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Intermittent turbulent-laminar patterns characterize the transition to turbulence in pipe,
plane Couette, and plane channel flows. The time evolution of turbulent-laminar bands
in plane channel flow is studied via direct numerical simulations using the parallel
pseudospectral code CHANNELFLOW in a narrow computational domain tilted by 24◦ with
respect to the streamwise direction. Mutual interactions between bands are studied through
their propagation velocities. Energy profiles show that the flow surrounding isolated
turbulent bands returns to the laminar base flow over large distances. Depending on the
Reynolds number, a turbulent band can either decay to laminar flow or split into two bands.
As with past studies of other wall-bounded shear flows, in most cases survival probabilities
are found to be consistent with exponential distributions for both decay and splitting,
indicating that the processes are memoryless. Statistically estimated mean lifetimes for
decay and splitting are plotted as a function of the Reynolds number and lead to the
estimation of a critical Reynolds number Recross � 965, where decay and splitting lifetimes
cross at greater than 106 advective time units. The processes of splitting and decay are also
examined through analysis of their Fourier spectra. The dynamics of large-scale spectral
components seem to statistically follow the same pathway during the splitting of a turbulent
band and may be considered as precursors of splitting.
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I. INTRODUCTION

The route to turbulence in many wall-bounded shear flows involves intermittent laminar-turbulent
patterns that evolve on vast space and time scales ([1] and references therein). These states have
received much attention over the years, both because of their intrinsic fascination and also because
of their fundamental connection to critical phenomena associated with the onset of sustained
turbulence in subcritical shear flows. Below a critical Reynolds number, intermittent turbulence
exists only transiently, inevitably reverting to laminar flow, possibly after some very long time. Just
above the critical Reynolds number, turbulence can become sustained in the form of intermittent
laminar-turbulent patterns.

Flow geometry, specifically the number of unconstrained directions, plays an important role in
these patterns. In flows with one unconstrained direction, large-scale turbulent-laminar intermittency
can manifest itself only in that direction. Pipe flow is the classic example of such a system [2], but
other examples are variants such as duct flow [3] and annular pipe flow [4], and also constrained

*sebastien.gome@espci.fr
†laurette.tuckerman@espci.fr
‡D.Barkley@warwick.ac.uk

2469-990X/2020/5(8)/083905(20) 083905-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4423-6213
https://orcid.org/0000-0001-5893-9238
https://orcid.org/0000-0003-4317-3705
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.083905&domain=pdf&date_stamp=2020-08-25
https://doi.org/10.1103/PhysRevFluids.5.083905


GOMÉ, TUCKERMAN, AND BARKLEY

Couette flow between circular cylinders where the height and gap are both much smaller than the
circumference [5]. In terms of large-scale phenomena, these systems are viewed as one dimensional.
Turbulent-laminar intermittency takes the comparatively simple form of localized turbulent patches,
commonly referred to as puffs, interspersed within laminar flow [6–8]. In this case much progress
has been made in understanding the localization of puffs and the critical phenomena associated with
them [9–13], including the scaling associated with one-dimensional directed percolation [5].

In flow geometries with one confined and two extended directions, turbulent-laminar intermit-
tency takes a more complex form that is dominated by turbulent bands which are oriented obliquely
to the flow direction. Examples of such flows are Taylor-Couette flow [14–20], plane Couette flow
[20,21], plane channel flow [22–24], and a free-slip version of plane Couette flow called Waleffe
flow [25,26]. In terms of large-scale phenomena, one views these systems as two dimensional (2D).
Understanding the transition scenario in these systems is complicated by the increased richness of
the phenomena they exhibit and also by the experimental and computational challenges involved in
studying systems with two directions substantially larger than the wall separation. So large are the
required dimensions that only for a truncated model of Waleffe flow has it thus far been possible
to verify that the transition to turbulence is of the universality class of two-dimensional directed
percolation [27].

Between the one-dimensional and fully two-dimensional cases are the numerically obtainable
restrictions of planar flows to long, but narrow, periodic domains tilted with respect to the flow
direction [28]. These domains restrict turbulent bands to a specified angle. They have only one
long spatial direction, thereby limiting the allowed large-scale variation to one dimension, but
they permit flow in the narrow (band-parallel) direction, that is necessary for supporting turbulent
bands in planar shear flows. Such computational domains were originally proposed as minimal
computational units to capture and understand the oblique turbulent bands observed in planar
flows [28]. Tilted computational domains have subsequently been used in numerous studies of
transitional wall-bounded flows, notably plane Couette flow [5,29–32] and plane channel flow
[33,34]. Lemoult et al. [5] showed that in tilted domains plane Couette flow exhibits a transition
to sustained turbulence in the directed percolation universality class. Reetz, Kreilos, and Schneider
[32] computed a state resembling a periodic turbulent band in plane Couette flow while Paranjape,
Duguet, and Hof [34] computed localized traveling waves in plane channel flow as a function of the
Reynolds number and the tilt angle. Shi, Avila, and Hof [31] used simulations in a tilted domain
to measure decay and splitting lifetimes in plane Couette flow and it is this approach that we apply
here to plane channel flow.

