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Low Reynolds number turbulence in wall-bounded shear flows en route to laminar flow
takes the form of oblique, spatially-intermittent turbulent structures. In plane Couette
flow, these emerge from uniform turbulence via a spatiotemporal intermittent process in
which localised quasi-laminar gaps randomly nucleate and disappear. For slightly lower
Reynolds numbers, spatially periodic and approximately stationary turbulent-laminar
patterns predominate. The statistics of quasi-laminar regions, including the distributions
of space and time scales and their Reynolds number dependence, are analysed. A smooth,
but marked transition is observed between uniform turbulence and flow with intermittent
quasi-laminar gaps, whereas the transition from gaps to regular patterns is more gradual.
Wavelength selection in these patterns is analysed via numerical simulations in oblique
domains of various sizes. Via lifetime measurements in minimal domains, and a wavelet-
based analysis of wavelength predominance in a large domain, we quantify the existence
and non-linear stability of a pattern as a function of wavelength and Reynolds number.
We report that the preferred wavelength maximises the energy and dissipation of the
large-scale flow along laminar-turbulent interfaces. This optimal behaviour is primarily
due to the advective nature of the large-scale flow, with turbulent fluctuations playing
only a secondary role.
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1. Introduction

Turbulence in wall-bounded shear flows in the transitional regime is characterised by
coexisting turbulent and laminar regions, with the turbulent fraction increasing with
Reynolds number. This phenomenon was first described by Coles & van Atta (1966)
and by Andereck et al. (1986) in Taylor-Couette flow. Later, by constructing Taylor-
Couette and plane Couette experiments with very large aspect ratios, Prigent et al.
(2002, 2003) showed that these coexisting turbulent and laminar regions, called bands
and gaps respectively, spontaneously formed regular patterns with a selected wavelength
and orientation that depend systematically on Re. These patterns have been simulated
numerically and studied intensively in plane Couette flow (Barkley & Tuckerman 2005,
2007; Duguet et al. 2010; Rolland & Manneville 2011; Tuckerman & Barkley 2011), plane
Poiseuille flow (Tsukahara et al. 2005; Tuckerman et al. 2014; Shimizu & Manneville 2019;
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Kashyap 2021), and Taylor-Couette flow (Meseguer et al. 2009; Dong 2009; Wang et al.
2022).
In pipe flow, the other canonical wall-bounded shear flow, only the streamwise direction

is long, and transitional turbulence takes the form of puffs, also called flashes (Reynolds
1883; Wygnanski & Champagne 1973), which are the one-dimensional analog of turbulent
bands. In contrast to bands in planar shear flows, experiments and direct numerical
simulations show that puffs do not spontaneously form spatially periodic patterns (Moxey
& Barkley 2010; Avila & Hof 2013). Instead, the spacing between them is dictated
by short-range interactions (Hof et al. 2010; Samanta et al. 2011). Puffs have been
extensively studied, especially in the context of the model derived by Barkley (2011a,b,
2016) from the viewpoint of excitable media. In this framework, fluctuations from uniform
turbulence trigger quasi-laminar gaps (i.e. low-turbulent-energy holes within the flow) at
random instants and locations, as has been seen in direct numerical simulations (DNS) of
pipe flow. The bifurcation scenario giving rise to localised gaps has been investigated by
Frishman & Grafke (2022), who called them anti-puffs. Interestingly, spatially periodic
solutions like those observed in planar shear flows are produced in a centro-symmetric
version of the Barkley model (Barkley 2011b) although the mechanism for their formation
has not yet been clarified.
In this paper, we will show that in plane Couette flow, as in pipe flow, short-lived

localised gaps emerge randomly from uniform turbulence at the highest Reynolds num-
bers in the transitional range, which we will see is Re ≃ 470 in the domain which we
will study. The first purpose of this paper is to investigate these gaps. The emblematic
regular oblique large-scale bands appear at slightly lower Reynolds numbers, which we
will see is Re ≃ 430.
If the localised gaps are disregarded, it is natural to associate the bands with a pattern-

forming instability of the uniform turbulent flow. This was first suggested by Prigent
et al. (2003) and later investigated by Rolland & Manneville (2011). Manneville (2012)
and Kashyap (2021) proposed a Turing mechanism to account for the appearance of
patterns by constructing a reaction-diffusion model based on an extension of the Waleffe
(1997) model of the streak-roll self-sustaining process. Reetz et al. (2019) discovered a
sequence of bifurcations leading to a large-scale steady state that resembles a skeleton
for the banded pattern, arising from tiled copies of the exact Nagata (1990) solutions
of plane Couette flow. The relationship between these pattern-forming frameworks and
local nucleation of gaps is unclear.
The adaptation of classic stability concepts to turbulent flows is currently a major

research topic. At the simplest level, it is always formally possible to carry out linear
stability analysis of a mean flow, as was done by Barkley (2006) for a limit cycle in
the cylinder wake. The mean flow of uniformly turbulent plane Couette flow has been
found to be linearly stable (Tuckerman et al. 2010). However, this procedure makes
the drastic simplification of neglecting the Reynolds stress entirely in the stability
problem and hence its interpretation is uncertain (e.g., Bengana & Tuckerman 2021).
The next level of complexity and accuracy is to represent the Reynolds stress via a
closure model. However, classic closure models for homogeneous turbulence (e.g. (K,Ω))
have yielded predictions that are completely incompatible with results from full numerical
simulation or experiment (Tuckerman et al. 2010). Another turbulent configuration in
which large, spatially periodic scales emerge are zonal jets, characteristic of geophysical
turbulence. For zonal jets, a closure model provided by a cumulant expansion (Srinivasan
& Young 2012; Tobias & Marston 2013) has led to a plausible stability analysis (Parker
& Krommes 2013). Other strategies are possible for turbulent flows in general: Kashyap
et al. (2022) examined the averaged time-dependent response of uniform turbulence to
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large-wavelength perturbations and provided evidence for a linear instability in plane
channel flow. They computed a dispersion relation which is in good agreement with the
natural spacing and angle of patterns.

Classic analyses for non-turbulent pattern-forming flows, such as Rayleigh-Bénard
convection or Taylor-Couette flow, yield not only a threshold and a preferred wavelength,
but also existence and stability ranges for other wavelengths through the Eckhaus
instability (Busse 1981; Ahlers et al. 1986; Riecke & Paap 1986; Tuckerman & Barkley
1990; Cross & Greenside 2009). As the control parameter is varied, this instability causes
spatially periodic states to make transitions to other periodic states whose wavelength is
preferred. Eckhaus instability is also invoked in turbulent zonal jets (Parker & Krommes
2013). The second goal of this paper is to study the regular patterns of transitional plane
Couette flow and to determine the wavelengths at which they can exist and thrive. At
low enough Reynolds numbers, patterns will be shown to destabilise and to acquire a
different wavelength.

Pattern formation is sometimes associated with maximisation principles obeyed by
the preferred wavelength, as in the canonical Rayleigh-Bénard convection. Such princi-
ples, like maximal dissipation, also have a long history for turbulent solutions. Malkus
(1954) and Busse (1981) proposed a principle of maximal heat transport, or equivalently
maximal dissipation, obeyed by convective turbulent states. The maximal dissipation
principle, as formulated by Malkus (1956) in shear flows, occurs in other systems such
as von Kármán flow (Ozawa et al. 2001; Mihelich et al. 2017). (This principle has been
somewhat controversial and was challenged by Reynolds & Tiederman (1967) within the
context of stability theory. See a modern revisit of Malkus stability theory with statistical
closures by Markeviciute & Kerswell (2022).) Using the energy analysis formulated in
our companion paper Gomé et al. (2023), we will associate the selected wavelength to a
maximal dissipation observed for the large-scale flow along the bands.

