 2

TCR(𝕊[𝐺]; 2)𝜙ℤ∕2 ≃ ((𝐺∕2)+ ⊗ (𝕊 ⊕ ℝ𝑃∞−1))

⊕ (((𝐺 ⧵ 2𝐺) × 𝐺∕2)∕𝐶2)+ ⊗ ((ℕ+ ⊗ Σ∞+ ℝ𝑃
∞) ×𝕊 (ℕ+ ⊗ Σ∞+ ℝ𝑃

∞)).

In particular, the group 𝐺 = ℤ with the trivial involution gives rise to the spherical Laurent
polynomials 𝕊[𝑡, 𝑡−1] ∶= 𝕊[ℤ] with the involution which acts trivially on the generators, and

TCR(𝕊[𝑡, 𝑡−1]; 2)𝜙ℤ∕2 ≃ ((ℤ∕2)+ ⊗ (𝕊 ⊕ ℝ𝑃∞−1)) ⊕ (ℤ+ ⊗ ((ℕ+ ⊗ Σ∞+ ℝ𝑃
∞) ×𝕊 (ℕ+ ⊗ Σ∞+ ℝ𝑃

∞)))

where we took the liberty of enumerating the summands non-canonically.

4 TCR OF PERFECT FIELDS

In [18], Hesselholt and Madsen identified the 𝑝-typical topological cyclic homology spectrum
TC(𝑘; 𝑝) of a perfect field 𝑘 of characteristic 𝑝 as the sum

TC(𝑘; 𝑝) ≃ 𝐻ℤ𝑝 ⊕ Σ−1𝐻 coker(1 − 𝐹),

where 𝐹∶ 𝑊(𝑘; 𝑝) → 𝑊(𝑘; 𝑝) is the Frobenius homomorphism of the ring𝑊(𝑘; 𝑝) of 𝑝-typical
Witt vectors. Their calculation relies on the fact that the ring 𝜋0 THR(𝐴)

𝐶𝑝𝑛 is isomorphic to the
ring𝑊𝑛+1(𝐴; 𝑝) of (𝑛 + 1)-truncated 𝑝-typical Witt vectors, which holds for every commutative
ring 𝐴 (see [18, Theorem F]). The situation for 𝜋0 THR(𝐴)

𝐷𝑝𝑛 is not completely analogous, and
requires particular care.
We start by recalling from [10, Corollary 5.2] that, for every commutative ring with involution

𝐴, there is an isomorphism of rings

𝜋0(THR(𝐴)
ℤ∕2) ≅ 𝐴ℤ∕2 ⊗𝑁 𝐴

ℤ∕2 ∶= (𝐴ℤ∕2 ⊗ 𝐴ℤ∕2)∕⟨1 ⊗ 𝑎𝑎 − 𝑎𝑎 ⊗ 1⟩,
where 𝐴ℤ∕2 is the subring of invariants of 𝐴, and the quotient is by the ideal generated by the
elements of the form 1 ⊗ 𝑎𝑎 − 𝑎𝑎 ⊗ 1 for some 𝑎 ∈ 𝐴 (here we use that 𝑎 + 𝑎 = (𝑎 + 1)(𝑎 + 1) −

𝑎𝑎 − 1 to simplify the second relation of [10, 5.2], so that, in particular, 2𝑏 ⊗ 1 = 1 ⊗ 2𝑏 in the
quotient 𝐴ℤ∕2 ⊗𝑁 𝐴

ℤ∕2, if 𝑏 ∈ 𝐴ℤ∕2). The restriction map 𝜋0(THR(𝐴)ℤ∕2) → 𝜋0 THR(𝐴) then
corresponds to the multiplication map

𝐴ℤ∕2 ⊗𝑁 𝐴
ℤ∕2

𝜇
⟶ 𝐴ℤ∕2 ⟶ 𝐴,

where the second map is the inclusion. For perfect fields, the map 𝜇 induces an isomorphism
𝐴ℤ∕2 ⊗𝑁 𝐴

ℤ∕2 ≅ 𝐴ℤ∕2, and the same is true in the following cases:

Remark 4.1.

(i) Let us start by noticing that for every additive generator 𝑎 ⊗ 𝑏 ∈ 𝐴ℤ∕2 ⊗𝑁 𝐴
ℤ∕2, we have

that

2𝜇(𝑎 ⊗ 𝑏) ⊗ 1 = (2𝑎𝑏) ⊗ 1 = 𝑎 ⊗ 2𝑏 = 2(𝑎 ⊗ 𝑏),
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 37 of 68

and therefore, all the elements of the kernel of 𝜇 are 2-torsion (where the second equality
follows from the fact that 2𝑏 ⊗ 1 − 1 ⊗ 2𝑏 belongs to the ideal defining the quotient𝐴ℤ∕2 ⊗𝑁

𝐴ℤ∕2 as remarked above). Thus, 𝜇 is an isomorphism when 𝐴 is 2-torsion free, for example,
for fields of odd characteristic.

(ii) There is a section for 𝜇∶ 𝐴ℤ∕2 ⊗𝑁 𝐴
ℤ∕2 → 𝐴ℤ∕2, which sends 𝑎 to 𝑎 ⊗ 1. Therefore, 𝜇 is

always surjective, and it is an isomorphism if and only if this section is itself surjective.
(iii) If themultiplicationmap𝐴ℤ∕2 ⊗ 𝐴ℤ∕2 → 𝐴ℤ∕2 is an isomorphism, for example, for𝐴 = ℤ∕𝑛

for any integer 𝑛, then so is 𝜇.
(iv) If the involution of 𝐴 is trivial and the modulo 2 reduction of 𝐴 is semi-perfect (i.e. the mod

2 Frobenius is surjective), then every element 𝑎 ∈ 𝐴 can be written as 𝑎 = 𝑐2 + 2𝑑 for some
𝑐, 𝑑 ∈ 𝐴. Then, we can write a generator of 𝐴⊗𝑁 𝐴 as

𝑎 ⊗ 𝑏 = (𝑐2 + 2𝑑) ⊗ 𝑏 = 1 ⊗ (𝑐2 + 2𝑑)𝑏 = 1 ⊗ 𝑎𝑏,

which shows that the section 𝐴 → 𝐴⊗𝑁 𝐴 is surjective. This example covers the case of
perfect fields of characteristic 2.

(v) If the involution of 𝐴 is not trivial, a similar argument shows that the section 𝐴ℤ∕2 →

𝐴ℤ∕2 ⊗𝑁 𝐴
ℤ∕2 is surjective if every element 𝑎 ∈ 𝐴ℤ∕2 can be written as 𝑎 = 𝑐𝑐 + 𝑑 + 𝑑 for

some 𝑐, 𝑑 ∈ 𝐴, or in other words if the composite

𝐴
𝑁
⟶𝐴ℤ∕2 ↠ 𝐴ℤ∕2∕ tran

is surjective, where 𝑁(𝑎) = 𝑎𝑎 and tran(𝑎) = 𝑎 + 𝑎.
(vi) Suppose that there exists an element 𝑒 ∈ 𝐴with the property that 𝑒 + 𝑤(𝑒) = 1, for example,

if 2 ∈ 𝐴 is a unit. By Frobenius reciprocity, this is equivalent to the surjectivity of tran∶ 𝐴 →

𝐴ℤ∕2, since any element 𝑥 ∈ 𝐴ℤ∕2 can be written as

𝑥 = 1 ⋅ 𝑥 = tran(𝑒) ⋅ 𝑥 = tran(𝑒 res(𝑥))

(explicitly, 𝑥 = 𝑒𝑥 + 𝑤(𝑒𝑥)). Thus, this condition is equivalent to the vanishing of 𝐻𝐴𝜙ℤ∕2.
By the previous item, 𝜇 is an isomorphism.

An example where the multiplication map is not an isomorphism is provided by the group ring
ℤ[𝐶2] with the trivial involution, where

ℤ[𝐶2]
ℤ∕2 ⊗𝑁 ℤ[𝐶2]

ℤ∕2 ≅ ℤ[𝐶2] ⊕ (ℤ∕2)⊕2

is not isomorphic to ℤ[𝐶2]ℤ∕2 (see [10, Section 5.2]).

If the multiplication 𝜇∶ 𝐴ℤ∕2 ⊗𝑁 𝐴
ℤ∕2 → 𝐴ℤ∕2 is an isomorphism, it follows from [10, The-

orem 5.1] that the ℤ∕2-Mackey functor 𝜋
0
THR(𝐴) is the fixed-points Mackey functor of the

ring with involution 𝐴. On the other hand, if the prime 𝑝 odd, we show in [11, Theorem 3.7]
that 𝜋0 THR(𝐴)

𝐷𝑝𝑛 is also a ring of Witt vectors, and combining these results, we obtain a ring
isomorphism

𝜋0 THR(𝐴)
𝐷𝑝𝑛 ≅ 𝑊𝑛+1(𝐴

ℤ∕2 ⊗𝑁 𝐴
ℤ∕2; 𝑝) ≅ 𝑊𝑛+1(𝐴; 𝑝),

for every odd prime 𝑝 and commutative ring 𝐴 satisfying any of the assumptions of Remark 4.1.
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38 of 68 DOTTO et al.

In the next section, we use this last isomorphism to determine TCR of perfect fields of odd
characteristic. In the subsequent ones, we examine the relationship between 𝜋0 THR(𝐴)𝐷2𝑛 and
the Witt vectors for the prime 2, and determine TCR of perfect fields of characteristic 2.

4.1 TCR of perfect fields of odd characteristic

Let 𝑝 be an odd prime, and𝐴 a commutative ring with involution. We let𝑊(𝐴; 𝑝) denote the ring
of 𝑝-typical Witt vectors of 𝐴. By Remark 4.1 and [11, Theorem D], there is an isomorphism of
ℤ∕2-Mackey Functors

𝜋
0
TRR(𝐴; 𝑝) ≅ 𝑊(𝐴; 𝑝),

between the components of TRR(𝐴; 𝑝) and the fixed-points Mackey functor of 𝑊(𝐴; 𝑝) with
the involution induced functorially by the involution of 𝐴. In particular, 𝜋ℤ∕2

0
TRR(𝐴; 𝑝) ≅

𝑊(𝐴; 𝑝)ℤ∕2 = 𝑊(𝐴ℤ∕2; 𝑝), where the latter holds since the ℤ∕2 action is given coordinate-wise
and fixed points commute with products.

Proposition 4.2. Let 𝑝 be an odd prime, and 𝑘 a perfect field of characteristic 𝑝 with involution.
Then there are equivalences of genuine ℤ∕2-spectra

TRR(𝑘; 𝑝) ≃ 𝐻𝑊(𝑘; 𝑝)

and

TCR(𝑘; 𝑝) ≃ 𝐻ℤ𝑝 ⊕ Σ−1𝐻coker(1 − 𝐹),

where 𝐹∶ 𝑊(𝑘; 𝑝) → 𝑊(𝑘; 𝑝) is the Witt vector Frobenius.

Proof. The 0th Postnikov section provides a map of ℤ∕2-equivariant spectra

TRR(𝑘; 𝑝)⟶ 𝐻𝑊(𝑘; 𝑝).

This map is an equivalence on underlying spectra by [18, Theorem 5.5], and it is therefore suffi-
cient to prove that it is an equivalence on geometric fixed points. The spectrum TRR(𝑘; 𝑝)ℤ∕2 has
the structure of a ring spectrum. Moreover, there is an isomorphism 𝜋0(TRR(𝑘; 𝑝)

ℤ∕2) ≅ 𝑊(𝑘; 𝑝)

and therefore 2 = tran(1) is a unit in 𝜋0(TRR(𝑘; 𝑝)ℤ∕2), see [11, Corollary 3.14]. Since the transfers
vanish in the geometric fixed points, we have that 2 is both a unit and zero in 𝜋0(TRR(𝑘; 𝑝)𝜙ℤ∕2),
and therefore, 𝜋0(TRR(𝑘; 𝑝)𝜙ℤ∕2) is the zero ring. Since TRR(𝑘; 𝑝)𝜙ℤ∕2 is a ring spectrum, its
homotopy groups are a module over the zero ring, and therefore, it must be contractible.
According to Definition 1.5 and the previous paragraph, the ℤ∕2-spectrum TCR(𝑘; 𝑝) is

equivalent to the equaliser of ℤ∕2-spectra

The kernel of id−𝐹∶ 𝑊(𝑘; 𝑝) → 𝑊(𝑘; 𝑝) is equal to𝑊(𝔽𝑝; 𝑝)which is isomorphic toℤ𝑝, and this
completes the proof. □
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 39 of 68

4.2 TCR of perfect fields of characteristic 2

The calculation of TCR(𝑘; 2) for a perfect field of characteristic 2 is more involved than the odd
primary case. This is because the geometric fixed-points spectrum of TRR(𝑘; 2) is not trivial, and
thus, we cannot directly apply the argument of Proposition 4.2. The first step is to understand the
geometric fixed points of TRR𝑛(𝑘; 2), using the formula of Theorem 2.7.