We mention two important points concerning the relevance of turbulent bands in narrow tilted
domains to those in plane channel flow in large domains. The first is that a regime in transitional
channel flow has been discovered at Reynolds numbers lower than those studied here in which
turbulent bands elongate at their downstream end while they retract from their upstream end
[18,35–38]. Such bands of long but finite length are excluded in narrow tilted domains. In full
two-dimensional domains and at lower Reynolds numbers, this one-sided regime takes precedence
over the transition processes that we will describe here. The second point is that critical Reynolds
numbers obtained in narrow tilted domains [31,39] have been found to agree closely with transition
thresholds found in the full planar setting [21,27,40,41] in both plane Couette flow and in stress-free
Waleffe flow. We will return to both of these points in Sec. VI.

Here we study the onset of turbulent channel flow in narrow tilted domains. We follow closely the
work of Shi, Avila, and Hof [31] on plane Couette flow. We are particularly focused on establishing
the time scales and Reynolds numbers associated with the splitting and decay processes.

II. NUMERICAL PROCEDURE AND CHOICE OF DIMENSIONS

Plane channel flow is generated by imposing a mean or bulk velocity Ubulk on flow between
two parallel rigid plates. The length scales are nondimensionalized by the half-gap h between the
plates. Authors differ on the choice of velocity scales for nondimensionalizing channel flow, but one
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FIG. 1. (a) Sketch of the laminar profile. (b) Visualization of turbulent bands in a 240 × 108 streamwise-
spanwise domain at Re = 1000. Colors indicate the streamwise velocity in the y = −0.8 plane. A super-
imposed black box illustrates a long-narrow computational domain, tilted with an angle θ relative to the
streamwise direction. (c) and (d) Structure of a turbulent-laminar pattern computed in a tilted domain at
Re = 1200. Plot (c) shows the x component of the velocity in the (x, z) plane at y = −0.8. The streamwise and
spanwise directions are indicated in red. Plot (d) shows streamwise vorticity in a (y, z) plane with the vertical y
scale stretched by a factor of 2. Only the portion of the computational domain containing the turbulent region
is shown in (d). As seen in (c), on the downstream side of the turbulent region the flow exhibits weak straight
streaks, oriented in the streamwise direction, that slowly diminish as the flow returns laminar.

standard choice, that we adopt here, is to use 3Ubulk/2. This is equal to the centerline velocity Ucl of
the corresponding laminar parabolic flow since

Ubulk = 1

2

∫ +1

−1
Ucl(1 − y2)dy = 2

3
Ucl. (1)

The Reynolds number is then defined to be Re = Uclh/ν = 3Ubulkh/(2ν).
The computational domain used in this study is tilted with respect to the streamwise direction,

as illustrated in Fig. 1(b). Its wall-parallel projection is a narrow doubly periodic rectangle with
the narrow dimension (labeled by the x coordinate) aligned along the turbulent band. The long
dimension of the domain (labeled by the z coordinate) is orthogonal to the bands, i.e., it is aligned
with the pattern wave vector. The relationship between streamwise-spanwise coordinates and (x, z)
coordinates is

estreamwise = cos θ ex + sin θ ez, (2a)

espanwise = − sin θ ex + cos θ ez. (2b)

The wall-normal coordinate is denoted y and is independent of the tilt.
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The angle in this study is fixed at θ = 24◦, as has been used extensively in the past. The tilt
angle of the domain imposes a fixed angle on turbulent bands (Turbulent bands at larger angles
have also been observed in large or tilted domains.). The narrowness of the computational domain
in the x direction prohibits any large-scale variation along turbulent bands, effectively simulating
infinitely long bands. These restrictions of a tilted domain have both advantages and disadvantages
for simulations of transitional turbulence. We return to this in the discussion.

We have carried out direct numerical simulations (DNS) using the parallelized pseudospectral
C++ code CHANNELFLOW [42]. This code simulates the incompressible Navier-Stokes equations
in a periodic channel by employing a Fourier-Chebychev spatial discretization, fourth-order semi-
implicit backwards-differentiation time stepping, and an influence matrix method with Chebyshev
tau correction to impose incompressibility in the primitive-variable formulation. The velocity field
is decomposed into a parabolic base flow and a deviation, U = Ubase + u, where the deviation field
u has zero flux. Simulating in the tilted domain gives velocity components u = (u, v,w) aligned
with the oblique coordinates (x, y, z). All kinetic energies reported here are those of the deviation
from laminar flow 1

2

∫
(u2 + v2 + w2), rather than the turbulent kinetic energy (defined to be that of

the deviation from the mean velocity).
Most of the simulations presented have been carried out in a domain with dimensions

(Lx, Ly, Lz ) = (6.6, 2, 100). The numerical resolution is (Nx, Ny, Nz ) = (84, 64, 1250), which both
ensures that �x = �z � 0.08 and that �y varies from �y = cos(31π/64) = 0.05 at y = 0 to �y =
1 − cos(π/64) = 0.001 at y = ±1. This resolution has been shown to be sufficient to simulate small
turbulent scales at low Reynolds numbers (Kim et al. [43], Tsukahara et al. for Re = 1370 [22]).

In the Fourier-Chebychev discretization the deviation velocity is expressed as

u =
Nx/2∑

−Nx/2+1

Nz/2∑
−Nz/2+1

Ny∑
0

ûmx,my,mz e
i(kxmxx+kzmzz)Tmy (y), (3)

where kx = 2π/Lx, kz = 2π/Lz, ûmx,my,mz are the Fourier-Chebyshev coefficients, and Tmy (y) are
the Chebychev polynomials. For brevity, we will refer to mx and mz (rather than mxkx, mzkz) as
wave numbers.