2. Numerical setup

Plane Couette flow consists of two parallel rigid plates moving at different velocities,
here equal and opposite velocities ±Uwall. Lengths are nondimensionalised by the half-
gap h between the plates and velocities by Uwall. The Reynolds number is defined to be
Re ≡ Uwallh/ν. We will require one further dimensional quantity that appears in the
friction coefficient – the mean horizontal shear at the walls, which we denote by U ′

wall.
We will use non-dimensional variables throughout except when specified. We simulate
the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u, (2.1a)

∇ · u = 0, (2.1b)

using the pseudo-spectral parallel code Channelflow (Gibson et al. 2019). Since the
bands are found to be oriented obliquely with respect to the streamwise direction, we
use a doubly periodic numerical domain which is tilted with respect to the streamwise
direction of the flow, shown as the oblique rectangle in figure 1. This choice was introduced
by Barkley & Tuckerman (2005) and has become common in studying turbulent bands
(Shi et al. 2013; Lemoult et al. 2016; Paranjape et al. 2020; Tuckerman et al. 2020). The
x direction is chosen to be aligned with a typical turbulent band and the z coordinate
to be orthogonal to the band. The relationship between streamwise-spanwise coordinates
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Figure 1: Spatial visualization of our numerical domains at Re = 360. Colors show the
wall-normal velocity v at the midplane y = 0 (blue: −0.2, white: 0, red: 0.2) in a domain
of size Lstrm = 400, Lspan = 200. Red and blue boxes respectively show a Minimal Band
Unit and a Long Slender Box.

and tilted band-oriented coordinates is:

estrm = cos θ ex + sin θ ez (2.2a)

espan = − sin θ ex + cos θ ez (2.2b)

The usual wall-normal coordinate is denoted by y and the corresponding velocity by
v. Thus the boundary conditions are u(y = ±1) = ±estrm in y and periodic in x and
z, together with a zero-flux constraint on the flow in the x and z directions. The field
visualised in figure 1 comes from an additional simulation we carried out in a domain
of size (Lstrm, Ly, Lspan) = (200, 2, 100) aligned with the streamwise-spanwise directions.
Exploiting the periodic boundary conditions of the simulation, the visualisation shows
four copies of the instantaneous field.

The tilted box effectively reduces the dimensionality of the system by disallowing large-
scale variation along the short x direction. The flow in this direction is considered to be
statistically homogeneous as it is only dictated by small turbulent scales. In a large non-
tilted domain, bands with opposite orientations coexist (Prigent et al. 2003; Duguet et al.
2010; Klotz et al. 2022), but only one orientation is permitted in the tilted box.

We will use two types of numerical domains, with different lengths Lz. Both have fixed
resolution ∆z = Lz/Nz = 0.08, along with fixed Lx = 10 (Nx = 120), Ly = 2 (Ny = 33)
and θ = 24◦. These domains are shown in figure 1.

(1) Minimal Band Units, an example of which is shown as the dark red box in
figure 1. These domains accommodate a single band-gap pair and so are used
to study strictly periodic pattern of imposed wavelength λ = Lz. (Lz must
typically be below ≃ 65 to contain a unique band.)

(2) Long Slender Boxes, which have a large Lz direction that can accommodate
a large and variable number of gaps and bands in the system. The blue box in
figure 1 is an example of such a domain size with Lz = 240, but larger sizes
(Lz = 400 or Lz = 800) will be used in our study.
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3. Nucleation of laminar gaps and pattern emergence

We have carried out simulations in a Long Slender Box of size Lz = 800 for various Re
with the uniform turbulent state from a simulation at Re = 500 as an initial condition,
a protocol called a quench. Figure 2, an extension of figure 1 of Gomé et al. (2023, Part
1), displays the resulting spatio-temporal dynamics at six Reynolds numbers. Plotted is
the (z, t) dependence of the cross-flow energy (v2 + u2span)/2 at (x = Lx/2, y = 0). The
cross-flow energy is a useful diagnostic because it is zero for laminar flow and is therefore
a proxy for turbulent kinetic energy. The choice x = Lx/2 is arbitrary since there is no
large-scale variation of the flow field in the short x direction of the simulation.

Figure 2 encapsulates the main message of this section: the emergence of patterns out
of uniform turbulence is a gradual process involving spatio-temporal intermittency of
turbulent and quasi-laminar flow. At Re = 500, barely discernible low-turbulent-energy
regions appear randomly within the turbulent background. At Re = 460 these regions
are more pronounced and begin to constitute localised, short-lived quasi-laminar gaps
within the turbulent flow. As Re is further decreased, these gaps are more probable and
last for longer times. Eventually, the gaps self-organise into persistent, albeit fluctuating,
patterns. The remainder of the section will quantify the evolution of states seen in figure 2.

3.1. Statistics of laminar and turbulent zones

We consider the x, y-averaged cross-flow energy

e(z, t) ≡ 1

LxLy

∫ 1

−1

∫ Lx

0

1

2
(v2 + u2span)(x, y, z, t) dxdy (3.1)

as a useful diagnostic of quasi-laminar and turbulent zones. The probability density
functions (PDFs) of e(z, t) are shown in figure 3a for various values of Re. The right
tails, corresponding to high-energy events, are broad and exponential for all Re. The
left, low-energy portions of the PDFs vary qualitatively with Re, unsurprisingly since
these portions correspond to the weak turbulent events and hence include the gaps. For
large Re, the PDFs are maximal around e ≃ 0.007. As Re is decreased, a low-energy peak
emerges at e ≃ 0.002, corresponding to the emergence of long-lived quasi-laminar gaps
seen in figure 2. The peak at e ≃ 0.007 flattens and gradually disappears. An interesting
feature is that the distributions broaden with decreasing Re with both low-energy and
high-energy events becoming more likely. This reflects a spatial redistribution of energy
that accompanies the formation of gaps, with turbulent bands extracting energy from
quasi-laminar regions and consequently becoming more intense. (See figure 6 of Gomé
et al. (2023, Part 1).)
An intuitive way to define turbulent and quasi-laminar regions is by thresholding the

values of e(z, t). In the following, a region will be called quasi-laminar if e(z, t) < eturb
and turbulent if e(z, t) ⩾ eturb. As the PDF of e(z, t) evolves with Re, we define a Re-
dependent threshold as a fraction of its average value, eturb = 0.75 e. The thresholding
is illustrated in figure 3b, which is an enlargement of the flow at Re = 440 that shows
turbulent and quasi-laminar zones as white and blue areas, respectively. Thresholding
within a fluctuating turbulent environment can conflate long-lived gaps with tiny, short-
lived regions in which the energy fluctuates below the threshold eturb. These are seen as
the numerous small blue spots in figure 3b that differ from the wider and longer-lived
gaps. This deficiency is addressed by examining the statistics of the spatial and temporal
sizes of quasi-laminar gaps.
We present the length distributions of laminar Llam and turbulent zones Lturb in

figures 3c and 3d at various Reynolds numbers. These distributions have their maxima
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Figure 2: Spatio-temporal visualization of pattern formation with Lz = 800, for (a) Re =
500, (b) Re = 460, (c) 440, (d) 420, (e) 400 and (f) Re = 380. Flow at t = 0 is initiated
from uniform turbulence at Re = 500. Color shows cross-flow energy (v2 + u2span)/2 at
x = Lx/2, y = 0 (white: 0, red: 0.02). At high Re, weak local gaps appear sparsely. When
Re is decreased, spatio-temporally intermittent patterns of finite spatial extent emerge.
These consist of turbulent cores (dark red) and quasi-laminar gaps (white). For still lower
Re, quasi-laminar regions live longer, and patterns are more regular and steady.
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Figure 3: (a) PDFs of local cross-flow energy e(z, t) defined in (3.1). Maximum at e ≃
0.002 appears for Re ⩽ 420. (b) Illustration of the thresholding e(z, t) < eturb, of a
turbulent-laminar field at Re = 440 with turbulent regions, e(z, t) > eturb in white and
quasi-laminar regions in blue. Definitions of Llam and Lturb, the lengths of quasi-laminar
and turbulent regions, are illustrated. (c) PDFs of laminar gap widths Llam showing
plateaux near 15 appearing for Re ⩽ 440. (d) PDFs of widths of turbulent regions Lturb

showing local increase near 20 for Re ⩽ 420.

at very small lengths, reflecting the large number of small-scale, low-turbulent-energy
regions that arise due to thresholding the fluctuating turbulent field. As Re is decreased,
the PDF for Llam begins to develop a plateau around Llam ≃ 15, corresponding to the
scale of the gaps visible in figure 2. The right tails of the distribution are exponential
and shift upwards with decreasing Re. The PDF of Lturb also varies with Re, but in
a somewhat different way. As Re decreases, the likelihood of a turbulent length in the
range 15 ≲ Lturb ≲ 35 increases above the exponential background, but at least over the
range of Re considered, a maximum does not develop.

