Algebraic Number Theory

Johan Bosman
Notes by Florian Bouyer

Copyright (C) Bouyer 2011.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction and Motivations 2
 1.1 Motivations .. 2
 1.2 Finding Integer Solutions 3
 1.3 Pell’s Equations ... 3

2 Fields, Rings and Modules 5
 2.1 Fields .. 5
 2.2 Rings and Modules .. 6
 2.3 Ring Extensions .. 7

3 Norms, Discriminants and Lattices 9
 3.1 Conjugates, Norms and Traces 9
 3.2 Discriminant .. 10
 3.3 Lattices ... 12

4 Cyclotomic Fields 14

5 Dedekind Domains 17
 5.1 Euclidean domains .. 17
 5.2 Dedekind Domain .. 18
 5.3 Kummer-Dedekind Theorem 24

6 The Geometry of Numbers 26
 6.1 Minkowski’s Theorem ... 26
 6.2 Class Number .. 27
 6.3 Dirichlet’s Unit Theorem 29
1 Introduction and Motivations

Most of the ideas in this section will be made more formal and clearer in later sections.

1.1 Motivations

Definition 1.1. An element α of \mathbb{C} is an \textit{algebraic number} if it is a root of a non-zero polynomial with rational coefficients.

A \textit{number field} is a subfield K of \mathbb{C} that has finite degree (as a vector space) over \mathbb{Q}. We denote the degree by $[K : \mathbb{Q}]$.

Example. \quad $\{\mathbb{Q}\}$

- $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$
- $\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$
- $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[x]/(x^2 - 2)$

Note that every element of a number field is an algebraic number and every algebraic number is an element of some number field. The following is a brief explanation of this.

Let K be a number field, $\alpha \in K$. Then $\mathbb{Q}(\alpha) \subseteq \text{K}$ and we will later see that $[\mathbb{Q}(\alpha) : \mathbb{Q}][K : \mathbb{Q}] < \infty$. So there exists a relation between $1, \alpha, \ldots, \alpha^n$ for some n. If α is algebraic then there exists a minimal polynomial f for which α is a root. $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$ has degree $\deg(f)$ over \mathbb{Q}.

Consider $\mathbb{Z}[i] \subseteq \mathbb{Q}[i]$, also called the \textit{Gaussian integers}. A question we may ask, is what prime number p can be written as the sum of 2 squares? That is $p = x^2 + y^2 = (x + iy)(x - iy)$, we “guess” that an odd prime p is $x^2 + y^2$ if and only if $p \equiv 2 \mod 4$. A square is always 0 or 1 $\mod 4$, so the sum of two squares is either 0, 1 or 2 $\mod 4$. Hence no number that is 3 $\mod 4$ is the sum of two squares. Therefore not all numbers that are 1 $\mod 4$ can be written as the sum of two squares.

Notice that there exist complex conjugation in $\mathbb{Z}[i]$, that is the map $a + bi \mapsto a - bi = \overline{a + bi}$ is a ring automorphism. We can define the norm map $N : \mathbb{Z}[i] \to \mathbb{Z}$ by $a \mapsto a\overline{a}$, more explicitly, $(a + bi) \mapsto (a + bi)(a - bi) = a^2 + b^2$. We will later see that $N(\alpha\beta) = N(\alpha)N(\beta)$.

Definition 1.2. Let K be a number field, a element $\alpha \in K$ is called a \textit{unit} if it is invertible. That is there exists $\beta \in K$ such that $\alpha\beta = 1$.

Proposition 1.3. The units of $\mathbb{Z}[i]$ are $1, -1, i, -i$.

Proof. Let $\alpha \in \mathbb{Z}[i]$ be a unit. Then $N(\alpha)$ is a unit in \mathbb{Z}, (since there exists $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$, hence $1 = N(\alpha\beta) = N(\alpha)N(\beta)$) Now let $\alpha = a + bi$, then $N(\alpha) = a^2 + b^2 = \pm 1$. Now -1 is not the sum of two squares hence $\alpha \in \{\pm 1, \pm i\} \quad \square$

Definition 1.4. Let K be a number field, an element $\alpha \in K$ is \textit{irreducible} if α is not a unit, and for all $\beta, \gamma \in \mathbb{Z}[i]$ with $\alpha = \beta\gamma$, we have either β or γ is a unit.

