In this section we construct the toric variety Xy corresponding to a fan
Definition 3.1.1. A foric variety is an irreducible variety X containing a torus
Ty ~ (C*)" as a Zariski open subset such that the action of Ty on itself extends to an

algebraic action of Ty on X. (By algebraic action, we mean an action Ty x X — X
given by a morphism.)

Definition 3.1.2. A fan ¥ in Ny is a finite collection of cones o C N such that:
(a) Every o € X is a strongly convex rational polyhedral cone.

(b) Forall o € X, each face of ¢ is also in X.. —_\

(¢) Forall o1,0, € %, the intersection o N oy is a face of each (hence also in X).
Furthermore, if X is a fan, then:
e The support of ¥ is |X| = 5,0 € Nr.
e X(r) is the set of r-dimensional cones of 3.
Definition 2.8. Let M be a lattice and let N = Hom(M,Z) be the
dual lattice.
A strongly convex rational polyhedral cone 0 C Np = N ®@ R
18 :
e g cone, that is, ifv € o and A € R, A > 0 then \v € o;

polyhedral, that is, o is the intersection of finitely many half
spaces;

rational, that is, the half spaces are defined by equations with
rational coefficients;

strongly convex, that is, o contains no linear spaces other
than the origin.
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rleties, one for

0 check how to glue these together to get

a toric var ppose we are given two cones ¢ and 7 belonging to

F. The intersection is a cone p which is also a cone belonging to F.
Since p is a face of both ¢ and 7 there are natural inclusions bv  LEmmat
Uy 20, CU,  and U, CU.. o aen S |

lue U, to U, using the natural identification of the common open|

subset U,. Com lity of gluing follows automatically from the fact,

that the ident ion is natural and from the combinatorics of the fan.

It is clear that the resulting scheme is of finite type over the groundfield.

Separatedness follows from:

Lemma 2.16. Let o and T be two cones whose intersection is the cone
p

If p is a face of each then the diagonal map

U, — U, x Uy,
is a closed embedding.
Proof. This is equivalent to the statement that the natural map b
A, @A — A,
is surjective. For this, one just needs to check that
S,=58,+ 5.

One inclusion is easy; the RHS is contained in the LHS. For the other
inclusion, one needs a standard fact from convex geometry, which is
called the separation lemma: there is a vector u € 56 N S_, such that
simultaneously

p=ocnNut and p=1Nut
By the first equality S, = S, + Z(—u). As u € S_; we have —u € S;
and so the LHS is contained in the RHS. [
So we have shown that given a fan F' we can construct a normal
= X (F). It is not hard to see that the natural action of the
sponding to the zero cone extends to an action on the whole
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SYMi HIROD Let X be a normal separated toric variety with torus Ty. Then

there exists a fan 33 in Ng such that X ~ Xx..

%' Lemma 1.2.13 (Separation Lemma). Let 01,02 be polyhedral cones in Ny that|
meet along a common face T = o1 Noa. Then

T=HyNoy=H,Noy

for any m € Relint(c) N (—o2)Y).



Example 3.1.9. Consider the fan ¥ in Nz = R” in Figure 2, where N = Z has
standard basis e, e>.

Here we show all points in the cones inside a rectangular viewing box (all figures
of fans in the plane in this chapter will be drawn using the same convention.)

Figure 2. The fan ¥ for P2

, we expect Xy ~ P2, and we will show

this in detail. The fan ¥ has three 2-dimensional cones oy = Cone(ey,e;), 01 =
Cone(—e; — e3,e3), and 0, = Cone(e;, —e; — e3), together with the three rays
7jj = oiNa; for i # j, and the origin. The toric variety Xx. is covered by the
affine opens

Us,, = Spec(C|[Sq,]) >~ Spec(Clx,y])
U,, = Spec(C[Sy,]) =~ Spec(Clx~!,x~y])
U,, = Spec(C[S,,]) = Spec(Cly~",y~1)).
Moreover, by Proposition 3.1.3, the gluing data on the coordinate rings is given by
glo: Choyly = Clr ', x ™yl
g Clryly = Clo™ y ),
1 :Clr Yy = Chy ™y .

It is easy to see that if we use the usual homogeneous coordinates (xg,x,x2) on P2,
then x % and y — ;—3 identifies the standard affine open U; C P? with U, C Xx.
Hence we have recovered P2 as the toric variety Xs,. O

fonk tub NEXT  SLIOGS:
When n = m = 1, we obtain the fan ¥ C R~ ~ Ny pictured in Figure 3 on the

iext page. Here, we can use an elementary gluing argument to show that this fan
ives P! x P!. Label the 2-dimensional cones o, =0 X 0‘ as above. Then
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Spec(ClSy, ) ~ 'y

Spec(ClSay ) ~ ey o |

Ve see that if Uy and U, are the standard affine open sets in P!, then Us; = Ui x U;
nd it is easy to check that the gluing makes X5, ~ P! x P!, O
Proposition 3.1.14. Suppose we have fans Y1 in (Ny)r and 3 in (N;)r. Then

