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Abstract

In algebraic number theory, the Hilbert class field H of a number field K is the
maximal abelian unramified extension of K. The existence of this particular
extension is an important tool in studying the structure of the ideal class
group of a number field, and for this reason the explicit construction of the
Hilbert class field of a given number field is an important problem. Although
the problem is still open, the particular case of quadratic imaginary fields is
completely understood, thanks to the theory of elliptic curves with complex
multiplication. The purpose of this dissertation is to show how tools from the
theory of elliptic curves with complex multiplication and of modular forms
can be brought to bear on studying the Hilbert class field of an imaginary
quadratic field.

The first step in the study of elliptic curves over C is to prove the Uniform-
ization Theorem: for every elliptic curve E/C there exists a lattice A, unique
up to homothety, such that ' ~ E,. This theorem is very important because
it connects algebraic notions with analytic notions. In order to prove this
theorem, in the first chapter we introduce some definitions and proprieties of
modular forms. In the second chapter we discuss elliptic curve with complex
multiplication and their endomorphism rings.

Then, in the third chapter, we present some results about the so-called
congruence subgroups of SLy(Z) and their corresponding modular forms, in
particular we investigate the congruence subgroup I'g(/N). At the end of the
chapter, using these tools and some proprieties of the modular polynomial
and its coefficients we prove the following theorem: Let R be an order in an
imaginary quadratic field and let A be a lattice with RA C A, then j(A) is
an algebraic integer. In the last chapter we give a brief review of class field
theory and finally we prove the following theorem: Let K/Q be a quadratic
imaginary field with ring of integers O, and let E be an elliptic curve with
End(F) ~ Og. Then K(j(FE)) is the Hilbert class field H of K.






CHAPTER

Preliminaries

In this chapter we review, mostly without proof, some fundamental facts on
elliptic curves. All the definitions, propositions and theorems in this chapter
can be found in [4, Chaper IT and III] and [6, Chapter 2].

An elliptic curve over a field K is an smooth projective algebraic curve of
genus one defined over K having a specified base point with coordinates in
K. Every such curve can be written as the locus in P? of a cubic equation
with only one point on the line at oo, corresponding to the marked point of E.
Up to isomorphism, every elliptic curve can be defined by a long Weiestrass
equation:

y2 + a1y + azy = x> + a2x2 + aqx + ag.

If we suppose that char(K) # 2,3 we can consider the short Weierstrass
equation:

E:y’=23+ar+0b

Definition 0.1. A Weierstrass equation is in Legendre form if it can be writ-
ten as

v =z(x—1)(z -\

We can define some useful quantities associated with a short Weierstrass
equation:

e discriminant: A = —16(4a® + 27b%)

4a3

o j-invariant: j = 1728 5 5o

As F is smooth by definition, it is easy to see that A # 0.
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Proposition 0.2. Assume that char(K) # 2,3. Then every elliptic curve is
isomorphic over K to an elliptic curve in Legendre form

E:y?*=x(x—1)(z— N\
for some A € K with A\ # 0, 1.

Proof. Since char(K) # 2,3 we can consider a Weierstrass equation for E of
the form E : y? = 23 +ax+b = (v —x1)(x—x2) (v —x3) for some z1, v, 73 € K.
Further, since A = 16(x1 — 23)%(21 — 22)%(z2 — 23)% # 0 we see that the x;’s
are distinct. Now using the substitution

v =(rg—m)a' + a1, y=(x2— 1)y
we find a Weierstrass equation in Legendre form. O

We now state two important results about the j-invariant. The first one
justifies the name “invariant”.

Theorem 0.3. Two elliptic curves are isomorphic over K if and only if they
both have the same j-invariant.

Proposition 0.4. Let jo € K. There exists an elliptic curve defined over
K (jo) whose j-invariant is equal to jo.
0.1 Divisors

Definition 0.5. A divisor is a formal sum D = Y p_pnp(P), where np € Z
and np = 0 for all but finitely many P € E.

Now we define a particular set of divisors and we state a characterization
of them, that will be useful in the proof of Theorem 1.23.

Definition 0.6. A divisor D € Div(E) is principal if it is of the form D =
div(f) for some f € K(C)*

Proposition 0.7. Let E/K be an elliptic curve and let D = > np(P) €
Div(E). Then D is a principal divisor if and only if

Z np=0 and Z[np]on.

PeE PeE

For a proof of the case K = C, see Corollary 1.19.
Now we also introduce the notion of divisor of a quotient of C by a lattice.
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Definition 0.8. The divisor group of C/A is:

Div(C/A) ={ Z N (w)|nw € Z,ny, # 0 for finitely many w}.
weC/A

Definition 0.9. For D = ) n,(w) € Div(C/A) we define the degree of
D as deg(D) = > n, and the subgroup of Div(C/A) of degree 0 divisors
Divg(C/A) = {D € Div(C/A) : deg(D) = 0}.

0.2 Differentials

Definition 0.10. Let E be a curve. The space of differential forms on E,
denoted by Qp, is the K-vector space generated by symbols of the form dx
for z € K(E), subject to the usual relations:

1. d(x +vy) = dx + dy for all x,y € K(E).
2. d(zy) = zdy + ydx for all z,y € K(E).
3. da=0forallacK.

Proposition 0.11. Let FE be an elliptic curve over an algebraically closed field
K.

1. Qg is a 1-dimensional K (E)-vector space.

2. Letx € K(E). Thendx is a K (E)-basis for Qg if and only if K(E) /K (z)

s a finite separable extension.

3. Let ® : By — E3 be a noncostant map of elliptic curves. Then @ is
separable if and only if the map

d*: Q) Ey — Q Er
18 injective.
In the case of elliptic curve we have an important differential.

dx

Definition 0.12. The invariant differential of an elliptic curve is w = 5

Next we state two important proprieties of the invariant differential. The
second one justifies the adjective “invariant”.

Proposition 0.13. Let E be an elliptic curve. The invariant differential w
associated with a Weierstrass equation for E is holomorphic and nonvanishing.
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Proposition 0.14. Let E be an elliptic curve, let w be the invariant differ-

ential, let Q € E(K) and let 7g : E — E be the translation-by-Q map. Then
TOW = W.

Proof. The statement is invariant under extension of the base field, so we may
assume K = K. We restrict to the case char(K) # 2,3. Let us consider a
Weierstrass equation in Legendre form for E:

E:y*=z(z—1)(z— ).

From Proposition 0.11 we know that Qg is a one-dimensional K (E)-vector
space, so there is a function ag € K(E)* such that

TOW = aQW.
We note that ag # 0 because 7¢ is an isomorphism. We compute
div(aq) = div(rHw) — div(w) = THdiv(w) — div(w) = 0,

where in the last equality we use Proposition 0.13 which says that div(w) = 0.
Thus ag has no zeros and no poles, so it is constant. Next we consider the
map

f:E—=PL Qs lag:1].

This map is rational because ag algebraically (rationally) depends on Q.
Moreover f is not surjective, because [0 : 1] is not hit, so it must be con-
stant. We can compute, for instance, the value ag, that is 1. This proves that
ag =1forall Q € E. O

0.3 Isogenies

Definition 0.15. Let F; and Es be elliptic curves. An isogeny from F;p to
FE» is a morphism

O : By — B satistying ¢(0) = O.
The following result is a useful tool to construct isogenies:
Theorem 0.16. Let
b:F —F and VY:E| — FE3

be noncostant isogenies, and assume that ® is separable. If ker ® C ker U then
there is a unique isogeny
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A By — E3
satisfying ¥ = Ao .
We can also describe isogenies in terms of explicit equations:

Lemma 0.17. Let Fy and Ey be elliptic curves over K given by Weierstrass
equations in short form. Let ¢ : B4 — Eo be an isogeny defined over K. Then
p can be uniquely represented by an affine rational map of the form

~(fia@) faa(x)
p(z,y) = <f1’2(x), Toa() y> :

where f11, f1,2, f2,1, f2,2 € K[x] and the polynomials f11, fi2 and fa1, fa2 are
relatively prime.

Proof. Suppose that ¢ is defined by the rational map [¢, : ¢y : ¢.]. Then we
can write
e(z,y) = (p1(z,9), p2(z,y))

_ |zl _ pylmyl]
= ooy and 2(z,y) = Crpay

23+ a1z + by for E; and the equation y2 = 2% + asx + by for E5 we can cancel
the factors of the form y* with k& > 1. So, we reduce to the form

where ¢ (z,y) Using the equation y? =

([ 11(@) + g12(2)y go1(x) + g22(2)y
ploy) = (91,3($) +914(x)y’ g23(2) + 92,4(93)?/>

where g; ; € K[z]. Next we can multiply term by term by

<91,3(97) — g14()y g23(x) — 9274(m)y>

913(7) = g14(x)y’ g2,3(7) — goa(2)y

and using again the equation for F; and Es we write ¢(x,y) in the form

hl,l(x) + hi2 (m)y hg’l(x) + ho o (l’)y)
h173($) ’ h273($) '

Finally, since ¢ is a homomorphism ¢((z,4)™!) = ¢(x, —y) = —¢(x,y), then

() (5

which implies that hy2(x) is the zero polynomial. We proceed similarly for
the other coordinate. After eliminating any common factors we obtain the
claim. O

o(x,y) = <

The set Hom(E1, E2) has a natural structure of abelian group, when E; =
E, it is also a ring. Now we state an important result on the structure of

Hom(El, EQ)
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Theorem 0.18. Let Ey and Eo be elliptic curves. Then
Hom(FE1, Es)

s a free Z-module of rank at most 4.

0.4 Elliptic Curves over Local Fields

Now we introduce some facts about elliptic curves defined over a field that is
complete with respect to a discrete valuation. In this discussion we assume
that v is normalized and that K and k, the residue field of Ok, are perfect
fields.

Definition 0.19. Let E/K be an elliptic curve. A Weierstrass equation for
E is called a minimal (Weierstrass) equation for E at v if v(A) is minimized
subject to the condition that aj, as, as, a4, as € R. This minimal value of v(A)
is called the valuation of the minimal discriminant of E at v.

The following proposition is a basic result that will be very useful in the
last chapter.

Proposition 0.20.
1. Every elliptic curve E/K has a minimal Weierstrass equation.

2. The invariant differential

dx
=
2y 4+ a1z + a3

associated to a minimal Weierstrass equation is unique up to multiplic-
ation by an element of R*.

We next look at the operation, ~, of “reduction modulo n”.

Definition 0.21. Having chosen a minimal Weierstrass equation for E/K,
we can reduce its coefficients modulo 7 to obtain a (possibly singular) curve
over k, namely

E:y? +ayxy + asy = 2° + aga? + agx + ag.
This curve is called the reduction of £ modulo 7.

We classify E according to the singularity types of E.

Definition 0.22. Let E/K be an elliptic curve, and let E be the reduction
modulo 7 of a minimal Weierstrass equation for F.
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1. E has good (or stable) reduction if E is nonsingular.
2. E has multiplicative (or semistable) reduction if E has a node.
3. F has additive (or unstable) reduction if E has a cusp.

In the last two cases we say that F has bad reduction.

0.5 Tate module and Weil pairing

Definition 0.23. Let E be an elliptic curve and let [ € Z be a prime. The
(l-adic) Tate module of E is the group

T(B) = lim E[I"),
the inverse limit being taken with respect to the natural maps
n+1 U n
E[I"] — E[I"]

An introduction to the Weil pairing can be found in [1, Chapter IIL.8].

Proposition 0.24. There exists a bilinear, alternating, nondegenerate, Galois
equivariant pairing

e: Ti(E) x Ti(E) = Ti(p).

Further, if ® : Ey — Es is an isogeny, then ® and its dual ® are adjoints for
the pairing, i.e., e(®S,T) = e(S,®T) for all S,T € T)(E).

Now we state a proposition that will be useful in the last chapter.

Proposition 0.25. Let E/K be an elliptic curve and let m > 1 be an integer
that is relatively prime to char(k). Assume further that the reduced curve E [k
18 nonsingular. Then the reduction map

E(K)[m] — E(k)

is injective, where E(K)[m] denotes the set of points of order m in E(K).






CHAPTER

Elliptic curves over C

In this chapter we will consider elliptic curves over the complex numbers. We
want to prove the correspondence between elliptic curves over C and tori C/A
defined by a lattice A. The following will be one of our main tools in the
following chapter.

Teorema (Riemann-Hurwitz). Let S, S be two compact, connected Riemann
surfaces of genera g(S), g(S’) and ® a complex analytic map between them.
Then we have the formula

2 —2¢(5) = (degm)(2 —29(5")) + Y (1 —ep),
pes

where ep s the ramification index of the point P.