Fact. $\mathbb{Z}[i]$ is a unique factorization domain, that is every non-zero elements $\alpha \in \mathbb{Z}[i]$ can written as a product of irreducible elements in a way that is unique up to ordering and multiplication of irreducible elements by units.

Theorem 1.5. If $p \equiv 1 \mod 4$ is a prime then there exists $x, y \in \mathbb{Z}$ such that $p = x^2 + y^2 = (x + iy)(x - iy) = N(x + iy)$.

Proof. First we show that there exists $a \in \mathbb{Z}$ such that $p|a^2 + 1$. Since $p \equiv 1 \mod 4$ we have $\left(\frac{-1}{p}\right) = 1$ (see Topics in Number Theory). Let $a = \frac{p - 1}{2}$, then $a^2 = \left(\frac{p - 1}{2}\right)!\left(\frac{p - 1}{2}\right)! = 1 \cdot \cdots \cdot \left(\frac{p - 1}{2}\right) \cdot \left(\frac{p - 1}{2}\right) \cdots \cdot 1 \equiv -1 \mod p$. Hence $p|a^2 + 1 = (a + i)(a - i)$.

Is p irreducible in $\mathbb{Z}[i]$? If p were indeed irreducible, then $p|(a + i)$ or $p|(a - i)$. Not possible since $a + i = p(c + di) = pc + pdi$ means $pd = 1$. So p must be reducible in $\mathbb{Z}[i]$. Let $p = \alpha\beta$, $\alpha, \beta \notin (\mathbb{Z}[i])^*$ and $N(p) = p^2 = N(\alpha)N(\beta) \Rightarrow N(\alpha) \neq 1 \neq N(\beta)$. So $N(\alpha) = p = N(\beta)$. Write $\alpha = x + iy$, then $N(\alpha) = p = x^2 + y^2$ \quad \square
1.2 Finding Integer Solutions

Problem 1.6. Determine all integer solution of \(x^2 + 1 = y^3\)

Answer. First note \(x^2 + 1 = (x + i)(x - i) = y^3\), we'll use this to show that if \(x + i\) and \(x - i\) are coprime then \(x + i\) and \(x - i\) are cubes in \(\mathbb{Z}[i]\).

Suppose that they have a common factor, say \(\delta\). Then \(\delta(x + i) - (x - i) = 2i = (1 + i)^2\). So if \(x + i\) and \(x - i\) are not coprime, then \((1 + i)(x + i), i.e., (x + i) = (1 + i)(a + bi) = (a - b) + (a + b)i\). Now \(a + b\) and \(a - b\) are either both even or both odd. We also know that \(a + b = 1\), so they must be odd, hence \(x\) is odd. Now an odd square is always 1 mod 8. Hence \(x^2 + 1 \equiv 2 \mod 8\), so \(x^2 + 1\) is even but not divisible by 8, contradicting the fact that \(x\) is a cube.

Hence \(x + i\) and \(x - i\) are coprime in \(\mathbb{Z}[i]\). So let \(x + i = \epsilon \pi_1^{e_1} \cdots \pi_n^{e_n}\) where \(\pi_i\) are distinct up to units. Now \(x - i = \pi_1^{f_1} \cdots \pi_n^{f_n}\). So \((x + i)(x - i) = \epsilon \pi_1^{e_1} \cdots \pi_n^{e_n} \pi_1^{f_1} \cdots \pi_n^{f_n} = y^3\). Let \(y = \epsilon' q_1^{c_1} \cdots q_n^{c_n}\) so \(\pi_1^{d_1} \cdots \pi_n^{d_n} = \epsilon q_1^{c_1} \cdots q_n^{c_n}\). The \(q_i\) are some rearrangements of \(\pi_i, \pi_i\) up to units. Hence we have \(e_i = 3f_j\), so \(x + i\) = unit times a cube, (Note in \(\mathbb{Z}[i]\), \(\pm 1 = (\pm 1)^3\) and \(\pm i = (\mp i)^3\). Hence \(x + i\) is a cube in \(\mathbb{Z}[i]\).