The structure of a typical turbulent band in this domain is shown on Fig. 1. A series of straight
periodic streaks is visible downstream of the turbulent band, whereas the upstream laminar-turbulent
interface is much sharper. Streaks are visible here as streamwise velocity modulated along the
spanwise direction. They are wavy in the core of the turbulent zone, in accordance with the
self-sustaining process of transitional turbulence [25].

Our choice for the standard domain dimensions, (Lx, Ly, Lz ) = (6.6, 2, 100), is dictated as
follows: Ly = 2 is fixed by nondimensionalization. The choice of the short dimension Lx is dictated
by the natural streak wave number. In plane Couette flow, this was found to be approximately
Lx,Couette = 10 = 4/ sin 24◦ [44], and widely used since [28,31]. Chantry et al. showed that the
correspondence between length scales in plane Couette and plane channel flows is hPoiseuille �
1.5hCouette (by doubling the Couette height and subtracting the resulting spurious mid-gap boundary
layer [26]). This leads to an optimal short dimension in a 24◦ box of Lx,Poiseuille = 6.6. (Lx = 6.6
has also been used in [34], whereas Lx = 10 was used in [33].) Lz = 100 is chosen to be sufficiently
large that periodicity in the z direction does not have a significant effect on the turbulent band
dynamics, as we will see in the next section.

III. BAND VELOCITY AND INTERACTION LENGTH

As in pipe flow [9,10,13], bands in channel flow interact when sufficiently close and this can
affect the quantities we seek to measure. For example, in a one-dimensional directed percolation
model [[45], p. 167], the time scales observed for decay and splitting increase strongly with the
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FIG. 2. Space-time diagrams of turbulent bands in a frame moving at the bulk velocity, Ubulk, with (a)
Re = 830, Lz = 100, (b) Re = 1100, Lz = 100, (c) Re = 1200, Lz = 50. Colors show the perturbation energy
E = 1

2 (u2 + v2 + w2) as a function of z and t , sampled in the y = −0.8 plane at a arbitrary value of x (yellow:
E = 0.1; blue: E = 0). Average band propagation velocities, relative to Ubulk, and the degree of fluctuations
can be discerned from diagrams. Case (a) is an example of a band moving downstream relative to Ubulk, which
occurs for Re � 1000, and then decaying. In case (b), a single band in a domain with Lz = 100 splits into two
bands, resulting in a pair of bands separated in z by distance 50 = Lz/2. The change in velocity resulting from
a decrease in interaction distance is evident. Note, however, that the time range covered in the plot is large,
which visually accentuates the effect. Case (c) shows band splitting in a domain of size Lz = 50. The resulting
bands are closely spaced and interact strongly.

interband distance, while the critical point increases weakly. We wish to choose the length Lz of our
domain to be the minimal distance above which bands can be considered to be isolated.

Unlike their counterparts in plane Couette flow, turbulent bands in plane channel flow are not
stationary relative to the bulk velocity Ubulk. As in pipe flow [11,12], bands move either faster or
slower than the bulk velocity, depending on the Reynolds number [33]. One important way in which
the interaction between bands manifests itself is by a change in propagation speed.

Figure 2 illustrates some of the key issues via spatiotemporal plots of turbulent bands in
a reference frame moving at the bulk velocity. Note that the imposition of periodic boundary
conditions in z leads to interaction across the boundary. Figure 2(a) illustrates a typical long-lived
turbulent band at Re � 1000. The band moves slowly in the positive z direction, i.e., downstream
relative to the bulk velocity, and then decays, i.e., the flow relaminarizes.

Figure 2(b) illustrates a typical band splitting at Re = 1100, for which bands move upstream
relative to the bulk velocity. At t � 13 000 a daughter band emerges from the downstream side
of the parent band, very much like puff splitting observed in pipe flow [11,46]. Following the
split, the distance between bands decreases (from Lz = 100 to Lz/2 = 50), thereby increasing
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FIG. 3. Dependence of the band propagation velocity on the Reynolds number and on the interband
distance Lz (left axis: z velocity; right axis: streamwise velocity). Normal-approximated error bars are shown
for Lz = 100.

the band interaction, as can be seen by a change in the propagation velocity following the split.
The time range in Fig. 2(b) is very long and this visually accentuates the speed change. The
absolute speed change following the split is approximately 1% of the bulk velocity. Figure 2(c)
presents a band splitting in a box of size Lz = 50 at Re = 1200 and shows a more pronounced
difference in propagation velocities between the single band and its two offspring. The quasilaminar
gap separating the two offspring bands is quite narrow and hence the bands can be assumed to
strongly interact. The spatiotemporal diagrams of Fig. 2 also show that the size of turbulent bands
increases slightly with Re, and moreover that fluctuations in the size and propagation speed become
greater. Fluctuations are more pronounced on the downstream side of bands. More quantitatively,
we have measured the propagation speed, Uband, of single turbulent bands over a range of Re in
domains of different lengths Lz, as shown in Fig. 3. Periodic boundary conditions in z set the
center-to-center interaction distance between bands to the domain length Lz. Single bands were
simulated for up to a total of 70 000 time units. Error bars (only shown in case Lz = 100 for clarity)
represent normal-approximated confidence intervals for time-weighted velocity measurements over
the multiple simulations comprising the total simulation time. Care was taken to discard pushing
effects due to missed splittings or decays that may deviate the band from its average velocity.
An initial time t0 > 0 was subtracted to eliminate the effect of the initial conditions (see Secs. IV
and V).