Proof. Let us take a triangulation T of S’ such that the branching points are
vertices of it; we consider on S the triangulation given by 7=(T). If we let
V, E, F be the number of vertices, edges and faces of the triangulation on S’
then the faces on S are deg(w) - F' and the edges deg(w) - E. It is different for
the vertices because here we have the ramification points:

Do#T =3 Y 1= > (l-e)+eg=

veV veV qeS veEV q€eS
m(q)=v m(q)=v
:Z Z(l—eq)—i—z Zeqzz Z(l—eq)—i—deg(ﬂ)-v.
veV qeS veV qeS veV qeS
m(g)=v m(g)=v m(g)=v

17
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So, if we use the fact that x(S) = 2 — 2¢(S), we have:

2-29(8) =Y (1—eg)+deg(f)-V —deg(f) - E+deg(f) - F
qeSs

=3 "(1—¢) +deg(f) - (2 29(5")).

q€eSs

O

We apply the theorem above to the case of elliptic curves over C.
Let E/C be the elliptic curve given by the Weierstrass equation 32 = 23 +
Az + B and let us consider the map ¢ : E(C) — PL(C) given by [z : y : 2] —
[x : z] that is continuous and has degree 2. It is ramified, with ep = 2, in
[1 : 0 : 1],[xe : 0 : 1],[x3 : 0 : 1],00 where x1,x9, 23 are the zeros of the
polynomial 2% + Az + B. We find

X(E(C))=2-2-4=0,

so E(C) has the same genus as a torus. We recall that for any lattice A C C

2 . . .
we have % o~ H%; o~ (%) ~ (SY2. This leads us to think that there is a
relation between elliptic curves over C and the quotient spaces C/A, were A

is a lattice.

1.1 Elliptic Integrals

The results of this section could be found in [4, Chapter VI]. Elliptic curves
were originally introduced for the computation of the integral giving the arc
length of an ellipse. Let us start with the case of a circle, for which the integral

is f[w= [ \/%. There is a problem with the definition of this integral,

because there is no canonical definition of a square root in C. However for the
circle the integral could be computed using the following parameterization of
Sl

. ( 11—t 2t >
Vi+2' 1+t2)°
In the general case, let us consider

y? = f(t),

with f a polynomial of degree 3 or 4. Up to a M&bius trasformation ¢ — gﬁs,

every arc of ellipse can be parametrized with a polynomial f that has one the
following shapes

f@)=t+at+b, ft)=tt—1)(t—N).
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The arc length is then given by

/\/1 + (f(t))2dt.

There are two problems with this integral. The first one is the same that we
have in the case of a circle, namely the square root is a multivalued function.
In order to avoid this problem, the integral is more naturally studied on an
appropriate Riemann surface, which turns out to be E(C).

E(C) = {y? = #3+az+b : (z,y) € CTYU{oo} ~ {3? = z(2+1)(z4+N) : (z,y) € C2lU{c0}

In the equivalence above, in order to pass to the Legendre form, we used the
Proposition 0.2.
Let us consider the map:

F:EC)—C |, Pb—)/Pw (1.1)
(@]

where w = dz/y is a holomorphic differential form on E.

Now a new problem arises: the integral is not well defined, because it depends

on the choice of the connecting path between O and P. Next we recall that

any elliptic curve has only one point at infinity, so there is a bijection between

00 # [z,y,2] € E(C) and {(z,y) € C* | y? =z(z—1)(z — N\)}. So, if we

consider co # P = [z,y,z], w = dt/y and y = \/t(t — 1)(t — \) we find that
i

our integral is foro m‘

In order to make the integral well-defined, it is necessary to make branch cuts.

Definition 1.1. A branch cut is a curve in the complex plane such that it
is possible to define a single analytic branch of a multivalued function on the
plane minus that curve.

In our case we consider

N =A=+ ) (1.2)
=t

Yo(t) =t

On the set C\Im(y1) U Im(vy2) both the functions £+/t(t — 1)(t — \) are well
defined and analytic. Let us consider two copies of P*(C), that topologically

is a 2-sphere, and glue them together along the branch cuts in order to form
a Riemann surface that is homeomorphic to a torus.

We see that the indeterminacy comes from the integration across branch
cuts in P1(C), or equivalently around noncontractible loops on the torus. Let
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00
o0
@
A

Figure 1.1:

SN

Figure 1.2:

ﬂ S

us take o and (8 the two paths illustrated in Figure 1.2. They generate the
fundamental group of the torus, Z2. Thus, any two paths from O to P differ
by a path that is homotopic to na + mpg for some n,m € Z. We define two
numbers, associated with the curve E(C), called periods of E:

wlz/w, OJQ:/OJ
a B

From the consideration on the paths from O to P, the map (1.1) is well defined
up to addition of nwy + mws for some n, m € Z. This suggests to define the
set A = {nwi +mws : n,m € Z}.

The set A is clearly a subgroup of C, so the quotient C/A is a group. We
obtain that F is a homomorphism with values in C/A by using the translation
invariance of w:

F(P+Q) = P+Qw£ Pw+ P+Qw5 Pw+ PT}SwEF(P)+F(Q) (mod A).
0 P 0 0

o

Later in this chapter we will prove that F' is a isomorphism and A is a lattice.

1.2 Elliptic Functions

In this section we will study meromorphic functions on the quotient space
C/A, where A is a lattice. The results of this Chapter can be found in [4,
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Chapter VI] and [5, Lecture 15,16]

Definition 1.2. An elliptic function, or doubly periodic function, for a lattice
A is a complex function f(z) such that:

1. f is meromorphic;
2. f(z+w)=f(2) VzeCVweA.

It follows from the definition that an elliptic function can be also be viewed
as a function on C/A. It is also an immediate consequence of the definition
that the set of elliptic functions C(A) is a field that contains every constant
function.

Definition 1.3. Let {wi,ws} be a basis for A. A fundamental parallelogram
for A is a set of the form:

D ={a+tw; +sw2:0<t,s <1} forsomea € C.

Theorem 1.4. A holomorphic elliptic function is constant. Similarly, an
elliptic function with no zeros is constant.

Proof. Let D be a fundamental parallelogram for A and suppose that f(z) €
C(A) is holomorphic. It follows from the definition of elliptic function that
sup,cc | f(2)| = sup,ep |f(2)]. f is continuous on the compact set D so | f(z)]
is bounded on D. Hence, it is bounded on C, so the first claim follows by
using Liouville’s theorem. The second statement follows from the first one by
using that: if f has no zeros, then 1/f is an holomorphic elliptic function.

O

Remark 1.5. Let f be a meromorphic function and w € C. Then we can con-

sider:

ord, (f) = order of vanishing of f at w (1.3)
res,, (f) = residue of f at w

In the rest of the section the notation ) /a Will denote a sum over a
fundamental parallelogram D.

Theorem 1.6. Let f € C(A)* be an elliptic function relative to A.
1. ) gecynresw(f) = 0;
2. 2 wec/a 0rdu(f) = 0;
8. D wec/a ordw(f)w € A.
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Proof. We note that the sum is independent of the choice of the fundamental
parallelogram because 7es,,, (f) = resyo+w(f) Yw € A.

Let D be a fundamental parallelogram such that f(z) # 0A f(x) # oo Va €
oD.

1. If we use the residue theorem on f, we obtain:

1
Z res,(f) = 27”/ f(z)dz.
weC/A oD

The periodicity of f implies that the integrals along the opposite sides
of the parallelogram cancel, so the integral is zero;

2. We apply the residue theorem to f’/f noting that this is again an elliptic
function and that res,(f'/f) = ord,(f).

3. We apply the residue theorem to zf’/f. This is no longer an elliptic
function, but the integral of it around 0D lies in A.

O]

Definition 1.7. The order of an elliptic function is the number of its poles
(or equivalently of zeros), counted with multiplicity, in a fundamental paral-
lelogram.

Corollary 1.8. A nonconstant elliptic function has order at least 2.

Proof. Let us suppose that f(z) has a single simple pole, then the Theorem
1.6(1) tells us that residue is 0, so f(z) is holomorphic. The claim follows
using Theorem 1.1. O

Definition 1.9. Vf € C(A)*, i.e. a nonzero elliptic function, we define the
divisor of f as div(f) = Z ordy(f)(w).

weC/A

By Theorem 1.6 div(f) € Divyg(C/A). Hence, we can consider the well-
defined map:
div : (C(A), ) = (Div(C/A), +),

which is a homomorphism because ord,(f) is a valuation (i.e. ord,(f-g) =
ordy,(f) + ord.(g))-

Definition 1.10. We define a sum(mation) map:

sum : Divyg(C/A) — C/A, sum(z ne(w)) = an(w) (mod A)
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Theorem 1.11. The sequence

sum

15 C 5 CA) 2% Divg(C/A) 2% C/A — 0,
18 exact.

Proof. The map ¢ is clearly injective. The map sum is surjective because
((w) = (0)) € Divg(C/A) VYw € C/A so sum((w) — (0)) = w. Exactness at
C(A)* follows from Theorem 1.4. The fact that im(div) C ker(sum) follows
from Theorem 1.6. The other inclusion will be proved in the next section
(Proposition 1.18). O

1.3 From lattice to elliptic curve

The results of this Chapter can be found in [4, Chapter VI] and [2, Chapter
9]. We now want to define some examples of non-constant elliptic functions.
In order to do this, we first consider a finite group G acting on a set A. It is
easy to construct functions invariant under the action of G: take f to be any
function f : S — C, and define F(a) = Z f(g*a). Then F is a G-invariant

geG
function, and all G-invariant C-valued functions are of this form. When G is

not finite, one has to verify that the series converges. Using these ideas we
define our first examples of non-constant elliptic functions:

Definition 1.12. Let A C C be a lattice. The Weierstrass p-function (relat-
ive to A) is defined by the series:

1 1 1
A = — ——— .
o= 5+ T (e )
w#0
The Eisenstein series of weight 2k (for A) is the series:
Gox(A) =) w™.
wEA

w#0

From the definition it is clear that p(z) has a pole of order 2 at each point
z € A.
The following theorem shows it has no other poles.

Theorem 1.13. Let A C C be a lattice.

1. The Fisenstein series Gox(A) is absolutely convergent for all k > 1.
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2. The series defining o converges absolutely and defines a meromorphic
function on C having a double pole with residue 0 at x € A and no other
poles.

Proof. 1. Since A is discrete in C and 6 = )\minA{|)\ —wl|} > 0, we havel:
WE

de such that #{lw e A | N <|w|< N+1} < ¢N VNeN

Hence, we may use this to estimate the sum of the absolute values of
summands in the series defining Gax(A):

o o0
_ 9ok #{W€A|N<|OU’< N+1} c
Dl <y N2F <> N2h—1 SO0
wifa N=1 N=1
w

2. We may assume without loss of generality that |w| > 2|z]|, since this
holds for all but finitely many terms. We can estimate the terms of the
series as follows:

1 1

(z —w)? W?

22w — 2)

2| 2lw] + |2]) _ 10]z]
w?(z —w)?

T wP(z = lwD? T Jw

where the first estimate comes from the triangular inequality and the
second one from the inequalities [w| — [z| > $|w| and |2w| + |2| < 3|w].
From the first part it follows that the series for p(z) is absolutely conver-
gent for all z € C\A, hence it is uniformly convergent on every compact
subset of C\A. Hence, the series is analytic on C\A, so it defines a holo-
morphic function. Finally, from the series expansion it is clear that p(z)
has a double pole with residue 0 for all x € A.

O

With Theorem 1.13 in hand, we can now summarize the key properties of
p(z) and ¢'(2).

Theorem 1.14. The Weierstrass p(z)-function is a meromorphic even el-
liptic function. Its derivative, ¢'(z), is a meromorphic odd elliptic function.

Proof. Using the series expansion we obtain that p(z) is an even function:

1 1 1 1 1 1

z)=—+ — 5 | =+ — — —5 | = p(—2).
p(2) 2 Z((Z_W)Q w2> 2 Ze;\<(z+w)2 wz) p(=2)
w

w#0 w#0
'In order to prove this we can consider the annulus Uy = {x € C | N < |z| < N +1}

and for each point of the lattice the open set V,, = {z € C | | — w| < 0}. These open sets
are all disjoint, so we can estimate their number.
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From the previous theorem we know that the series is uniformly convergent,
so we can compute its derivative by differentiating term by term

p(z) = -2 Z (z_lw)g

From this expression it is clear that ' is an elliptic function. From the in-
tegration of the condition of being an elliptic function with respect to z we
obtain that there exist a function ¢: A — C such that

p(z+w) = p(2) + c(w) vz e C.

If 2 = —%w, using the evenness of p, p(iw) = p(—3w). Hence c(w) = 0, this

implies the theorem. ]

Theorem 1.15. Let A C C be a lattice. Then:

Proof. Let f(z) € C(A). Using the equality

f(2) = f(2) +2f(—2) L 1) —2f(—2),

we are reduced to the study of odd and even functions. Moreover, we can
study only even functions: if f(z) is odd, then f(z)p(z)" is even.

