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Tommaso Faustini

Study group on Geometric Invariant Theory, 6th November, 2024
These notes are a shameless copy of the fourth section of the notes of the course Moduli problems
and Geometric Invariant Theory, by Victoria Hoskins [Hos15].

Introduction
We extend the theory of affine GIT developed in the previous talks to construct GIT quotients for
reductive group actions on projective schemes. The idea is that we would like construct our GIT
quotient by gluing affine GIT quotients. In order to do this we would like to cover our scheme X by
affine open subsets which are invariant under the group action and glue the affine GIT quotients
of these affine open subsets of X. However, it may not be possible to cover all of X by such
compatible open invariant affine subsets.

For a projective scheme X with an action of a reductive group G, there is not a canonical way
to produce an open subset of X which is covered by open invariant affine subsets. Instead, this
will depend on a choice of an equivariant projective embedding X ↪→ Pn, where G acts on Pn

by a linear representation G → GLn+1. Firstly we will define GIT quotient assu,ing to have one
of those equivariant embedding and the we will traslate the theory to more genereal setting via
the linearisation of the G-action on X. Again our GIT quotient will be a good quotient (for the
semi-stable points) and geometric quotient if restricted to the stable ones.

1 Construction of the projective GIT quotient.
Definition 1.1. Let X be a projective scheme with an action of an affine algebraic group G. A
linear G-equivariant projective embedding of X is a group homomorphism G → GLn+1

and a G-equivariant projective embedding X ↪→ Pn. We will often simply say that the G-action
on X ↪→ Pn is linear to mean that we have a linear G-equivariant projective embedding of X as
above.

Suppose we have a linear action of a reductive group G on a projective scheme X ⊂ Pn. Then
the action of G on Pn lifts to an action of G on the affine cone An+1 over Pn. Since the projective
embedding X ⊂ Pn is G-equivariant, there is an induced action of G on the affine cone X̃ ⊂ An+1

over X ⊂ Pn. More precisely, we have
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O
(
An+1

)
= k [x0, . . . , xn] =

⊕
r≥0

k [x0, . . . , xn]r =
⊕
r≥0

H0 (Pn,OX(r))

and if X ⊂ Pn is the closed subscheme associated to a homogeneous ideal I(X) ⊂ k [x0, . . . , xn],
then X̃ = SpecR(X) where R(X) = k [x0, . . . , xn] /I(X).

The k-algebras O (An+1) and R(X) are graded by homogeneous degree and, as the G-action
on An+1 is linear it preserves the graded pieces, so that the invariant subalgebra

O
(
An+1

)G
=

⊕
r≥0

k [x0, . . . , xn]
G
r

is a graded algebra and, similarly, R(X)G = ⊕r≥0R(X)Gr . By Nagata’s theorem, R(X)G

is finitely generated, as G is reductive. The inclusion of finitely generated graded k-algebras
R(X)G ↪→ R(X) determines a rational morphism of projective schemes

X 99K ProjR(X)G

whose indeterminacy locus is the closed subscheme of X defined by the homogeneous ideal
R(X)G+ := ⊕r>0R(X)Gr .

Definition 1.2. For a linear action of a reductive group G on a projective scheme X ⊂ Pn,
we define the nullcone N to be the closed subscheme of X defined by the homogeneous ideal
R(X)G+ in R(X) (strictly speaking the nullcone is really the affine cone Ñ over N ). We define
the semistable set Xss = X − N to be the open subset of X given by the complement to the
nullcone. More precisely, x ∈ X is semistable if there exists a G-invariant homogeneous function
f ∈ R(X)Gr for r > 0 such that f(x) 6= 0. By construction, the semistable set is the open subset
which is the domain of definition of the rational map

X 99K ProjR(X)G

We call the morphisms Xss → X//G := ProjR(X)G the GIT quotient of this action.

Theorem 1.3. For a linear action of a reductive group G on a projective scheme X ⊂ Pn, the GIT
quotient ϕ : Xss → X//G is a good quotient of the G-action on the open subset Xss of semistable
points in X. Furthermore, X//G is a projective scheme.