We find that the band speed becomes independent of Lz for Lz � 100. The speeds vary
approximately linearly with Re, over the range studied, and remain close to the bulk velocity:
|Uband − Ubulk| is less than 2% of Ubulk. For values of Lz < 100, speeds are shifted upwards, and their
slopes vary from the slope at higher Lz. Note that bands at Lz = 25 are not sustained for Re � 1050.
Values at Lz = 40 are similar to those reported in a domain of the same size in [33]; Figure 3 shows
that this interband separation is too small to be in the asymptotic regime. (In addition, here the
streamwise velocity is defined as vz/ sin θ , i.e., such that its projection in the z direction is the z
velocity, whereas in [33] it is defined to be vz sin θ , i.e., the projection of the z velocity along the
streamwise direction.)

The streamwise band speeds observed here compare with what is known for puff speeds in pipe
flow. For Reynolds numbers near where the puff speed equals the bulk velocity, the speed is given
by Up − Ū � −2.4 × 10−4(Re − 1995), where Up is the nondimensional puff speed and Ū = 1
is the nondimensional bulk velocity for pipe flow. (This expression comes from the data given
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FIG. 4. Energy averaged over x, y, and t as a function of z, for different Lz, in (a) linear and (b) logarithmic
scales, for a one-band state at Re = 1000.

in supplemental material for Ref. [11].) Making a linear approximation to the data in Fig. 3, the
streamwise band speeds can be approximated by (Uband − Ubulk)stream � −1.7 × 10−4(Re − 1000).
Thus we find that variation of speed with Reynolds number is of the same magnitude in the two
cases, that is the coefficients −2.4 × 10−4 and −1.7 × 10−4 are comparable. Both coefficients are
negative, reflecting that the downstream speed decreases as Reynolds number increases. (The reason
for this is discussed at length for pipe flow in [12,13].) If one uses 2h for the length scale and bulk
velocity for the velocity scale in channel flow, the coefficient for channel flow changes slightly to
become −1.9 × 10−4. Detailed comparisons beyond this are not obviously meaningful without a
precise way to map the Reynolds numbers between the two flows.

We also compare the kinetic energy profile in z of stationary single bands at Re = 1000,
calculated in domains with Lz between 50 and 200. Figure 4(a) shows the kinetic energy, i.e., the
deviation from laminar flow, averaged over x, y, and �T = 1000, as a function of z, centered at
z = 100. We see a strong peak and width that, except for Lz = 50, are nearly independent of Lz. The
logarithmic representation of Fig. 4(b) highlights the weak tails of the turbulent bands. Except for
Lz = 50, all have an upstream “shoulder,” i.e., a change in curvature followed by a plateau. All have
a downstream minimum, whose position depends on Lz: for Lz = 50 and 100, it is located halfway
from the peak to its periodic repetition; for Lz > 100 the ratio of this distance to Lz decreases with
increasing Lz. We doubled the resolution in the z direction, and observed very little effect (<2%) on
the localization of the minimum.

Localized turbulent regions have been studied in other realizations of wall-bounded shear flows.
For exact computed solutions of plane channel flow, the downstream spatial decay is observed to be
more rapid than the upstream decay [34,47,48], as in our case. In plane Couette flow [28,49], the
upstream and downstream spatial decay rates are equal, by virtue of symmetry, while those of pipe
flow show a strong dependence of the upstream decay rate on Reynolds number [50]. Asymmetry
between upstream and downstream spatial decay rates is also seen in turbulent spots in boundary
layer flow [51] and in Poiseuille-Couette flow [52].

Notwithstanding the long-range weak tails in Fig. 4(b), we believe that turbulent bands in
domains of at least Lz = 100 can be considered as isolated: the quasilaminar gap is sufficiently
wide that one band does not substantially affect its neighbor and modify its velocity.

IV. ANALYSIS OF DECAY AND SPLITTING

A. Decay

We now focus on the decay and splitting events. Figure 5 illustrates a typical decay event: a
turbulent band at Re = 830 that persists as a long-lived metastable state before abruptly decaying to
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FIG. 5. Band decay at Re = 830. Plotted is the x velocity in (x, y) planes at y = −0.8. For clarity the color
scale changes over time.

laminar flow. A visualisation of the x velocity is shown in the y = −0.8 plane, approximately where
the streaks are most intense, at representative times during the final decay to laminar flow.

States can be quantitatively characterized via their instantaneous (x, z) Fourier spectra. Figure 6
shows an example of such a 2D Fourier spectrum of the x velocity at y = −0.8, Re = 830,
corresponding to the snapshot t = 4850 on Fig. 5. We observe that the amplitudes along horizontal
lines mx = 0 and mx = ±1 are much larger than the others. For brevity, we use ûmx,mz to denote
the modulus of the 2D Fourier component (±mx,∓mz ) of the x velocity evaluated at y = −0.8.
We recall from Eq. (3) that mx = 1 corresponds to a wavelength of Lx = 6.6, while mz = 1