The evenness of f implies that ord, f = ord_,f Yw € C.

We now show that if 2w € A then ord,f is even. First we suppose that
ordy f > 0, so differentiating the evenness condition and using w = —w + 2w
we obtain

fDwW)=0 Viodd.

So ord,, f is even, as it can be seen by using De I’'Hopital’s rule. On the other
hand, if ord,f < 0 we may consider 1/f that is an elliptic function with all
the proprieties of f such that ord,1/f = —ord,f > 0.

Let D be a fundamental parallelogram for A, and let H be “half’ of it. In
other words, H is a fundamental domain for (C/A)/{£1}

The above discussion implies that the divisor of f has the form

> nu((W) + (—w))  ne €2
weH

The evenness of ord, f, in the case 2w € A, is used for the points on the
boundary of D.
Let us consider the function
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The divisor of (p(z) — p(w)) is (w) + (—w) — 2(0), so f and g have the same
zeros and poles, except possibly in w = 0. From Theorem 1.6 it follows that
they have the same order at 0 too. Thus f(z)/g(z) is a holomorphic elliptic
function, and from Theorem 1.4 it is constant. Hence, there exists a constant
¢ such that f(z) =cg(z) € C(p(z),p(2)). O

In order to construct functions with prescribed properties, it is convenient
to introduce

Definition 1.16. The Weierstrass o-function (relative to A) is the function

o(z) =o0(z;A) =2 H <1 _ f) Q(B)HE(2)

This is not an elliptic function, but it satisfies a simple transformation
law under translation by elements of A. The following proposition proves
this transformation law and some other basic properties of the function o(z)
introduced above.

Lemma 1.17.

1. o(z) is a holomorphic function on C. It has simple zeros for all z € A
and no other.
d2

2. @loga(z) =—p(z) Vz € C\A.

3. For every w € A there are constants a, b € C, depending on w, such
that o(z +w) = e¥*o(2) V2 € C

Proof.

1. It is sufficient to consider the logarithm

z z 1 /2z\2
ot - 1-2)+2+3 60}
ogo(z) = logz + Z {log " + - + 5 (5
weA
w#0
The absolute and uniform convergence follows from Theorem 1.13. It is
clear that there is a simple zero for all w € A and that they are the
only ones.

2. From the previous point it follows that we may differentiate term by
term to compute the derivative of logo(z). The second derivative is
exactly the series defining —p(z).
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3. p(z) is an elliptic function, so p(z + w) = p(z). Integrating twice this
equation with respect to z and using the previous point we obtain

logo(z + w) = logo(z) + az + b,
where a, b € C are the constants of integration.

O]

The next proposition concludes the proof of the exactness of the sequence
of Theorem 1.11.

Proposition 1.18. Let ny,...,n, be integers and z1, ..., z, be complex numbers
such that Y n; =0 and an -z; € A. Then there exists an elliptic function

f(z) € C(A) satisfying div(f) = ni(zi).

Proof. Let nyy1 = 1, nypyo = —1 and 2,41 = 0, 240 = Y. m; -z € A
Then Y7 ni(z) = S04 2 ni(2) in Divg(C/A), because (0) = (\) in C/A.
Hence we may assume that ) n; - z; = 0. Then Lemma 1.17 implies that
f(z) =[lo(z — z)™ is such that ord,, f = n,.

To conclude let us check that f is elliptic: for every w € A we have

f(Z + w) a(z—z;)+b)n; az+b n; —a ) n;z;
W:He(( Jrbmi _ (azth) Sni | gaSmiz _

where we have used Lemma 1.17. O

The following corollary is a special case of what is known as the Abel-
Jacobi theorem.

Corollary 1.19. Let D = Y n;[z] be a divisor. Then D is the divisor of a
function if and only if deg(D) =0 and > n; -z € A.

Proof. Tt is an immediate consequence of Theorem 1.6 and Proposition 1.18.
O

In the next theorem we will derive the Laurent series expansion for g
around 0, and from it we will deduce an algebraic relation between g and .
This relation will have a central role in the construction of an elliptic curve
associated with a given lattice.
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Theorem 1.20.

1. The Laurent series for p(z) around 0 is given by

1 oo
p(z) = =t > 2k + 1) Gapr22”;
k=1
2.
0 (2)? = 4p(2)® — 60G4p(2) — 140Gs  Vz € C\A. (1.4)
Proof.

1. Let us study a term of the series for g: for all z with |z| < |w| we have
1 11 1 - Z"
—w)2 2 2 2 2
o aa (p) "Eevs

Substituting this formula into the series for p and taking into account
that by Theorem 1.13 we are allowed to change the order of summation

1 1 1 1 o (n+1)z"
o=+ (g =Bt LD e =

weA weA n=1
w#0 w#0
- 1  —
== + E (n+1)2" E =Rl + E (n+1)2"Gpry2(A) =
n=1 weA n=1
w#0

1 n
=5+ > (20 +1)Gansa(A) 2™,

n=1

where the last identity is true because if k is odd then G (A) = 0, since

the terms wik and ﬁ in the sum cancel each other.

2. We write out the first few terms of various Laurent expansions:
p(2) = 272 +3G42% + ...
0(2)> = 270 4+ 9G427% + 15G6 + ...
0 (2)? =427 - 24G427? — 80Gg + ...

Let consider the function f(2) = ¢/(2)? — 4p(2)3 + 60G4p(2) + 140Gs.
It is holomorphic in 0 because if we replace the Laurent expansions in
it, the terms of the form z~" for n € N\{0} simplify each other. It is
also an elliptic function because f(z) € C(p(z), 9'(2)), so Theorem 1.4
gives that f is constant. The result follows by observing that f(0) = 0.
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Notation 1.21. It is standard notation to set
go = gz(A) = 60G4(A) and g3 = g3(A) = 140G6(A).

These functions will be considered in the mext section when we will define
modular forms and modular functions.

We will prove that every lattice A in C gives rise to an elliptic curve E/C,
but before that we need the following lemma:

Lemma 1.22. The polynomial f(z) = 42> — gox — g3 has distinct Toots.

Proof. Let {w1,ws} be a basis of A and w3 = wy + wa. Therefore, since ©'(2)

is odd and %' = —% (mod A):
L A AN 1Yy
p(5)=—0(-5)=—0(5) = ¢(5)=0

Hence, p(%') for ¢ = 1,2,3 are three roots of f(z). We now prove that they

are distinct.

For i = 1,2,3 consider the even function h;(z) = p(z) — p(5:), whose order at

o is at least? 2. However h;(z) is an elliptic function of order 2, so it has only

these zeros in an appropriate fundamental parallelogram. Hence the numbers
wi

©(%) are not distinct if and only if % differ by some w € A, but this is not
possible because w1, wsy are a basis of A. O

Theorem 1.23. Let g2 = g2(A) and g3 = g3(A) for a lattice A C C and E/C
be the elliptic curve
E :y? =423 — gox — g5.

Then the map

[0,1,0], —
[p(z),p’(z),lL 2750

is a complex analytic isomorphism of complex Lie groups.

®:C/A — E(C) Cc P*(C),

Proof. From Theorem 1.20 the map is well-defined. To see that & is surjective,
let (z,y) € E(C). Then p(z) — z is a non-constant elliptic function, so it has
a zero, z = a. Hence, by Theorem 1.20 (p(a))? = 32, and so from the oddness
of ¢’ it follows that ¢'(a) =y or p'(—a) = y.

Now suppose that ®(z;) = ®(z2). If 227 ¢ A, then the elliptic function of

2Consider an even elliptic function, f, and w such that 2w € A. Then ord,, f is even as
proven in Theorem 1.15.
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order 2 p(z) — p(z1) vanishes in z1, —21, z2. So, two of them are congruent
modulo A, but the hypothesis 2z ¢ A tells us that zo = £2; (mod A). Then

0 (21) = ¢'(22) = ¢ (£21) = £¢'(21)

implies that zo = z; (mod A)3. Similarly, if 2z; € A, then the elliptic function
of order 2 p(z) — p(z1) has a double zero in z; and another zero in z2. So
z9 = z1 (mod A). This proves that ® is injective.

Now we show that ® is an analytic isomorphism. We know that: let M, N
be complex 1—manifolds and let f : M — N be a holomorphic map. If M is
compact, then f is an analytic isomorphism if and only if it is injective . It
is easy to see that ® is a holomorphism, so the claim follows.

Finally, we check that ® is a homomorphism.

FIRST METHOD:

In order to do that we prove the following addition formula:

1 (@’(21) — ¢ (22)

olar+72) = 7 p(21) — p(22)

2
! ) = ol - e

Let h(z1) be the difference between the left and right hand sides. The only
possible poles for h are at 0 and £z,. Using the Laurent series, we can easily
find that only —z3 is a possible pole, and at worst simple. But since p(z1 + 22)
is an elliptic function this means, by Theorem 1.4, that it must be constant,
and thus identically zero since h(0) = 0.
Now we show that what we have proved agrees with the elliptic curve group
law: let P = (x1,71) and Py = (22, y2) be points on the elliptic curve Y? =
4X3 — g2 X — g3 and let Y = mX +b be the line passing through them. Then,
by the definition of the group law, 21,22 and x(P; + P,) are the roots of the
cubic equation
(mX 4+ b)* —4X3 + g2 X +g3=0.

2
So we get (P; + Py) + 1 + 22 = %2 = % (%) )
We now need to compute ¢'(2z1 + 22). Differentiating with respect to z; the
formula for p(21 + 22) we obtain that p’(z1 + 22) is equal to

L ((z) = ¢ (z) [¢" () (0l21) — p(22) = (9/(21) = ¢/ ()6 (21)] .
2 < p(21) — p(22) > [ (p(z1) — p(22))2 @ (21)-

In order to express p” in term of p and ', we differentiate (1.4) and we obtain

20" (21)¢' (21) = (120(21)* — g2)¢ (1)

3From Lemma 1.22 it follows that if ©'(z1) = 0 then 221 € A 4
4In order to prove this claim one could use that f is locally injective iff f' # 0, that a
injective holomorphism is bijective, and the Inverse function theorem.
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Dividing by ¢'(z1) yields® 2p"(21) = (12¢(21)? — g2). Substituting this into

the expression for /(21 + 22) and using the two conditions g'(z;)? = 4p(z;)3 —

920(zi) — g3 for i = 1,2 we obtain

(p’(21) - @/(Zz)> [(p’(21) — 9'(22))% +8p(21)*(p(21) — p(22)) + p(22)° — 4p(21)*p(22) —¢ (1)
p(21) — p(22) 4(p(21) — p(22))? '

In order to find an expression for y(P; + P2) in terms of y1, y2, 1, z2 we sub-

stitute the formula for z(P; + P») in y = ma + b. Using that m = %

and b = y; — mx; we obtain

2

m
y(P1+P2) =m —T—|—2x1+x2 - 1.

Some algebraic manipulations show that g’(z1 + 22) has the same addition law
as y(P1 + P»). This is exactly our statement. Similarly we can prove the cases
where the formula for p(z1 4 22) is not defined.

SECOND METHOD:

Let 21,22 € C. From Proposition 1.18 it follows that there exists an elliptic

function for A, f, such that
div(f) =(z1+ ZQ) — (2:1) — (22) + (O)

Using Theorem 1.15 we can find F(X,Y) € C(X,Y) such that f(z) = F(p(z), ¢'(2)).
Treating F'(X,Y) as element of C(X,Y) ~ C(F), we have

div(F) = (®(21 + 22)) = (2(21)) = (®(22)) + (2(0)).

From Proposition 0.7 it follows that ®(z1 + 22) = ®(21) + ®(22).

1.4 Mappings between elliptic curves

The results of this Chapter can be found in [4, Chapter VI]. In this section we
will study complex analytic maps between complex tori, proving in particular
that the maps they induce on the corresponding elliptic curves are isogenies.
Let A1 and As be two lattices in C, and o € C be such that aA; C As. Then
we can define the homomorphism

O, :C/A1 — C/A2, Du(2) = az (mod Ag).

The next theorem proves that ®, for o € C are the only holomorphic maps
between C/A1,C/As.

For ¢'(21) # 0 there are no problems; on the other hand the cases where p'(21) = 0 are
filled in by continuity
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Theorem 1.24.

1. Let A1, Ao be lattices. Then:

{a € ClaA; C Ay} = {®:C/A; — C/Ay holomorphic
with ®(0) = 0}

s a bijection.

2. Let Ey, FEy be the elliptic curves corresponding to A1, Aa. Then:

{isogenies ® : By — Ey} — {® : C/A; — C/Ay holomorphic
with ®(0) = 0}

s a bijection.

Proof.