Let so \(x + i = (a + ib)^3\) for some \(a, b \in \mathbb{Z}\). Then \(x + i = a^3 + 3a^2bi - 3ab^2 - b^3i = a^3 - 3ab^2 + (3a^2b - b^3)i\). Solving the imaginary part we have \(1 = 3a^2b - b^3 = b(3a^2 - b^2)\). So \(b = \pm 1\) and \(3a^2 - b^2 = 3a^2 - 1 = \pm 1\). Now \(3a^2 = 2\) is impossible, so we must have \(3a^2 = 0\), i.e., \(a = 0\) and \(b = -1\). This gives \(x = a^3 - 3ab^2 = 0\).

Hence \(y = 1, x = 0\) is the only integer solution to \(x^2 + 1 = y^3\)

Theorem 1.7 (This is False). The equation \(x^2 + 19 = y^3\) has no solutions in \(\mathbb{Z}\) (Not true as \(x = 18, y = 17\) is a solution since \(18^2 + 19 = 324 + 19 = 343 = 17^3\))

Proof of False Theorem. This proof is flawed as we will explain later on. (Try to find out where it is flawed)

Consider \(\mathbb{Z}[\sqrt{-19}] = \{a + b\sqrt{-19} : a, b \in \mathbb{Z}\}\). Then we define the conjugation this time to be \(a + b\sqrt{-19} = a - b\sqrt{-19}\), and similarly we define a norm function \(N : \mathbb{Z}[\sqrt{-19}] \rightarrow \mathbb{Z}\) by \(\alpha \mapsto \alpha \overline{\alpha}\). Hence \(N(a + b\sqrt{-19}) = a^2 + 19b^2\).

So we have \(x^2 + 19 = (x + \sqrt{-19})(x - \sqrt{-19})\).

Suppose that these two factors have a common divisor, say \(\delta\). Then \(\delta|2\sqrt{-19}\). Now \(\sqrt{-19}\) is irreducible since \(N(\sqrt{-19}) = 19\) which is a prime. If \(2 = \alpha\beta\) with \(\alpha, \beta \notin (Z[\sqrt{-19}])^*\), then \(N(\alpha)N(\beta) = N(2) = 2^2, \) so \(N(\alpha) = 2\) which is impossible. So \(2\) is also irreducible. Hence we just need to check where \(2|x + \sqrt{-19}\) or \(2|x - \sqrt{-19}\) is possible.

Suppose \(-\sqrt{-19}|x + \sqrt{-19}\), then \(x + \sqrt{-19} = \sqrt{-19}(a + b\sqrt{-19}) = -19b + a\sqrt{-19}, \) so \(a = 1)\) and \(19|x, \) hence \(x^2 + 19 \equiv 19 \mod 19^2\), i.e., \(x^2 + 19\) is divisible by 19 but not by 19^2 so it can’t be a cube. Suppose \(2|x - \sqrt{-19}\), then \(x - \sqrt{-19} = 2a + 2b\sqrt{-19}\), which is impossible.

Hence we have \(x + \sqrt{-19}\) and \(x - \sqrt{-19}\) are coprime, and let \(x + \sqrt{-19} = \epsilon \pi_1^{e_1} \cdots \pi_n^{e_n}\). Then \(x - \sqrt{-19} = x + \sqrt{-19} = \epsilon \pi_1^{f_1} \cdots \pi_n^{f_n}\), so \((x + \sqrt{-19})(x - \sqrt{-19}) = \epsilon\pi_1^{e_1} \cdots \pi_n^{e_n} \pi_1^{f_1} \cdots \pi_n^{f_n} = y^3\). If we let \(y = \epsilon' q_1^{c_1} \cdots q_n^{c_n}\), then \(y^3 = \epsilon q_1^{c_1} \cdots q_n^{c_n}\) and the \(q_i\) are some rearrangements of \(\pi_i, \pi_i\) up to units. Hence corresponding \(e_i = 3f_j\) and so \(x + \sqrt{-19}\) = unit times a cube. Now units of \(\mathbb{Z}[\sqrt{-19}] = \{\pm 1\}\).

So \(x + \sqrt{-19} = (a + b\sqrt{-19}) = (a^3 - 19ab^2 + (3a^2b - b^3)\sqrt{-19}\). Again comparing \(\sqrt{-19}\) coefficients we have \(b(3a^2 - 19b^2) = 1, \) so \(b = \pm 1\) and \(3a^2 - 19 = \pm 1\). But \(3a^2 = 20\) is impossible since \(3|19, \) and \(3a^2 = 18 = 3 \cdot 6\) is impossible since 6 is not a square. So no solution exists.