-100 -50 0 50 100
-3

-2

-1

0

1

2

3

FIG. 6. Example of a (x, z) Fourier spectrum of the x velocity u in the y = −0.8 plane, for a turbulent
band at Re = 830. Colors show the modulus of spectral coefficients, spanning from 0 (blue) to 0.02 (red). The
moduli of components (mx, −mz ) and (−mx, mz ) are equal since the velocity is real.
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FIG. 7. Illustrative Fourier spectra û0,mz and û1,mz (a) before band decay and (b) in the final relaxation to
laminar flow. Re = 830. The black symbols û1,mz with mz surrounding 35 correspond to streaks while the blue
symbols û0,mz at low mz correspond to large-scale structures. Filled symbols indicate û0,1 and û0,2.

corresponds to a wavelength of Lz = 100. The large-scale pattern for a single band is characterized
by the x-constant and z-trigonometric Fourier coefficient û0,1. Streaks are the small-scale spanwise
variation of the streamwise velocity. Here we use the x-trigonometric Fourier coefficients of the x
velocity as a proxy for streak amplitude:

ûstreaks =
100∑

mz=0

û1,mz .

While the x direction of the tilted domain does not correspond to the spanwise direction, it is clear
from Fig. 5 that the streaks correspond to x wave number mx = 1. The velocity in the x direction is
not the streamwise velocity, but it has a large projection in the streamwise direction.

Figure 7 illustrates the spectra before decay (ta = 4950) and near at the end of the decay process
(t f = 5700). The final stages of the flow field as it returns to laminar flow are almost exclusively
contained in the û0,1 coefficient corresponding to no x dependence and trigonometric z dependence
on the scale of the simulation domain. Weak streaks are still discernible, but their amplitudes are
10−3 that of the large-scale flow û0,1. [Note the right-hand scale in Fig. 7(b).] This shows that
the decay from a turbulent band to the laminar state results in a large-scale flow structure aligned
with, and moving parallel to, the band. This large-scale flow, although weak and declining during
laminarization, dominates the streak patterns characterizing turbulence.

Figure 8 plots the time evolution of spectral quantities and velocity norms. The life of the band
is characterized by small random fluctuations in the spectral quantities and the velocity norms,
especially ûstreaks, which shows the strongest variability. After time t = ta = 4950, all the signals
suddenly undergo exponential decay, with ||u||2 and û0,1 decaying more slowly than ||w||2, ||v||2,
and ûstreaks. Small-scale streaks and rolls have been shown to have different temporal decay rates in
a Couette-Poiseuille quenching experiment [53].

After the decay process begins, the averaged absolute level of the streaks ûstreaks decays more
rapidly than the large-scale component û0,1, resulting in the crossing of ûstreaks and û0,1 at time
t = tb = 5300 in Fig. 8. From this point, the one-band structure becomes prominent in comparison
with the streaks. One sees indeed on the physical slices of Fig. 5 that the remaining weak flow
consists primarily of an Lz-periodic structure, constant over x and moving parallel to the previous
band. Band-orthogonal and cross-channel velocities w and v are negligible in comparison to u, and
only show a remaining streaky pattern.

We now consider how these quantities vary for different decay events. Figure 9 presents the
evolution of spectral quantities and velocity field norms for ten decay events. For each realization i,
time is translated, t∗ = t − t f ,i, so that all realizations end at the same time: t∗ = 0. Quantities are
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FIG. 8. Time evolution of spectral quantities û0,1 and ûstreaks (left) and of L2 norms ||u||2, ||v||2, and ||w||2
(right) for a decay event at Re = 830. Times ta, tb, and t f refer to slices shown on Fig. 5. The band starts to
decay at ta, û0,1 = ûstreaks at tb, and the relaminarization is considered as complete at t f .

also normalized to obtain the same final value: q∗ = min(q f ,i ) × qi/q f ,i. Note that the final time for
the simulation t f is dictated by the criterion ||u||2 < 5 × 10−3 and that ||u||2 is dominated by û0,1,
which is why both signals terminate with the same final value for each realization.

The evolutions of the spectral component û0,1(t ) for the different realizations all eventually
collapse onto a single curve. The same is true, slightly later, for û0,2(t ). These final phases of the
evolution correspond to viscous diffusion; û0,1(t ) and û0,2(t ) evolve towards eigenvectors of laminar
plane channel flow. The difference between their decay rates (eigenvalues) is due to differences in
their cross-channel dependence.

The norm ||u||2 also behaves in this way, since it is dominated by û0,1, but ||v||2 and ||w||2 do
not. These are sums over different spectral components each with its own decay rate, and the levels
of these components differ from one realization to the next, thereby leading to different decay rates
for each realization.

B. Splitting

A splitting event at Re = 1200 is shown in Fig. 10 via the evolution of (x, z) slices of u, at times
from t0 (initial band) to t5. The turbulent band at t1 = 4300 is wider than it is at t0 = 3500. At
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FIG. 9. Time evolution of û0,1 and û0,2 (left) and of ||u||2, ||v||2, and ||w||2 (right) during ten realizations
of decay events at Re = 830. Time t∗ and vertical quantities are respectively translated and scaled to obtain the
same final value for each realization. Final decay rates for û0,1 and û0,2 (a) are −3.6 × 10−3 and −5.2 × 10−3,
respectively.
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FIG. 10. Band splitting at Re = 1200. Plotted is the x velocity in (x, y) planes at y = −0.8.

t2 = 4600 one sees the appearance of a gap in the turbulent region corresponding to the birth of the
second band. The parent band continues to move towards lower z while the child band remains at its
position and intensifies from t2 to t5, smoothly acquiring all the characteristics of the parent band.