1. In order to prove injectivity, let «, 3 be such that ®, = ®g. The pre-
vious condition is equivalent to az = Bz (mod Ag) Vz € C. Hence
the map z — (o — )z sends C in Ay. However Ay is a lattice so
it’s discrete. This implies that the map must be constant, more pre-
cisely that the map must be zero, i.e. o = 3. Next, let & : C/A; —
C/A2 be a holomorphic map with ®(0) = 0. As C is simply connected,
we can lift ® to a map f : C — C such that f(0) = 0 and the following
diagram commutes:

c— 7 ¢

(C/Al L) (C/AQ

We know f(z+w) = f(z) (mod Ag) by definition, so as in the proof of
injectivity f(z + w) — f(2) is constant. Differentiating:

flz+w)=fl(z2)V2eC Ywe A

so f/(z) is a holomorphic elliptic function for A. From Theorem 1.4 it
follows that f’(z) is constant, so f(z) = az + b for some a,b € C. The
hypothesis f(0) = 0 implies that b = 0, then f(A;) = aA C Ay. From
these properties of f we conclude that ® = ®,,.
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2. First, note that since an isogeny is a morphism, it is given locally by
rational functions defined on C, so the map induced between the corres-
ponding complex tori is holomorphic. The map is clearly well-defined
and injective.

From the previous point it follows that it is sufficient to consider maps
of the form ®, for some o € C* that satisfies A7 C As. This map
induces on the Weierstrass equations the following map:

E, — E,

[p(z, A1), 9/ (2, A1), 1] = [p(az, Ag), ¢ (az, Ag), 1] .

In order to show surjectivity, we must prove that p(az, As), p'(az, A2)
can be expressed as rational functions in g(z, A1), p'(2,A1). Let us no-
tice that Vw € A1 p(a(z + w),A2) = plaz + aw,A2) = p(az, Ag),
where the last equality follows from the hypothesis aA; C Ao; similarly
for ©'(az,A2). Thus, both p(az,As) and p'(az,As) are in C(A1) =
C(@(zv Al)v @/(2, Al))

An immediate, but really relevant, corollary is:

Corollary 1.25. Let E1/C and E5/C be elliptic curves corresponding to lat-
tices A1 and Ao. Then Ey and Es are isomorphic if and only if the corres-
ponding lattices are homothetic.

This is the first step to prove the Uniformization Theorem.

1.5 Uniformization Theorem

This section is inspired by the lessons of the course “Forme Modulari” taught
by professor A. Maffei at the University of Pisa, 2020/2021. These results can
be also found in [2]. In this section we introduce some basic definitions and
theorems on the theory of modular forms. We consider only the case of mod-
ular forms on SLo(Z). This theory will be useful to prove the Uniformization
Theorem.

We now consider the modular group I' = SLo(Z). It is generated by the two

matrices
T_ 1 1 g 0 -1 ‘
0 1 1 0
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It acts on H := {z € C: Im(z) > 0} via linear fractional transformations

(a b) at +b
AT = T= )
c d ct+d

where each pair +v € I' of matrices gives the same transformation.

Definition 1.26. Let H* = HUQU {oo}. If z € H*, we let SLa(Z)(z) denote
the orbit of z, and we let H*/SLo(Z) denote the set of orbits of H* under the
action of SLy(Z).

This definition is natural because SLy(Z)(c0) = QU {oo}. The quotient
space H* /SLy(Z) has many important properties that we recall without proof
in the following proposition.

Proposition 1.27.
1. H*/SLy(Z) = (H/SLy(Z)) U {oo}
2. The quotient topology on H* /SLy(Z) is To and compact.

We are interested in functions with properties similar to our j-invariant
function. Since the points of H/SLy(Z) correspond to equivalence classes
of lattices under homothety, it is natural to define a class of meromorphic
functions on H/SLo(Z).

Definition 1.28. Let k € Z. A meromorphic function f : H — C is weakly
modular of weight k if

FOy(1)) = (er + d)* f(7),

b . L
where v = <a and 7 € H. In particular, a function is weakly modular of
c

weight 0 if and only if it is SLo(Z)-invariant.
Since T, S generate SLo(Z) we have:

Proposition 1.29. A meromorphic function f : H — C is weakly modular of
weight k if and only if f(v(1)) = (et + d)*f() fory= S, T.

Example 1.30. The function Ggi(A) defined in Section 1.3 has a lattice as
its argument. If we consider lattices A = Z 4 7Z parametrized by 7 € H, we
can view G(A) as a function of 7 :

1
= 7+ 11) = —_—.
Goi(7) = Gon(Z + 77) W%Z )
(m,n)#(0,0)

Gor(7) is a weakly modular function of weight 2k because it comes from a
homogeneous function defined on lattices.
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We define go(7) and g3(7) using the definition of Gy (7).

Definition 1.31. If f is a modular function that is holomorphic everywhere
(including infinity), we say that f is a modular form. If, in addition, it vanishes
at infinity, we say that it is a cusp form.

Proposition 1.32. For any integer k > 1, the function Goy is a modular form
of weight 2k, and Goy(00) = 2¢(2k), where C is the Riemann zeta function.

Proof. From Example 1.30 we know that Go is a weakly modular function
of weight 2k. In order to show that Gg; is holomorphic at infinity, we need
to show that it has a limit as Im(7) — oo. We can apply Theorem 1.13 and
compute the limit termwise. Every term of the form (m + n7)~* relative to
n # 0 gives 0, while the terms with m = 0 give n=2*. Therefore,

lim  Gok(r Z n- —QZn = 2((2k).

Im(7)—00 neZ\{0}
O
Remark 1.33. From this proposition it follows that g2(7) and g3(7) are both
modular functions of weight respectively 4 and 6. We then have ga(c0) =
120¢(4) = 47* and gg(o0) = 280¢(6) = &5, Hence, if we let
A(T) = ga(7)3 — 27g3(7)?
then A(co) =0, so it is a cusp form of weight 12.

Now we introduce the j-invariant of an element of the upper plane H as
follows: for 7 € H let A, be the lattice A, = Z + 77Z. Similarly to what we did
for Gox (1) we define j(7) = j(A;) = j(Ena,) where Ej_ is the elliptic curve
corrisponding to the lattice A.

Proposition 1.34. The j-invariant is a modular form of weight 0 that is
holomorphic on the upper half plane.

Proof. From the definition we have

: g2(7)°

J(1) 172892(7‘)3 RpYoNoSE
where, from Remark 1.33, we have that go, g3 are holomorphic modular forms.
Since the discriminant of the polynomial defined in Lemma 1.22 is non zero,
the function j is holomorphic as well. The lattice Z+ S(7)Z = Z+ (—1/7)Z =
(=1/7)[Z + 7Z], is homothetic to A, similarly for Z + T'(7)Z. Hence, from
Theorems 1.24 and 0.3 it follows that j(7) = j(S(7)) = j(T(7)). Otherwise
we could have used that go(7)% and A(7) are respectively a modular and a
cusp form of weight 12. O
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From this proposition it follows that the function j induces a well defined
holomorphic map from H*/SLy(Z) to P1(C). We call this map ¢. Before
proving that ¢ is a complex analytic map, we state a useful lemma.

Lemma 1.35. The holomorphic functions g2(7)> and g3(7)? are linearly in-
dependent.

Theorem 1.36. ¢ is a biolomorphism between H* /SLy(Z) and P'(C).

Proof. Because of Proposition 1.34 ¢ is holomorphic. As we said in Theorem
1.23 we just need to prove that ¢ is bijective. From Lemma 1.35 it follows
that j is not constant because otherwise go(7) and g3(7) would be linearly
dependent. ¢ is holomorphic, so it is an open map, and it is a closed map
because it goes from a compact space to a Ty space. As P1(C) is connected,
this implies that ¢ is surjective. In order to prove injectivity, we will show that
deg(p) = 1. We recall that the degree in y is defined by Zwew*(y) ordyp and
that it is locally constant, so in our case it is constant because the domain
is connected. Let us compute the degree in oco: ¢ !(00) = {oo} and from
Remark 1.33 it follows that go(7)? is non-zero at infinity whereas A(7) has a
simple zero at infinity. So, deg(y) = 1. O

Theorem 1.37 (Uniformization Theorem). For every elliptic curve E/C there
exists a lattice A, unique up to homothety, such that E ~ E\.

Proof. The uniqueness follows from Corollary 1.25. Let 7 € H, so that j(7) =
J(E), and A =Z & 7Z. We have

J(E) = j(r) = j(A) = j(Enr),
s0, it follows from Theorem 0.3 that F is isomorphic to Fjy. O

In the first section we have introduced the set A = {nw;+mwq : n,m € Z},

where w1 = | df’ and wy = fﬁ dj"’ for a, B a basis for the 7 (E(C)). The next

theorem proves that they are R-linearly independent, i.e A is a lattice in C,
and the function F' described in the first section is the inverse map of ®.

Theorem 1.38. Let E/C be an elliptic curve with Weierstrass equation in x
and y.

1. In the notation above w1 and wy are R-linearly independent;
2. Let A = (w1, ws2). Then the function

F:E(C)—C/A, F(P)= /Pd; (mod A)
O

is the inverse of the map ® described in Theorem 1.23.
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Proof.

1. From the uniformization theorem it follows that 3A such that ® : C/A —

E is an isomorphism. Then, the maps ®~ ' o o and ®~! o 3 are a basis
for 711 (C/A\) ~ Z2.
The map v — f7 dz defines an isomorphism between 71(C/A) and A.

Then, using ®* (%) =dz

d d
wl—/x—/ dz, wg—/x—/ dz
a ¥ d—lo g Y d-10p3

generate A, so in particular they are R-linearly independent.
2. From the first point it follows that A = (w1, ws) is a lattice.

(0(2),0"(2) g
Fod:C/A—C/A Fo<I>(z):/ —.
o Y
In order to prove that F' o ® = Id, let us first study its effect on the
cotangent spaces. Using F*(dz) = d(J; doy — d?x and ®* (%’”) =dz, we
see that
(Fo®)"(dz) =dz (1.5)

We note that F' o ® is a holomorphic map such that F o ®(O) = O, so
from Theorem 1.24 it follows that Ja € C* such that F o ® = ®,. Since
&' (dz) = a-dz and from (1.5) we see that a = 1.

O

1.6 Characterization of End(E)

The results of this Chapter can be found in [1, Chapter VI]. Let E/C be an
elliptic curve. If it is associated by F' to a lattice A, and from Theorem 1.24 it
follows that we can identify End(E) with a subring of C. Since the lattice is
unique up to homothety, this ring is independent of the choice of the lattice.
In the next theorem we will use this description of End(E) to characterize the
kind of endomorphism rings that may occur. First let us recall the definition
of order

Definition 1.39. Let K be a number field. An order R of K is a subring with
unity of K that is finitely generated as a Z-module and satisfies R® Q = K.

Theorem 1.40. Let be A = (w1, ws), which by Theorem 1.38 is a lattice, and
E =C/A. The following are the only two possibilities:
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e End(E) = 7Z;

e The field Q(wa/w1) is an imaginary quadratic extension of Q, and End(E)
is isomorphic to an order in Q(wa/w1).

Proof. Let 7 = wg/wy. Multiplying A by 1/w; we see that A is homothetic to
7 & 17. Next we consider

O={aeC|aA C A}~ End(E).

Then, for any o € O, there exist integers a, b, ¢,d such that a = a + b7 and
ar =c+dr.
Thus:

a—a c
2 :a_d@az—(a—kd)a—kad—cbzo (1.6)
so O is integral over Z. If O # Z, let us consider a« = a + br € O\Z (i.e.
b # 0). By using (1.6) it follows that 7 satisfies the following nontrivial

quadratic equation

b’ 4+ (a —d)T —c=0. (1.7)

Since A is a lattice 7 ¢ R, then it follows from (1.7) that Q(7) is an imaginary
extension of Q. Finally, since O C Q(7) is integral over Z, we have that O is
an order in Q(7). O

Remark 1.41. Theorem 1.40 applies to elliptic curves over (Q, number fields,
or any field that can be embedded in C.

We know from the introduction that every elliptic curve has at least the
multiplication-by-m endomorphisms. From this observation and from the
previous theorem it follows that most elliptic curves over C have only the
multiplication-by-m endomorphisms. In the next chapter we will study the
elliptic curves that possess extra endomorphisms.



CHAPTER

Complex Multiplication

In this chapter we turn our attention to elliptic curves with complex multiplic-
ation. These are elliptic curves that have a non-trivial endomorphism ring.
The correspondence between elliptic curves and complex tori seen in the first
chapter will allow us to consider these endomorphism rings as endomorphism
rings of complex tori, which will make matters less complicated. We will show
that for any elliptic curve with complex multiplication the j-invariant is al-
gebraic over QQ, and in the next chapter we will improve this result proving
that j is integral over Z. We will establish a bijection between elliptic curves
that have a particular endomorphism ring and the class group of this endo-
morphism ring. This bijection will be useful when in the last chapter we will
talk about the Hilbert Class Field.