4.2.1 The geometric fixed points of TRR𝑛 for perfect fields of characteristic 2

Let us fix a perfect field 𝑘 of characteristic 2, and let us compute additively TRR𝑛(𝑘; 2)𝜙ℤ∕2,
TRR(𝑘; 2)𝜙ℤ∕2 andTCR(𝑘; 2)𝜙ℤ∕2 using Theorem2.7.We let 𝑘 denote the constantMackey functor
of 𝑘.
By splitting 𝐻𝑘𝜙ℤ∕2 using the Frobenius𝐻𝑘-module structure, we obtain a decomposition

𝐻𝑘𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ𝑛𝐻𝑘.

This uses that 𝑘 is perfect and hence 𝑘 considered as a 𝑘-module via the Frobenius is again a
1-dimensional 𝑘-vector space. This induces a decomposition of the corresponding THR spectrum,
which we analyse in greater generality in the following situation. Let 𝐴 be a ring spectrum with
anti-involution, and suppose that, as an 𝐴-module, 𝐴𝜙ℤ∕2 with its Frobenius module structure
splits as a sum of 𝐴-modules

𝐴𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ𝑛𝐻(𝜋𝑛𝐴
𝜙ℤ∕2),

for some 𝐴-module structure on 𝐻(𝜋𝑛𝐴
𝜙ℤ∕2). Then, by expressing THR(𝐴)𝜙ℤ∕2 as a tensor

product, we immediately obtain an equivalence of spectra

THR(𝐴)𝜙ℤ∕2 ≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2 ≃

⨁
(𝑛,𝑚)
𝑛,𝑚⩾0

Σ𝑛+𝑚𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2).

In the following lemma, we further identify the 𝐶2-structure induced by the Weyl group action
and the maps required for calculating TRR and TCR of Theorem 2.7.

Lemma 4.3. Let 𝐴 be a ring spectrum with anti-involution with a splitting of 𝐴-modules

𝐴𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ𝑛𝐻(𝜋𝑛𝐴
𝜙ℤ∕2).

Then, there is an equivalence of 𝐶2-spectra

THR(𝐴)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ𝑛𝜌𝐴 ⊗
𝑁
𝐶2
𝑒 𝐴

𝑁
𝐶2
𝑒 (𝐻(𝜋𝑛𝐴

𝜙ℤ∕2))⊕

⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ𝑛+𝑚(𝐶2)+ ⊗ (𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2)).
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40 of 68 DOTTO et al.

In particular, the 𝐶2-fixed-points spectrum decomposes as

(THR(𝐴)𝜙ℤ∕2)𝐶2 ≃
⨁
𝑛⩾0

(Σ𝑛𝜌𝐴 ⊗
𝑁
𝐶2
𝑒 𝐴

𝑁
𝐶2
𝑒 (𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)))𝐶2⊕

⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ𝑛+𝑚𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2).

Under these decompositions, the map 𝑟 identifies with the map which kills the (𝑛,𝑚)-summands,
and on the 𝑛-summand is given by the composite

(Σ𝑛𝜌𝐴 ⊗
𝑁
𝐶2
𝑒 𝐴

𝑁
𝐶2
𝑒 (𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)))𝐶2 → (Σ𝑛𝜌𝐴 ⊗
𝑁
𝐶2
𝑒 𝐴

𝑁
𝐶2
𝑒 (𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)))𝜙𝐶2

≃ (Σ𝑛𝐴𝜙𝐶2 ⊗𝐴 𝐻(𝜋𝑛𝐴
𝜙ℤ∕2)) ≃ (Σ𝑛(

⨁
𝑚⩾0

Σ𝑚𝐻(𝜋𝑚𝐴
𝜙ℤ∕2)) ⊗𝐴 𝐻(𝜋𝑛𝐴

𝜙ℤ∕2))

≃
⨁
𝑚⩾0

Σ𝑛+𝑚𝐻(𝜋𝑚𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)

of the canonical map, the monoidality of the geometric fixed points combined with the diagonal
equivalence, and a further application of the splitting of 𝐴𝜙ℤ∕2.
The map 𝑓 identifies with the composite

⨁
𝑛⩾0

(Σ𝑛𝜌𝐴 ⊗
𝑁
𝐶2
𝑒 𝐴

𝑁
𝐶2
𝑒 (𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)))𝐶2 ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ𝑛+𝑚𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2)
res

𝐶2
𝑒 ⊕Δ

\\\\\\\\→

⨁
𝑛⩾0

Σ2𝑛𝐴 ⊗𝐴⊗𝐴 (𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗ 𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)) ⊕
⨁
(𝑛,𝑚)

0⩽𝑛,𝑚,𝑛≠𝑚

Σ𝑛+𝑚𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2)

≃
⨁
(𝑛,𝑚)
0⩽𝑛,𝑚

Σ𝑛+𝑚𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗𝐴 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2),

where res𝐶2𝑒 is the forgetful map, and Δ maps the summand (𝑛,𝑚) diagonally into the sum of the
summands (𝑛,𝑚) and (𝑚, 𝑛).

Proof. Byusing inductively that for𝐴-modules𝑋 and𝑌, there is an equivalence of𝑁𝐶2
𝑒 𝐴-modules

𝑁
𝐶2
𝑒 (𝑋 ⊕ 𝑌) ≃ 𝑁

𝐶2
𝑒 (𝑋) ⊕ 𝑁

𝐶2
𝑒 (𝑌) ⊕ ((𝐶2)+ ⊗ 𝑋 ⊗ 𝑌),

we find that the 𝐶2-norm of 𝐴𝜙ℤ∕2 decomposes as an 𝑁𝐶2
𝑒 𝐴-module as

𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2) ≃
⨁
𝑛⩾0

Σ𝑛𝜌𝑁
𝐶2
𝑒 (𝐻(𝜋𝑛𝐴

𝜙ℤ∕2)) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ𝑛+𝑚(𝐶2)+ ⊗ (𝐻(𝜋𝑛𝐴
𝜙ℤ∕2) ⊗ 𝐻(𝜋𝑚𝐴

𝜙ℤ∕2)).

By tensoring with 𝐴 over 𝑁𝐶2
𝑒 𝐴 and applying the formula of Lemma 1.2, we obtain the first

equivalence of the lemma.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 41 of 68

Let us now identify 𝑟. Recall that by Example 2.6, the map 𝑟 is the composite

(𝐴 ⊗
(𝑁

𝐶2
𝑒 𝐴)

(𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2)))𝐶2 → (𝐴 ⊗
(𝑁

𝐶2
𝑒 𝐴)

(𝑁
𝐶2
𝑒 (𝐴

𝜙ℤ∕2)))𝜙𝐶2 ≃ 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2

of the canonical map and themonoidal structure of the geometric fixed points combined with the
diagonal equivalence. The first map corresponds with the first map of the description of 𝑟 in the
lemma, by naturality with respect to maps of 𝐶2-spectra and because the geometric fixed points
vanish on the induced summands. Thus, we need to show that the outer diagram

commutes, where the horizontal arrows are induced by the splitting of 𝐴𝜙𝐶2 , the vertical arrows
in the first row by the monoidality of geometric fixed points and the vertical arrows in the second
row by the diagonal. The top square commutes by naturality of the monoidal structure of the
geometric fixed points. For the lower square, we observe that its nth component is obtained by
tensoring the square of 𝐴-modules

where the horizontal arrows are induced by the nth component of the splitting of 𝐴𝜙𝐶2 , and the
top row is regarded as a map of 𝐴-modules via the diagonal 𝛿∶ 𝐴

≃
\→ (𝑁

𝐶2
𝑒 𝐴)

𝜙𝐶2 . This commutes
by naturality of 𝛿.
The description of 𝑓 is immediate by naturality of the forgetful map from the fixed points to the

underlying spectrum, and the fact that for induced spectra, thismap is the diagonal inclusion. □

Lemma 4.4. There is an equivalence of genuine 𝐶2-equivariant spectra

THR(𝑘)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ𝑛𝜌𝐻𝑘 ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ𝑛+𝑚𝐶2+ ⊗ 𝐻𝑘,

where 𝜌 is the regular representation of 𝐶2. In particular, there is an equivalence of spectra

(THR(𝑘)𝜙ℤ∕2)𝐶2 ≃ (
⨁
𝑛⩾0

⨁
0⩽𝑗⩽𝑛

Σ𝑛+𝑗𝐻𝑘) ⊕ (
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ𝑛+𝑚𝐻𝑘).
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42 of 68 DOTTO et al.

Proof. Recall that the geometric fixed points of𝐻𝑘 decompose as

𝐻𝑘𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ𝑛𝐻𝑘.

The description of THR(𝑘; 2)𝜙ℤ∕2 therefore follows from Lemma 4.3, and the equivalence

𝐻𝑘
≃
⟶𝐻𝑘 ⊗

𝑁
𝐶2
𝑒 (𝐻𝑘)

(𝑁
𝐶2
𝑒 (𝐻𝑘))

given by tensoring with the unit of the norm of𝐻𝑘.
Now let us identify the fixed points. Notice that Σ𝑛𝜌𝐻𝑘 is a module over 𝐻𝑘, and therefore,

its fixed-points spectrum is a wedge of Eilenberg–MacLane spectra. Moreover, a straightforward
calculation in Bredon homology shows that

𝜋
𝐶2
𝑖
(Σ𝑛𝜌𝐻𝑘) = 𝐻

𝐶2
𝑖
(𝑆𝑛𝜌; 𝑘) ≅ 𝑘

when 𝑛 ⩽ 𝑖 ⩽ 2𝑛, and 𝜋𝐶2
𝑖
(Σ𝑛𝜌𝐻𝑘) = 0 otherwise. □

In the following proposition, the summands are arranged exactly as in Lemma4.4. In particular,
the summands indexed on (𝑛,𝑚) with 𝑛 < 𝑚 in the source come from the induced summands.
Similarly, the summands indexed on (𝑛,𝑚) with 𝑛 ≠ 𝑚 in the target correspond to the induced
summands.

Proposition 4.5. For any perfect field 𝑘 of characteristic 2, the maps 𝑟, 𝑓∶ (THR(𝑘)𝜙ℤ∕2)
𝐶2
→

THR(𝑘)𝜙ℤ∕2 induce on 𝜋∗ the maps

𝑟, 𝑓∶
⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=∗

𝑘 →
⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=∗

𝑘,

where 𝑟 kills the (𝑛,𝑚)-summands with 𝑛 < 𝑚 and maps the (𝑛,𝑚)-summands with 𝑚 ⩽ 𝑛 to
the (𝑛,𝑚)-summand via the inverse Frobenius of 𝑘, and 𝑓 kills the (𝑛,𝑚)-summands with 𝑚 < 𝑛,
includes the summand (𝑛, 𝑛) and embeds diagonally the (𝑛,𝑚)-summands with 𝑛 < 𝑚 into the sum
of the summands (𝑛,𝑚) and (𝑚, 𝑛).

Proof. Themap 𝑟 vanishes on the summands (𝑛,𝑚)with 𝑛 < 𝑚 by Lemma 4.3. The identification
of 𝑟 on the other summands follows from observing that the canonical map

𝜋
𝐶2
∗ (Σ

𝑛𝜌𝐻𝑘) → 𝜋∗((Σ
𝑛𝜌𝐻𝑘)𝜙𝐶2) ≅ 𝜋∗(Σ

𝑛(𝐻𝑘)𝜙𝐶2) ≅ 𝜋∗(
⨁
𝑙⩾0

Σ𝑛+𝑙𝐻𝑘)

induces the inverse Frobenius of 𝑘 in degrees 𝑛 ⩽∗⩽ 2𝑛 (cf. with [27, Example IV.1.2]).
Similarly, 𝑓 is the diagonal on the summands (𝑛,𝑚) with 𝑛 < 𝑚 by Lemma 4.3. The

identification on the other summands follows from the fact that the restriction map

res
𝐶2
𝑒 ∶ 𝐻

𝐶2
∗ (𝑆

𝑛𝜌; 𝑘) → 𝐻∗(𝑆
2𝑛; 𝑘)

is the identity only in degree ∗= 2𝑛, and zero otherwise. □
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 43 of 68

Remark 4.6. From Proposition 4.5 and Theorem 2.14, we obtain that

𝜋∗ TCR(𝑘; 2)
𝜙ℤ∕2 =

⎧⎪⎨⎪⎩
𝔽2 ∗= 2𝑙 ⩾ 0

𝑘∕⟨𝑥 + 𝑥2| 𝑥 ∈ 𝑘⟩ ∗= 2𝑙 − 1 ⩾ −1

0 ∗⩽ −2.

Indeed, by 4.5, the map 𝑟 − 𝑓 is an isomorphism in 𝜋∗ when restricted and corestricted to the
summandswith 𝑛 ≠ 𝑚. It is therefore an isomorphism in odd degrees, and its long exact sequence
decomposes into exact sequences

0 → 𝜋2𝑙 TCR(𝑘; 2)
𝜙ℤ∕2 →

⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=2𝑙

𝑘
𝑟−𝑓
\\\\→

⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=2𝑙

𝑘 → 𝜋2𝑙−1 TCR(𝑘; 2)
𝜙ℤ∕2 → 0

for every 𝑙 ⩾ 0. Again, by Proposition 4.5, the kernel of 𝑟 − 𝑓 is the kernel of id−
√
(−)∶ 𝑘 → 𝑘.