The laminar-length distributions show the emergence of structure at Re higher than
the turbulent-length distributions. This is visible at Re = 440, where the distribution
of Lturb is indistinguishable from those at higher Re, while the distribution of Llam

is substantially altered. This is entirely consistent with the impression from the
visualisation in figure 2c that quasi-laminar gaps emerge from a uniform turbulent
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background. Although the distributions of Llam and Lturb behave differently, the length
scale emerging as Re decreases are within a factor of two. This aspect is not present in the
pipe flow results of Avila & Hof (2013). (See Appendix A for a more detailed comparison.)

3.2. Gap lifetimes and transition to patterns

Temporal measurements of the gaps are depicted in figure 4. Figure 4a shows the
procedure by which we define the temporal extents tgap of quasi-laminar gaps. For each
gap, i.e. a connected zone in (z, t) satisfying e(z, t) < eturb, we locate its latest and earliest
times and define tgap as the distance between them. Here again, we fix the threshold
at eturb = 0.75 e. Figure 4b shows the temporal distribution of gaps, via the survival
function of their lifetimes. In a similar vein to the spatial gap lengths, two characteristic
behaviours are observed: for small times, many points are distributed near zero (as a
result of frequent fluctuations near the threshold eturb), while for large enough times, an
exponential regime is seen:

P (tgap > t) ∝ e−t/τgap(Re) for t > t0, (3.2)

where t0 = 500 has been used for all Re, although the exponential range begins slightly
earlier for larger values of Re.
The slope of the exponential tail is extracted at each Re and the resulting characteristic

time-scale τgap is shown in figure 4c. The evolution of τgap with Re displays two regimes,
each with nearly exponential dependence on Re, but with very different slopes on the
semi-log plot. For Re ⩾ 470, the characteristic lifetimes are τgap = O(102) and vary
weakly with Re. These short timescales correspond to the small white events visible in
figure 2a and are associated with low-energy values on the left tails of the PDFs for e(z, t)
in figure 3a. Discounting these events, we refer to such states as uniform turbulence. For
Re < 470, τgap varies rapidly with Re, increasing by two orders of magnitude between
Re = 470 and Re = 380. The abrupt change in slope seen in figure 4c, which we denote by
Regu, marks the transition between gaps and uniform turbulence; we estimate Regu = 470
(to two significant figures). We stress that as far as we have been able to determine, there
is no critical phenomenon associated with this change of behaviour. That is, the transition
is smooth and lacks a true critical point. It is nevertheless evident that the dynamics
of quasi-laminar gaps changes significantly in the region of Re = 470 and therefore it is
useful to define a reference Reynolds number marking this change in behaviour.
Note that typical lifetimes of laminar gaps must become infinite by the threshold

Re ≃ 325 below which turbulence is no longer sustained (Lemoult et al. 2016). (We
believe this to be true even for Re ≲ 380 when the permanent banded regime is attained,
although this is not shown here.) For this reason, we have restricted our study of gap
lifetimes to Re ≳ 380 and we have limited our maximal simulation time to ∼ 104.
To quantify the distinction between localized gaps and patterns, we introduce a variable

eL/S as follows. Using the Fourier transform in z,

û(x, y, kz, t) =
1

Lz

∫ Lz

0

u(x, y, z, t)e−ikzz dz , (3.3)

we compute the averaged spectral energy

Ê(y, kz) ≡
1

2
û · û∗, Ê(kz) ≡ ⟨Ê(y, kz)⟩y (3.4)

where the overbar designates an average in x and t. This spectral energy is described
in figure 3a of our companion paper Gomé et al. (2023, Part 1). We are interested in

the ratio of Ê(kz) at large scales (pattern scale) to small scales (roll-streak scale), as
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Figure 4: (a) Same as figure 3b, but illustrating the definition of tgap, the lifetime of
a quasi-laminar gap. (b) Survival functions of tgap. After initial steep portions, slopes
yield the characteristic times. (c) Evolution with Re of characteristic time τgap and of
ratio of large to small scale energy eL/S defined by (3.5). Both of these quantities present
two exponential regimes, with the same slopes and a common crossover at Regu. The
horizontal dashed line delimits the region eL/S > 1, defining Repg below which regular
patterns dominate. We estimate Repg ≃ 430 and Regu ≃ 470 (to two significant figures).
(d) Evolution of friction coefficient Cf with Re, with the three regimes delimited by Repg
and Regu, as defined from (c).

it evolves with Re. For this purpose, we define the ratio of large-scale to small-scale
maximal energy:

eL/S =
max
kz<0.5

Ê(kz)

max
kz⩾0.5

Ê(kz)
(3.5)

The choice of wavenumber kz = 0.5 to delimit large and small scales comes from the
change in sign of non-linear transfers, as established in Gomé et al. (2023, Part 1). This
quantity is shown as blue squares in figure 4c and is highly correlated to τgap. This
correlation is in itself a surprising observation for which we have no explanation.
For Re ≳ 430, we have eL/S < 1, signaling that the dominant peak in the energy
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spectrum is at the roll-streak scale, while for Re ≲ 430, the large-scale pattern begins to
dominate the streaks and rolls, as indicated by eL/S > 1 (dashed blue line on figure 4c).
Note that Re = 430 is also the demarcation between unimodal and bimodal PDFs of
e(z, t) in figure 3a. The transition from gaps to patterns is smooth. In fact, we do not even
observe a qualitative feature sharply distinguishing gaps and patterns. We nevertheless
find it useful to define a reference Reynolds number associated to patterns starting to
dominate the energy spectrum. This choice has the advantage of yielding a quantitative
criterion, which we estimate as Repg ≃ 430 (to two significant figures). We find a similar
estimation of the value of Re below which patterns start to dominate via a wavelet-based
measurement, see Appendix B.
In addition to the previous quantitative measures, we also extract the friction coeffi-

cient. This is defined as the ratio of the mean wall shear stress µU ′
wall to the dynamic

pressure ρU2
wall/2, which we write in physical units and then in non-dimensional variables

as:

Cf ≡ µU ′
wall

1
2ρU

2
wall

=
2ν

hUwall

U ′
wall

Uwall/h
=

2

Re

∂ ⟨ustrm⟩x,z,t
∂y

∣∣∣∣
wall

(3.6)

In (3.6), the dimensional quantities h, ρ, µ, and ν are the half-height, the density, and
dynamic and kinematic viscosities, and Uwall and U

′
wall are the velocity and mean velocity

gradient at the wall. We note that the behavior of Cf in the transitional region has been
investigated in plane channel flow by Shimizu & Manneville (2019) and Kashyap et al.
(2020). Our measurements of Cf are shown in figure 4d. We distinguish different trends
within each of the three regimes defined earlier in figure 4c. In the uniform regime Re >
Regu = 470, Cf increases with decreasing Re. In the patterned regime Re < Repg = 430,
Cf decreases with decreasing Re. The localised-gap regime Repg < Re < Regu connects
these two tendencies, with Cf reaching a maximum at Re = 450.
The presence of a region of maximal Cf (or equivalently maximal total dissipation)

echoes the results on the energy balance presented in Gomé et al. (2023, Part 1): the
uniform regime dissipates more energy as Re decreases, up to a point where this is
mitigated by the many laminar gaps nucleated. This is presumably due to the mean flow
in the turbulent region needing energy influx from gaps to compensate for its increasing
dissipation.