2.1 Definition and basic properties

The definitions and properties of this chapter can be found in [3, Chapter II]

Definition 2.1. An elliptic curve E/C has complex multiplication (CM) if
End(E) 2 Z.

Elliptic curves with complex multiplication have many special properties,
some of which we are going to discuss in this and the following section.

Example 2.2. Let A = Z[i] be the Gaussian lattice generated over Z by 1
and 4. Then multiplication by 2i takes A into A, and hence induces an endo-
morphism of C/A denoted by [2i]. Such an isomorphism is called a complex
multiplication. Another example is the Eisenstein lattice H = Z[(3] where
(3 = €>™/3. Multiplication by (3 induces an automorphism C/H (one has

(3 =—G—1).

39




40 CHAPTER 2. COMPLEX MULTIPLICATION

Let E/C be an elliptic curve with complex multiplication. From Theorem
1.40 it follows that End(E) ® Q is isomorphic to a quadratic imaginary field
and that End(E) is an order in that field. This leads the following definition

Definition 2.3. If End(E) ~ R, then we will say that that “E has complex
multiplication by R”.

Remark 2.4. From Theorem 1.24 we know that the endomorphism ring of
E\ is isomorphic to {a € C | aA C A} # Z. If Ep has CM by R, then
R={aeC|aA C A}. So we can define an isomorphism [-] : R — End(Ey)
such that the following diagram commutes:

C/A — 2= C/A

f f

EAL)EA

The following proposition proves an important property of this isomorphism:

Proposition 2.5. Let E/C be an elliptic curve with complex multiplication
by R. Then for all w € Qg we have:

[alf =aw VYaeR

Proof. Let A be a lattice such that there exists an isomorphism f : Ey — F.
If we take w € Q0 and we pull back it via the isomorphism f we obtain:

ffw = cdz,
because f*w and dz are two invariant differentials for the same elliptic curve!.

Using the definition of [a] we obtain:

(o] w=(f"1)* 0 @0 (f)*(w) = (f1)" 0 ®}(cdz) = (f')*(cadz) = aw.
]

Corollary 2.6. Let (Ey,[-]1) and (Ea,] ]2) be elliptic curves with complex
multiplication by R, and let ¢ : E1 — E5 be an isogeny. Then

¢olalg, =|alg, 0@ for all a € R.
Proof. Let w € Qg, be a nonzero invariant differential. Then we have:
(pola]p)'w = a]p, o (¢'w) = ap’w = ¢"aw = ¢" o ([a]pw) = (¢ oa]p,) w.

Hence (¢pola]g,)* = (¢ola]g,)* € Hom(QEg,, g, ), and from Proposition 0.11
we have the injectivity of *-operator, so we obtain the claim. O

Ile, w2 € Qg, there exists a constant 5 such that w; = Sws. This follows from the fact
that wi/ws is a translation-invariant function, so it is constant.
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2.2 Elliptic curves with a given endomorphism
ring

The results of this section can be found in [3, Chapter 2|, except for the first
part that can be found in [1, Chapter Twol. In order to study elliptic curves
with complex multiplication, it turns out to be useful to look at the set of all
isomorphism classes of elliptic curves with the same endomorphism ring. This
leads us to define %:

_ {elliptic curves E/C with End(E) ~ R}  {lattices A with End(Ex) ~ R}

ELL(R
() isomorphism over C homothety

Let We will construct an elliptic curve with complex multiplication by Oy, for
a given quadratic imaginary field k. By the Uniformization Theorem, this is
equivalent to finding a lattice A such that O = {a € C: oA C A}.

In this first part we consider the general case of an order R of a quadratic
imaginary field. We note that R is a lattice. So, an obvious candidate is
A=R. If o € End(Er) = {a € C: aR C R}, then aR C R and therefore
a € R. Conversely, if a € R, then aR C R and therefore a € End(ER). Thus
End(ER) = R. The same holds for any lattice homothetic to R.

Are there any lattices A not homothetic to R for which we have End(E)) = R?
In order to answer this question we may assume without loss of generality that
A =7 @ M\Z and we can write R = Z @ 7Z. If End(E,) = R, then we must
have 7-1 =171 € A, so 7 = n + mA for some integers n, m. Hence

mA=mZO®mNL=mZ® (r—n)ZCR

which means that A is homothetic to a sublattice of R. Since amA C mA
for all & € R we have that the sublattice of R homothetic with mA must be
closed under multiplication by R, so it is an ideal of R. Hence, every lattice
A such that End(EA) = R is homothetic with a fractional ideal of R, but the
converse does not hold. This leads us to the following definition

Definition 2.7. Let R be an order in an imaginary quadratic field, and let
be a fractional ideal of R. We say that I is proper if End(Er) = R.

Two fractional ideals of R, I and J, are said to be equivalent if they are
homothetic as lattices; equivalently, (a)I = (8)J for some non-zero «, € R.

The second characterisation of equivalent fractional ideals holds because:
if I = A\J, we can always write A = a/b for some b € R. We can then take
a=Abe Rand =0

2The set {a € C: aA C A} does not change if we replace A with A’ = AA for any A € C,
so we are really only interested in lattices up to homethety, or equivalently elliptic curves
up to isomorphism over C.
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If Oy is the ring of integers of a quadratic imaginary field, then: [ is proper
if and only if I is fractional. In the general case of an order of a quadratic
imaginary field, proper ideals are only contained in fractional ideals. It can
be proved that for the general case I is proper if and only if I is invertible,
but we are not interested in proving it.

Next, we recall the definition of ideal class group

Definition 2.8. The ideal class group CL(Oy) of a number field k is the
quotient group between the group of nonzero fractional ideals of the ring of
integers of k, and its subgroup of principal ideals.

So, from our discussion follows the following theorem:

Theorem 2.9. Let Oy be the ring of integers of an imaginary quadratic field.
There is a one-to-one correspondence between elements of the ideal class group
CL(Oy) and homothety classes of lattices A C C for which End(Ey) ~ Ok.

Let us consider I a non-zero fractional ideal of Oy. We denote by I its
ideal class in C'L(Of). So we have seen that there is a map

CL(Oy) — ELL(OY), T+ By

In the first part of this chapter, we have seen that in any class of ELL(Oy)
there is a proper Og-ideal I, i.e. for any F elliptic curve with End(E) = Ok,
there is a proper ideal I such that E; is isomorphic to E. This induces a
simply transitive action of the ideal class group C'L(Oy) on the set of elliptic
curves ELL(O):

T * EJ = E[—IJ
(the reason for using E;-1; rather than Ej; will become clear later).

Theorem 2.10. The action of CL(Ok) on ELL(Oy) described above is simply
transitive.

Proof. Given two proper Op-ideals I and J, we have
j(I x Ey) = j(E;-1;) = j(Ey) if and only if J is homothetic to I=1J,

by Theorems 1.37 and 0.3. In this case we have IJ = AJ for some nonzero
A € O, and since J is an invertible ideal we have that I = A0 = (\)
is principal. Thus the only element of CL(Oj) that fixes any element of
ELL(Oy) is the identity.

The fact that the sets CL(Oy) and ELL(Oy) have the same cardinality implies
that the action must be transitive: if we fix any E € ELL(O},) the images [+ E
of E under the action of each T € CL(O}) must all be distinct. O
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In general in the study of elliptic curves it is useful to define the group
of [m]-torsion points of E. But in the case of elliptic curves with complex
multiplication, there are other natural finite subgroups of F to look at.

Definition 2.11. If ] is any integral ideal of Oy and F an elliptic curve with
complex multiplication by Oy, we define the group of I-torsion points of E:

E[ll]={P€E|[a]P=0VacI}.

As in the case of [m]-torsion, to every fractional ideal I we can associate
an isogeny with kernel E[I]:

Definition 2.12. For all integral ideals I we have® A C I7'A, so we may
define the following homomorphism

C/A—=C/I'A, 2z 2.

This induces an isogeny
Epxn — I x FEy.

The following proposition gives two descriptions of E[I] in terms of the
isogeny described above.

Proposition 2.13. Let E € ELL(Oy), and let I be an integral ideal of Oy.
1. E[I] is the kernel of the natural map E — I x E,
2. E[I] is a free Oy /I-module of rank 1.

Proof. Let A be a lattice such that EFy ~ E. We may assume A to be a
fractional ideal.

1. We have:
E[ll={2€C/A|az=0Vacl}={z€ClazeAVacl}/A
={2€C |2l CA}/A=T"A/A=ker (C/A — C/I'A)
:kzer(E—>T*E).
2. From the previous point we know that E[I] = I"1A/A as O},/I-modules.
If J|I then
(I'A/A) @0, (Or/J) =~ T'AJ(A+ JTPA) = T'A/JT A,

From this and the Chinese remainder theorem it follows that we can
write

I A is any lattice with Ea € ELL(Oy) and I is any non-zero fractional ideal of k, we
can form the product

IA:{ozl)\1+~~~+am)\m: a; €1, )\1€A}
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Op/I= [] OwPY™ = EI~ [[ 1'A/PPIA

Peprimes Peprimes

Hence in order to conclude we must prove that: for all J fractional ideal
(such as I71A) and for all P¢ with P a prime ideal, J/P¢J is a free
O/ P¢-module of rank 1.

We define

R = 0,/P¢ P' = p/p* J' =J/PeJ

We note that R’ is a local ring with P’ as maximal ideal. From the
isomorphism theorems, we have

J'/P'J' ~ J/PJ as vector spaces over R'/P' ~ Oy /P

We want to show that its dimension is one. Any two elements x,y €
J are Op-linearly dependent? , so the dimension is at most 1. If the
dimension is zero, then J = PJ which contradicts the uniqueness of
factorization in Dedekind domains. So, from Nakayama’s lemma applied
to the local ring R’ and the R/-module J’, we obtain that J’ is a free
R’-module of rank 1.

O]

Using this theorem we can compute the degree of the isogeny £ — I x E
and the degree of the endomorphism [a] : E — E.

Corollary 2.14. Let E € ELL(Ok). For all integral ideals I C O:

1. the map E — I x E has degree Nijol,

2. for all 0 # o € O, the endomorphism [a] : E — E has degree | Ny ga.
Proof. Both parts are immediate from Proposition 2.13.

1. deg(E — I+ E) = |ker(E — I x E)| = |E[I]| = |Oy/I| = Nyl

2. deg([a]) = |ker([e])] = [E[(@)]] = [Ok/(a)] = Niq((a)) = [Ny/qal

O

4Since J is fractional, there exists « such that J C é@k. SoVz,y € J dn,m € O
such that z = %,y = = = mz — ny = 0.
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2.3 Field of definition

The results of this section can be found in [3, Chapter 2]. In this section we
will study the field of definition for elliptic curves with complex multiplication
and their endomorphisms. First of all we can show that any CM elliptic curve
is defined over an algebraic extension of Q.

In order to study the rationality of j, it is useful to consider the action of
Aut(C) on the coefficients of a Weierstrass equation of an elliptic curve FE.
Given an elliptic curve E/C, we can associate to it a Weierstrass equation
with coefficients in C

E:y* =2+ a2® +bx +c
Let 0 € Aut(C). Then we can consider the new elliptic curve
E°:y? =a+a%2® + 072+ .
Proposition 2.15. Let E/C be an elliptic curve and o € Aut(C).
1. End(E?) ~ End(E).

2. If E is an elliptic curve with complex multiplication by Oy, where k is a
quadratic imaginary field, then the j-invariant of E is algebraic.

_ A{elliptic curves E/Q with End(E) ~ R}

isomorphism over Q

3. ELL(R)

Proof. 1. If ¢ : F — FE is an endomorphism of E, clearly ¢ : E9 — E7 is
an endomorphism of E?. This gives a homomorphism between the two

endomorphism rings. The inverse of this morphism maps ¢ € End(E?)
to ¢v° ' € End(E).

2. Let 0 € Aut(C). We consider the action previously described: since j(F)
is a rational function of the coefficients of the Weierstrass equation, it is
clear that j(E?) = (j(£))?. On the other hand, the first point implies
that End(E?) = End(E) = Oy. So, E7 € ELL(Oy). Now we recall that
#HELL(Ok) = #CL(O) < oo, then j(E?) assumes only finitely many
values:

[QU(E)) : Q] < #ELL(OY) < .
Thus j(E) is algebraic over Q.