Since 𝑘 is a field, this is 𝔽2. Similarly, the cokernel of 𝑟 − 𝑓 is the cokernel of id−
√
(−), which

since 𝑘 is perfect it is also the cokernel of id+(−)2.
We also remark that these groups agree with the homotopy groups of the cofibre L𝑛(𝑘) of the

canonical map

L𝑞(𝑘)⟶ L(Mod𝜔𝐴,Ϙ
g𝑠
𝑘
)

induced by the symmetrisation map from the quadratic to the genuine Poincaré structure, as
defined in [6–8]. Indeed, the even homotopy groups of L𝑞(𝑘) are the Witt groups of quadratic
forms over 𝑘, and since 𝑘 is a field, the odd groups vanish [29, Proposition 22.7]. The map above
is an isomorphism in degrees lass than or equal to −3 and surjective in degree −2 by [7, Theo-
rem 5], and therefore, the cofibre L𝑛(𝑘) is (−1)-connected. In degrees greater or equal to −1, the
homotopy groups of the target are the symmetricWitt groups of 𝑘 in even degrees and zero in odd
degrees, by [7, Corollary 1.3.5]. The map is the symmetrisation map from quadratic to symmet-
ric Witt groups, which is zero since 𝑘 has characteristic 2. Thus, the homotopy groups of L𝑛(𝑘)
are the symmetric Witt groups of 𝑘 in even non-negative degrees, and the quadratic ones in odd
non-negative degrees. The (−1)st homotopy group of L𝑛(𝑘) is the kernel of the symmetrisation
map, and therefore again the quadratic Witt group. The quadratic and symmetric Witt groups of
a perfect field of characteristic 2 are, respectively, 𝑘∕⟨𝑥 + 𝑥2| 𝑥 ∈ 𝑘⟩ and 𝔽2, see, for example, [22,
Theorem (1)].

In order to understand the full equivariant homotopy type of TCR(𝑘; 2) will need to calculate
the homotopy groups of TRR(𝑘; 2)𝜙ℤ∕2.

Theorem 4.7. Let 𝑘 be a perfect field of characteristic 2. For any 𝑙 ⩾ 1, there is an isomorphism

𝜋∗TRR
𝑙(𝑘; 2)

𝜙ℤ∕2
≅

⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=∗

𝑘.

The maps 𝑅, 𝐹∶ TRR𝑙+1(𝑘; 2)𝜙ℤ∕2 → TRR𝑙(𝑘; 2)
𝜙ℤ∕2 and the Weyl action are described on homo-

topy groups as follows. Themap𝑅 kills the (𝑛,𝑚)-summandswith𝑛 ≠ 𝑚 and is the inverse Frobenius
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44 of 68 DOTTO et al.

of 𝑘 on the summands (𝑛, 𝑛). The map 𝐹 kills the (𝑛,𝑚)-summands with𝑚 < 𝑛, is the identity of 𝑘
on the summands (𝑛, 𝑛) and embeds the (𝑛,𝑚)-summands with 𝑛 < 𝑚 diagonally into the sum of
the (𝑛,𝑚) and (𝑚, 𝑛)-summands. The Weyl action of 𝜎𝑙 swaps the (𝑛,𝑚)-summand and the (𝑚, 𝑛)-
summand for all 𝑛,𝑚 ⩾ 0. In particular, the homotopy groups and the maps are all independent
of 𝑙.

Proof. We prove the theorem by induction on 𝑙, using the pullbacks of Theorem 2.7. For
𝑛 = 1, the pullback of Theorem 2.7 implies that TRR2(𝑘; 2)𝜙ℤ∕2 is equivalent to the pullback
(𝑇𝜙)𝐶2×𝑇𝜙(𝑇

𝜙)𝐶2 (since the right vertical map is the diagonal for 𝑛 = 1 in Theorem 2.7). Consider
the Mayer–Vietoris sequence associated to (𝑇𝜙)𝐶2×𝑇𝜙(𝑇𝜙)𝐶2 :

⋯
𝜕
⟶ 𝜋∗TRR

2(𝑘; 2)
𝜙ℤ∕2

⟶ (
⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=∗

𝑘) ⊕ (
⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=∗

𝑘)
𝑟−𝜎1𝑟
⟶

⨁
(𝑛,𝑚)

𝑛,𝑚⩾0,𝑛+𝑚=∗

𝑘
𝜕
⟶ …,

where 𝑟 is determined in Proposition 4.5. Since 𝑟 − 𝜎1𝑟 is clearly surjective on each
homotopy group, the Mayer–Vietoris sequence decomposes into short exact sequences and
𝜋∗TRR

2(𝑘; 2)
𝜙ℤ∕2 is the kernel of 𝑟 − 𝜎1𝑟. This kernel consists of the pairs of finite sequences

(𝑥, 𝑦) indexed on the pairs of non-negative integers (𝑛,𝑚), such that

0 = 𝑟(𝑥)(𝑛,𝑚) = (𝜎1𝑟(𝑦))(𝑛,𝑚) = 𝑟(𝑦)(𝑚,𝑛) =
√
𝑦(𝑚,𝑛), for 𝑛 < 𝑚,√

𝑥(𝑛,𝑚) = 𝑟(𝑥)(𝑛,𝑚) = (𝜎1𝑟(𝑦))(𝑛,𝑚)) = 𝑟(𝑦)(𝑚,𝑛) = 0, for 𝑛 > 𝑚,√
𝑥(𝑛,𝑛) = 𝑟(𝑥)(𝑛,𝑛) = (𝜎1𝑟(𝑦))(𝑛,𝑛) = 𝑟(𝑦)(𝑛,𝑛) =

√
𝑦(𝑛,𝑛),

where
√
(−) denotes the inverse of the Frobenius (−)2 ∶ 𝑘 → 𝑘. These are the pairs (𝑥, 𝑦)

where 𝑥(𝑛,𝑚) = 0 and 𝑦(𝑛,𝑚) = 0 for 𝑛 > 𝑚, and 𝑥(𝑛,𝑛) = 𝑦(𝑛,𝑛), which gives the description
of the homotopy groups of TRR2(𝑘; 2)𝜙ℤ∕2. The maps 𝑅, 𝐹∶ TRR2(𝑘; 2)𝜙ℤ∕2 → THR(𝑘; 2)𝜙ℤ∕2

are described in Theorem 2.7 and send such a pair (𝑥, 𝑦) to 𝑟(𝑥) and 𝑓(𝑥), respec-
tively, and are therefore the maps of Theorem 4.7. The Weyl action flips 𝑥 and 𝑦 by
Theorem 2.7.
Now let 𝑙 ⩾ 2 and suppose inductively that the decompositionholds for𝜋∗TRRℎ(𝑘; 2)

𝜙ℤ∕2 for all
ℎ ⩽ 𝑙 and that themaps𝑅, 𝐹∶ TRRℎ(𝑘; 2)𝜙ℤ∕2 → TRRℎ−1(𝑘; 2)

𝜙ℤ∕2 and 𝜎ℎ are given in homotopy
groups by the formulas of 4.7. We will show that the same holds for 𝜋∗TRR𝑙+1(𝑘; 2)

𝜙ℤ∕2 and the
maps 𝑅, 𝐹∶ TRR𝑙+1(𝑘; 2)𝜙ℤ∕2 → TRR𝑙(𝑘; 2)

𝜙ℤ∕2 and 𝜎𝑙+1. The Mayer–Vietoris sequence of the
pullback square of Theorem 2.7 is then (we recall 𝜎1𝐹 = 𝐹, and that 𝑛,𝑚 ⩾ 0)

By the inductive assumption, the iterated map 𝐹𝑙−1 is, in fact, equal to a single map 𝐹. The right
horizontal map then sends a triple (𝑥, 𝑦, 𝑧) of finite sequences indexed on the pairs of integers
𝑛,𝑚 ⩾ 0 to the pair of sequences
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 45 of 68

(𝑟(𝑥) − 𝐹(𝑧))(𝑛,𝑚) =

⎧⎪⎨⎪⎩
√
𝑥(𝑛,𝑚) − 𝑧(𝑚,𝑛), 𝑛 > 𝑚

−𝑧(𝑛,𝑚), 𝑛 < 𝑚√
𝑥(𝑛,𝑛) − 𝑧(𝑛,𝑛), 𝑛 = 𝑚

(𝜎1𝑟(𝑦) − 𝐹𝜎𝑙(𝑧))(𝑛,𝑚) =

⎧⎪⎨⎪⎩
−𝑧(𝑛,𝑚), 𝑛 > 𝑚√
𝑦(𝑚,𝑛) − 𝑧(𝑚,𝑛), 𝑛 < 𝑚√
𝑦(𝑛,𝑛) − 𝑧(𝑛,𝑛), 𝑛 = 𝑚.

This map is clearly surjective for all ∗, and therefore, 𝜋∗TRR𝑙+1(𝑘; 2)
𝜙ℤ∕2 is isomorphic to its

kernel. This consists of those triples (𝑥, 𝑦, 𝑧) such that𝑥(𝑛,𝑚) = 𝑦(𝑛,𝑚) = 0 for𝑛 > 𝑚 and 𝑧(𝑛,𝑚) = 0,
for 𝑛 ≠ 𝑚, and

√
𝑥(𝑛,𝑛) =

√
𝑦(𝑛,𝑛) = 𝑧(𝑛,𝑛), which is isomorphic to the direct sum on all pairs of

natural numbers by setting𝑤(𝑛,𝑚) = 𝑦(𝑚,𝑛) for 𝑛 > 𝑚, and𝑤(𝑛,𝑚) = 𝑥(𝑛,𝑚), for 𝑛 < 𝑚, and𝑤(𝑛,𝑛) =
𝑥(𝑛,𝑛). Let us now describe 𝑅 and 𝐹 under these isomorphisms. By Theorem 2.7, the map 𝑅 sends
(𝑥, 𝑦, 𝑧) to 𝑧, and therefore, under the isomorphism above,

𝑅(𝑤)(𝑛,𝑚) =

{
0, 𝑛 ≠ 𝑚√
𝑤(𝑛,𝑛), 𝑛 = 𝑚.

Again by Theorem 2.7, the map 𝐹 sends (𝑥, 𝑦, 𝑧) to (𝑥, 𝑥, 𝐹(𝑧)). Thus, under the identification
above,

𝐹(𝑤)(𝑛,𝑚) =

⎧⎪⎨⎪⎩
𝑥(𝑚,𝑛) = 𝑤(𝑚,𝑛), 𝑛 > 𝑚

𝑥(𝑛,𝑚) = 𝑤(𝑛,𝑚), 𝑛 < 𝑚

𝑥(𝑛,𝑛) = 𝑤(𝑛,𝑛), 𝑛 = 𝑚.

Finally, the Weyl action 𝜎𝑙+1 sends (𝑥, 𝑦, 𝑧) to (𝑦, 𝑥, 𝜎𝑙(𝑧)), and under the isomorphism above,
𝜎𝑙+1(𝑤)(𝑛,𝑚) = 𝑤(𝑚,𝑛). □

Corollary 4.8. Let 𝑘 be a perfect field of characteristic 2. There is a natural isomorphism

𝜋∗TRR(𝑘; 2)
𝜙ℤ∕2 ≅

{
𝑘 if ∗ is even
0 otherwise,

and the Frobenius endomorphism 𝐹∶ TRR(𝑘; 2)𝜙ℤ∕2 → TRR(𝑘; 2)𝜙ℤ∕2 is the Frobenius of 𝑘 on
homotopy groups.

Proof. By Theorem 4.7, the map 𝑅 on homotopy groups is the map⨁
(𝑛,𝑚)
𝑛+𝑚=∗

𝑘 →
⨁
(𝑛,𝑚)
𝑛+𝑚=∗

𝑘

(where 𝑛,𝑚 ⩾ 0) which is the inverse Frobenius on the summands (𝑛, 𝑛), and zero everywhere
else. It is an idempotent up to isomorphism, and therefore, it satisfies theMittag–Leffler condition.
It follows that

𝜋∗ TRR(𝑘; 2)
𝜙ℤ∕2 ≅ lim

𝑅
𝜋∗ TRR

𝑙(𝑘; 2)𝜙ℤ∕2 ≅ lim
𝑅

⨁
(𝑛,𝑚)
𝑛+𝑚=∗

𝑘 ≅
⨁
2𝑛=∗

𝑘,
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46 of 68 DOTTO et al.

where the last isomorphism is induced by the projection onto the first component of the limit and
onto the summand 2𝑛 =∗when ∗ is even, and it is zero otherwise. After composing with the shift
automorphism of the limit, 𝑅 becomes by definition the identity, and 𝐹 the Frobenius of 𝑘. □

4.2.2 The components of TRR and the ring of Witt vectors of perfect fields

As we will show in Remark 4.10 below, the ring 𝜋0 THR(𝐴)𝐷2𝑛 is not necessarily the ring of Witt
vectors of 𝜋0 THR(𝐴)ℤ∕2, not even when the latter is isomorphic to 𝐴. However, this is still the
case for perfect fields, as we show now.