> XZQZ{O'] XUQ|0’,‘€E,‘}
is a fan in (N))r X (N2)r = (N1 X N2)r and

XE] Xy, =~ XE] X Xzz'




DEPENDY On Tk EmBEDPPIVKS:

Example 3.1.11. We classify all 1-dimensional normal toric varieties as follows.
We may assume N = Z and Ng = R. The only cones are the intervals o¢ = [0,00)
and o = (—00,0] and the trivial cone 7 = {0}. It follows that there are only four
possible fans, which gives the following list of toric varieties:

{7}, which gives C*

{00,7} and {o1,7}, both of which give C

{09,01,7}, which gives P'.

Here is a picture of the fan for P':
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In this section, we will study the orbits for the action of 7y on the toric variety Xs..
Our main result will show that there is a bijective correspondence between cones
in ¥ and Ty-orbits in Xy. The connection comes ultimately from looking at limit
points of the one-parameter subgroups of 7y defined in §1.1.

Points and Semigroup Homomorphisms. It will be convenient to use the intrinsic 86
description of the points of an affine toric variety U, v —
recall ' . e P> (m )X (ﬂ“
Points of U, are in bijective correspondence with semigroup homomorphisms (¥
v:S, > C. wasy  C=(T,?) stm e

W‘}mé‘, S 4
2% of C[S(;]

For each cone o we have a point of U, defined by

1 meS,Not=0ctnM

0 otherwise.

meS, — {

This is a semigroup homomorphism since o¥ Nt is a face of ¢¥. Thus, if
m,m' €S, and m+m’ €S, Not, then m,m’ € S, No+. We denote this point
by 7, and call it the distinguished point corresponding to 0.(;5 Q CloSed Pom)
The point +, is fixed under the Ty-action if and only if dim o = dim Ny (Corol-
lary 1.3.3).

If 7 < o is a face, then v, € U,. This follows since o C 7.

ubgroups. . , the Iimit points ot one-
parameter subgroups are exactly the distinguished points for the cones in the fan
We now show that this is true for all affine toric varieties.

Proposition 3.2.2. Let 0 C Ny be a strongly convex rational polyhedral cone and
letu e N. Then

~
UuEc o= lim) A(¢) exists in U,. )\ (h\ = ALle~ OF
t—(
(1 b“: a \,"’)

Moreover, if u € Relint(o), then limy_.o \*(t) = .
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Example 3.2.1. Consider P? ~ Xy, for the fan ¥ from Figure 2 of §3.1. The torus
Ty = (C*)? C P? consists of points with homogeneous coordinates (1,s,t), s, # 0.
For each u = (a,b) € N = Z?, we have the corresponding curve in P%:

M) = (1,8%,¢%).

We are abusing notation slightly; strictly speaking, the one-parameter subgroup \“
is a curve in (C*)2, but we view it as a curve in P2 via the inclusion (C*)? C P2

We start by analyzing the limit of \“(¢) as ¢ — 0. The limit point in P? depends
on u = (a,b). It is easy to check that the pattern is as follows:
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limit is (0,1,1)
Figure 6. lim, o \"(¢) for u = (a,b) € Z*

For instance, suppose a,b > 0 in Z. These points lie in the first quadrant. Here,
it is obvious that lim,_(1,7,¢%) = (1,0,0). Next suppose that a = b < 0 in Z,
corresponding to points on the diagonal in the third quadrant. Note that

(1,6%,6%) = (1,1%,¢%) ~ (t79,1,1)
since we are using homogeneous coordinates in 2. Then —a > 0 implies that

lim, o (¢7%,1,1) = (0,1,1). You will check the remaining cases in Exercise 3.2.1.

The regions of N described in Figure 6 correspond to cones of the fan ¥. In
each case, the set of u giving one of the limit points equals N N Relint(o), where
Relint(o) is the relative interior of a cone o € 3. In other words. we have recovered

the structure of the fan ¥ by considering these limits!




The Torus Orbits. Now we turn to the Ty-orbits in X5;. We saw above that each
cone o € ¥ has a distinguished point 7, € U, C Xx,. This gives the torus orbit

O(o) =Tn- v, C Xx.

In order to determine the structure of O(c), we need the following lemma, which
you will prove in Exercise 3.2.4.