3. For any subfield F of C, let us denote by ELLp(Oy) the set

__ {elliptic curves E/F with End(E) ~ O}
a isomorphism over F '

ELLF(OY)
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Fix an embedding Q C C: it induces a natural map
€: ELLG(Ok) — ELL:(Ok).
We want to prove that e is a bijection:

o surjectivity Let £/C € ELLc(Of), then:
— from the second point we have j(E) € Q;
— from Proposition 0.4 there exist an elliptic curve E'/Q(j(F))
with j(E) = j(E');
— from Theorem 0.3 we have that E’ is isomorphic to E over C.
These facts tell us that e(E’) = E, so that € is surjective.

e injectivity Let Ey, By € ELLG(Oy) be such that e(Ey) = e(Ez).
From Theorem 0.3 we deduce that j(E;) = j(E2), and another

application of Theorem 0.3 says that F1 and Es represent the same
element of ELLgG(Of).

O]

Remark 2.16. Using Proposition 2.15 we can deduce that, if End(E) ~ O,
then

[QU(E)) : Q] < #CL(Oy) = hy
We will prove later that this is an equality.

We recall that isogenies are rational functions, so there is a natural action
of Aut(C) on them. Next we study the effect of this action on the maps
[a] : E — E described in Remark 2.4 and find a field of definition for them.

Proposition 2.17.

1. Let E/C be an elliptic curve with complex multiplication by the ring
R C C, then

[a]f = [a’]lge  Va € R and Vo € Aut(C).

2. Let E be an elliptic curve defined over a field L C C and with complex
multiplication by the quadratic imaginary field K C C. Then every
endomorphism of E is defined over the compositum LK.

3. Let E1/L and E3/L be two elliptic curves defined over a field L C C.
Then there is a finite extension Lo/L such that every isogeny from E;
to Eo is defined over Ly.

Proof.

1. Let w € Qg be an invariant differential on £. Then



2.3. FIELD OF DEFINITION 47

[a]pw=aw VaeR, [Blew? = pw? VB € R.

Then for any o € R and for any o € Aut(C) we have
([o]E)"w” = ([dfpw)” = (aw)? = a’w” = [a”]jo (W)

So, the claim follows from Proposition 0.11 that gives us the injectivity
of the x-operator.

2. Let us consider a Weierstrass equation with coefficients in L for E. Then,
for any o € Aut(C) that fixes L we have E? = E, so it follows that

[Ck]% = [a“]Ea = [a"]E, Va € Ok.
If we suppose that o fixes K too, we have
a]% =[a]p  Va e Ok Vo e Autpg(C),

then [a] is defined over LK®.

3. As in the previous point we can take Weierstrass equations with coef-
ficients in L for E; and Fy. Let ¢v € Hom(FE1, Ez) be an isogeny,
then for all o € Autr(C) we have that ¢7 € Hom(E, E2), and that
degy = degy?. From Theorem 0.16 we know that an isogeny is de-
termined by its kernel, up to isomorphism of E; and E5. Since Fj has
only finitely many subgroups of any finite order and since from Dirich-
let’s unit theorem we know that O} is a finite group, then Hom(E1, E»)
contains only finitely many isogenies of a given degree. Therefore the
orbit of 9 for the action of Auty(C) is a finite set, which implies that ¢
is defined over a finite extension of L. Finally, it follows from Theorem
0.18 that Hom(E1, E») is a finitely generated group, so it is sufficient to
take a field of definition for a finite set of generators.

O

Theorem 2.18. Let E/C be an elliptic curve with complex multiplication by
the ring of integers Ok . Let F = K(j(E)). Then there exists a Weierstrass
equation for E with coefficients in F'. This equation defines an elliptic curve

Using Lemma 0.17 we know that [a] can be expressed uniquely as a rational map with
coefficients in L', an extension of L. Without loss of generality we can assume that L'/L is
a Galois extension and that K C L’. We also know that the map is fixed by Autrx(C). So
if L' C LK we already have the claim, otherwise we have that [a] is fixed by Gal(L'/LK),
so also the rational maps which were introduced above will be fixed by this group, hence
they have coefficients in LK.
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Er, that is not unique up to isomorphism over F. However for each of these
curves Erp we have that the field

L= F(EF,tors)a

is an abelian extension of F'.

Proof. Let L,, = F(Er[m]). We note that L is the compositum of all the
L,,’s, so it suffices to show that L,,/F is an abelian extension. In order to do
this, we consider the following map

7:Gal(K/F) = Aut(Er[m]), o 7(0): Ep[m] — Ep[m]

where 7(0)(P) = P?. It is well defined: for all P € Er[m]| we have that
[m|P =0, so [m](P?) = ([m]P)” =07 =0, i.e. P? € Ep[m|. So we obtain
that for an arbitrary elliptic curve

Gal(Lm/F) < Aut(Egpm]) ~ GLy(Z/mZ).

Using Proposition 2.17 we can assume that every endomorphism of Fp is
defined over Q(j(Er))K = F. So every element o € Gal(L,,/F) will commute
with every endomorphism of EF in their action on Er|[m], equivalently it will

commute with every element a € O (i.e. ([a]P)7 = [a]P?). Thus 7 is a
morphism from the group Gal(K/F') to the group Aut o, (Er[m]) of fokk-
mtg

module automorphisms of Er[m]. This map induces an injection if we restrict
to Gal(Ly,/F). Then from Proposition 2.13 we get that

tut o (Brl) = (95 )

mOy, mOk

so we conclude that Gal(L,,/F) is abelian. O
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Integrality of j

In the previous chapter we proved that the j-invariant of an elliptic curve with
complex multiplication is an algebraic number. In this section we will prove
the following theorem

Theorem 3.1. Let R be an order in an imaginary quadratic field and let A
be a lattice with RA C A, then j(A) is an algebraic integer. Equivalently, let
E be an elliptic curve over C with complex multiplication, then j(FE) is an
algebraic integer.

So j(E) is a root of a monic polynomial with integer coefficients. This
is a very important result, leading for example to various simplifications in
its computation. The first two sections of this chapter are inspired by the
lessons of the course “Forme Modulari” taught by professor A. Maffei at the
University of Pisa, 2020/2021, by [2] and by [5].

3.1 Congruence subgroups

We introduce some notions about the so-called congruence subgroups of SLy(Z).

Definition 3.2. Let N be a positive integer. The principal congruence sub-

group T'(N) is defined by
L O moa b
0 1

P(N) = {(Z Z) € SLy(Z) : (Z Z)

A congruence subgroup is any subgroup of SLy(Z) that contains I'(N). A
modular curve is a quotient of H* or H by a congruence subgroup.

49
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We note that every congruence subgroup is a finite index subgroup of
SLy(Z). There are two families of congruence subgroups of particular interest:

T1(N) = {(Z Z) € SLy(Z) : <Z 2) = (; 1‘) (mod N)};
To(N) = {(‘Z Z) € SLy(Z) : (‘i Z) - (; :) (mod N)}.

As in section 4 of chapter 1 we define some useful modular curves:
Xo(N) := H*/To(N),  X3(N) = H*/T (N);
Now we give some important definitions:

Definition 3.3. Let f : H — C be a meromorphic function that is [-invariant
for some congruence subgroup I'. The function f(7) is said to be meromorphic
at the cusps if for every v € SLo(Z) the function f(y(7)) is meromorphic at
00.

Definition 3.4. Let I' be a congruence subgroup. A modular function for I
is a I-invariant meromorphic function f : H — C that is meromorphic at the
cusps.

It follows immediately from the definition of “meromorphic at the cusps”
that for any v € SLy(Z) the function f(+y(7)) is also meromorphic at the cusps.
To say that f(v(7)) is meromorphic at oo is to say that f(7) is meromorphic at
~v(00). So, in order to check if f is meromorphic at the cusps, it is sufficient to
consider a set of I'-inequivalent cusp representatives 1 (00), v2(00), ..., n(00),
one for each I'-orbit of P!(Q); this is a finite set because the congruence
subgroup I' has finite index in SLo(Z).

If f is also a modular function for I', then for any v € I' we have

i ) = lim F(7)

and f must still have the same order at co and y(c0). So if f is meromorphic
at the cusps it determines a meromorphic function h : Xp — C, where Xt is
the modular curve H*/I". Sums, products, and quotients of modular functions
for I are modular functions for I', as are constant functions, thus the set of all
modular functions for I forms a field C(I') that we view as a transcendental
extension of C. As we will shortly prove for Xo(V), modular curves Xt are
not only Riemann surfaces, they are also algebraic curves over C; the field
C(I") of modular functions for I" is isomorphic to the function field C(Xr) of
Xr/C. We will make this isomorphism completely explicit for X (V).

Next we present some important results that will be useful in this section.
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Theorem 3.5. Every modular function for SLa(Z) is a rational function of

(7).
Proof. 1t follows immediately from Theorem 1.36. O

Lemma 3.6. Let I' be a congruence subgroup. The field of modular functions
for T is a finite extension of C(j) of degree at most [SLa(Z) : T'| := n.

Proof. Let {71,...,7n} C SLa(Z) be a set of right coset representatives for
I' C SL2(Z), where 71 = Idgy,(z)- Let f be a modular function for I'. We
note that for any vy € SLo(Z) we have

{To(N)vitizt,..n. = {To(N)Viv}izt,...n-

Let us consider the modular functions f(7;(7)). Any symmetric function in
the functions {f(7i(7))}i=1,...n is SLo(Z)-invariant and meromorphic at the
cusps, since for any ¢ the function f(7;(7)) is. In particular the polynomial

n

[ = f(itn)

i=1

has f as root and its coefficients are symmetric polynomials in f(~;(7)), so
using Theorem 3.5 we conclude that they lie in C(j). Thus [C(f) : C(j)] < n.
The result is a consequence of the fact that we are in characteristic zero, so
we can use the primitive element theorem. O

3.2 The congruence subgroup I'o(N)

We now consider modular functions for the congruence subgroup I'o(N).

Proposition 3.7. The function 7 — j(NT) = j ((N 0) T> is a modular
0 1

function for To(N).

Proof. The function j(NT) is holomorphic on H, and is meromorphic at the
cusps, since j(7) is. Next we will show that j(N7) is I'g(IV)-invariant. Let

v = a b € I'y(NV), then we have
Nc d
N 0\(a bY(Nt O0\(N O
(Nv(T)) =7 T
=i (" ")) =i,

c d
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a Nb

where the last equality follows from the fact that ( g ) € SLy(Z) and j

c
is SLy(Z)-invariant.

Now we prove a very important Theorem that characterizes the field of
modular functions for I'o(N).

Theorem 3.8. The field of modular functions, C(Xo(N)), for To(N) is an
extension of C(j) of degree [SLo(Z) : To(N)] = n generated by j(NT).

Proof. From Propositions 1.34 and 3.7 we have that j(7), j(N7) € C(Xo(N)).
From Theorem 3.6 we know that [C(Xo(N)) : C(j)] < n, so it suffices to show
the other inequality.

Let us fix a set of right coset representatives {71, ..., } for To(N) C SLy(Z),
and let F'(5,Y) € C(j)[Y] be the minimal polynomial of j(N7) over C(j). For

any 7
0=F(@(r),j(NT)) = F(5(7i(7)), §(N7i(7))) = F(5(7), 5 (N7(7))),

so the function j(N~;(7)) is also a root of F(j,Y). So in order to prove the
claim it is sufficient to show that the j(N~;(7)) are distinct. Suppose that
there exist indices ¢ # k such that j(N~;(7)) = j(Nvk(7)), so V7 € H we have
that 3y € SLy(Z) such that

Ni(1) = (1) N (7).

Generically', (7) is unique up to sign. Choosing « such that the first nonzero
coefficient is positive, we may observe that v depends on 7 with continuity,
but SLy(Z) is discrete so it follows that v is constant in 7.2 So, there exists

v = a b such that
c d
N 0 b N 0
Vi ==+ ¢ Vi

0 1 c d 0 1

and therefore
_ N1 0 a b N 0 a b/N
Y = £ =+ N
0 1 c d 0 1 cN d

We have that v, ' € SLa(Z), so b/N € Z, and N|cN, so 77, " € To(N).
Then ~; and ; lie in the same right coset, which is a contradiction. O

'n this case, this means Nv;(r) not in the SLa(Z)-orbit of 4, (3.
2The remaining cases are filled by continuity.
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3.3 Integrality of j

The theorems of this section and their proof can be found in [6, Chapter 10]
and [3, Chapter II]. In this section in order to prove the integrality of j we
will study some properties of Py (j,Y), the minimal polynomial of j(NT) over
C(j). We may write Py as

n

Py(Y) =T[(Y —iNy(n) =D amX™,

i=1

where {71, ..., v} is a set of right coset representative for I'g(N) C SLo(Z) and

m(7) € C(j) are symmetric polynomials in j(N~;(7)). So, as in Theorem 3.6,
they are SLy(Z)-invariant. We also know that a,,(7) € C(j) are holomorphic
functions on H, so they are polynomials in j: suppose that a,,(7) = 2 E]; with
ged(pr, p2) = 1, we want to prove that deg(p2(j)) = 0. If deg(p2(j)) > 0, there
exists xp € C such that pa(zp) = 0. However we know that j(7) is surjective,
so there exists 79 € H such that py(79) = o and this will be a pole for a,,(7),
contradiction since a,(7) is holomorphic.