3.3. Laminar-turbulent correlation function

The changes in regimes and the distinction between local gaps and patterns can be
further studied by measuring the spatial correlation between quasi-laminar regions within
the flow. We define

Θ(z, t) =

{
1 if e(z, t) < eturb (laminar)

0 otherwise (turbulent)
(3.7)

(this is the quantity shown in blue and white in figures 3b and 4a). We then compute its
spatial correlation function:

C(δz) =
⟨Θ(z)Θ(z + δz)⟩z,t − ⟨Θ(z)⟩2z,t

⟨Θ(z)2⟩z,t − ⟨Θ(z)⟩2z,t
. (3.8)

Along with (z, t) averaging, C is also averaged over multiple realisations of quench
experiments. As Θ is a Heaviside function, C can be understood as the average probability
of finding a gap at a distance δz from a gap at position z. The results are presented in
figure 5a. The comparative behaviour of C at near-zero values is enhanced by plotting
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Figure 5: (a) Gap-to-gap correlation function C(δz) defined by (3.8) for various values
of Re. (b) For Re ≳ 440 the weak variation and short-ranged maxima are enhanced by
plotting tanh(10 C(δz)). The dots correspond to the first local maximum, indicating the
selection of a finite distance between two local gaps, including at the highest Re. Large-
scale modulations smoothly leave room to weak short-range interaction as Re increases
and the flow visits patterned, local-gap and uniform regimes.

tanh(10 C) in figure 5b. At long range, C approaches zero with small fluctuations at
Re = 480, a noisy periodicity at Re = 460, and a nearly periodic behaviour for Re ⩽ 420.
In all cases, C initially decreases from one and reaches a first minimum at δz ≃ 20,

due to the minimal possible size of a turbulent zone that suppresses the creation of
neighbouring laminar gaps. C has a prominent local maximum δzmax right after its initial
decrease, at δzmax ≃ 32 at Re = 480, which increases to δzmax ≃ 41 at Re = 420. These
maxima, shown as coloured circles in figure 5b, indicate that gap nucleation is preferred
at distance δzmax from an existing gap. The increase in δzmax and in the subsequent
extrema as Re is lowered agrees with the trend of increasing wavelength of turbulent
bands as Re is decreased in the fully banded regime at lower Re (Prigent et al. 2003;
Barkley & Tuckerman 2005).
The smooth transition from patterns to uniform flow is confirmed in the behaviour of

the correlation function. Large-scale modulations characteristic of the patterned regime
gradually disappear with increasing Re, as gaps become more and more isolated. Only
a weak, finite-length interaction subsists in the local-gap and uniform regimes, and will
further disappear with increasing Re. This is the selection of this finite gap spacing that
we will investigate in §4 and §5.

4. Wavelength selection for turbulent-laminar patterns

In this section, we investigate the existence of a preferred pattern wavelength by using
as a control parameter the length Lz of the Minimal Band Unit. In a Minimal Band
Unit, the system is constrained and the distinction between local gaps and patterns is
lost; see section 3 of our companion paper Gomé et al. (2023, Part 1). Lz is chosen such
as to accommodate at most a single turbulent zone and a single quasi-laminar zone,
which due to imposed periodicity, can be viewed as one period of a perfectly periodic
pattern. By varying Lz, we can verify whether a regular pattern of given wavelength Lz
can emerge from uniform turbulence, disregarding the effect of scales larger than Lz or
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of competition with wavelengths close to Lz. We refer to these simulations in Minimal
Band Units as existence experiments. Indeed, one of the main advantages of the Minimal
Band Unit is the ability to create patterns of a given angle and wavelength which may
not be stable in a larger domain.
In contrast, in a Long Slender Box, Lz is large enough to accommodate multiple bands

and possibly even patterns of different wavelengths. An initial condition consisting of
a regular pattern of wavelength λ can be constructed by concatenating bands produced
from a Minimal Band Unit of size λ. The stability of such a pattern is studied by allowing
this initial state to evolve via the non-linear Navier-Stokes equations. Both existence and
stability studies can be understood in the framework of the Eckhaus instability (Kramer
& Zimmermann 1985; Ahlers et al. 1986; Tuckerman & Barkley 1990; Cross & Greenside
2009).
In previous studies of transitional regimes, Barkley & Tuckerman (2005) studied the

evolution of patterns as Lz was increased. In Section 4.1, we extend this approach to
multiple sizes of the Minimal Band Unit by comparing lifetimes of patterns that naturally
arise in this constrained geometry. The stability of regular patterns of various wavelengths
will be studied in Long Slender Domains (Lz = 400) in Section 4.2.

4.1. Temporal intermittency of regular patterns in a short-Lz box

Figure 6a shows the formation of a typical pattern in a Minimal Band Unit of size
Lz = 40 and at Re = 440. While the system cannot exhibit the spatial intermittency seen
in figure 2c, temporal intermittency is possible and is seen as alternation between uniform
turbulence and a pattern. We plot the spanwise velocity at y = 0 and x = Lx/2. This is
a particularly useful measure of the large-scale flow associated with patterns, seen as red
and blue zones surrounding a white quasi-laminar region, i.e. a gap. The patterned state
spontaneously emerges from uniform turbulence and remains from t ≃ 1500 to t ≃ 3400.
At t ≃ 500, a short-lived gap appears at z = 10, which can be seen as an attempt to
form a pattern.
We characterise the pattern quantitatively as follows. For each time t, we compute

|⟨û(y = 0, kz, t)⟩x|2, which is the instantaneous energy contained in wavenumber kz
at the mid-plane. We then determine the wavenumber that maximises this energy and
compute the corresponding wavelength. That is, we define

λ̂max(t) ≡
2π

argmax
kz>0

|⟨û(y = 0, kz, t)⟩x|2
. (4.1)

The possible values of λ̂max are integer divisors of Lz, here 40, 20, 10, etc. Figure
6b presents λ̂max and its short-time average ⟨λ̂max⟩ta with ta = 30 as light and dark

blue curves, respectively. When turbulence is uniform, λ̂max varies rapidly between its
discrete allowed values, while ⟨λ̂max⟩ta fluctuates more gently around 10. The flow state

is deemed to be patterned when its dominant mode is ⟨λ̂max⟩ta = Lz. The long-lived

pattern occurring for 1500 ⩽ t ⩽ 3400 in figure 6a is seen as a plateau of ⟨λ̂max⟩ta in
figure 6b. There are other shorter-lived plateaus, notably at for 500 ⩽ t ⩽ 750. A similar
analysis was carried out by Barkley & Tuckerman (2005); Tuckerman & Barkley (2011)
using the Fourier component corresponding to wavelength Lz of the spanwise mid-gap
velocity.
Figure 6c shows the survival function tpat of the pattern lifetimes obtained from

⟨λ̂max⟩ta over long simulation times for various Re. This measurement differs from figure
4b, which showed lifetimes of gaps in a Long Slender Box and not regular patterns
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Figure 6: Pattern lifetimes. (a) Space-time visualization of a metastable pattern in a
Minimal Band Unit with Lz = 40 at Re = 440. Colors show spanwise velocity (blue:

−0.1, white: 0, red: 0.1). (b) Values of the dominant wavelength λ̂max (light blue curve)

and of its short-time average ⟨λ̂max⟩ta (dark blue curve) are shown; see (4.1). A state

is defined to be patterned if λ̂max = Lz. (c) Survival function of lifetimes of turbulent-
laminar patterns in a Minimal Band Unit with Lz = 40 for various Re. The pattern
lifetimes tpat are the lengths of the time intervals during which λ̂max = Lz. (d) Above:
characteristic times τpat extracted from survival functions as a function of Lz and Re.
Below: intermittency factor for the patterned state γpat, which is the fraction of time
spent in the patterned state.

obtained in a Minimal Band Unit. The results are however qualitatively similar, with
two characteristic zones in the distribution, as in in figure 4b: at short times, many
patterns appear due to fluctuations; while after t ≃ 200, the survival functions enter an
approximately exponential regime, from which we extract the characteristic times τpat
by taking the inverse of the slope.
We then vary Lz, staying within the Minimal Box regime Lz ≲ 65 in which only

one band can fit. Figure 6d (top) shows that τpat presents a broad maximum in Lz
whose strength and position depend on Re: Lz ≃ 42 at Re = 440 and Lz ≃ 44 at
Re = 400. This wavelength corresponds approximately to the natural spacing observed
in a Large Slender Box (figure 2). Figure 6d (bottom) presents the fraction of time that
is spent in a patterned state, denoted γpat, to reflect that this should be thought of as
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the intermittency factor for the patterned state. The dependence of γpat on Lz follows
the same trend as τpat, but less strongly (the scale of the inset is linear, while that for
τpat is logarithmic).

The results shown in figure 6d complement the Ginzburg-Landau description proposed
by Prigent et al. (2003) and Rolland & Manneville (2011). To quantify the bifurcation
from featureless to pattern turbulence, these authors defined an order parameter and
showed that it has a quadratic maximum at an optimal wavenumber. This is consistent
with the approximate quadratic maxima that we observe in τpat and in γpat with regard
to Lz. Note that the scale of the pattern can be roughly set from the force balance in
the laminar flow regions (Barkley & Tuckerman 2007), λ ≃ Re sin θ/π, which yields a
wavelength of 52 at Re = 400 (close to the value of 44 found in figure 6d).

4.2. Pattern stability in a large domain

To study the stability of a pattern of wavelength λ, we prepare an initial condition
for a Long Slender Box by concatenating repetitions of a single band produced in a
Minimal Band Unit. We add small-amplitude noise to this initial pattern so that the
repeated bands do not all evolve identically. Figures 7a and 7b show two examples of such
simulations. Depending on the value of Re and of the initial wavelength λ, the pattern
destabilises to either another periodic pattern (figure 7a for Re = 400) or to localised
patterns surrounded by patches of featureless turbulence (figure 7b for Re = 430).
It can be seen that patterns often occupy only part of the domain. For this reason,

we turn to the wavelet decomposition (Meneveau 1991; Farge 1992) to quantify patterns
locally. In contrast to a Fourier decomposition, the wavelet decomposition quantifies the
signal as a function of space and scale. From this, we are able to define a local dominant
wavelength, λ̃max(z, t), similar in spirit to λ̂max(t) in (4.1), but now at each space-time

point. (See Appendix B for details.) Figures 7c and 7d show λ̃max(z, t) obtained from
wavelet analysis of the simulations visualised in figures 7a and 7b.
We now use the local wavelength λ̃max(z, t) to quantify the stability of an initial

wavelength. We use a domain of length Lz = 400 and we concatenate n = 7 to 13
repetitions of a single band to produce a pattern with initial wavelength λ(n) ≡ 400/n ≃
57, 50, 44 . . . 31. (We have rounded λ to the nearest integer value here and in what follows.)
After adding low-amplitude noise, we run a simulation lasting 5000 time units, compute
the wavelet transform and calculate from it the local wavelengths λ̃max(z, t). We define

ϵλ ≡ min((λ(n + 1) − λ(n))/2, (λ(n) − λ(n − 1))/2) such that |λ − λ̃max(z, t)| < ϵλ if

λ̃max is closer to λ(n) than to its two neighboring values . Finally, in order to measure

the proportion of Lz in the dominant mode λ̃max is λ, we compute

Hλ(t) =

〈
1

Lz

∫ Lz

0

Θ
(
ϵλ − |λ− λ̃max(z, t)|

)
dz

〉
ta

(4.2)

where Θ is the Heaviside function and the short-time average ⟨·⟩ta is taken over time
ta = 30 as before. In practice, because patterns in a Long Slender Box still fluctuate in
width, a steady pattern may have Hλ somewhat less than 1. If Hλ ≪ 1, a pattern of
wavelength λ is present in only a very small part of the flow.
Figure 7e shows how wavelet analysis via the Heaviside-like function Hλ(t) quantifies

the relative stability of the pattern in the examples shown in figures 7a and 7b. The
flow in figure 7a at Re = 400 begins with λ = 57, i.e. 7 bands. Figure 7c retains the
red color corresponding to λ = 57 over all of the domain for t ≲ 1200 and over most
of it until t ≲ 2300. The red curve in figure 7e shows Hλ decaying quickly and roughly
monotonically. One additional gap appears at around t = 2300 and starting from then,
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Figure 7: Simulation in a Long Slender Box from a noise-perturbed periodic pattern
with (a) initial λ = 57 at Re = 400 and (b) initial λ = 40 at Re = 430. Colors show
spanwise velocity (red: 0.1, white: 0, blue: −0.1). (c) and (d) show the local dominant
wavelength λ̃max(z, t) determined by wavelet analysis (see Appendix B) corresponding
to the simulations shown in (a) and (b). Color at t = 0 shows the wavelength λ of the
initial condition. (e) shows the wavelet-defined Hλ(t) defined in (4.2), which quantifies
the proportion of the domain that retains initial wavelength λ as a function of time for
cases (a) and (b). Circles indicate the times for (a) and (b) after which Hλ is below
the threshold value Hstab for a sufficiently long time. (f) Ensemble-averaged t̄stab of the
decay time of an imposed pattern of wavelength λ for various values of Re. The relative
stability of a wavelength, whether localised or not, is measured by t̄stab via the wavelet
analysis.
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Hλ remains low. This corresponds to the initial wavelength λ = 57 losing its dominance
to λ = 40, 44 and 50 in the visualisation of λ̃max(z, t) in figure 7c. By t = 5000, the flow
shows 9 bands with a local wavenumber λ between 40 and 50.
The flow in figure 7b at Re = 430 begins with λ = 40, i.e. 10 bands. Figure 7d

shows that the initial light green color corresponding to 40 is retained until t ≲ 800.
The blue curve in figure 7e representing Hλ initially decreases and drops precipitously
around t ≃ 1000 as several gaps disappear in figure 7b. Hλ then fluctuates around a
finite value, which is correlated to the presence of gaps whose local wavelength is the
same as the initial λ, visible as zones where λ̃max = 40 in figure 7d. The rest of the flow
can be mostly seen as locally featureless turbulence, where the dominant wavelength is
small (λ̃max ⩽ 10). The local patterns fluctuate in width and strength, and Hλ evolves
correspondingly after t = 1000. The final state reached in figure 7a at Re = 430 is
characterised by the presence of intermittent local gaps.
The lifetime of an initially imposed pattern wavelength λ is denoted tstab and is defined

as follows: We first define a threshold Hstab ≡ 0.2 (marked by a horizontal dashed line
on figure 7e). If Hλ(t) is statistically below Hstab, the imposed pattern will be considered
as unstable. Following this principle, tstab is defined as the first time Hλ is below Hstab,
with a further condition to dampen the effect of short-term fluctuations: tstab must obey
⟨Hλ(t)⟩t∈[tstab, tstab+2000] < Hstab, so as to ensure that the final state is on average below

Hstab. The corresponding times in case (a) and (b) are marked respectively by a red and
a blue circle in figure 7e.
Repeating this experiment over multiple realisations of the initial pattern (i.e. different

noise realisations) yields an ensemble-averaged t̄stab. This procedure estimates the time
for an initially regular and dominant wavelength to disappear from the flow domain,
regardless of the way in which it does so and of the final state approached. Figure 7f
presents the dependence of tstab on λ for different values of Re. Although our procedure
relies on highly fluctuating signals (like those presented on figure 7e) and on a number
of arbitrary choices (Hstab, ϵλ, etc.) that alter the exact values of stability times, we find
that the trends visualised in figure 7f are robust. (The sensitivity of tstab with Hstab is
shown in figure 13b of Appendix B.)
A most-stable wavelength ranging between 40 and 44 dominates the stability times for

all the values of Re under study. This is similar to the results from the existence study
on figure 6d, which showed a preferred wavelength emerging from the uniform state at
around 42 at Re = 440. Consistently with what was observed in Minimal Band Units of
different sizes, the most stable wavelength grows with decreasing Re.