Figure 11 presents a spatio(z)-temporal diagram of the perturbation energy and traces the
evolution of spectral quantities û0,1 and û0,2 at y = −0.8, which represent a single or a double
banded pattern. The evolution of ûstreaks and of the L2-norm ||w||2 are also shown. A slight
initial drop in the two-band coefficient û0,2 is seen from t = t1 = 4300, which coincides with the
appearance of the second band. A laminar gap opens between the initial band and its offspring at
t = t2 = 4600. Then û0,2 starts to increase whereas û0,1 decreases, from t = t3 = 5200. The two
quantities cross at t = t4 = 5600 and finally reach plateaus at t = t5 = 6000. This is the time from
which the energy of the second band reaches approximately the same level as that of the first band,
as seen from the spatiotemporal diagram [(Fig. 11(a)]. The other quantities, ûstreaks and ||w||2, follow
slightly different trends from those of the spectral coefficients, as shown on Figs. 11(c) and 11(d).
Oscillations in ûstreaks are strong and it is difficult to distinguish trends corresponding to the band
evolution. However, there is a relatively strong increase in the streak intensity just before t5, when
the second band is fully developed. In addition, ||w||2 increases from t1 to t3 and then reaches a
plateau of around 0.06.

The evolution before the splitting shows a missed splitting event between t = 200 and 1000. A
weakly turbulent patch detaches from the initial stripe, and quantities û0,1, û0,2, ûstreaks, and ||w||2
all follow a trend between t = 200 and 600 similar to that between t2 and t3. The birth ceases after
t = 1000: û0,2 does not increase sufficiently to cross û0,1, and ûstreaks and ||w||2 drop to their previous
levels.

Figure 12 shows a comparison between Fourier spectra û0,mz and û1,mz before and after splitting.
The decrease in û0,1 and increase in û0,2, already seen in Fig. 11(b), appear clearly. In addition,
the two-band streak spectrum û1,m shows conspicuous small-scale oscillations due to the fact that a
perfectly Lz/2-periodic field would contain only even modes.
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FIG. 11. Evolution of a band while it splits at Re = 1200. (a) Spatiotemporal diagram of the band. Colors
show the turbulent perturbation energy E between 0 (blue) and 0.1 (yellow). (b)–(d) Time evolution of spectral
quantities û0,1 and û0,2 (b), ûstreaks (c), and the L2-norm ||w||2 (d).

We now carry out simulations, still at Re = 1200, in a shorter tilted domain of length Lz = 50 to
avoid secondary splittings which would lead to a three-band state. All realizations of the formation
of the second band follow the same sequence of events previously described. Meanwhile, the three-
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FIG. 12. Illustrative Fourier spectra û0,mz and û1,mz (a) before and (b) after band splitting at Re = 1200.
The black symbols û1,mz correspond to streaks while the blue symbols û0,mz at low mz correspond to large-scale
structures. Filled symbols indicate û0,1 and û0,2.
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FIG. 13. Evolution of spectral quantities during ten splittings at Re = 1200, in a domain of length Lz = 50.
Each curve represents one simulation, and is colored by û0,1 to illustrate the transition between a one-band (1)
and a two-band state (2).

band component û0,3 can also be monitored to analyze the interactions between modes 1 and 2
during the splitting.

This evolution is represented in a phase portrait (û0,1, û0,2, û0,3) in Fig. 13. The one-band state
is characterized here by an average segment around which the spectral components show noisy
oscillations (state 1) because of the proportionality between the components. Because the two-band
state selects the even components [see Fig. 12(b)], û0,1 and û0,3 have low values and show no
correlation with the prominent û0,2. This representation shows that large-scale spectral components
statistically follow the same transition path from one to two turbulent bands. This common transition
path can be seen as a low-dimensional projection of the dynamics of band splitting. Such a statistical
pathway for configuration changes in a turbulent fluid system was observed in the case of barotropic
jet nucleation [54].

V. STATISTICS OF BAND DECAY AND SPLITTING

We now investigate the decay and splitting statistics of single turbulent bands over a range of
Reynolds numbers. The mean lifetime of decay increases with Re and that of splitting decreases
with Re, and hence these lifetimes are equal at some Reynolds number. The primary goal here is to
determine at which Reynolds number value this occurs. The domain size is fixed at Lz = 100. Since
decay and splitting events are effectively statistical, many realizations are necessary to determine
the mean decay and splitting times. Regarding the evolution of band interactions with Lz (Sec. III),
Lz = 100 was chosen as a compromise between mitigating the potential effect of interactions on
decay and splitting probabilities and the numerical cost of a statistical study. The effect of interband
distance on mean decay and especially on splitting times still remains an open question. To generate
large numbers of initial conditions for these realizations, we start from featureless turbulent flow at
Re = 1500 and reduce Re to an intermediate value in [900, 1050], where a single band then forms.
We continue these simulations and extract snapshots, that are then used as initial conditions for
simulations with Re ∈ [700, 1350].

Each simulation is run with a predefined maximum cutoff time tf = 105. If a decay or splitting
event occurs before tf , the run is automatically terminated after the event and the time is recorded.
For a decay, the termination criterion is ||u||L2 < 0.005, meaning that the flow has nearly reached
the laminar base flow. For splitting, termination occurs when two (or more) well-defined turbulent
zones (whose x and short-time averaged turbulent energy exceed 0.005) coexist over more than
2000 time units. We can then estimate the real time at which the splitting event occurs, defined as
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FIG. 14. Survival probability distributions for the decay of a turbulent band, Re ∈ [730, 900].

the time at which a second laminar gap appears from the initial band, through careful observations
of space-time diagrams.