Theorem 4.9. Let 𝑘 be a perfect field of characteristic 2, equipped with the trivial involution. Then,
for every 𝑛 ⩾ 0, the restriction map

res
𝐷2𝑛
𝐶2𝑛

∶ 𝜋0 THR(𝑘)
𝐷2𝑛 ⟶ 𝜋0 THH(𝑘)

𝐶2𝑛 ≅ 𝑊𝑛+1(𝑘; 2)

is an isomorphism, and the Verschiebung, Frobenius, and restriction maps of the Witt vectors
correspond, respectively, to tran𝐷2𝑛

𝐷2𝑛−1
, res𝐷2𝑛

𝐷2𝑛−1
, and 𝑅.

Proof. Let us start with a commutative ring with involution 𝐴, and follow the strategy of [18] and
[11] of analysing the long exact sequence induced on homotopy groups by the fibre sequence

𝐸+ ⊗𝐶2𝑛
THR(𝐴)⟶ THR(𝐴)𝐶2𝑛 ⟶ THR(𝐴)𝐶2𝑛−1 .

The components of the fixed points of the fibre are then calculated by the colimit

𝜋0(𝐸+ ⊗𝐶2𝑛
THR(𝐴))ℤ∕2 ≅ colim



𝜋
0
THR(𝐴),

where  is the full subcategory of the orbit category of 𝐷2𝑛 generated by the reflections and
the trivial group (this follows, for example from the fact that 𝐸 is the colimit over  of the
functor that takes 𝐷2𝑛∕𝐻 to the discrete space 𝐷2𝑛∕𝐻, see, for example [24, Lemma 2.2]). The
crucial difference between 2 and the odd primes is that for the prime 2, the category  has two
components, generated by the distinct conjugacy classes of the reflections 𝜏 and 𝜎𝜏, where 𝜎 is
the generator of the cyclic group 𝐶2𝑛 . Therefore, the colimit above is isomorphic to the pushout
of abelian groups

𝜋0(𝐸+ ⊗𝐶2𝑛
THR(𝐴))ℤ∕2 ≅ colim



𝜋
0
THR(𝐴) ≅ (𝜋0 THR(𝐴)

ℤ∕2)𝐶2 ⊕𝐴 (𝜋0 THR(𝐴)
ℤ∕2)𝐶2

along the transfer maps tranℤ∕2𝑒 ∶ 𝐴 → (𝜋0 THR(𝐴)
ℤ∕2)𝐶2 , where the coinvariants are taken

with respect to the action of the Weyl group 𝐶2. Under this identification, the transfer map to
𝜋0 THR(𝐴)

𝐷2𝑛 is the transfer tran𝐷2𝑛
ℤ∕2

on the first summand, and 𝜎𝑛+1 tran
𝐷2𝑛

ℤ∕2
on the second sum-

mand, where 𝜎𝑛+1 is the action of the generator of the Weyl group. The corresponding long exact
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 47 of 68

sequence on homotopy groups is then

Let us now compute the boundary map of this sequence in the case where 𝑘 is a perfect field of
characteristic 2 with the trivial involution. Since 𝑘 is a field of characteristic 2, the isomorphism
of [10, Corollary 5.2] is

𝜋0 THR(𝑘)
ℤ∕2 ≅ 𝑘 ⊗𝑆 𝑘,

where 𝑆 ⊂ 𝑘 is the subfield of squares. Moreover, since 𝑘 is perfect, the restriction map

𝜋0 THR(𝑘)
ℤ∕2 ≅ 𝑘 ⊗𝑆 𝑘⟶ 𝑘 ≅ 𝜋0 THH(𝑘),

which is induced by the multiplication map of 𝑘, is an isomorphism. Since this map is an isomor-
phism and is Weyl equivariant, and the action of the Weyl group on 𝑘 is trivial, the Weyl action
on the source must also be trivial. The transfer map

is multiplication by 2 by the double-coset formula, and therefore, zero. Thus, the long exact
sequence above becomes

Now suppose inductively that the restriction map res∶ 𝜋0 THR(𝑘)𝐷2𝑛−1 → 𝜋0 THR(𝑘)
𝐶2𝑛−1 is an

isomorphism, and identify the target with𝑊𝑛(𝑘; 2) by the isomorphism of [18, TheoremF]. Under
this isomorphism, the maps 𝑅, 𝑉 and 𝐹 on 𝜋0 of the cyclic fixed points of THH correspond to the
homonymous operators on theWitt vectors by [18, Theorem 3.3]. Thus, the restrictionmap defines
a commutative diagram with exact rows

where the right vertical map is an isomorphism. It is therefore sufficient to show that the image of
𝜕 is equal to the kernel of (1,1), which is the diagonal Δ ⊂ 𝑘 ⊕ 𝑘. Since the connecting homomor-
phism of the bottom sequence is zero (see [18, Proposition 3.3]), we know at least that the image of
𝜕 is included inΔ, and that the middle restrictionmap res is surjective. In order to understand the
image of 𝜕, we map the sequence above to the corresponding sequence on geometric fixed points
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48 of 68 DOTTO et al.

of Proposition 2.9. Since 𝑘 is perfect, this last sequence is determined by Theorem 4.7, giving a
diagram with exact rows

The second vertical map is the identity because it is induced by the sum of two copies of the
canonical map 𝜋0 THR(𝑘)ℤ∕2 → 𝜋0 THR(𝑘)

𝜙ℤ∕2, which is the canonical projection 𝑘 ⊗𝑆 𝑘 →

(𝑘∕2) ⊗𝑘 (𝑘∕2) where 𝑘 acts on 𝑘∕2 via the Frobenius, which under our chosen identifications
of source and target with 𝑘 is the identity. Since the map below 𝜕 must be an isomorphism, the
image of 𝜕 is isomorphic to the image of the vertical map 𝜙. The isotropy separation sequence for
the ℤ∕2-spectrum THR(𝐴)𝐶2𝑛−1 gives a long exact sequence

By the inductive assumption, the ℤ∕2-action on 𝜋0 THR(𝑘)𝐶2𝑛−1 is trivial (since res is surjective)
and the transfer tran𝐷2𝑛−1

𝐶2𝑛−1
identifies with themultiplication by 2map on theWitt vectors𝑊𝑛(𝑘; 2),

whose kernel is 𝑘. It follows that the cokernel of 𝜙, and therefore that of 𝜕, is isomorphic to 𝑘.
Thus, if 𝑘 is finite, the image of 𝜕must have as many elements as 𝑘 does, and therefore, since it is
included in Δ, it must be equal to it. This concludes the proof in the case where 𝑘 is finite.
Let us point out that 𝜕 is generally not 𝑘-linear, and therefore, we cannot conclude that its

image is the diagonal if 𝑘 is infinite. In this case, we only know that (𝑘 ⊕ 𝑘)∕ Im𝜕 and 𝑘 are
isomorphic as abelian groups. We do, however, know that the image of 𝜕 is Δ for the finite field
𝔽2, and the naturality of 𝜕 with respect to the morphism of fields 𝔽2 → 𝑘 shows that at least (1,1)
must belong to Im 𝜕. Since 𝑅∶ THR(𝑘)𝐷2𝑛 → THR(𝑘)𝐷2𝑛−1 is a map of ring spectra, 𝜕 is a map of
𝜋0 THR(𝑘)

𝐷2𝑛 -modules. Moreover, the isomorphism

𝜋0(𝐸+ ⊗𝐶2𝑛
THR(𝑘))ℤ∕2 ≅ colim



𝜋
0
THR(𝑘) ≅ 𝜋0 THR(𝑘)

ℤ∕2 ⊕𝑘 𝜋0 THR(𝑘)
ℤ∕2 ≅ 𝑘 ⊕ 𝑘

is an isomorphism of 𝜋0 THR(𝑘)𝐷2𝑛 -modules, where 𝜋0 THR(𝑘)𝐷2𝑛 acts on each 𝜋𝐻0 THR(𝑘) via
the restrictionmap, and the transfers are linear over these restrictions by the Frobenius reciprocity
formula of the 𝐷2𝑛 -Mackey functor 𝜋0 THR(𝑘). In particular, 𝜋0 THR(𝑘)

𝐷2𝑛 acts diagonally on
𝑘 ⊕ 𝑘, via the restriction map res𝐷2𝑛𝑒 ∶ 𝜋0 THR(𝑘)

𝐷2𝑛 → 𝜋0 THH(𝑘) = 𝑘. This map factors as

𝜋0 THR(𝑘)
𝐷2𝑛

res
\\→ 𝜋0 THR(𝑘)

𝐶2𝑛 ≅ 𝑊𝑛−1(𝑘; 2)
𝐹𝑛−2

\\\\→ 𝑘,

where the first map is surjective by the argument above. Since 𝑘 is of characteristic 2, the iterated
Frobenius is given by

𝐹𝑛−2(𝑎1, … , 𝑎𝑛−1) = 𝑎2
𝑛−2

1

(see, for example [17, Lemma 1.8]), which is surjective since 𝑘 is perfect. Thus, given any 𝑥 ∈ 𝑘, we
can choose an element 𝑧 of 𝜋0 THR(𝑘)𝐷2𝑛 which maps to 𝑥 by the restriction res

𝐷2𝑛
𝑒 . Then, since

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12862 by T

est, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 49 of 68

the image of 𝜕 is a submodule of 𝑘 ⊕ 𝑘 containing (1,1), we have that (𝑥, 𝑥) = 𝑧 ⋅ (1, 1) is also in
the image of 𝜕, and thus, Im 𝜕 = Δ.
The identification of the Witt vectors operators 𝑉, 𝐹 and 𝑅 follows from the commutative

diagrams

and the fact that the maps of the bottom row correspond, respectively, to 𝑉, 𝐹 and 𝑅 by [18, The-
orem F]. Note that to show that the first diagram commutes, one needs to use the double-coset
formula and the fact that the quotient 𝐷2𝑛−1∖𝐷2𝑛∕𝐶2𝑛 is trivial. □

Remark 4.10. The restriction map of Theorem 4.9 is not generally an isomorphism. For example,
for the ring of integers, there is a map of short exact sequences

where ℤ⊕2 ℤ is the pushout of the transfer 2∶ ℤ → ℤ along itself, which is isomorphic to ℤ ×
ℤ∕2, and the left-hand map is the identity on each summand. Thus, the middle restriction is not
an isomorphism, and moreover, 𝜋0 THR(ℤ)𝐷2 has 2-torsion.
The top row of the diagram comes from the long exact sequence on homotopy groups for the

map 𝑅 of the proof of Theorem 4.9, upon showing that its connective homomorphism 𝜕 is in this
case zero. To see this, we map the sequence to the analogous sequence for 𝔽2 via the canonical
quotient map ℤ → 𝔽2, and obtain a commutative diagram with exact rows

where the second vertical map from the left is induced by the projection on each summand. Thus,
if we can show that the left vertical map is zero, we will have that the upper 𝜕maps into the kernel
of the projection ℤ⊕2 ℤ → 𝔽2 ⊕ 𝔽2, which is the subgroup of elements [2𝑛, 2𝑘] in ℤ⊕2 ℤ, and
isomorphic to ℤ. The group 𝜋1 THR(ℤ)ℤ∕2 is, however, isomorphic to ℤ∕2 by [10, Proposition
5.22], and therefore, 𝜕 is 0.
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50 of 68 DOTTO et al.

We still need to verify that the left vertical map is zero. We look at its effect on the isotropy
separation sequences for the ℤ∕2-spectrum THR, and obtain a diagram

The map 𝜋1 THR(ℤ)𝜙ℤ∕2 → 𝜋1 THR(𝔽2)
𝜙ℤ∕2 is equal to 0 by the calculation in the proof of [10,

Theorem 5.20]. In the bottom row, the lower left map 𝜙 is injective. This follows by the last part of
the proof of [10, Theorem 5.15], where this map is explicitly identified. Hence, we conclude that
the left vertical map is zero.
One can, in fact, show that the connecting homomorphism is zero also for the larger dihedral

groups, by calculating the first part of the long exact sequence for 𝑅 on geometric fixed points
using the calculations of Section 5.1. One then obtains short exact sequences

for every 𝑛 ⩾ 1. We will address this in future work.

Proposition 4.11. Let 𝑘 be a perfect field of characteristic 2. The tower of abelian groups

⋯→ 𝜋1 THR(𝑘)
𝐷2𝑛

𝑅
⟶ 𝜋1 THR(𝑘)

𝐷2𝑛−1
𝑅
⟶⋯

𝑅
⟶ 𝜋1 THR(𝑘)

ℤ∕2

satisfies the Mittag–Leffler condition, and therefore, there is an isomorphism of rings

𝜋0 TRR(𝑘; 2)
ℤ∕2 ≅ 𝑊(𝑘; 2).