Proof. Let ϕ : Xss → Y := X//G denote the projective GIT quotient. In order to prove that is a
good quotient we want to use the fact that this propriety is local on the target!
For f ∈ RG

+, the open affine subsets Yf ⊂ Y form a basis of the open sets on Y . Since f ∈ R(X)G+ ⊂
R(X)+, we can also consider the open affine subset Xf ⊂ X and, by construction of ϕ, we have
that ϕ−1 (Yf ) = Xf . Let X̃f (respectively Ỹf ) denote the affine cone over Xf (respectively Yf ).
Then
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O (Yf ) ∼= O
(
Ỹf

)
0

∼=
((

R(X)G
)
f

)
0

∼=
(
(R(X)f )0

)G ∼=
(
O
(
X̃f

)
0

)G ∼= O (Xf )
G

and so the corresponding morphism of affine schemes ϕf : Xf → Yf
∼= SpecO (Xf )

G is an affine
GIT quotient, and so also a good quotient. The morphism ϕ : Xss → Y is obtained by gluing the
good quotients ϕf : Xf → Yf .

1.1 Stable points
We recall that as ϕ : Xss → X//G is a good quotient, for two semistable points x1, x2 in Xss, we
have

G · x1 ∩G · x2 ∩Xss 6= ∅ ⇐⇒ ϕ (x1) = ϕ (x2) .

Furthermore, the preimage of each point in X//G contains a unique closed orbit. The presence
of non-closed orbits in the semistable locus will prevent the good quotient ϕ : Xss → X//G from
being a geometric quotient. So using the same idea used for the affine case we define the so called
stable points:
Definition 1.4. Consider a linear action of a reductive group G on a closed subscheme X ⊂ Pn.
Then a point x ∈ X can be:

• stable if dimGx = 0 and there is a G-invariant homogeneous polynomial f ∈ R(X)G+ such
that x ∈ Xf and the action of G on Xf is closed.

• unstable if it is not semistable.
Notice that the set of not stable points is contained in the set of unstable points but isn’t equal.
Proposition 1.5. The stable and semistable sets Xs and Xss are open in X.

Proof. Xss is the complement of the nullcone that is closed. Xss is defined by dimGx inside
Xc := ∪Xf where the union is taken over f ∈ R(X)G+ such that the action of G on Xf is closed,
then is an open in an open.
Theorem 1.6. For a linear action of a reductive group G on a closed subscheme X ⊂ Pn, let
ϕ : Xss → Y := X//G denote the GIT quotient. Then there is an open subscheme Y s ⊂ Y such
that ϕ−1 (Y s) = Xs and that the GIT quotient restricts to a geometric quotient ϕ : Xs → Y s.

Proof. Let Yc be the union of Yf for f ∈ R(X)G+ such that the G-action on Xf is closed and let
Xc be the union of Xf over the same index set so that Xc = ϕ−1 (Yc). Then ϕ : Xc → Yc is
constructed by gluing ϕf : Xf → Yf for f ∈ R(X)G+ such that the G-action on Xf is closed. Each
ϕf is a good quotient and as the action on Xf is closed, ϕf is also a geometric quotient. Hence
ϕ : Xc → Yc is a geometric quotient, since it is a local propriety. Then one can show that this
restrict to ϕ : Xs → Y s that remain a geometric quotient.
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Notice that if in the definition of stability we don’t assume dimGx = 0 we have that the set of
stable points is Xc that still open and restricted to this the quotient is geometric, so why we ask
for the extra condition?
Well, in the original definition by Mumford this condition was omitted, but now is commonly used
since it is better suited to moduli problems.

Example 1.7. Consider the linear action of G = Gm on X = Pn by

t · [x0 : x1 : · · · : xn] =
[
t−1x0 : tx1 : · · · : txn

]
In this case R(X) = k [x0, . . . , xn] which is graded into homogeneous pieces by degree. It is easy

to see that the functions x0x1, . . . , x0xn are all G-invariant. In fact, we claim that these functions
generate the ring of invariants. To prove the claim, suppose we have f ∈ R(X); then

f =
∑

m=(m0,...,mn)

a(m)xm0
0 xm1

1 . . . xmn
n

and, for t ∈ Gm,

t · f =
∑

m=(m0,...,mn)

a(m)tm0−m1−···−mnxm0
0 xm1

1 . . . xmn
n

Then f is G-invariant if and only if a(m) = 0 for all m = (m0, . . . ,mn) such that m0 6=
∑n

i=1mi.
If m satisfies m0 =

∑n
i=1mi, then

xm0
0 xm1

1 . . . xmn
n = (x0x1)

m1 . . . (x0xn)
mn

that is, if f is G-invariant, then f ∈ k [x0x1, . . . x0xn]. Hence

R(X)G = k [x0x1, . . . , x0xn] ∼= k [y0, . . . , yn−1]

and after taking the projective spectrum we obtain the projective variety X//G = Pn−1. The
explicit choice of generators for R(X)G allows us to write down the rational morphism