Let A = Z7 4+ Z be a lattice with 7 € H. If a € R, then aA C A implies
that there exist some integers a, b, ¢, d such that

(1) - (20

Let n = ad—bc. So, it can be useful to consider the set D,, of all 2 x 2 matrices
with determinant n. We also introduce another important set of matrices

Sn = @ b eD,:0<b<d;.
0 d

Now we prove a proposition that will be useful in the study of the left SLo(Z)-
equivalence classes of D, so in particular in the study of the set {j(N7;(7))}i=1,... n-

Proposition 3.9. For all M € D, there is a unique matriz S € S, such that

MS™! € SLy(Z).

Proof. We start by proving the existence of S. Let A = (a Z e D,. If
c
we have & = —% with ged(z,y) = 1, then there exist 1,22 € Z such that

xx1 —Yyro = 1, that is equivalent to (ml a:2> € SLy(Z). Multiplying A with
y T
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I R ]

so we may assume at the start that ¢ = 0. In order to make d > 0, if necessary

this matrix we obtain

0 ) Next we want that 0 < b < d. We note that for

(66

Hence, if we choose t such that 0 < b+ td < d, we conclude the proof of the
existence of S.

we multiply by <_01

allt € Z

a; b

€ S, for i = 1,2 are in the
0 d;

For the uniqueness, suppose that A; = (

same SLo(Z)-equivalence class. Then

-1
al b1 a9 b2 _ al/ag (b1a2 — albg)/n c SLQ(Z)
0 di) \0 do 0 di/ds
Since a1 /a2 and d; /dy must be positive integers with product equal to 1, they

are both 1. The coefficient in the top-right corner is (b; — bg)/dy, and since it
must be an integer and 0 < by, be < d1 = do, we have that b; = bs. O

Thanks to this proposition and remembering the fact that j is SLa(Z)-
invariant we have

{i(N%i(T) }i=1,n € {3((7) baesy -

Hence Py(Y') divides the polynomial

FyV)= J] ¥ —joa(r) =) anX™

aESN

For N squarefree we have that n = #Sy, so the two polynomial are equal.
This particular case is sufficient to prove Theorem 3.1 only when R = Ok.
In the first part of this section we proved that the coefficients of Py(Y") are
weakly modular functions of weight 0 holomorphic on H and (in particular)
in particular a,,(7) € C[j]. This is still true for the the coefficients of Fx(Y).
We do not give details for the proof because it is similar to the one already
seen. Now we prove several lemmas that will be useful in the study of Fy,
and in particular of its coefficients.

Lemma 3.10. The Fourier q-expansion of sy, has coefficients in Z.
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Proof. Let ¢ = €2™/N . For any o = <a Z) € Sy using the expansion of the
0

j-function we have

oo

joa(r) =j((ar +b)/d) = Y e (e,
k=-1

where cg, c1, ... are integers. In particular, the Fourier coefficients of j o a;, so
also the coefficients of s,,, lie in Z[(].

Next, for any a,d with ad = N, it can be useful to consider the following
polynomial in Y

d—1 d
Poa(Y) = [[(Y = i((ar + b)/d) = ) _bip(e**)Y*.
b=0 k=0

We note that from what we proved in the first part it follows that the coef-
ficients of each by lie in Z[¢]. The Galois group Gal(Q(¢)/Q) permutes the
factors of the product, so it leaves the coefficients of by unchanged. Therefore,
they lie in Q N Z[¢] = Z.

Finally we prove that s,, has a Fourier expansion in ¢ with integer coefficients.
Since ad = N for each matrix in Sy, we have

. L5
627r2a7'/d — 2mia T/N.

We note that Fy(Y') is a product of polynomials P, 4(Y") for some a,d, so
from what we already proved it follows that the coefficients s, of F,(Y') are

Laurent series in e2™/N with integer coefficients. We recall that the matrix

0

transformation. However we also know that is invariant under
7+ 7+ 1 only when N |k, this completes the proof of the lemma. ]

1 1 . . .
T = < 1) acts on H by 7 — 7 + 1 and that s,, is invariant under this

(627riT/N)k

Lemma 3.11. s,,(7) is a polynomial in j with integer coefficients.

Proof. We already know that s, € C[j] and from Lemma 3.10 that s,, €
Z[q,q7']. We will prove that C[j] N Z[q,¢"'] = Z[j]. Let f(j) = aqj® +
aq—17%"1 + ... + ap be a polynomial in C[j]. Substituting the g-expansion of j
we obtain

aqg  ag—1+d-T744 - aq
flg) = P + P s

Using the fact that f(q) € Z[q,q '] we obtain aq € Z. If we repeat this
argument for f — agj® € C[j] N Z[q,¢"'] we obtain ay_; € Z. Continuing in
this way, we obtain f(q) € Z[j]. O
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Using these lemmas we are able to prove the following theorem which
summarize the most important properties of Fy(Y).

Theorem 3.12.

1. There is a polynomial Fn(X,Y) € Z[X,Y] such that

[T ¥ —joa)=Fn(Y).

aESN

2. Let € My(Z) be a matriz with det(3) > 0, then the function jo [ is
integral over the ring Z[j].

8. If N is not a perfect square, then
Hy = Fy(X, X) € Z[X]
1s nonconstant and the coefficient of its highest power of X is £1.
Proof.

1. The previous lemmas say that

H (ijoa):ZsmYm

aeSN m
with s, € Z[j].

2. Let n = det 3, so 8 € D,. Using Theorem 3.9 we can find a matrix
v € SLg(Z) such that v3 € S,,. The v € SLy(Z)-invariance of j says
that jof = jo(vf), while the definition of F;, shows that X = jo(y5) is
a root of Fiv(j,Y). Since F,, is monic by definition and has coefficients
in Z[j] from the first point it follows that j o 5 is integral over Z[j].

3. Let a = (g Z) € Sy and ¢ = (4. If we consider the Fourier expansion

of j and j o a in €*™7/N | the first terms are respectively

-1 —2miT _ (6—27riT/N)N

g l=e C—be—QwiaT/d _ C—b(e—QwiaT/N)aQ‘

We call Q = e 2m7/N — ¢1/N_ Since N is not a square, the leading
terms cannot cancel, so j — j o a has a pole for Q — 0. So the leading
term must be a a root of unity. It follows that the coefficient of the first
term of the expansion of Hy(j) is the product of these roots of unity,
hence it is a root of unity. We know that this leading term has to be an
integer, so it must be +1. We note that the first term of the expansion
of Hy(j) is a negative power of ¢, so Hy(X) is nonconstant.
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Now we are able to prove Theorem 3.1.

Proof. We consider first the case R = Oy, the ring of integers of k. Choose
an element p € O such that |Nj,gp| = N is not a perfect square®. Then
Theorem 2.14 says that the isogeny [p] : E — E has degree N. Let 7 € H be
a number such that j(7) = j(F), then multiplication by p sends the lattice

ZT®Z to the lattice ZpT®Zp = Z(aT+b)DZ(cT+d) for some a, b, c,d € Z such

b
that ad — bc = N. In other words, there exists a matrix a = “ d) € Dy
c

such that
ar +b

ct+d

joatn) =i (Z23) = i) = i),

We recall that j o a(7) is a root of the polynomial Fx(j,Y). Substituting
Y = j o« and evaluating in 7 we get

0=Fn(j(r),joa(r)) =Fn(i(E),j(E)) = Hy(j(E)).

The claim follows from Theorem 3.12.

Finally we consider the general case of an arbitrary order R. Let A = Zw; ®
Zws be a lattice for E. From Theorem 1.40 we know that k = Q(w;/w2). So,
replacing A with AA for a suitable A € C* we may assume that A C Of. Next
we choose 7 € H such that Z7 & Z = O, then A is a sub-lattice of O). Hence
we can write

= b
wi=art for some a, b, c,d € Z. (3.2)

wo =cT+d

a b

c d
be a matrix in Dy, then by Theorem 3.12 j o « is integral over Z[j] and the
integrality is given by the equation F(j,Y) = 0. Evaluating this equation in
T we obtain that jo«(7) is integral over Z[j(7)]. We recall that joa(7) = j(F)
and since j(7) is the j-invariant of an elliptic curve with CM by Oy from the
previous point we know that it is integral over Z. Therefore j(F) is integral
over Z. 0

We call ad — bc = N, and we may assume that N > 1. Let a =

3For example
1+¢ if k=Q()
v—d if k=Q(/—d).






CHAPTER

Hilbert class field

The results of this chapter can be found in [3, Chapter II]. We will now define
a map between Gal(K/K) and CL(Of), where K is a quadratic imaginary
field.

In all this chapter we will use Proposition 2.17 to identify ELL(Of) with
ELLG(OK). There is a natural action of Gal(K/K) on ELL(Ok) defined as

follows:
Gal(F/K) x ELL(OK) — ELL(OK), (o0,FE)+— E°.

On the other hand, we showed in Theorem 2.10 that C L(Of) acts on ELL(Ok)
with a simply transitive action.
So, for a fix elliptic curve FEjy, there is a well defined map

F:Gal(K/K) — CL(Og), o F(o)=a,
where a € CL(Ok) is such that ax Ey = EJ.
Proposition 4.1. The map F has the following properties:
e is independent of the choice of the curve E € ELL(Ok);
e is a homomorphism.
Proof.

o Let By, By € ELL(Ok) and 0 € Gal(K/K). There exist Ir, Iy, J €
CL(Ok) such that

E(f:Il*El, Eg:IQ*E27 EQZJ*El.

59
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Using this identity we obtain
(J*E))° =E =LhxEy=1I*(J*Fy) = (LJI;') * ES.

Thus, using Proposition 4.2 we know that (J * E1)? = J * EY, then we
can cancel J from both sides to conclude that E{ = LI;!  EY; and
Theorem 2.10 will give I = Is.

e For all 0,7 € Gal(K /K) using the first point we have:
F(or)*xE = E°T = (E7)? = (F(1)*E)° = F(0)*(F(1)*E) = (F(0)F(7))*E.
O
Now we prove the proposition used to conclude the previous proof.

Proposition 4.2. Let E/Q be an elliptic curve representing an element of
ELL(OK), let I € ELL(Ok) and let o € Gal(Q/Q). Then

(IxE)” =17 E°.
Proof. We choose a lattice A such that F ~ F, and fix an exact sequence
O 4, Ox —-1—0

where A is a n X m matrix with coefficients in Q. Now we will use that
C/I7'A ~ I+ E ~ Hom(I,E)," where the last isomorphism will be proven
below. We apply Hom(-,-) to the product of the previous exact sequence with
the sequence 0 - A — C — E — 0, obtaining the following diagram

0 0 0

00— Hom(I,A) ———— Hom(I,C) —— Hom(I, E)

0 ——— Hom(O%,A\) ——— Hom(0O},C) ——— Hom(O%, E)

At Al At

0 ——— Hom(Of,A\) ——— Hom(O},C) ——— Hom (O}, E)
For any Og-module M we have that Hom(O%, M) ~ M"™; moreover, we have
the following lemma that we state without proof:

n this proof Hom will always indicate the group of @k-linear homomorphisms.
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Lemma 4.3. Let R be a Dedekind domain, let I be a fractional ideal of R
and let M be a torsion-free R-module. Then the natural map

®:I'M — Homgr(I, M), x (O, :a+— azx)

is an isomorphism.

Applying this lemma first with M = A, then with M = C, the previous
diagram can be rewritten as

0 0 0

0 ——— I A C Hom(I,E)

0 > A" » C" > B" 0
At At At

0 ——— A™ >y C™ >y B 0

where the exactness of the last two rows follows from the fact that they are
just a number of copies of 0 - A — C — E — 0. Using the Snake-Lemma on
the last two rows we obtain:

0= I 'A—C—=ker(A': E" = E™) ~ Hom(I,E) — A™/AY(A™). (4.1

Note that, since A’ : E™ — E™ is a matrix with coefficients in End(E) ~ Ok,
it is an algebraic map between algebraic varieties, so (Af)71(0,...,0) is an
algebraic subvariety of E™. From Proposition 2.17 it follows that for any
o € Aut(C), the corresponding map

(417 (B*)" = (B°)™,

is obtained acting with o on the coefficients of A*. From a topological point
of view we know that A™/A!(A™) is discrete and C/I~1A is connected. Hence
from (4.1) we get

(I % E)(C) = C/I A ~ identity component of ker(A' : E™ — E™).

So, we have described I x E as an algebraic object. We conclude
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(I * E)7 ~ (identity component of ker(A" : E™ — E™))°
= identity component of ker((A")? : (E7)" — (E°)™)
~ J7 % E°.