4.3. Discussion

Our study of the existence and stability of large-scale modulations of the turbulent
flow is summarised in figure 8. This figure resembles the existence and stability diagrams
presented for usual (non-turbulent) hydrodynamic instabilities such as Rayleigh-Bénard
convection and Taylor-Couette flow (Busse 1981; Ahlers et al. 1986; Cross & Greenside
2009). In classic systems, instabilities appear with increasing control parameter, while
here gaps and bands emerge from uniform turbulent flow as Re is lowered. Therefore, we
plot the vertical axis in figure 8 with decreasing upwards Reynolds.
We recall that the existence study of §4.1 culminated in the measurement of γpat(λ,Re),

the fraction of simulation time that is spent in a patterned state, plotted in figure 6d.
The parameter values at which γpat(λ,Re) = 0.45 (an arbitrary threshold that covers
most of our data range) are shown as black circles in figure 8. The dashed curve is an
interpolation of the iso-γpat points and separates two regions, with patterns more likely
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Figure 8: Visualisation of the pattern selection in the phase space (λ,Re). Colours show
the stability times tstab, while open circles are points γpat(λ,Re) = 0.45. The dashed line
is an illustrative fit of these points.

to exist above the curve than below. The minimum of this curve is estimated to be
λ ≃ 42. This is a preferred wavelength at which patterns first statistically emerge as Re
is decreased from large values.

The final result of the stability study in section §4.2, shown in figure 7f, was tstab(Re, λ),
a typical duration over which a pattern initialised with wavelength λ would persist. The
colours in figure 8 show tstab. The peak in tstab is first discernible at Re ≃ 440 and occurs
at λ ≃ 40. The pattern existence and stability zones are similar in shape and in their
lack of symmetry with respect to line λ = 42. The transition seen in figures 7a and 7c
from λ = 57 to λ = 44 at Re = 400 corresponds to motion from a light blue to a dark
blue area in the top row of figure 8. This change in pattern wavelength resembles the
Eckhaus instability which, in classic hydrodynamics, leads to transitions from unstable
wavelengths outside a stability band to stable wavelengths inside.

The presence of a most-probable wavelength confirms the initial results of Prigent
et al. (2003) and those of Rolland & Manneville (2011). This is also consistent with the
instability study of Kashyap et al. (2022) in plane Poiseuille flow. However, contrary to
classic pattern-forming instabilities, the turbulent-laminar pattern does not emerge from
an exactly uniform state, but instead from a state in which local gaps are intermittent,
as established in Section 3. In Section 5, we will emphasise the importance of the mean
flow in the wavelength selection that we have described.

5. Optimisation of the large-scale flow

This section is devoted to the dependence of various energetic features of the patterned
flow on the domain length Lz of a Minimal Band Unit. We fix the Reynolds number at
Re = 400. In the existence study of §4, the wavelength λ ≃ 44 was found to be selected
by patterns. (Recall the uppermost curves corresponding to Re = 400 in figure 6d.) We
will show that this wavelength also extremises quantities in the energy balances of the
flow.
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Figure 9: Energy analysis for the patterned state at Re = 400 as a function of the size Lz
of a Minimal Band Unit. (a) Spatially-averaged total energy ⟨E⟩, mean TKE ⟨K⟩ (×5),
mean total dissipation ⟨D⟩, mean turbulent dissipation ⟨ϵ⟩ (×3), for the patterned state
at Re = 400 as a function of Lz. (b) Energy in each of the z-Fourier components of the
mean flow (equations (5.1) and (5.2)).

5.1. Average energies in the patterned state

We first decompose the flow into a mean and fluctuations, u = u+u′, where the mean
(overbar) is taken over the statistically homogeneous directions x and t. We compute
energies of the total flow ⟨E⟩ ≡ ⟨u · u⟩ /2 and of the fluctuations (turbulent kinetic
energy) ⟨K⟩ ≡ ⟨u′ · u′⟩ /2, where ⟨·⟩ is the (x, y, z, t) average. Figure 9a shows these
quantities as a function of Lz for the patterned state at Re = 400. At Lz = 44, ⟨E⟩
is maximal and ⟨K⟩ is minimal. As a consequence, the mean-flow energy 1

2 ⟨u · u⟩ =
⟨E⟩ − ⟨K⟩ is also maximal at Lz = 44. Figure 9a additionally shows average dissipation
of the total flow ⟨D⟩ ≡

〈
|∇ × u|2

〉
/Re and average dissipation of turbulent kinetic

energy ⟨ϵ⟩ ≡
〈
|∇ × u′|2

〉
/Re, both of which are minimal at Lz = 44. Note that these

total energy and dissipation terms change very weakly with Lz, with a variation of less
than 6%.
The mean flow is further analysed by computing the energy of each spectral component

of the mean flow. For this, the x, t averaged flow u is decomposed into Fourier modes in
z:

u(y, z) = u0(y) + 2R
(
u1(y)e

i2πz/Lz
)
+ u>1(y, z) (5.1)

where u0 is the uniform component of the mean flow, u1 is the trigonometric Fourier
coefficient corresponding to kz = 2π/Lz and u>1 is the remainder of the decomposition,
for kz > 2π/Lz. (We have omitted the hats on the z Fourier components of u.) The
energies of the spectral components relative to the total mean energy are

e0 =
⟨u0 · u0⟩
⟨u · u⟩

, e1 =
⟨u1 · u1⟩
⟨u · u⟩

, e>1 =
⟨u>1 · u>1⟩

⟨u · u⟩
(5.2)

These are presented in figure 9b. It can be seen that e0 ≫ e1 > e>1 and also that
all have an extremum at Lz = 44. In particular, Lz = 44 minimizes e0 (e0 = 0.95)
while maximising the trigonometric component (e1 = 0.025) along with the remaining
components (e>1 ≃ 0.011). Note that for a banded state at Re = 350, Lz = 40, Barkley
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& Tuckerman (2007) found that e0 ≃ 0.70, e1 ≃ 0.30 and e>1 ≃ 0.004, consistent with a
strengthening of the bands as Re is decreased.

5.2. Mean flow spectral balance

We now investigate the spectral contributions to the budget of the mean flow u,
dominated by the mean flow’s two main spectral components u0 and u1. The balances
can be expressed as in Gomé et al. (2023, Part 1):

Â0 − Π̂0 − D̂0 + I = 0 for u0 and Â1 − Π̂1 − D̂1 = 0 for u1 (5.3)

where I is the rate of energy injection by the viscous shear, and Π̂0, D̂0 and Â0

stand for, respectively, production, dissipation and advection (i.e. non-linear interaction)
contributions to the energy balance of mode u0 and similarly for u1. These are defined
by

I =
2

Re
R
{∫ 1

−1

∂

∂y

(
û
∗
j (kz = 0)ŝyj(kz = 0)

)
dy

}
=

1

Re

(
∂ustrm
∂y

∣∣∣∣
1

+
∂ustrm
∂y

∣∣∣∣
−1

)
(5.4a)

Π̂0 = R

{∫ 1

−1

∂û
∗
j

∂xi
(kz = 0) û′iu

′
j(kz = 0) dy

}
(5.4b)

D̂0 =
2

Re
R
{∫ 1

−1

ŝij(kz = 0) ŝ
∗
ij(kz = 0) dy

}
(5.4c)

Â0 = −R

{∫ 1

−1

û
∗
j (kz = 0)

̂
ui
∂uj
∂xi

(kz = 0) dy

}
(5.4d)

where R denotes the real part. We define Π̂1, D̂1 and Â1 similarly by replacing kz = 0
by kz = 2π/Lz in (5.4a)-(5.4d).