ϕ : X = Pn 99K X//G = Pn−1

[x0 : x1 : · · · : xn] 7→ [x0x1 : · · · : x0xn]

and its clear from this description that the nullcone

N = {[x0 : · · · : xn] ∈ Pn : x0 = 0 or (x1, · · · , xn) = 0}

is the projective variety defined by the homogeneous ideal I = (x0x1, · · · , x0xn). In particular,

Xss =
n⋃

i=1

Xx0xi
= {[x0 : · · · : xn] ∈ Pn : x0 6= 0 and (x1, . . . , xn) 6= 0} ∼= An − {0}
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where we are identifying the affine chart on which x0 6= 0 in Pn with An. Therefore

ϕ : Xss = An − {0} −→ X//G = Pn−1

is a good quotient of the action on Xss. As the preimage of each point in X//G is a single
orbit, this is also a geometric quotient. Moreover, every semistable point is stable as all orbits are
closed in An − {0} and have zero dimensional stabilisers.

1.2 A description of the k-points of the GIT quotient.
In general it can be difficult to determine which points are semistable and stable as it is necessary
to have a description of the graded k-algebra of invariant functions. For this reason we introduce
the following notion:

Definition 1.8. Let G be a reductive group acting linearly on X ⊂ Pn. A k-point x ∈ X(k) is said
to be polystable if it is semistable and its orbit is closed in Xss. We say two semistable k-points
are S-equivalent if their orbit closures meet in Xss. We write this equivalence relation on Xss(k)
as ∼S-equiv. and let Xss(k)/ ∼S-equiv. denote the S-equivalence classes of semistable k-points.

How they relate with stable points? The following lemma tell us that all the stable points are
polystable:

Lemma 1.9. Let G be a reductive group acting linearly on X ⊂ Pn. A k-point x ∈ X(k) is stable
if and only if x is semistable and its orbit G · x is closed in Xss and its stabiliser Gx is zero
dimensional.

Idea: Suppose x is stable and x′ ∈ G · x ∩ Xss ; then ϕ (x′) = ϕ(x) and so x′ ∈ ϕ−1(ϕ(x)) ⊂
ϕ−1 (Y s) = Xs. As G acts on Xs with zero-dimensional stabiliser, this action must be closed as
the boundary of an orbit is a union of orbits of strictly lower dimension. Therefore, x′ ∈ G · x and
so the orbit G · x is closed in Xss.

Lemma 1.10. Let G be a reductive group acting linearly on X ⊂ Pn and let x ∈ X(k) be a
semistable k-point; then its orbit closure G · x contains a unique polystable orbit. Moreover, if x
is semistable but not stable, then this unique polystable orbit is also not stable.

Proof. The first statement follows from Corollary 3.32: ϕ is constant on orbit closures and the
preimage of a k-point under ϕ contains a orbit which is closed in Xss; this is the polystable orbit.
For the second statement we note that if a semistable orbit G · x is not closed, then the unique
closed orbit in G · x has dimension strictly less than G · x by Proposition 3.15 and so cannot be
stable.

Corollary 1.11. Let G be a reductive group acting linearly on X ⊂ Pn. For two semistable points
x, x′ ∈ Xss, we have ϕ(x) = ϕ (x′) if and only if x and x′ are S-equivalent. Moreover, there is a
bijection of sets
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X//G(k) ∼= Xps(k)/G(k) ∼= Xss(k)/ ∼S-equiv.

where Xps(k) is the set of polystable k-points.

2 Linearisations

2.1 Remarks on ample line bundle
An abstract projective scheme X does not come with a prespecified embedding in a projective
space. However, an ample line bundle L on X (or more precisely some power of L ) determines an
embedding of X into a projective space. More precisely, the projective scheme X and ample line
bundle L, determine a finitely generated graded k-algebra

R(X,L) :=
⊕
r≥0

H0
(
X,L⊗r

)
We can choose generators of this k-algebra: si ∈ H0 (X,L⊗ri) for i = 0, . . . n, where ri ≥ 1.

Then these sections determine a closed immersion

X ↪→ P (r0, . . . , rn)

into a weighted projective space, by evaluating each point of X at the sections si. In fact, if
we replace L by L⊗m for m sufficiently large, then we can assume that the generators si of the
finitely generated k-algebra

R
(
X,L⊗m

)
=

⊕
r≥0

H0
(
X,L⊗mr

)
all lie in degree 1. In this case, the sections si of the line bundle L⊗m determine a closed

immersion

X ↪→ Pn = P
(
H0

(
X,L⊗m

)∗)
given by evaluation x 7→ (s 7→ s(x)).