Proof. We need to analyse the images in 𝜋1 of the composite maps 𝑅𝑗 . Let (⊉ 𝐶2𝑗 ) be the family of
subgroups of𝐷2𝑛+𝑗 that do not contain𝐶2𝑗 (it is the familywhen 𝑗 = 1). By taking the𝐷2𝑛+𝑗∕𝐶2𝑗 -
fixed points of the isotropy separation sequence for the subgroup 𝐶2𝑗 ⊂ 𝐷2𝑛+𝑗 , we obtain a fibre
sequence of spectra

(THR(𝑘) ⊗ 𝐸(⊉ 𝐶2𝑗 )+)
𝐷
2𝑛+𝑗 ⟶ THR(𝑘)𝐷2𝑛+𝑗 ⟶ (THR(𝑘)𝜙𝐶2𝑗 )𝐷2𝑛+𝑗 ∕𝐶2𝑗 ,

and after identifying the third termwithTHR(𝑘)𝐷2𝑛 using the real cyclotomic structure, we obtain
a fibre sequence

(THR(𝑘) ⊗ 𝐸(⊉ 𝐶2𝑗 )+)
𝐷
2𝑛+𝑗 ⟶ THR(𝑘)𝐷2𝑛+𝑗

𝑅𝑗

⟶ THR(𝑘)𝐷2𝑛 .

The group of components of the fibre can be calculated as the colimit

𝜋0(THR(𝑘) ⊗ 𝐸(⊉ 𝐶2𝑗 )+)
𝐷
2𝑛+𝑗 ≅ colim

(⊉𝐶
2𝑗
)

𝜋
0
THR(𝑘),

where (⊉𝐶
2𝑗
) is the full subcategory of the orbit category of 𝐷2𝑛+𝑗 spanned by the subgroups in

(⊉ 𝐶2𝑗 ). Under this identification, the left map of the fibre sequence is induced on the colimit by
the transfer maps tran

𝐷
2𝑛+𝑗

𝐻
∶ 𝜋𝐻

0
THR(𝑘) → 𝜋

𝐷
2𝑛+𝑗

0
THR(𝑘) for𝐻 ∈ (⊉𝐶

2𝑗
). The category(⊉𝐶

2𝑗
)
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 51 of 68

is equivalent to the category

Since the dihedral actions extend to an action of 𝑂(2), the cyclic groups 𝐶2𝑛−𝑖 ⩽ 𝐷2𝑛−𝑖 act trivially
on 𝜋0 THR(𝐴)𝐶2𝑖 and one can replace the dihedral groups of automorphisms of the middle row
by the groups ℤ∕2 = 𝐷2𝑛+𝑗−𝑖 ∕𝐶2𝑛+𝑗−𝑖 . Thus, this is the colimit over a product category, and it is
isomorphic to

Since the restriction map for the inclusion 𝐶2𝑗−1 ⊂ 𝐷2𝑗−1 is an isomorphism, the Weyl actions on
𝜋0 THR(𝑘)

𝐷
2𝑗−1 are trivial, and by the previous calculation, this is

The last isomorphism sends the class of (𝑥, 𝑦) to (𝑥 + 𝑦, [𝑦]). We then obtain a long exact
sequence

where the map 𝑉𝑛+1 comes from the identification of the Verschiebung with the transfer of
Theorem 4.9.
We need to show that after a sufficiently large value of 𝑗, the image of 𝑅𝑗 is constant, that is,

that the projection map

𝜋1 THR(𝑘)
𝐷2𝑛 ∕ Im𝑅𝑗+𝑙 ⟶ 𝜋1 THR(𝑘)

𝐷2𝑛 ∕ Im𝑅𝑗

is an isomorphism. By exactness, the target of this map is isomorphic to

𝜋1 THR(𝑘)
𝐷2𝑛 ∕ Im𝑅𝑗 = 𝜋1 THR(𝑘)

𝐷2𝑛 ∕ ker 𝜕 ≅ Im𝜕 = ker(𝑉𝑛+1, 0) = 𝑊𝑗(𝑘; 2)∕2,
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52 of 68 DOTTO et al.

and similarly for the source. Thus, the images stabilise if and only if the map

𝑅𝑙 ∶ 𝑊𝑗+𝑙(𝑘; 2)∕2⟶𝑊𝑗(𝑘; 2)∕2

is an isomorphism, which is the case since 𝑘 is perfect as both sides identify with 𝑘 and 𝑅 with
the identity. □

4.2.3 TCR of perfect fields of characteristic 2

We now combine the results of the previous two sections to prove the following theorem.

Theorem4.12. For any perfect field 𝑘 of characteristic 2, there is an equivalence ofℤ∕2-equivariant
ring spectra

TRR(𝑘; 2) ≃ 𝐻𝑊(𝑘; 2),

where𝑊(𝑘; 2) is the constant Green functor of the abelian group with trivial involution𝑊(𝑘; 2).

Proof. By Theorem 4.9 and Proposition 4.11, we understand theMackey functor of components of
TRR(𝑘; 2). Let TRR(𝑘; 2) → 𝐻𝑊(𝑘; 2) be the zeroth Postnikov section. The diagram

commutes, where the right vertical map is induced by the projection𝑊(𝑘; 2) → 𝑘 which induces
an isomorphism𝑊(𝑘; 2)∕2 ≅ 𝑘.
The map TRR(𝑘; 2) → 𝐻𝑊(𝑘; 2) is an underlying equivalence by [18, Theorem 4.5]. Hence,

it suffices to show that it is an equivalence after applying the geometric fixed points. By the
calculation of Theorem 4.7 (and, in particular, using the formula for 𝑅), we see that the map
TRR(𝑘; 2)𝜙ℤ∕2 → THR(𝑘; 2)𝜙ℤ∕2 induces injections on homotopy groups. Hence, it suffices to
show that after applying the geometric fixed points, the lower horizontal map induces an injec-
tion on the image of the left vertical map. Indeed, this will imply that the upper horizontal map
induces an injection on the homotopy groups of the geometric fixed points, and since these are
either 0 or 1 dimensional 𝑘-vector spaces (the target has homotopy groups𝑊(𝑘; 2)∕2 ≅ 𝑘 in even
non-negative degrees), it must also be surjective. The lower map is, on geometric fixed points, the
multiplication map

𝐻𝑘𝜙ℤ∕2 ⊗𝐻𝑘 𝐻𝑘
𝜙ℤ∕2 → 𝐻𝑘𝜙ℤ∕2.

By [10, Proposition 5.19], the induced map on homotopy groups

𝑘[𝑤1, 𝑤2]⟶ 𝑘[𝑣],

where |𝑤1| = 1, |𝑤2| = 1 and |𝑣| = 1, sends both 𝑤1 and 𝑤2 to 𝑣. This implies that its restriction

𝑘[𝑤1𝑤2]⟶ 𝑘[𝑣]

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12862 by T

est, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 53 of 68

is injective, and by the description of 𝑅 of Theorem 4.7, 𝑘[𝑤1𝑤2] is exactly the image of the left
vertical map on homotopy groups after applying geometric fixed points. □

Corollary 4.13. For any perfect field 𝑘 of characteristic 2, one has an equivalence of genuine ℤ∕2-
spectra

TCR(𝑘; 2) ≃ 𝐻ℤ2 ⊕ Σ−1𝐻coker(1 − 𝐹),

where 𝐹∶ 𝑊(𝑘; 2) → 𝑊(𝑘; 2) is the Witt vector Frobenius.

Proof. It follows from Theorem 4.9 that 𝐹∶ TRR(𝑘; 2) → TRR(𝑘; 2) corresponds to the Witt vec-
tor Frobenius 𝐻𝐹∶ 𝐻𝑊(𝑘; 2) → 𝐻𝑊(𝑘; 2) under the equivalence of Theorem 4.12. It is an easy
exercise in Witt vectors to see that ker(1 − 𝐹) ≅ 𝑊(𝔽2; 2) ≅ ℤ2. Hence, we get

𝜋
0
TCR(𝑘; 2) ≅ ℤ2

and

𝜋
−1
TCR(𝑘; 2) ≅ coker(1 − 𝐹),

and all the other homotopy Mackey functors of TCR(𝑘; 2) vanish. Since coker(1 − 𝐹) is a ℤ2-
module coming from a ℤ2-module, its homological dimension over the Green functor ℤ2 is less
than or equal to 1. The universal coefficient theorem in the category of modules over the Green
functor ℤ2 now implies that, in fact, TCR(𝑘; 2) splits as claimed (in case 𝑘 = 𝔽2 this is obvious
since 𝐹 = id). □

5 TCR OF THE INTEGERS AND PERFECT RINGS

In this section, we will calculate the homotopy type of TCR(𝐴; 2)𝜙ℤ∕2 where 𝐴 is either a perfect
𝔽2-algebra or 2-torsion free ring with a perfect mod 2 reduction (for example the Witt vectors of
a perfect 𝔽2-algebra). We will first calculate TCR(ℤ; 2)𝜙ℤ∕2, and then deduce TCR(𝐴; 2)𝜙ℤ∕2 by a
base-change formula from 𝔽2 and ℤ.

5.1 The geometric fixed points of 𝐓𝐂𝐑(ℤ; 𝟐)

Let us denote by 𝑁𝐴 ∶= 𝑁
𝐶2
𝑒 𝐻𝐴 the 𝐶2-equivariant norm of the Eilenberg–MacLane ring spec-

trum of a commutative ring 𝐴. We regard 𝐻ℤ (the 𝐶2-equivariant Eilenberg–MacLane spectrum
for the constant Mackey functor ℤ) as an 𝑁ℤ-module via the multiplication map 𝑁ℤ → 𝐻ℤ.
We then consider 𝐻ℤ𝜙ℤ∕2 as an 𝐻ℤ-module via the induced map on geometric fixed points
𝐻ℤ ≃ (𝑁ℤ)𝜙ℤ∕2 → 𝐻ℤ𝜙ℤ∕2, and obtain a splitting of𝐻ℤ-modules

𝐻ℤ𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ2𝑛𝐻𝔽2.
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54 of 68 DOTTO et al.

Again using the description of THR(ℤ)𝜙ℤ∕2 as the derived smash product of Lemma 1.2 and the
splitting above just as in Lemma 4.4, we obtain an equivalence of genuine 𝐶2-spectra

THR(ℤ)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

Σ2𝑛𝜌((𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ2𝑛+2𝑚(𝐶2)+ ⊗ ((𝐻𝔽2 ⊗ 𝐻𝔽2) ⊗𝐻ℤ⊗𝐻ℤ 𝐻ℤ).

In order to apply Theorem 2.14 to compute TCR(ℤ; 2)𝜙ℤ∕2, we need to understand the genuine
𝐶2-fixed points of this spectrum. By the Wirthmüller isomorphism, the genuine 𝐶2-fixed-point
spectrum of the induced summands are

(Σ2𝑛+2𝑚(𝐶2)+ ⊗ ((𝐻𝔽2 ⊗ 𝐻𝔽2) ⊗𝐻ℤ⊗𝐻ℤ 𝐻ℤ))
𝐶2 ≃ Σ2𝑛+2𝑚((𝐻𝔽2 ⊗ 𝐻𝔽2) ⊗𝐻ℤ⊗𝐻ℤ 𝐻ℤ)

≃ Σ2𝑛+2𝑚𝐻𝔽2 ⊕ Σ2𝑛+2𝑚+1𝐻𝔽2.

The genuine fixed points of the terms Σ2𝑛𝜌((𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) aremore laborious, and require some
preliminary lemmas.

Lemma 5.1. Let 𝑅 be a ring spectrum, and 𝑓∶ 𝐴 → 𝐵 a map of 𝑅-modules. Then, the total cofibre
of the square of𝑁𝑅-modules

is naturally equivalent to the norm 𝑁(cof (𝑓)) of the cofibre of 𝑓. Here, Ind𝐶2𝑒 is left adjoint to the
forgetful functor from𝑁𝑅-modules in𝐶2-spectra to 𝑅 ⊗ 𝑅-modules in spectra, and the vertical maps
are adjoint, respectively, to the identity of 𝐴⊗𝐴 and to 𝑓 ⊗ 𝐵.