O]

Since CL(Of) is an abelian group, F factors through F : Gal(K*/K) —
CL(Ok) where K% is the maximal abelian extension of K.

4.1 A brief review of class field theory

We will mostly restrict our attention to totally imaginary fields.

Let K be a totally imaginary number field and let L be a finite abelian exten-
sion of K with Galois group G. Let ¢ be an integral ideal of K that is divisible
by all primes that ramify in the extension L/K, and let I(c) be the group of
fractional ideals of K which are prime to c.

Definition 4.4. For each prime ideal p of K we define the Artin symbol for
unramified prime ideals of K as

()=

i.e., we associate to each prime ideal p of K the unique? Frobenius element of
pin G =Gal(L/K).

Then we observe that, if we factorize p as product of prime ideals of L,
p = Pi...P,, we can define the Artin symbol for each factor P;, but since
L/K is an abelian extension, the Frobenius elements depend only on p, so the
symbol takes the same value for each factor.

Definition 4.5. The Artin map is defined using the Frobenius maps o},’s and
linearity as follows:

(L/K> :I(¢c) = Gal(L/K), aw <L{1K) = <1i/§p> = p oy’

Note that the Artin map is defined by piecing together local information,
one prime at a time.
The following proposition is a weak version of the Artin reciprocity law and
it provides important global information.

*We are using that Gal(L/K) is an abelian group.
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Theorem 4.6 (Artin Reciprocity). Let L/K be a finite abelian extension of
number fields. Then there exists an integral ideal ¢ C Ok, divisible by precisely
the primes of K that ramify in L, such that

(L({TI)() =1 forall o € K* such that « =1 (mod ¢)

Note that Theorem 4.6 ensures only the existence of the ideal ¢, and not
its uniqueness.

Definition 4.7. Let ¢; /i be the largest ideal for which Artin reciprocity is
true. We call it the conductor of the extension L/K.

Theorem 4.6 makes it natural to define the group of principal ideals con-
gruent to 1 modulo c:

Ple)={(a):ae K*;a=1 (modc)}.

Artin reciprocity says that if we take the conductor of the extension:
L/K L/K
ac P(CL/K) = </Cl> =1 = P(CL/K) C ker </> .
Note that a principal ideal (o) may be in P(c) even if @ # 1 (mod ¢), it
suffices that eaw = 1 (mod ¢) for an appropriate unity e. Let p a prime of K,
unramified in L, then? it splits completely in L if and only if (L/TK> = 1. So,
the unramified prime ideals in the kernel of Artin map are the primes of K
that split completely in L.

Definition 4.8. Let ¢ be an integral ideal of K. A ray class field of K (modulo
¢) is a finite abelian extension K, /K such that for every finite abelian extension
L/K

CL/K|C = LCK..

Intuitively, one can think of the ray class field as the “largest” field with
a given conductor. However, it is important to note that the conductor of K,
need not? be c.

Theorem 4.9 (Class field theory). Let L/K be a finite abelian extension of
number fields, and let ¢ be an integral ideal of K.

1. The Artin map is a surjective homomorphism.

2. The kernel of the Artin map is Ny, (1) P(crx), where Iy, is the group
of non zero fractional ideals of L coprime to ¢, k.

3p is unramified so e, = 1, hence it splits if and only if f, =1 < D(B/p) = (op) = 1.
*For example, the ray class field of Q(i) modulo the ideal (2) is itself, so its conductor

is (1).
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3. There exists a unique ray class field K. of K (modulo ¢). The conductor
of the extension K /K divides c.

4. The ray class field K. is characterized by the property that it is an abelian
extension of K and satisfies the following condition:

{primes of K that split completely in K.} = {prime ideals in P(c)}

From points (1), (2) of Theorem 4.9 and by the first homomorphism the-
orem, we see that the Artin map induces the following isomorphism

I(cr k) /(NpyrIn)P(ep k) = Gal(L/K).

Definition 4.10. Consider the ray class field of K modulo the unit ideal
¢ = (1). It is the maximal abelian extension of K which is unramified at all
primes. We call the field K(;) the Hilbert class field of K and denote it by
Hg.

We notice that, by point (3) of Theorem 4.9, the conductor of the extension
Hg /K divides the module ¢ = (1), so ¢, /k[(1), that implies necessarily that
iy /i = (1). We have that:

I(¢p,/x) = I1((1)) = {all non-zero fractional ideals of K'}
P(cq, /i) = P((1)) = {all non-zero principal ideals of K}.

Moreover the following theorem can be proved:

Theorem 4.11. The Artin map induces an isomorphism between the ideal
class group of K and the Galois group Gal(Hg | K).

We will also need the following version of Dirichlet’s theorem on primes in
arithmetic progressions.

Theorem 4.12. Let K be a number field and ¢ an integral ideal of K. Then
every ideal class in I(c)/P(c) contains infinitely many degree 1 primes of K.

4.2 Hilbert class field of K

In this section we will prove the following Theorem

Theorem 4.13. Let K/Q be a quadratic imaginary field with ring of integers
Ok, and let E be an elliptic curve with End(FE) ~ Ok. Then K(j(FE)) is the
Hilbert class field H of K.

We prove a useful proposition that will help us to completely determine
F.
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Proposition 4.14. There is a finite set of rational primes S C Z such that,
if p € S is a prime which splits in K, say as pOx = pp’, then the Frobenius
element associated to p is sent by F' to the class of p in the ideal class group,
namely

F(oy) =p € CL(Ok).

In order to prove this proposition we state without proof the following
lemma. The proof could be found in [3, Chapert II] and it uses some properties
of Tate modules and Weil pairing.

Lemma 4.15. Let L be a number field, let P be a mazimal ideal of Op, let
Ey/L and E3/L be elliptic curves with good reduction at P, with Ey and Es
their reductions modulo P. Then the natural reduction map

Hom(El,Eg) %HOT)’L(ELEQ), D — (i
is injective. Furthermore, it preserves degree, so deg(®) = deg(®).

Proof of Proposition 4.14. From Theorem 2.9 we know that ELL(O) is finite
and from Proposition 2.15 we have that every curve in ELL(Ok) can be
defined over Q, so for a suitable finite extension L/K we can choose a set,
Eq, ..., Ey, of representatives for ELL(Ok) defined over L. Using Proposition
2.17 we may replace L by a finite extension such that any isogeny between F;
and F; for every i,j7 < n is defined over L. Let S C Z be the finite set of
rational primes p satisfying one of the following conditions:

1. p ramifies in L;
2. some F; has bad reduction at some prime of L over p;

3. p divides either the numerator or the denominator of one of the numbers
Npo(i(E:) — j(Ey)) for some i # k (this means that, if p ¢ S and P is
a prime of L dividing p, then E; # Ej, (mod P), since their invariants
are not the same modulo P.).

Let p € S be a prime such that pOx = pI’ and let M|p be a prime ideal of
L. Let A be a lattice for E. Next we choose some integral ideal I C Ok,
relatively prime to p, such that Ip = («) is principal.

Using Theorem 1.24 we make the following commutative diagram

C/A —5—C/p7'A —5— C/I"p'A=C/(a)A —55— C/A
@ b

E—2 s ps«FE I«p+E=(a)xE——2 4 F
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Next we choose a Weierstrass equation for E/L, minimal at M, and let

dz
W= -———"—"
2y+a1x—|—a3

be the associated invariant differential. As we have already noticed, the pull-
back of w to C/A will be a multiple of dz. The composition of maps along
the top row is simply [«], so the pull back of dz is adz. Then from the
commutativity of the diagram we obtain:

(Ao o¢d)'w=aw.

We will use a tilde, E, to denote reduction of E modulo M. Since we chose a
Weierstrass equation for /L minimal at M, we obtain an equation for E by
reducing the coefficients modulo M. From the second point of the definition
of S we now that E has good reduction modulo M. Moreover using that

Ip = () and M|p, we find
Rodod)d= (Aot od)w=ad = 0.

So, using Proposition 0.11 we deduce that A o ¢ o ¢ is inseparable.
From Lemma 4.15 and Corollary 2.14 we obtain

deg(¢) = deg(¢) = Ni/q(p) =p

deg(v) = deg(v)) = Nk o(I)

deg(A) = deg(A) = 1.
Since, by hypothesis, NK/Q(I) is coprime to p, then both 1; and X are sep-

arable. We deduce that qg must be inseparable, so it factors as a ¢'*-power

Frobenius map and a separable map. Thus, since deg(¢) = p, it must be the
p'-power Frobenius map. In particular, we find that

i+ E) = j(B)7) = j(E),
from which we obtain the so-called Kronecker congruence
j(p E) =j(E)”  (mod M).
Moreover, by using the definition of F' and the other results, it holds that
j(pxE) = j(E) = j(B)N</e®) = j(E)™ = j(E7) = j(F(0y)+E) (mod M).
But from the original choice of excluded primes S, we have that
J(E;) =j(Ex) (mod M) < E; ~ Ej.

Hence it is p x E' = F(0p) * E, then for the simple transitivity of the action of
CL(Ok) on ELL(Ok) gives result: F(oy) = p. O
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We are able to prove the Theorem stated at the beginning.

Proof of Theorem 4.13. Let L/K be the finite extension corresponding to the
homomorphism
F:Ga(K/K)— CL(Ok)

namely, L is the fixed field of the kernel of F'. Then

Gal(K/L) = ker(F)

= {0 € Gal(K/K): F(o) =1}

= {0 €Gal(K/K):F(oc)*E =E}

= {0 € Gal(K/K): E° = E}

= {0 € Gal(K/K) : j(E”) = j(E)}

= {0 € Gal(K/K) : j(E)’ = j(E)}
)

= Gal(K/K(j(E))).

where the equality {0 € Gal(K/K) : F(0) =1} = {0 € Gal(K/K) : F(o)« E = E}

follows from the simple transitivity of the action.

Hence L = K(j(E)). We also note that since F' : Gal(L/K) — CL(Ok) is
injective, the extension L/K is abelian.

Let us consider ¢y, /x, the conductor of L /K, and the composition of the Artin
map with F"

(/) —— Gal(L/K) ———— CL(Ok)

[[P" ———— [llop)" ————— F([l(or)™)

We claim that this composition is the natural projection of I(cy, / k) onto
CL(Ok), so we need to prove that

F((H5)) -1 e cron

Let I € I(cz k) and S be the set defined in Proposition 4.14. From Theorem
4.12 we know that there exists a degree 1 prime ideal p € I(cr k) that lies
in the same P(cz,)-ideal class as I and not lying over a prime in S (i.e.
Ja € K* such that a =1 (mod ¢z/x) A I = (a)p). Then

() =+ () =+ (49) o=
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where the second equality follows from the fact that « = 1 (mod ¢y, /x),
the third equality follows from Proposition 4.14 and since Nk q(p) € S. A

consequence of what we have seen is that F' ((L({TI)(» = 1 for all principal
ideals (a) € I(cp k). Furthermore, as we have already seen F|qq L k) is
injective, then <L(/TI)<> = 1 for all principal ideals (a) € I(cf k). By the
definition of ¢/ it follows that ¢/ = (1). Using Artin reciprocity (Theorem
4.6) the conductor is divisible by every prime that ramifies, then L/K must be
everywhere unramified. So we conclude that L is contained in the Hilbert class
field H of K. On the other hand the natural map I(c;/x) = I(1) = CL(Ok)
is surjective, so by the claim it follows that F'|gq 1 k) is surjective, hence an
isomorphism. Therefore

[L: K] =|Gal(L/K)| = |CL(Ok)| = |Gal(H/K)| = [H : K],
then L = H. O
Finally, we prove some consequences of Proposition 4.14.

Theorem 4.16. Let E be an elliptic curve representing an isomorphism class
in ELL(OK).

1. [QG(E)) : Ql = [K(§(E)) : K] = hx,

2. Let En, ..., By be a complete set of representatives for ELL(OK). Then
J(E1),...,j(Ep) is a complete set of Gal(K /K)-conjugates for j(E).

3. For every prime ideal p of K
J(E)7 =j(px E).

Proof. 1. The second equality follows from Theorem 4.13. In order to prove
the first equality we know from Remark 2.4 that

[QG(E)) : Q] < hx.

Furthermore we have that
Q(E)): Q] > [K(j(E)) : K.

2. We know that CL(Ok) acts transitively on ELL(Ok ), then using The-
orem 0.3 CL(Of) acts transitively also on J = {j(F1),...,j(Ep)}. The
map F : Gal(K/K) — CL(Ok) is defined by identifying the action of
Gal(K/K) on J with the action of CL(Ok) on J, so Gal(K/K) acts
transitively on J.
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3. In the proof of Theorem 4.13 we noticed that F ((L/f[()) = [ for all
I'€I((cr k) = I((1)) = {non-zero fractional ideals of K }. This means

(5O (M) 8) <510
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