2.2 Linearisation of line bundles
Idea: If we have an affine algebraic group G acting on X, then we would like to lift the G-action
to L linear on the fibers in a way that the bundle map becomes equivariant. This idea is made
precise by the notion of a linearisation:
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Definition 2.1. Let X be a scheme and G be an affine algebraic group acting on X via a morphism
σ : G×X → X. Then a linearisation of the G-action on X is a line bundle π : L → X over
X with an isomorphism of line bundles

π∗
XL = G× L ∼= σ∗L

where πX : G × X → X is the projection, such that the induced bundle homomorphism
σ̃ : G× L → L defined by

G×X

σ∗L L

G×X X

idG×π

σ̃

∼=

π

σ

induces an action of G on L; that is, we have a commutative square of bundle homomorphisms

G×G× L G× L

G× L L

idG×σ̃

µG×idL σ̃

σ̃

We say that a linearisation is (very) ample if the underlying line bundle is (very) ample.

Remark 2.2. Notice that since the action on the line bundle σ̃ : G × L → L is a morphism of
vector bundles we have that:

• the projection π : L → X is G-equivariant

• the action of G on the fibres of L is linear: for g ∈ G and x ∈ X, the map on the fibres
Lx → Lg·x is linear.

Moreover, we are developing the theory using the notion of vector bundle but we can do all the
same procedure by talking about invertible sheafs.

Notice that this notion of linearization is just a generalization of the concept of G acting linearly
on X ⊂ Pn:
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Remark 2.3. Suppose that X is a projective scheme and L is a very ample linearisation. Then
the natural evaluation map

H0(X,L)⊗k OX → L

is G-equivariant. Moreover, this evaluation map induces a G-equivariant closed embedding

X ↪→ P
(
H0(X,L)∗

)
such that L is isomorphic to the pullback of the Serre twisting sheaf O(1) on this projective

space. In this case, we see that we have an embedding of X as a closed subscheme of a projective
space P (H0(X,L)∗) such that the action of G on X comes from a linear action of G on H0(X,L)∗.

2.3 Examples
We start with a really trivial bundle:

Example 2.4. Let us consider X = Spec k with necessarily the trivial G-action. Then there is
only one line bundle π : A1 → Spec k over Spec k, but there are many linearisations. In fact, the
group of linearisations of X is the character group of G. If χ : G → Gm is a character of G, then
we define an action of G on A1 by acting by G×A1 → A1. Conversely, any linearisation is given
by a linear action of G on A1; that is, by a group homomorphism χ : G → GL1 = Gm.

In a similar way we can twist any linearization:

Example 2.5. For any scheme X with an action of an affine algebraic group G and any character
χ : G → Gm, we can construct a linearisation on the trivial line bundle X × A1 → X by

g · (x, z) = (g · x, χ(g)z)

More generally, for any linearisation σ̃ on L → X, we can twist the linearisation by a character
χ : G → Gm to obtain a linearisation σ̃χ.

Not every linearisation on a trivial line bundle comes from a character:

Example 2.6. Consider G = µ2 = {±1} acting on X = A1 − {0} by (−1) · x = x−1. Then the
linearisation on X×A1 → X given by (−1) · (x, z) = (x−1, xz) is not isomorphic to a linearisation
given by a character, as over the fixed points +1 and -1 in X, the action of −1 ∈ µ2 on the fibres
is given by z 7→ z and z 7→ −z respectively.

Lastly, probably the most useful example of action:
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Example 2.7. The natural actions of GLn+1 and SLn+1 on Pn inherited from the action of GLn+1

on An+1 by matrix multiplication can be naturally linearised on the line bundle OPn(1). To see why,
we note that the trivial rank n+ 1-vector bundle on Pn has a natural linearisation of GLn+1 (and
also SLn+1 ). The tautological line bundle OPn(−1) ⊂ Pn × An+1 is preserved by this action and
so we obtain natural linearisations of these actions on OPn(±1). However, the action of PGLn+1

on Pn does not admit a linearisation on OPn(1) (see Exercise Sheet 9), but we can always linearise
any G-action on Pn to OPn(n+ 1) as this is isomorphic to the nth exterior power of the cotangent
bundle, and we can lift any action on Pn to its cotangent bundle via differentials.