Proof. When 𝑅 = 𝕊, this follows readily from [19, A.43(1), B.97] in the special case where 𝐺 = 𝐶2.
We believe that their argument generalises to a general base ring spectrum 𝑅, but in the special
case of𝐶2, we can give the following, simpler argument. Let us work in the category of orthogonal
spectra, and suppose without loss of generality that the underlying orthogonal spectra of 𝑅,𝐴 and
𝐵 are flat cofibrant, that 𝑓∶ 𝐴 → 𝐵 is a cofibration of orthogonal 𝑅-module spectra. In this case,
the cofibre of𝑓 is equivalent to the strict cofibre𝐶 of𝑓, and the diagramof the lemma is equivalent
to the (strictly commutative) diagram of orthogonal 𝐶2-spectra

where the𝐶2-action on the bottom row switches the two smash factors (see ourworking definition
of the norm in §1.2), and on the top row, it switches the two summands. The left vertical map is the
identity on the first summand and the 𝐶2-action of the norm on the second, and the right vertical
map is 𝑓 ⊗ 𝐵 on the first summand and 𝑓 ⊗ 𝐵 followed by the 𝐶2-action of the norm of 𝐵 on
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 55 of 68

the second. The projection 𝜋∶ 𝐵 → 𝐶 onto the strict cofibre of 𝑓 induces a map of 𝑁𝑅-modules
𝜋 ⊗ 𝜋∶ 𝐵 ⊗ 𝐵 → 𝐶 ⊗ 𝐶, which is (strictly) trivial when restricted respectively to the top-right
and bottom-left corner of the square. It therefore induces a map of 𝑁𝑅-modules from the total
cofibre of the square to the norm 𝐶 ⊗ 𝐶 of 𝐶. Let us show that this map is an equivalence on
underlying spectra and on geometric fixed points.
On underlying spectra, the square above is equivalent to the square

by applying the flip isomorphism to the second summands of the top row. Sincewe are pushing out
the coproduct of two maps along the fold map, a standard argument shows that the total cofibre
of this square is equivalent to the total cofibre of the commutative square of spectra

and the map from the total cofibre to 𝐶 ⊗ 𝐶 is again induced by 𝜋 ⊗ 𝜋. This map is clearly an
equivalence of spectra (for example by computing the cofibres horizontally, and then vertically).
Let us now verify the claim on geometric fixed points. By applying geometric fixed points to the

square of 𝑁𝑅-spectra above, we find the square of spectra

whose total cofibre is the cofibre of (𝑓 ⊗ 𝑓)𝜙𝐶2 . Since (𝑓 ⊗ 𝑓)𝜙𝐶2 is naturally equivalent to 𝑓,
(𝜋 ⊗ 𝜋)𝜙𝐶2 is an equivalence. □

Lemma 5.2. There is a fibre sequence of 𝐶2-spectra

𝐻(ℤ⊕ ℤ∕2,𝑤)
𝐻(2,0)
\\\\\\→ 𝐻ℤ⟶ (𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ,

where the left-hand spectrum is the Eilenberg MacLane spectrum of the abelian groupℤ⊕ ℤ∕2with
involution 𝑤(𝑎, 𝑥) = (𝑎, [𝑎] + 𝑥), and the projection is induced by tensoring with the norm of the
unit map𝑁𝜂∶ 𝑁ℤ → 𝑁𝔽2. In particular, the homotopy Mackey functors of the cofibre are

where the restriction is the canonical projection and the transfer is injective, 𝜋
1
((𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) ≅

ℤ∕2 which is the constant Mackey functor of ℤ∕2, and the other homotopy groups vanish.
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56 of 68 DOTTO et al.

Proof. By Lemma 5.1, there is an equivalence of 𝑁ℤ-modules between the total cofibre of the
square of 𝑁ℤ-modules

and 𝑁(ℤ∕2), induced by the projection map ℤ → ℤ∕2. By applying the functor (−) ⊗𝑁ℤ 𝐻ℤ to
this square, we obtain the square of 𝐶2-spectra

In the first row, Ind𝐶2𝑒 is left adjoint to the forgetful functor from 𝐻ℤ-modules 𝐶2-spectra to
𝐻ℤ-modules spectra, and for the identification of the first row, we used that induction and base-
change commute (since their right adjoints do). Since (−) ⊗𝑁ℤ 𝐻ℤ preserves pushouts, the total
cofibre of the last square is (𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ. Thus, the fibre sequence of the lemma follows once
we show that the square of 𝐶2-spectra

is a pushout, where the right vertical, adjoint to the inclusion of the first summand, sends (𝑎, 𝑏)
to (𝑎 + 𝑏, [𝑏]). Indeed, the unique map 𝐻(ℤ⊕ ℤ∕2,𝑤) → 𝐻ℤ compatible with the maps of the
squares will then be the map (2,0) appearing as the left-hand map of the sequence of the lemma,
whose cofibre is the total cofibre (𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ as calculated above.
To see that the last square is a pushout, we check that it is so on underlying spectra and on

geometric fixed points. The pushout of underlying spectra is𝐻((ℤ ⊕ ℤ)∕(2, −2))with the vertical
map given by the projection onto the cokernel and the horizontal map [2, 0]∶ 𝐻ℤ → 𝐻((ℤ ⊕

ℤ)∕(2, −2)). This is equivalent to 𝐻(ℤ⊕ ℤ∕2) by the isomorphism of abelian groups that sends
[𝑎, 𝑏] to (𝑎 + 𝑏, [𝑏]), and under this isomorphism, themaps correspond to those of the last square.
Let us now check that the square is a pushout on geometric fixed points. The 𝐶2-geometric

fixed-points square is
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 57 of 68

and therefore, we need to verify that the bottom map (2, 0)𝜙𝐶2 is an equivalence. To this end,
let us compute the cofibre of (2, 0)∶ 𝐻ℤ → 𝐻(ℤ × ℤ∕2,𝑤) in 𝐶2-spectra. The quotient of (2,0) is
ℤ∕2 ⊕ ℤ∕2 with the involution 𝑤(𝑦, 𝑥) = (𝑦, 𝑦 + 𝑥). Its fixed points are 0 ⊕ ℤ∕2, which is also
the quotient of the map (2, 0)∶ ℤ → (ℤ ⊕ ℤ∕2)𝐶2 = (2ℤ) ⊕ ℤ∕2. Thus, there is a fibre sequence
of 𝐶2-spectra

𝐻ℤ
(2,0)
\\\\→ 𝐻(ℤ⊕ ℤ∕2,𝑤)⟶ 𝐻(ℤ∕2 ⊕ ℤ∕2,𝑤).

The cofibre is equivariantly equivalent to 𝐻(ℤ∕2 ⊕ ℤ∕2, 𝜏) where 𝜏 flips the summands.
Therefore, its geometric fixed points vanish, and (2, 0)𝜙𝐶2 is an equivalence.
Finally, the description of the homotopy Mackey functor of (𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ follows immedi-

ately from the long exact sequence induced by the fibre sequence, after identifying the kernel and
cokernel of the first map. □

Lemma 5.3. The 𝐶2-equivariant homotopy groups of Σ𝑘𝜌((𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) for even 𝑘 are

𝜋
𝐶2
∗ Σ

𝑘𝜌((𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) =

⎧⎪⎪⎨⎪⎪⎩

ℤ∕2 𝑘 ⩽∗⩽ 2𝑘 − 1

ℤ∕4 ∗= 2𝑘

ℤ∕2 ∗= 2𝑘 + 1

0 otherwise.

Proof. We calculate the equivariant homotopy groups from the fibre sequence of 𝐶2-spectra

Σ𝑘𝜌𝐻(ℤ ⊕ ℤ∕2,𝑤)
(2,0)
\\\\→ Σ𝑘𝜌𝐻ℤ⟶ Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ

from Lemma 5.2. We start by calculating the equivariant homotopy groups of the first two spec-
tra. These are, respectively, the Bredon homology groups of 𝑆𝑘𝜌 with coefficients in the Mackey
functors of the abelian groups ℤ with the the trivial involution, and ℤ⊕ ℤ∕2 with the involution
𝑤(𝑎, 𝑥) = (𝑎, [𝑎] + 𝑥). These are, respectively, the homology of the chain complexes(

0 → ℤ
0
\→ ℤ

2
\→ …

0
\→ ℤ

2
\→ ℤ

0
\→ ℤ

2
\→ ℤ → 0

)
,

where the non-zero groups are sitting between degree 𝑘 and 2𝑘 (and 𝑘 is even), and(
0 → ℤ × ℤ∕2

1−𝑤
\\\\→ ℤ × ℤ∕2

1+𝑤
\\\\→ …

1−𝑤
\\\\→ ℤ × ℤ∕2

1+𝑤
\\\\→ ℤ × ℤ∕2

1−𝑤
\\\\→ ℤ × ℤ∕2

1+𝑤
\\\\→ (2ℤ) × ℤ∕2 → 0

)
with the non-zero groups sitting in the same degrees. The first complex has homology groupsℤ∕2
in even degrees between 𝑘 and 2𝑘 − 2, aℤ in degree 2𝑘, and zero everywhere else. The differentials
of the second complex are, respectively,

(1 + 𝑤)(𝑎, 𝑥) = (2𝑎, [𝑎]) (1 − 𝑤)(𝑎, 𝑥) = (0, [𝑎])
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58 of 68 DOTTO et al.

for all (𝑎, 𝑥) ∈ ℤ × ℤ∕2. Its homology is then concentrated in even degrees between 𝑘 and 2𝑘,
with

((2ℤ) × ℤ∕2)∕⟨(2𝑎, [𝑎])⟩ ≅ ℤ∕2

in even degrees between 𝑘 and 2𝑘 − 2 and (2ℤ) × ℤ∕2 in degree 2𝑘. The long exact sequence of
the above fibre sequence therefore splits and gives rise to exact sequences

0 → 𝜋
𝐶2
2𝑘+1

(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)⟶ (2ℤ) × ℤ∕2
(2,0)
\\\\→ ℤ⟶ 𝜋

𝐶2
2𝑘
(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) → 0

and

0 → 𝜋
𝐶2
2𝑘−1

(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)⟶ ℤ∕2
0
⟶ ℤ∕2⟶ 𝜋

𝐶2
2𝑘−2

(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) → 0

0 → 𝜋
𝐶2
2𝑘−3

(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)⟶ ℤ∕2
0
⟶ ℤ∕2⟶ 𝜋

𝐶2
2𝑘−4

(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) → 0

⋮

0 → 𝜋
𝐶2
𝑘+1

(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)⟶ ℤ∕2
0
⟶ ℤ∕2⟶ 𝜋

𝐶2
𝑘
(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ) → 0,

which give the groups of the statement. □

Since 𝐻ℤ → (𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ is a map of 𝐶2-equivariant algebras, the fixed-point spectrum
(Σ𝑘𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)

𝐶2 is amodule over𝐻ℤ and therefore splits as awedge of Eilenberg–MacLane
spectra. As a consequence of the decomposition of Lemma 4.3 and the calculation of Lemma 5.3,
we obtain an equivalence

(THR(ℤ)𝜙ℤ∕2)𝐶2 ≃
⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
𝑛⩾0

(Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2))

⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)).

We recall that the underlying non-equivariant spectrum of THR(ℤ)𝜙ℤ∕2 is equivalent to⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
𝑛⩾0

(Σ4𝑛(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)),

and we now want to identify the maps 𝑟, 𝑓∶ (THR(ℤ)𝜙ℤ∕2)𝐶2 → THR(ℤ)𝜙ℤ∕2 under these
splittings.

Proposition 5.4. Under the above equivalences, the map 𝑓∶ (THR(ℤ)𝜙ℤ∕2)𝐶2 → THR(ℤ)𝜙ℤ∕2

corresponds to the map⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
𝑛⩾0

(Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2)) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) →
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 59 of 68

⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
𝑛⩾0

(Σ4𝑛( 𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)),

which kills the (𝑛 > 𝑚)-summands and embeds diagonally the (𝑛 < 𝑚)-summands into the sum of
the summands (𝑛 > 𝑚) and (𝑛 < 𝑚), and on the remaining summands, it is given by

pr⊕ id∶ Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2) → Σ4𝑛(𝐻𝔽2 ⊕ Σ𝐻𝔽2).

Proof. That 𝑓 sends the (𝑛 < 𝑚)-summands diagonally into the sum of the summands (𝑛 > 𝑚)

and (𝑛 < 𝑚) follows from Lemma 4.3. For the remaining summands, we need to understand the
restriction map

res
𝐶2
𝑒 ∶ (Σ2𝑛𝜌((𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ))

𝐶2 → Σ4𝑛((𝐻𝔽2 ⊗ 𝐻𝔽2) ⊗𝐻ℤ⊗𝐻ℤ 𝐻ℤ).

For every fixed 𝑛 ⩾ 0, the sequence

Σ2𝑛𝜌𝐻(ℤ ⊕ ℤ∕2,𝑤)
(2,0)
\\\\→ Σ2𝑛𝜌𝐻ℤ⟶ Σ2𝑛𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ

is a fibre sequence of𝐻ℤ-modules, and it thus induces a commutative diagram of𝐻ℤ-modules

Using the Bredon complexes in the proof of Lemma 5.3, we see that the left-hand square in the
latter diagram is equivalent to the commutative square

After taking horizontal cofibres, it induces the map

res
𝐶2
𝑒 ∶ Σ4𝑛𝐻ℤ∕4 ⊕ Σ4𝑛+1𝐻𝔽2 ⊕

⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) → Σ4𝑛𝐻𝔽2 ⊕ Σ4𝑛+1𝐻𝔽2,

which is given by pr⊕ id⊕0. □

The identification of the map 𝑟∶ (THR(ℤ)𝜙ℤ∕2)𝐶2 → THR(ℤ)𝜙ℤ∕2 in terms of the above split-
tingswill contain higher stable cohomology operations, and this complicates the calculation of the
equaliser of 𝑟 and 𝑓. However, like in the case of fields, it is possible to compute 𝑟 on homotopy
groups and after identifying only a portion of the matrix describing 𝑟, we will be able to compute
TCR(ℤ; 2)𝜙ℤ∕2 using Theorem 2.14.
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60 of 68 DOTTO et al.