Lemma } 2.4. Let o be a strongly conve, ratlonal polyhedral cone in Ng. Let N,
bé the yublatttce of N spar 1ed by the points in oﬁN ‘and let Nﬁa N/N :
N
/A bmauﬂ-m 4
/ / (, >/ ﬂM X N( 7§ —Z, / /

/,

induced by th a’ualpairing (,):Mx N < HM ('M '“—)
(b) T/épalrm of part (a) mduces a;cz/al lsommplusm /

(a) Therezva elfectp iring

Homy (o

(C*) ~ T (o)
where Ty(y) = N(0) @z C" is the torus associated to N(

To study O(o) C Uy, we recall how # € Ty acts on semigroup homomorphisms.
If p € U, is represented by v : S, —>((C"3then by Exercise 1.3.1, the point - p is
represented by the semigroup homomorphism
(3.2.5) toy:me—s x"(t)y(m).
Lemma 3.2.5. Let o be a strongly convex rational polyhedral cone in Ng. Then
0(0)={7:S, = C|y(m)#0=mecotNM} Qe Tua ¥ s Br1bo
~ Homgz(c-NM,C*) ~ Tv(o)» LIRS OIN (N ). ave

Iy e g TR
where N(o) is the lattice defined in Lemma 3.2.4.

Proof. The set O' = {v:S, — C | y(m) # 0 < m € o> N M} contains 7, and is
invariant under the action of 7 described in (3.2.5).

Next observe that o is the largest vector subspace of Mg contained in oV

Hence o+ NM is a subgroup of S = oV N M. If v € O, then restricting ~ to
m € S,Not = ot NM yields a group homomorphism 7 : o+ NM — C* (Exer-
cise 3.2.5). Conversely, if ¥ : 0 N M — C* is a group homomorphism, we obtain
a semigroup homomorphism y € O’ by defining

ifmeoltnM

otherwise.
It follows that O’ ~ HOmz(UJ‘ NM,C*).

Now consider the exact sequence

(3.2.6) 0— N.—N—N(o)—0.
Tensoring with C* and using Lemma 3.2.4, we obtain a surjection

=N®zC" — Ty =N(0) ®zC" ~ Homgz,(c- N M,C*).
The bijections
TN(O’) ZHOInz(O'LﬂM,(C*) ~0

are compatible with the Ty-action, so that Ty acts transtively on O'. Then v, € O’
implies that O’ = Ty -7, = O(0), as desired.




Now we relate this to the Ty-orbits in P~. By considering the description P~ ~
(C3\ {0})/C*, you will see in Exercise 3.2.1 that there are exactly seven Ty-orbits

x0,X1,%2) | x; # 0 forall i} 3 (1,1,1)
X0, xl,xz) ‘Xz =0, and xg,x; ;é 0} > (1, ,0)
1)

=1
={{
= {(x0,x1,x2) | x1 =0, and xo,x, # 0} > (1,0,
= {(x0,x1,x2) | x0 =0, and x;,x, # 0} > (0,1, 1)
s = {(x0,x1,%2) | x1 =x2 =0, and xp # 0} = {(1,0,0)}
O¢ = {(x0,x1,x2) | x0 =x2 =0, and x; # 0} = {(0,1,0)}
07 = {(x0,x1,x2) | xo =x1 =0, and x; # 0} = {(0,0,1)}.

This list shows that each orbit contains a unique limit point. Hence we obtain a
correspondence between cones ¢ and orbits O by

o corresponds to O <> lir% A“(t) € O for all u € Relint(o).
—

We will soon see that these observations generalize to all toric varieties Xs;.

FwaL  DOmB

Theorem 3.2.6 (Orbit-Cone Correspondence). Let Xy, be the toric variety of the
fan 3 in Ng. Then:

(a) There is a bijective correspondence

{cones o in X} «— {Ty-orbits in X5}
o« 0(0) ~ Homgz (o NM,C").
(b) Let n = dim Ng. For each cone o € ¥, dim O(c) =n—dimo.
(c) The affine open subset U, is the union of orbits
U, = |J o).
T=0

Proof of Theorem 3.2.6. Let O be a Ty-orbit in Xy. Since Xy is covered by the
Ty-invariant affine open subsets U, C Xs and U,, NU,, = U, o, , there is a unique

minimal cone o € ¥ with O C U,,. We claim that O = O(¢). Note that part (a) will
follow immediately once we prove this claim.

To prove the claim, let 7y € O and consider those m € S, satisfying y(m) # 0.
In Exercise 3.2.6, you will show that these m’s lie on a face of oV. But faces of oV
are all of the form ¥ N7+ for some face 7 < o by Proposition 1.2.10. In other
words, there is a face 7 < o such that

{meS,|y(m)#0} =cVNTENM.

This easily implies vy € U, (Exercise 3.2.6), and then 7 = ¢ by the minimality of 0.
Hence {m € S, | y(m) # 0} = o= N M, and then € O(c’) by Lemma 3.2.5. This
implies O = O(0) since two orbits are either equal or disjoint.

Part (b) follows from Lemma 3.2.5 and (3.2.6).

Next consider part (c). We know that U,, is a union of orbits. If 7 is a face of o,
then O(7) C U, C U, implies that O(7) is an orbit contained in U,. Furthermore,
the analysis of part (a) easily implies that any orbit contained in U, must equal
O(r) for some face 7 < 0.