We recall two main results from Gomé et al. (2023, Part 1): first, Â1 ≃ −Â0. This term
represents the energetic transfer between modes u0 and u1 via the self-advection of the

mean flow (the energetic spectral influx from (u · ∇)u). Second, Π̂1 < 0, and this term
approximately balances the negative part of TKE production. This is an energy transfer
from turbulent fluctuations to the component u1 of the mean flow.
Each term contributing to the balance of u0 and u1 is shown as a function of Lz in

figures 10a and 10b. We do not show Â0 because Â0 ≃ −Â1.
We obtain the following results:

(1) Production Π̂0, dissipation D̂0 and energy injection I are nearly independent of
Lz, varing by no more than 6% over the range shown. These kz = 0 quantities
correspond to uniform fields in z and hence it is unsurprising that they depend
very little on Lz.

(2) The non-linear term Â1 ≃ −Â0, i.e. the transfer from u0 to u1 which is the
principal source of energy of u1, varies strongly with Lz and has a maximum
at Lz ≃ 44. This is the reason for which u0 is minimised by Lz ≃ 44 (see figure
9b): more energy is transferred from u0 to u1.

(3) Production Π̂1 increases with Lz and does not show an extremum at Lz ≃ 44

(it instead has a weak maximum at Lz ≃ 50). In all cases, Π̂1 < Â1: the
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Figure 10: Spectral energy balance of the mean flow components (a) u0 (uniform
component) and (b) u1 (large-scale flow along the laminar-turbulent interface). See

equation (5.3). Advection and dissipation of the large-scale flow, Â1 and D̂1, show the
strongest variations with Lz and are optimal at the preferred wavelength Lz ≃ 44.

TKE feedback on the mean flow, although present, is not dominant and not
selective.

(4) Dissipation D̂1 accounts for the remaining budget and its extremum at Lz ≃ 44
corresponds to maximal dissipation.

The turbulent kinetic energy balance is also modified with changing Lz. This is
presented in Appendix C. The impact of TKE is however secondary, because of the
results established in item (3).

6. Conclusion and discussion

We have explored the appearance of patterns from uniform turbulence in plane Couette
flow at Re ⩽ 500. We used numerical domains of different sizes to quantify the competi-
tion between featureless (or uniform) turbulence and (quasi-) laminar gaps. In Minimal
Band Units, intermittency reduces to a random alternation between two states: uniform
or patterned. In large slender domains, however, gaps nucleate randomly and locally in
space, and the transition to patterns takes place continuously via the regimes presented
in Section 3: the uniform regime in which gaps are rare and short-lived (above Re ≃ 470),
and another regime (Re < 470) in which gaps are more numerous and long-lived. Below
Re ≃ 430, the large-scale spacing of these gaps starts to dominate the energy spectrum,
which is a possible demarcation of the patterned regime. With further decrease in Re,
gaps eventually fill the entire flow domain, forming regular patterns. The distinction
between these regimes is observed in both gap lifetime and friction factor.
Spatially isolated gaps were already observed by Prigent et al. (2003), Barkley & Tuck-

erman (2005) and Rolland & Manneville (2011). (See also Manneville (2015, 2017) and
references therein.) Our results confirm that pattern emergence, mediated by randomly-
nucleated gaps, is necessarily more complex than the supercritical Ginzburg-Landau
framework initially proposed by Prigent et al. (2003) and later developed by Rolland
& Manneville (2011). However, this does not preclude linear processes in the appearance
of patterns, such as those reported by Kashyap et al. (2022) from an ensemble-averaged
linear response analysis.
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The intermittency between uniform turbulence and gaps that we quantify here in the
range 380 ≲ Re ≲ 500 is not comparable to that between laminar flow and bands present
for 325 ≲ Re ≲ 340. The latter is a continuous phase transition in which the laminar
flow is absorbing: laminar regions cannot spontaneously develop into turbulence and
can only become turbulent by contamination from neighbouring turbulent flow. This is
connected to the existence of a critical point at which the correlation length diverges
with a power-law scaling with Re, as characterised by important past studies (Shi et al.
2013; Chantry et al. 2017; Lemoult et al. 2016) which demonstrated a connection to
directed percolation. The emergence of gaps from uniform turbulence is of a different
nature. Neither uniform turbulence nor gaps are absorbing states, since gaps can always
appear spontaneously and can also disappear, returning the flow locally to a turbulent
state. While the lifetimes of quasi-laminar gaps do exhibit an abrupt change in behaviour
at Re = 470 (figure 4c), we observe no evidence of critical phenomena associated with
the emergence of gaps from uniform turbulence. Hence, the change in behaviour appears
to be in fact smooth. This is also true in pipe flow where quasi-laminar gaps form, but
not patterns (Avila & Hof 2013; Frishman & Grafke 2022).
We used the pattern wavelength as a control parameter, via either the domain size or

the initial condition, to investigate the existence of a preferred pattern wavelength. We
propose that the finite spacing between gaps, visible in both local gaps and patterned
regimes, is selected by the preferred size of their associated large-scale flow. Once gaps
are sufficiently numerous and patterns are established, their average wavelength increases
with decreasing Re, with changes in wavelength in a similar vein to the Eckhaus picture.

The influence of the large-scale flow in wavelength selection is analysed in Section
5, where we carried out a spectral analysis like that in Gomé et al. (2023, Part 1) for
various sizes of the Minimal Band Unit. In particular, we investigated the roles of the
turbulent fluctuations and of the mean flow, which is in turn decomposed into its uniform
component u0 and its trigonometric component u1, associated to the large-scale flow
along the laminar-turbulent interface. Our results demonstrate a maximisation of the
energy and dissipation of u1 by the wavelength naturally preferred by the flow, and
this is primarily associated to an optimisation of the advective term (u · ∇)u in the
mean flow equation. This term redistributes energy between modes u0 and u1 and is
mostly responsible for energising the large-scale along-band flow. Turbulent fluctuations
are of secondary importance in driving the large-scale flow and do not play a significant
role in the wavelength selection. Our results of maximal transport of momentum and
dissipation of the large-scale flow are therefore analogous to the principles mentioned
by Malkus (1956) and Busse (1981). Explaining this observation from first principles
remains a prodigious task.
It is essential to understand the creation of the large-scale flow around a randomly

emerging laminar hole. The statistics obtained in our tilted configuration should be ex-
tended to large streamwise-spanwise domains, where short-lived and randomly-nucleated
holes might align in the streamwise direction (Manneville 2017, Fig. 5). This presumably
occurs at Re above the long-lived-gap regime, in which the two gap orientations ±θ
compete. The selected pattern angle might also maximise the dissipation of the large-
scale flow, similarly to what we found for the preferred wavelength. Furthermore, a more
complete dynamical picture of gap creation is needed. The excitable model of Barkley
(2011a) might provide a proper framework, as it accounts for both the emergence of anti-
puffs (Frishman & Grafke 2022) and of periodic solutions (Barkley 2011b). Connecting
this model to the Navier-Stokes equations is, however, a formidable challenge. Our work
emphasises the necessity of including the effects of the advective large-scale flow (Barkley
& Tuckerman 2007; Duguet & Schlatter 2013; Klotz et al. 2021; Marensi et al. 2022) to
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adapt this model to the establishment of the turbulent-laminar patterns of both preferred
wavelength and angle observed in planar shear flows.
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Appendix A. Laminar and turbulent distributions in pipe vs Couette
flows.