2.4 Projective GIT with respect to an ample linearisation
Let G be a reductive group acting on a projective scheme X and let L be an ample linearisation
of the G-action on X. Then consider the graded finitely generated k-algebra

R := R(X,L) :=
⊕
r≥0

H0
(
X,L⊗r)

of sections of powers of L. Since each line bundle L⊗r has an induced linearisation, there is
an induced action of G on the space of sections H0

(
X,L⊗r) (intuitively: since G acts on X and

on L in an equivariant way, it acts on the global sections). We consider the graded algebra of
G-invariant sections

RG =
⊕
r≥0

H0
(
X,L⊗r)G

The subalgebra of invariant sections RG is a finitely generated k-algebra and ProjRG is
projective over RG

0 = kG = k following a similar argument to above.

Definition 2.8. For a reductive group G acting on a projective scheme X with respect to an ample
line bundle, we make the following definitions.

1. A point x ∈ X is semistable with respect to L if there is an invariant section σ ∈
H0

(
X,L⊗r)G for some r > 0 such that σ(x) 6= 0.

2. A point x ∈ X is stable with respect to L if dimG · x = dimG and there is an invariant
section σ ∈ H0

(
X,L⊗r)G for some r > 0 such that σ(x) 6= 0 and the action of G on

Xσ := {x ∈ X : σ(x) 6= 0} is closed.

We let Xss(L) and Xs(L) denote the open subset of semistable and stable points in X
respectively. Then we define the projective GIT quotient with respect to L to be the morphism

Xss → X/LG := ProjR(X,L)G
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associated to the inclusion R(X,L)G ↪→ R(X,L).

Example 2.9. We have already defined notions of semistability and stability when we have a linear
action of G on X ⊂ Pn. In this case, the action can naturally be linearised using the line bundle
OPp(1). Can be checked that the two notions of semistability agree; that is,

X(s)s = X(s)s (OPn(1)|X)

Theorem 2.10. Let G be a reductive group acting on a projective scheme X and L be an ample
linearisation of this action. Then the GIT quotient

ϕ : Xss(L) → X//LG = Proj
⊕
r≥0

H0
(
X,L⊗r)G

is a good quotient and X/LLG is a projective scheme with a natural ample line bundle L′ such
that ϕ∗L′ = L⊗n for some n > 0. Furthermore, there is an open subset Y s ⊂ X//LG such that
ϕ−1 (Y s) = Xs(L) and ϕ : Xs(L) → Y s is a geometric quotient for the G-action on Xs(L).

The proof is besically the same seen previusly but instead of using Xf we use the open sets Xσ

for each σ ∈ R(X,L)G+.

Remark 2.11. For an ample linearisation L, we know that some positive power of L is very ample.
By definition Xss(L) = Xss (L⊗n) and Xs(L) = Xs (L⊗n) and X//LG ∼= X//L⊗nG (as abstract
projective schemes), we can assume without loss of generality that L is very ample and so X ⊂ Pn

and G acts linearly. However, we note that the induced ample line bundles on X//LG and X//L
⊗nG

are different, and so these GIT quotients come with different embeddings into (weighted) projective
spaces.

We still have the notion of polystability, and a result similar to the privious case holds for the
k-points:

Definition 2.12. We say two semistable k-points x and x′ in X are S-equivalent if the orbit
closures of x and x′ meet in the semistable subset Xss(L). We say a semistable k-point is polystable
if its orbit is closed in the semistable locus Xss(L).

Corollary 2.13. Let x and x′ be k-points in Xss(L); then ϕ(x) = ϕ (x′) if and only if x and x′

are S-equivalent. Moreover, we have a bijection of sets

(X//LG) (k) ∼= Xps(L)(k)/G(k) ∼= Xss(L)(k)/ ∼S-equiv.

where Xps(L)(k) is the set of polystable k-points.
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Everythin can be extendent to the case of reductive group actions on quasiprojective schemes
with respect to (not necessarily ample) linearisations via the folloqing definition:

Definition 2.14. Let X be a quasi-projective scheme with an action by a reductive group G and
L be a linearisation of this action.

1. A point x ∈ X is semistable with respect to L if there is an invariant section σ ∈
H0

(
X,L⊗r)G for some r > 0 such that σ(x) 6= 0 and Xσ = {x ∈ X : σ(x) 6= 0} is affine.

2. A point x ∈ X is stable with respect to L if dimG · x = dimG and there is an invariant
section σ ∈ H0

(
X,L⊗r)G for some r > 0 such that σ(x) 6= 0 and Xσ is affine and the action

of G on Xσ is closed.

The open subsets of stable and semistable points with respect to L are denoted Xs(L) and
Xss(L) respectively.
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