For a given value of Re, let Nd , Ns, and N be the number of decay events, splitting events, and
the total number of runs, respectively. Thus N − Nd − Ns is the number of runs reaching the cutoff
time tf without having decayed or split.

We consider first the decay statistics. (The splitting statistics follow similarly.) The analysis
closely follows previous work; see especially [11,31,55]. The decay times at a given Re are sorted
in increasing order, giving the sequence {t d

i }1�i�Nd . The survival probability that a band has not
decayed by time t d

i is then approximated by

P
(
t d
i

) = P
(
decay at t � t d

i

) = 1 − (i − 1)/N. (4)

The survival distributions for decay events over a range of Re are plotted on semilogarithmic
axes in Fig. 14. The data support exponential form P(t d

i ) = exp[−(t d
i − t d

0 )/τ d (Re)], where τ d (Re)
is the Reynolds-number-dependent mean lifetime (characteristic time) for decay and t d

0 is an offset
time, for Re � 750. (The case Re = 730 exhibits deviations from an exponential distribution very
similar to those observed in pipe flow at Re = 1700 [55]). These exponential survival distributions
are indicative of an effectively memoryless process, as has been frequently observed for turbulent
decay in transitional flows [6,55–59].
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FIG. 15. Survival probability distributions for the splitting of a turbulent band, Re ∈ [1100, 1350].
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FIG. 16. Variation of mean decay times (red) and splitting times (black) with Reynolds number Re. The
error bars correspond to 95% confidence intervals. Inset: ln ln τ s/d versus Re and associated linear fits. The
crossing point is at Recross ≈ 965, τ ≈ 3 × 106.

Quantitatively, the characteristic time τ d (Re) is obtained by the following maximum likelihood
estimator [55]:

τ d � 1

N ′d

⎛
⎝∑

t d
i >t d

0

(
t d
i − t d

0

) + (N − Nd )
(
tf − t d

0

)
⎞
⎠, (5)

where N ′d is the number of decay events taking place after t d
0 . The offset time t d

0 is included to
account for the time necessary for the flow to equilibrate following a change in Re associated with
the initial condition, and also the fixed time it takes for the flow to achieve the termination condition
after it commences decay [as seen in Fig. 8]. As in [55], we determine the value of t d

0 by varying it
in Eq. (5), monitoring the resulting characteristic time τ d , and choosing t d

0 to be the minimal time
for which the estimate τ d no longer depends significantly on t d

0 . We find t d
0 = 850 is a good value

over the range of Re investigated.
The same procedure has been applied to the splitting events. The splitting times are denoted

{t s
i }1�i�Ns , the estimated mean lifetimes are denoted τ s, and the offset time is denoted t s

0. In the
case of splitting we find the offset time to be t s

0 = 500, except for Re = 1350, the largest value
studied, where t s

0 = 800. It should be noted that obtaining splitting times becomes delicate at Re =
1350 because turbulence spreads in less distinct bands. The survival distributions for various Re are
plotted in Fig. 15. As with decay, these data are again consistent with exponential distributions.

At Re = 900 and Re = 1100, some of the runs reach the cut-off time tf = 105. From a total
simulation time of about 106 time units, we registered only 10 decay events at Re = 900 and 25
splitting events at Re = 1100, immediately showing that the characteristic lifetimes at these values
of Re are on the order of 105 for Re = 900 and 6 × 104 for Re = 1100. Investigations at Re = 950,
1000, and 1050 were performed, but no events occurred before 105 time units. Due to the high
numerical cost of sampling at these longer time scales, we did not attempt further investigation
between Re = 900 and Re = 1100. As a result, we observed no case in which both splitting and
decay events occurred at the same Reynolds number, unlike for plane Couette flow [31] and pipe
flow [11].
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Figure 16 shows the estimated mean lifetimes τ d and τ s as a function of Reynolds number.
For simplicity, the error bars correspond to confidence intervals for censored data of type II [60].
The decay lifetimes increase rapidly as a function of Re, while the splitting times decrease rapidly
as a function of Re. It is clear from the main semilogarithmic plot that both dependencies are
faster than exponential. While it is not possible to determine with certainty the functional form
of the dependence on Re, the data are consistent with a double-exponential form, as shown in the
inset where the double logarithms of the lifetimes are plotted as a function of Re. The linear fits
indicated in the inset are plotted as dashed curves in the main figure. From these curves one can
estimate the crossing point to be Recross � 965 with a corresponding time scale of about 3 × 106.
The extrapolation of the data means that these values are only approximate. Nevertheless, we can
be sure that the time scale of the crossing in our case is significantly above the crossing time scale
of about 2 × 104 found in a similar study of plane Couette flow [31], and it appears to be about a
factor of 10 less than the value 2 × 107 found for pipe flow [11].

VI. DISCUSSION AND CONCLUSION

We have studied the behavior of oblique turbulent bands in plane channel flow using narrow tilted
computational domains. Bands in such domains have fixed angle with respect to the streamwise
direction and are effectively infinitely long, with no large-scale variation along the band. We have
measured the propagation velocity of these bands as a function of Reynolds number and interband
spacing and found that band speed is affected by band spacing at distances greater than previously
assumed [33].