From figures 3c and 3d of the main text, both distributions of laminar or turbulent
lengths, Llam and Lturb, are exponential for large enough lengths, similarly to pipe
(Avila & Hof 2013). It is however striking that the distributions of Llam and Lturb have
different shapes for Llam or Lturb > 10 in plane Couette flow: Llam shows a sharper
distribution, whereas Lturb is more broadly distributed. We present on figures 11a and
11b the cumulative distributions of Llam and Lturb for a complementary analysis.
We focus on the characteristic length l∗turb or l∗lam for which P (Llam > l∗lam) =

P (Lturb > l∗turb) = 10−2: for example, l∗lam = 15.5 and l∗turb = 26.5 at Re = 440;
l∗lam = 23.4 and l∗turb = 30.3 at Re = 400. We see that l∗turb and l∗lam are of the same order
of magnitude. This differs from the same measurement in pipe flow, carried out by Avila
& Hof (2013, Fig. 2): l∗lam = 6 and l∗turb ≃ 50 at Re = 2800; l∗lam ≃ 17 and l∗turb ≃ 160 at
Re = 2500 (as extracted from their figure 2.). This confirms that turbulent and laminar
spacings are of the same order of magnitude in plane Couette flow, contrary to pipe flow.
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Figure 11: Cumulative distribution of (a) laminar gaps and (b) turbulent zones, for
various Re.

Appendix B. Wavelet transform

We introduce the one-dimensional continuous wavelet transform of the velocity u(z, t)
taken along the line (x, y) = (Lx/2, 0):

ũ(z, r, t) = C
−1/2
ψ r−1/2

∫ Lz

0

ψ∗
(
z′ − z

r

)
u(z′, t)dz′ (B 1)

Here ψ is the Morlet basis function, defined in Fourier space as ψ̂(k) = π−1/4e−(k−kψ)2/2

for k > 0. Its central wavenumber is kψ = 6/∆z, where ∆z is the grid spacing. The

scale factor r is related to wavelength via λ ≃ 2πr/kψ. Cψ ≡
∫
|k|−1|ψ̂(k)|2dk is a

normalization constant. Tildes are used to designate wavelet transformed quantities.
The inverse transform is:

u(z, t) = C
−1/2
ψ

∫ ∞

0

∫ ∞

−∞
r−1/2ψ

(
z − z′

r

)
ũ(z′, r, t)

dz′ dr

r2
(B 2)

The wavelet transform is related to the Fourier transform in z by:

ũ(z, r, t) =
1

2π
C

−1/2
ψ r1/2

∫ ∞

−∞
ψ̂(r kz)û(kz, t)e

ikzzdkz (B 3)

We then define the most energetic instantaneous wavelength as:

λ̃max(z, t) =
2π

kψ
argmax

r
|ũ(z, r, t)|2 (B 4)

The characteristic evolution of λ̃max(z, t) is illustrated in figure 12b for the flow case

corresponding to figure 12a. Regions in which λ̃max is large (> 10) and dominated by
a single value correspond to the local patterns observed in figure 12a. In contrast, in
regions where λ̃max is small (< 10) and fluctuating, the turbulence is locally uniform.
This space-time intermittency of the patterns is quantified by measuring

fL/S =
〈
Θ(λ̃max(z, t)− 10)

〉
z,t

(B 5)

and is shown in figure 13a as a function of Re.
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Figure 12: Space-time visualisation of a quench experiment at Re = 430: (a) spanwise

velocity (blue: −0.2, white: 0, red: 0.2), (b) λ̃max(z, t) defined by (B 4). λ̃max(z, t) (b)
quantifies the presence of local large-scale modulations within the flow. Dark blue zones
where λ̃max(z, t) < 10 correspond to locally featureless turbulence in (a). Large-scale
modulation of gaps at different wavelengths are visible as the green-to-red spots in (b).
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Figure 13: (a) Space-time fraction of large to small wavelengths obtained by wavelet
transform. fL/S crosses 0.5 at Re ≃ 427 ≃ Repg. (b) Sensitivity of the stability analysis
in 4.2 with regard to threshold Hstab, at Re = 430.

Appendix C. Turbulent kinetic energy balance for various Lz

In this appendix, we address the balance of turbulent kinetic energy K̂(kz), written
here in y-integrated form at a specific mode kz (see equation (5.3) of Gomé et al. (2023,
Part 1) and the methodology in, e.g., Bolotnov et al. (2010); Lee & Moser (2015); Mizuno
(2016); Cho et al. (2018)):

0 = Π̂ − D̂ + Â+ T̂nl (C 1)
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Figure 14: Evolution of the large-scale TKE balance with Lz (C 3).

where the variables in (C 1) indicate y-integrated quantities:

Π̂(kz) ≡ −R


∫ 1

−1

û′j
∗ ̂
ui
∂u′j
∂xi

dy

 , D̂(kz) ≡
2

Re

∫ 1

−1

ŝ′ij ŝ
′
ij

∗
dy,

T̂nl(kz) ≡ −R


∫ 1

−1

û′j
∗ ̂
u′i
∂u′j
∂xi

dy

 , Â(kz) ≡ −R


∫ 1

−1

û′j
∗ ̂
ui
∂u′j
∂xi

dy

 (C 2)

respectively standing for production, dissipation, triadic interaction and advection terms.
We recall that (·) is an average in (x, t). The y evolution of the energy balance was
analysed in Gomé et al. (2023, Part 1).
Gomé et al. (2023, Part 1) reported robust negative production at large scales, along

with inverse non-linear transfers to large scales. If krolls = 1.41 denotes the scale of rolls
and streaks, this inverse transfer occurs for kz < kLS = 0.94, while a downward transfer
occurs for kz > kSS = 3.6 (We refer the reader to figure 5 of Gomé et al. (2023, Part
1)). This spectral organization of the energy balance will be quantified by the following
transfer terms arising from (C2):

T̂LS ≡
kLS∑
kz=0

T̂nl(kz), T̂SS ≡
∞∑

kz=kSS

T̂nl(kz), D̂LS ≡
kLS∑
kz=0

D̂(kz), ÂLS ≡
kLS∑
kz=0

Â(kz)

(C 3)

T̂LS quantifies transfer to large scales, T̂SS the transfer to small scales, D̂LS the dissi-
pation at large scales, and ÂLS is a transfer of energy from the mean flow to the large
fluctuating scales. Large-scale production is not shown here, as we presented in figure

10b a similar measurement of large-scale turbulent transfer to the mean flow, via Π̂1.
The variables defined in (C 3) are displayed in figure 14 as a function of Lz. T̂LS is

minimal at Lz ≃ 44. D̂LS is minimal at Lz ≃ 40. Contrary to T̂LS , T̂SS is relatively
constant with Lz (green dashed line in figure 14), with a variation of around 6%. This
demonstrates that transfers to small scales are unchanged with Lz. Large-scale TKE
advection decays with increasing Lz hence it does not play a role in the preference
of a wavelength. Our results show that the balance at large-scale is minimised around
Lz ≃ 44, confirming the less important role played by turbulent fluctuations in the
wavelength selection, compared to that of the mean-flow advection reported in the main
text.
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Saarloos, Wim 2002 Large-scale finite-wavelength modulation within turbulent shear
flows. Phys. Rev. Lett. 89 (1), 014501.

Reetz, Florian, Kreilos, Tobias & Schneider, Tobias M 2019 Exact invariant
solution reveals the origin of self-organized oblique turbulent-laminar stripes. Nature
communications 10 (1), 2277.

Reynolds, Osborne 1883 An experimental investigation of the circumstances which determine
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