Proposition 5.5. Under the above splittings, the map 𝑟∶ (THR(ℤ)𝜙ℤ∕2)𝐶2 → THR(ℤ)𝜙ℤ∕2

corresponds to the map

𝑟∶
⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
𝑛⩾0

(Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2)) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2))

→
⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
𝑛⩾0

(Σ4𝑛( 𝐻𝔽2 ⊕ Σ𝐻𝔽2)) ⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

(Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2))

with the following properties. It is zero on the (𝑛 < 𝑚)-summands. On the summands (𝑛 > 𝑚), it has
components

Σ2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2) → Σ2𝑛
′+2𝑚′

(𝐻𝔽2 ⊕ Σ𝐻𝔽2),

which are zero if 𝑛 ≠ 𝑛′ or𝑚′ < 𝑚, and the identity if 𝑛 = 𝑛′ and𝑚 = 𝑚′. The entry

Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2) → Σ4𝑛(𝐻𝔽2 ⊕ Σ𝐻𝔽2)

is given by the matrix ( pr 0

Σ4𝑛𝛽 id
), where 𝛽∶ 𝐻ℤ∕4 → Σ𝐻𝔽2 is the Bockstein associated to the short

exact sequence

0 → ℤ∕2 → ℤ∕8 → ℤ∕4 → 0.

The remaining entries are zero on homotopy groups, but generally contain higher stable cohomology
operations (cf. [27, Section IV.1]).

Proof. From Lemma 4.3, we know that 𝑟 vanishes on the summands (𝑛 < 𝑚), and that since
𝑟 preserves the wedge decomposition over 𝑛, its components vanish for 𝑛 ≠ 𝑛′. It remains to
identify

𝑟∶ (Σ2𝑛𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)
𝐶2 ⟶ (Σ2𝑛𝜌(𝑁𝔽2) ⊗𝑁ℤ 𝐻ℤ)

𝜙𝐶2

for every fixed 𝑛 ⩾ 0. The fibre sequence of Lemma 5.2 induces a commutative diagram

For any underlying connective 𝐶2-spectrum 𝑋, the canonical map 𝜋𝐶2∗ (Σ𝑙𝜌𝑋) → 𝜋∗((Σ
𝑙𝜌𝑋)𝜙𝐶2)

induces an isomorphism in degrees ∗< 2𝑙 and a surjection in degree ∗= 2𝑙, since the homotopy
orbits ofΣ𝑙𝜌𝑋 are (2𝑙 − 1)-connected. By applying this fact to the verticalmaps of the commutative
diagram above, we obtain the description of 𝑟 on the summands (𝑛 > 𝑚). Let us finally compute
the map

𝑟∶ Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2) → Σ4𝑛(𝐻𝔽2 ⊕ Σ𝐻𝔽2).
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 61 of 68

Using that the fibre sequence of Lemma 5.2 is 𝐻ℤ-linear, by considering the relevant summands
in the diagram above, we get a morphism of exact triangles

where 𝑟 is the map we are trying to compute, and 𝛽ℤ is the Bockstein of

0 → 2ℤ
2
\→ ℤ → ℤ∕4 → 0.

Composing the Bockstein 𝛽ℤ with the projection𝐻2ℤ → 𝐻𝔽2 gives the Bockstein for

0 → ℤ∕2 → ℤ∕8 → ℤ∕4 → 0,

which gives the desired result. □

Theorem 5.6. There is an equivalence of spectra

TCR(ℤ; 2)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

(
Σ4𝑛−1𝐻𝔽2 ⊕ Σ4𝑛𝐻ℤ∕8 ⊕ Σ4𝑛+1𝐻𝔽2

)
.

Proof. For simplicity, we use the symbol
⨁

𝑛>𝑚⩾0 to denote
⨁

(𝑛,𝑚),𝑛>𝑚⩾0(Σ
2𝑛+2𝑚(𝐻𝔽2 ⊕ Σ𝐻𝔽2))

and a similar symbol for the summands indexed by the pairs (𝑛,𝑚) with 0 ⩽ 𝑛 < 𝑚. Consider
the commutative diagram in the stable homotopy category, where the vertical sequences are fibre
sequences:

We explain the maps in the diagram: The top map 𝜔 is the composite pr ◦(𝑟 − 𝑓)◦ incl and is an
equivalence since by Propositions 5.4 and 5.5, it is an isomorphism on homotopy groups. Themap
𝛼 is then defined to be (𝑟 − 𝑓)◦ incl ◦𝜔−1 and by construction is of the form (id, 𝜑, id), for some
map

𝜑∶
⨁
𝑛>𝑚⩾0

⊕
⨁
0⩽𝑛<𝑚

→
⨁
𝑛⩾0

Σ4𝑛(𝐻𝔽2 ⊕ Σ𝐻𝔽2).

The lower right vertical map is −𝜑 on the outer summands and the identity on the middle sum-
mand. The map 𝑀 is the induced map on the cofibres. Propositions 5.4 and 5.5 imply that the
map 𝜑 is zero on the summand

⨁
0⩽𝑛<𝑚. On the other hand, the restriction of 𝑟 − 𝑓 to the sum-

mand Σ4𝑛(𝐻ℤ∕4 ⊕ Σ𝐻𝔽2) cannot hit
⨁

𝑛>𝑚⩾0, since the cohomology operations do not decrease
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62 of 68 DOTTO et al.

degrees and 𝑟 preserves the 𝑛-coordinate. Thus,𝑀 is given in matrix form by the wedge⨁
𝑛⩾0

(
0 0

Σ4𝑛𝛽 0

)
.

The fibres of 𝑟 − 𝑓 and𝑀 are equivalent since 𝜔 is an equivalence. This completes the proof by
Theorem 2.14. □

5.2 Flat base-change and perfect rings

We recall that we always regard the geometric ℤ∕2-fixed points of a ring spectrum with anti-
involution𝐴 as a left𝐴-module via the geometric fixed points of themap ofℤ∕2-spectra𝑁ℤ∕2

𝑒 𝐴 ⊗

𝐴 → 𝐴, and similarly as a right𝐴-module via𝐴⊗𝑁
ℤ∕2
𝑒 𝐴 → 𝐴.We call these, respectively, the left

and right Frobenius module structures on𝐴𝜙ℤ∕2. We will always denote by⊗𝐴 the derived tensor
product of 𝐴-modules.

Definition 5.7. Amap 𝛼∶ 𝐴 → 𝐵 of ring spectra with anti-involution is called 𝜙-flat if the map

𝐵 ⊗𝐴 𝐴
𝜙ℤ∕2 ⟶ 𝐵𝜙ℤ∕2,

induced by the map of left 𝐴-modules 𝛼∶ 𝐴𝜙ℤ∕2 → 𝛼∗𝐵𝜙ℤ∕2, is an equivalence of spectra.

Example 5.8. Let 𝛼∶ 𝐴 → 𝐵 be a map of commutative rings with trivial involution which is flat
2-locally. Then the induced map on Eilenberg–MacLane spectra is 𝜙-flat precisely if the maps

𝐵 ⊗𝐴 𝜑𝐴∕2 → 𝜑𝐵∕2 and 𝐵 ⊗𝐴 𝜑𝐴2 → 𝜑𝐵2

adjoint to 𝛼∕2 are isomorphisms, where 𝜑(−) denotes the module structure 𝑟 ⋅ 𝑥 ∶= 𝑟2𝑥, and
(−)2 the two-torsion (they both send 𝑏 ⊗ 𝑎 to 𝑏2𝛼(𝑎)). Indeed, since 𝛼 is flat 2-locally, 𝛼 is 𝜙-flat
precisely if

𝐵 ⊗𝐴 𝜋∗(𝐻𝐴
𝜙ℤ∕2) → 𝜋∗(𝐻𝐵

𝜙ℤ∕2)

is an isomorphism. Since 𝐻𝐴𝜙ℤ∕2 is the connective cover of 𝐻𝐴𝑡ℤ∕2 which is 2-periodic, and
similarly, for 𝐻𝐵𝜙ℤ∕2, this is equivalent to showing that 𝐵 ⊗𝐴 𝜑�̂�

𝑖(ℤ∕2, 𝐴) → 𝜑�̂�
𝑖(ℤ∕2, 𝐵) are

isomorphisms for 𝑖 = 0, 1, and this is exactly the assumption above. In particular:

(i) If 𝐵 is a perfect 𝔽2-algebra with trivial involution, then the map 𝔽2 → 𝐵 is 𝜙-flat. Indeed, the
maps above are both isomorphic to the Frobenius (−)2 ∶ 𝐵 → 𝐵.

(ii) If 𝐵 is a commutative ring with trivial involution with no 2-torsion, and 𝐵∕2 is perfect, then
ℤ → 𝐵 is 𝜙-flat. Indeed, the maps above are in this case, respectively, the Frobenius of 𝐵∕2
and the map 0 → 𝐵2.

Recall that, as a 𝐶2-spectrum, THR(𝐴)𝜙ℤ∕2 is equivalent to 𝐵(𝐴;𝑁
𝐶2
𝑒 𝐴;𝑁

𝐶2
𝑒 (𝐴

𝜙ℤ∕2)), where
𝐴 is regarded as a 𝐶2-spectrum via the identification 𝐶2 ≅ ℤ∕2 (see Lemma 1.2). In particular,
THR(𝐴)𝜙ℤ∕2 is canonically a module over 𝐴 in the category of 𝐶2-spectra, by acting on the left
copy of 𝐴 in the bar construction.
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GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL CYCLIC HOMOLOGY 63 of 68

Proposition 5.9. Let 𝛼∶ 𝐴 → 𝐵 be a 𝜙-flat map of commutative ℤ∕2-equivariant ring spectra.
Then, the canonical map

𝐵 ⊗𝐴 (THR(𝐴)
𝜙ℤ∕2)

≃
⟶ THR(𝐵)𝜙ℤ∕2

induced by 𝛼∶ THR(𝐴)𝜙ℤ∕2 → 𝛼∗ THR(𝐵)𝜙ℤ∕2 is an equivalence of 𝐶2-spectra. Here, 𝐵 is
considered as a 𝐶2-spectrum via the isomorphism 𝐶2 ≅ ℤ∕2 (see Lemma 1.2).

Proof. Let us first show that themap is an equivalence onunderlying spectra. This is themap𝐵 ⊗𝐴

(𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2) → 𝐵𝜙ℤ∕2 ⊗𝐵 𝐵

𝜙ℤ∕2 induced by the map of left 𝐴-modules 𝛼 ⊗ 𝛼∶ 𝐴𝜙ℤ∕2 ⊗𝐴

𝐴𝜙ℤ∕2 → 𝛼∗(𝐵𝜙ℤ∕2 ⊗𝐵 𝐵
𝜙ℤ∕2), where the left 𝐴-module structure on the source is the left Frobe-

nius structure on the right 𝐴𝜙ℤ∕2-factor (or equivalently the right one on the left factor), and
similarly for the 𝐵-module structure on the target. Since 𝐴 is commutative, this 𝐴-module struc-
ture agrees with the left Frobenius structure on the first 𝐴𝜙ℤ∕2-factor, and therefore, the map
factors as

𝐵 ⊗𝐴 (𝐴
𝜙ℤ∕2 ⊗𝐴 𝐴

𝜙ℤ∕2) = (𝐵 ⊗𝐴 𝐴
𝜙ℤ∕2) ⊗𝐴 𝐴

𝜙ℤ∕2 ≃
\→ 𝐵𝜙ℤ∕2 ⊗𝐴 𝐴

𝜙ℤ∕2

≃ 𝐵𝜙ℤ∕2 ⊗𝐵 𝐵 ⊗𝐴 𝐴
𝜙ℤ∕2 ≃

\→ 𝐵𝜙ℤ∕2 ⊗𝐵 𝐵
𝜙ℤ∕2,

where the two right pointing arrows are equivalences since 𝛼 is 𝜙-flat.
Let us now verify that this map is an equivalence on 𝐶2-geometric fixed points. From the bar

construction we see that, this is the map

(𝐵 ⊗𝐴 (THR(𝐴)
𝜙ℤ∕2))𝜙𝐶2 ≃ 𝐵𝜙ℤ∕2 ⊗𝐴𝜙ℤ∕2 THR(𝐴)