After long times, bands either decay to laminar flow or else split into two bands. Survival distri-
butions obtained from many realizations of these events confirm that both processes are effectively
memoryless, with characteristic lifetimes τ d (Re) and τ s(Re), respectively. The dependence of these
lifetimes on Re is superexponential and consistent with a double-exponential scaling. Fitting the
data with double-exponential forms, we estimate that the lifetimes cross at Recross � 965, at about
3 × 106 advective time units. Below Recross, isolated bands decay at a faster rate than they split,
while above Recross, isolated bands split at a faster rate than they decay. Hence Recross is very
close to the critical point above which turbulence would be sustained in the tilted computational
domain. Double-exponential scaling is consistent with what has been observed in pipe flow [11].
Such scaling is thought to be connected to extreme-value statistics, as first proposed by Goldenfeld
et al. [61] and recently examined quantitatively for puff decay in pipe flow by Nemoto and Alexakis
[62,63].

The characteristic times τ d (Re) and τ s(Re) in plane channel flow are considerably larger than
those for plane Couette flow in a similar computational domain by Shi et al. [31], who found
that splitting and decay lifetimes cross at about 2 × 104 advective time units. Time scales in plane
channel flow are closer to those in pipe flow, where Avila et al. [11] found that lifetimes cross at
about 2 × 107 advective time units. The higher crossing times in plane channel flow and pipe flow
pose a challenge for determining the exact crossing point. A practical consequence of this higher
crossing time is that, near the crossing Reynolds number, the flow has a greater tendency to appear
to be at equilibrium, with neither decay nor splitting events observed over long times.

We also note that turbulent puffs in both pipe flow [12,64] and channel flow move slightly faster
than the bulk flow for low Re and slightly slower for high Re; in both flows, the propagation
speed becomes equal to Ubulk at a Reynolds number close to the critical point. It is possible that
an explanation will be found that relates the propagation speed with the critical point.

Our crossover Reynolds number Recross � 965 is close to what Shimizu and Manneville [38]
called a plausible two-dimensional directed-percolation (2D-DP) threshold. These authors carried
out channel flow simulations in a large domain and used the 2D-DP power law to extrapolate the
turbulent fraction to zero, leading to a threshold of ReDP = 905 or 984, depending on how the
pressure-driven Reynolds number is converted to a bulk Reynolds number. (They did not, however,
attempt to verify the other critical exponents associated with 2D-DP since they were unable to
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extend their data sufficiently close to ReDB; see paragraph below.) This agreement between the
lifetime crossing point obtained in our narrow tilted domain and the transition threshold obtained
in the full planar setting for plane channel flow corroborates similar findings for plane Couette flow
and stress-free Waleffe flow. Specifically, the decay-splitting lifetime crossing in tilted plane Couette
flow was found by Shi et al. [31] to occur at Re � 325. The transition point in the planar case is
not known precisely, but it has been estimated by Bottin et al. [40,41] and Duguet et al. [21] to be
close to this value. In a truncated model of Waleffe flow, tilted domain simulations indicate [39] that
the lifetime crossing point is at Rec � 174. The critical point in a very large domain was computed
accurately by Chantry et al. [27] to be Rec = 173.80. Heuristically some agreement between the
two types of domains could be expected on the grounds that the onset of sustained turbulence is
associated with its stabilization in a modified shear profile [13,64,65] and a narrow tilted domain
quantitatively captures this process. Nevertheless, the very close agreement between the thresholds
in tilted and planar domains in several flows is not completely understood.

Shimizu and Manneville [38] were prevented from approaching their estimate of ReDP when
lowering Re by a transition to what they called the one-sided regime. Flows in this regime
contain bands of long but finite length which grow via the production of streaks at their stronger
downstream heads [18,35–37]. This regime thus shows a strong asymmetry between the upstream
and downstream directions and therefore has no counterpart in plane Couette flow; isolated bands in
plane Couette flow are transient [27,66,67]. In the one-sided regime, bands eventually all have the
same orientation of about 45◦ from the streamwise direction and do not form a regular pattern. Since
an essential feature of this regime is the long but finite length of the bands, it cannot be simulated
using narrow tilted domains. This can be viewed as a shortcoming of the tilted domain in capturing
the full dynamics of channel flow, but it also has the advantage of allowing us to study channel flow
with the one-sided regime excluded.

We have described the evolution of a band in a narrow tilted domain during a decay or a splitting
event via Fourier spectral decomposition. During a band decay, small-scale structures, streaks and
rolls, are damped more quickly, increasing the relative prominence of the large-scale flow parallel
to [14,26,29,37,38] or around [37,38,68,69] a turbulent patch or band. All of our realizations have
the same exponential decay rate at the end of the process.

Fourier analyses show that large-scale spectral components are correlated throughout the life of a
band, but undergo opposite trends during a splitting event, due to one- and two-band interactions. By
examining several realizations of band splitting, we find that the first three z-Fourier modes follow
approximately the same path during the transition from one band to two bands. This characterization
of the splitting pathway resembles transitions in other turbulent fluid systems for which rare-event
algorithms have been applied to assess long time scales associated with infrequent events. This
has been carried out in [54] for barotropic jet dynamics in the atmosphere and in [70] for a
stochastic two-variable model that reproduces transitional turbulence [13]. We are currently working
on applying this strategy to the study of turbulent band splitting.
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