𝜙ℤ∕2 ⟶ THR(𝐵)𝜙ℤ∕2 ≃ (THR(𝐵)𝜙ℤ∕2)𝜙𝐶2

induced by the map 𝛼∶ THR(𝐴)𝜙ℤ∕2 → 𝛼∗ THR(𝐵)𝜙ℤ∕2, where THR(𝐴)𝜙ℤ∕2 = 𝐴𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2

is a left𝐴𝜙ℤ∕2-module via left multiplication on the left factor (notice that𝐴𝜙ℤ∕2 is a ring spectrum
since𝐴 is commutative), and similarly for the left 𝐵𝜙ℤ∕2-module structure on the target. This map
then factors as

𝐵𝜙ℤ∕2 ⊗𝐴𝜙ℤ∕2 THR(𝐴)
𝜙ℤ∕2 = 𝐵𝜙ℤ∕2 ⊗𝐴𝜙ℤ∕2 𝐴

𝜙ℤ∕2 ⊗𝐴 𝐴
𝜙ℤ∕2 ≃ 𝐵𝜙ℤ∕2 ⊗𝐴 𝐴

𝜙ℤ∕2

≃ 𝐵𝜙ℤ∕2 ⊗𝐵 𝐵 ⊗𝐴 𝐴
𝜙ℤ∕2 ≃

\→ 𝐵𝜙ℤ∕2 ⊗𝐵 𝐵
𝜙ℤ∕2 = THR(𝐵)𝜙ℤ∕2,

where for the last equivalence, we used that 𝛼 is 𝜙-flat. □

Proposition 5.10. Under the assumptions of Proposition 5.9, suppose, moreover, that the restriction
maps𝐴ℤ∕2 → 𝐴 and𝐵ℤ∕2 → 𝐵 are equivalences (for example if𝐴 and𝐵 are the Eilenberg–MacLane
spectra of commutative rings with trivial involutions). Then, there is an equivalence

(𝐵 ⊗𝐴 (THR(𝐴)
𝜙ℤ∕2))𝐶2 ≃ 𝐵𝐶2 ⊗𝐴𝐶2 ((THR(𝐴)

𝜙ℤ∕2))𝐶2 ,

and the maps 𝑓, 𝑟∶ (THR(𝐵)𝜙ℤ∕2)𝐶2 → THR(𝐵)𝜙ℤ∕2 correspond under the equivalences of Propo-
sition 5.9, respectively, to the tensor of the restriction maps

𝑓∶ 𝐵𝐶2 ⊗𝐴𝐶2 ((THR(𝐴)
𝜙ℤ∕2))𝐶2

res⊗ res
\\\\\\\→ 𝐵 ⊗𝐴 (THR(𝐴)

𝜙ℤ∕2)
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and to the tensor of the canonical map to the geometric fixed points and the map 𝑟 of THR(𝐴)𝜙ℤ∕2

𝑟∶ 𝐵𝐶2 ⊗𝐴𝐶2 ((THR(𝐴)
𝜙ℤ∕2))𝐶2

𝑐𝑎𝑛⊗𝑟
\\\\\\→ 𝐵𝜙ℤ∕2 ⊗𝐴𝜙ℤ∕2 (THR(𝐴)

𝜙ℤ∕2) ≃

𝐵 ⊗𝐴 𝐴
𝜙ℤ∕2 ⊗𝐴𝜙ℤ∕2 (THR(𝐴)

𝜙ℤ∕2) ≃ 𝐵 ⊗𝐴 (THR(𝐴)
𝜙ℤ∕2),

where the first equivalence is from the fact that 𝛼 is 𝜙-flat, and the second is the canonical one.

Proof. The first statement follows from the fact that if the restriction maps of 𝐴 and 𝐵 are
equivalences, the canonical map

𝐵𝐶2 ⊗𝐴𝐶2 𝑋
𝐶2 ⟶ (𝐵 ⊗𝐴 𝑋)

𝐶2

is an equivalence for every 𝐴-module 𝑋 (which is cofibrant under our standing assumption).
Indeed, since the source and target of thismap commutewith colimits in𝑋, it is sufficient to check
it on the generators 𝐴 and 𝐴⊗ (𝐶2)+ of the category of 𝐴-modules. For 𝐴, this is the canonical
equivalence

𝐵𝐶2 ⊗𝐴𝐶2 𝐴
𝐶2 ≃ 𝐵𝐶2 ≃ (𝐵 ⊗𝐴 𝐴)

𝐶2 .

For 𝐴⊗ (𝐶2)+ this is the map

𝐵𝐶2 ⊗𝐴𝐶2 (𝐴 ⊗ (𝐶2)+)
𝐶2 ≃ 𝐵𝐶2 ⊗𝐴𝐶2 𝐴⟶ 𝐵 ≃ ((𝐵 ⊗ (𝐶2)+))

𝐶2 ≃ (𝐵 ⊗𝐴 (𝐴 ⊗ (𝐶2)+))
𝐶2 ,

where the arrow is induced by the map of 𝐴𝐶2 -modules 𝛼∶ 𝐴 → 𝛼∗𝐵, where 𝐴 is an 𝐴𝐶2 -module
via the restriction 𝐴𝐶2 → 𝐴, and similarly, for 𝐵. This is an equivalence since the restrictions of
𝐴 and 𝐵 are. The identifications of 𝑓 and 𝑟 follow by naturality and unravelling the definitions,
using Example 2.6 for the cyclotomic structure. □

Corollary 5.11. Let 𝛼∶ 𝐴 → 𝐵 be a 𝜙-flat map of commutative flat ℤ∕2-equivariant ring spectra,
and suppose that the restriction maps 𝐴ℤ∕2 → 𝐴 and 𝐵ℤ∕2 → 𝐵 are equivalences. Then, there is an
equaliser diagram

where 𝜈∶ 𝐵 ⊗𝐴 𝐴
𝜙ℤ∕2 → 𝐵𝜙ℤ∕2 is the equivalence from the 𝜙-flatness condition, and 𝑐𝑎𝑛∶ 𝐵𝐶2 →

𝐵𝜙𝐶2 is the canonical map.

Remark 5.12. One cannot conclude from Corollary 5.11 that TCR(𝐵; 2)𝜙ℤ∕2 is the base-change
of TCR(𝐴; 2)𝜙ℤ∕2, nor that it is a 𝐵-module. This is because the maps 𝑓 and 𝑟 computing
TCR(𝐴; 2)𝜙ℤ∕2 are 𝐴-linear with respect to two different 𝐴-module structures.

Corollary 5.13. Let𝐵 be a perfect𝔽2-algebrawith the trivial involution. Then, there is an equivalence
of spectra

TCR(𝐵; 2)𝜙ℤ∕2 ≃
⨁
𝑛⩾0

(Σ2𝑛−1 coker(id+(−)2)) ⊕ Σ2𝑛(ker(id+(−)2)),

where (−)2 ∶ 𝐵 → 𝐵 is the Frobenius of 𝐵.
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Proof. By Example 5.8, we can apply Corollary 5.11 and find that the maps 𝑟 and 𝑓 computing
TCR(𝐵; 2)𝜙ℤ∕2 are, on homotopy groups, given by the same maps⨁

(𝑛,𝑚)
0⩽𝑛,𝑚
𝑛+𝑚=∗

𝐵 ⇉
⨁
(𝑛,𝑚)
0⩽𝑛,𝑚
𝑛+𝑚=∗

𝐵

as in the case of perfect fields of Proposition 4.5. The calculation then proceeds exactly as in
Remark 4.6. □

Corollary 5.14. Let 𝐵 be a ring with no 2-torsion and such that 𝐵∕2 is perfect. Then, TCR(𝐵; 2)𝜙ℤ∕2
is a wedge of Eilenberg–MacLane spectra, with homotopy groups given for all 𝑙 ⩾ 0 by

𝜋𝑛 TCR(𝐵; 2)
𝜙ℤ∕2 ≅

⎧⎪⎪⎨⎪⎪⎩

𝐵∕⟨𝑥 + 𝑥2| 𝑥 ∈ 𝐵⟩ 𝑛 = 4𝑙 − 1

ker
(
pr+pr2 ∶ 𝐵∕⟨4(𝑥 + 𝑥2)| 𝑥 ∈ 𝐵⟩→ 𝐵∕2

)
𝑛 = 4𝑙

ker
(
id+(−)2 ∶ 𝐵∕2 → 𝐵∕2

)
𝑛 = 4𝑙 + 1

0 𝑛 = 4𝑙 + 2,

and where 𝜋𝑛 TCR(𝐵; 2)𝜙ℤ∕2 = 0 for 𝑛 ⩽ −2.

Proof. By Example 5.8 and Corollary 5.11, the maps 𝑟 and 𝑓 computing TCR(𝐵; 2)𝜙ℤ∕2 are maps

𝑟, 𝑓∶
⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

Σ2𝑛+2𝑚(𝐻𝐵∕2 ⊕ Σ𝐻𝐵∕2) ⊕
⨁
𝑛⩾0

Σ4𝑛(𝐻𝐵∕4 ⊕ Σ𝐻𝐵∕2)

⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ2𝑛+2𝑚(𝐻𝐵∕2 ⊕ Σ𝐻𝐵∕2) →

⨁
(𝑛,𝑚)
𝑛>𝑚⩾0

Σ2𝑛+2𝑚(𝐻𝐵∕2 ⊕ Σ𝐻𝐵∕2) ⊕
⨁
𝑛⩾0

Σ4𝑛(𝐻𝐵∕2 ⊕ Σ𝐻𝐵∕2)

⊕
⨁
(𝑛,𝑚)
0⩽𝑛<𝑚

Σ2𝑛+2𝑚(𝐻𝐵∕2 ⊕ Σ𝐻𝐵∕2).

On homotopy groups, they are described by the same projections and diagonals as in the case
for ℤ of Propositions 5.4 and 5.5, except that 𝑟 is postcomposed with the root isomorphism of the
perfect 𝔽2-algebra 𝐵∕2. The same argument of the proof of Theorem 5.6 gives a fibre sequence

TCR(𝐵; 2)𝜙ℤ∕2 ⟶
⨁
𝑛⩾0

Σ4𝑛(𝐻𝐵∕4 ⊕ Σ𝐻𝐵∕2)

⨁
𝑛⩾0 Σ

4𝑛

(
pr+

√
pr 0√

𝛽 id+
√
(−)

)
\\\\\\\\\\\\\\\\\\\\\\\\\\→

⨁
𝑛⩾0

Σ4𝑛(𝐻𝐵∕2 ⊕ Σ𝐻𝐵∕2),

and, in particular, TCR(𝐵; 2)𝜙ℤ∕2 splits as a wedge of Eilenberg–MacLane spectra, since the pro-
jection map in the fibre sequence is 𝐻ℤ-linear. Moreover, by composing with the Frobenius of
𝐵∕2, which is an isomorphism, we can trade

√
𝛽 for 𝛽, and replace all the other roots by squares.

The homotopy groups non-congruent to 0 modulo 4 follow immediately from the long exact
sequence on homotopy groups, and 𝜋4𝑙 is isomorphic to 𝜋0 for all 𝑙 ⩾ 0. In order to calculate
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𝜋0, we observe that the fibre of a triangular matrix such as the one above can be calculated by the
iterated pullback

where the three squares are pullbacks. By the Mayer–Vietoris sequence of the top square, we see
that there is an isomorphism

𝜋0 TCR(𝐵; 2)
𝜙ℤ∕2 ≅ ker

(
(ker(pr+ pr2) × 𝜋0𝑃

𝜄−𝑎
\\\→ 𝐵∕4)

)
.

By looking at the long exact sequences induced by 𝛽 and 𝑏, the right square gives a commutative
diagram with exact rows

Thus, 𝜋0𝑃 ≅ (𝐵∕8)∕ Im(4◦(id+(−)2)) = 𝐵∕⟨4(𝑥 + 𝑥2)|𝑥 ∈ 𝐵⟩, and the map 𝑎 is the reduction
modulo 4. Thus, 𝜋0 TCR(𝐵; 2)𝜙ℤ∕2 consists of those elements 𝑦 of 𝐵∕⟨4(𝑥 + 𝑥2)|𝑥 ∈ 𝐵⟩ such that
𝑦 = 𝑦2 modulo 2. □

Remark 5.15. In §4.2, we have computed the ℤ∕2-equivariant homotopy type of TRR(𝑘; 2)
and TCR(𝑘; 2) for perfect fields 𝑘 of characteristic 2. We built our proof onto our knowl-
edge of THR(𝑘)𝜙ℤ∕2 and TR(𝑘; 2) without ever needing to know the equivariant homotopy
type of THR(𝑘). We can, in fact, use the base-change results of this section to show that as a
ℤ∕2-spectrum

THR(𝑘) ≃ 𝑘 ⊗𝔽2
THR(𝔽2) ≃

⨁
𝑛⩾0

Σ𝑛𝜌𝐻𝑘.

Indeed, the canonical map

𝑘 ⊗𝔽2
THR(𝔽2)⟶ THR(𝑘)

is an equivalence on ℤ∕2-geometric fixed points by Proposition 5.9 and its proof. It is also an
equivalence on underlying spectra by [18, Corollary 5.5]. Finally, the equivariant homotopy type
of THR(𝔽2) is computed in [10].
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