This proof relied on the fact that \(\mathbb{Z}[^1\sqrt{-19}]\) is a UFD, which it is not. We can see this by considering \(343 = 7^3 = (18 + \sqrt{-19})(18 - \sqrt{-19})\). Now \(N(7) = 7^2\). Suppose \(7 = \alpha\beta\) with \(\alpha, \beta \notin (Z[\sqrt{-19}])^*\). Then \(N(\alpha)N(\beta) = 7^4, \) so \(N(\alpha) = 7, \) but \(N(a + b\sqrt{-19}) = a^2 + 19b^2 \neq 7\). So 7 is irreducible in \(\mathbb{Z}[\sqrt{-19}]\). On the other hand \(N(18 + \sqrt{-19}) = 7^3, \) and suppose that \(N(\alpha)N(\beta) = 7^4, \) then without loss of generality \(N(\alpha) = 7\) and \(N(\beta) = 7^2. \) But we have just seen no elements have \(N(\alpha) = 7, \) so \(18 + \sqrt{-19}\) is irreducible in \(\mathbb{Z}[\sqrt{-19}]\). The same argument shows that \(18 = \sqrt{-19}\) is also irreducible in \(\mathbb{Z}[\sqrt{-19}]\)

1.3 Pell’s Equations

Fix \(d \in \mathbb{Z}_{>0}\) with \(d \neq a^2\) for any \(a \in \mathbb{Z}\). Then Pell’s equation is \(x^2 - dy^2 = 1, \) with \(x, y \in \mathbb{Z}\).

Now \(\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\\). This has an automorphism \(a + b\sqrt{d} \mapsto a - b\sqrt{d} = \overline{a + b\sqrt{d}}. \) (Note that \(-\) is just notation, and it does not mean complex conjugation). Again we can define a function called the norm, \(N : \mathbb{Z}[\sqrt{d}] \rightarrow \mathbb{Z}\) defined by \(a \mapsto \alpha\overline{\alpha}\), and explicitly \((a + b\sqrt{d}) \mapsto a^2 - db^2\). Hence Pell’s equation comes down to solving \(N(x + y\sqrt{d}) = 1\).
Theorem 1.8. Let \(2 + \sqrt{d} + y\sqrt{d} = 1\), then there exists \(\alpha\) such that \(\alpha = 1\). So \(N(\alpha)\) is \(\pm 1\). On the other hand if \(N(\alpha) = \pm 1\), then \(\alpha = 1\), so \(\pm \alpha = \alpha^{-1}\), hence \(\alpha\) is a unit.

Example. \(d = 3\). Then \(x^2 - 3y^2 = 1 \Rightarrow 3y^2 + 1 = x^2\)

\[\begin{align*}
y & = 0 & 3y^2 + 1 & = 1. \text{ This is ok, it leads to } (1, 0) \text{ which correspond to } 1 \in \mathbb{Z}[\sqrt{3}] \\
y & = 1 & 3y^2 + 1 & = 4. \text{ This is ok, it leads to } (2, 1) \text{ which gives } 2 + \sqrt{3} \in \mathbb{Z}[\sqrt{3}] \\
y & = 2 & 3y^2 + 1 & = 13 \\
y & = 3 & 3y^2 + 1 & = 28 \\
y & = 4 & 3y^2 + 1 & = 49. \text{ This is ok, it leads to } (7, 4) \text{ which gives } 7 + 4\sqrt{3} \in \mathbb{Z}[\sqrt{3}] \\
\end{align*}\]

Note that if \(\epsilon\) is a unit in \(\mathbb{Z}[\sqrt{d}]\), then \(\pm \epsilon^n\) is a unit for all \(n \in \mathbb{Z}\). (For example \((2 + \sqrt{3})^2 = 2^2 + 2 \cdot 2\sqrt{3} + 3 = 7 + 4\sqrt{3}\).

If \(x, y\) is a solution, then of course \((-x, -y)\) is a solution as well. Hence there are infinitely many solutions.

Theorem 1.8. Let \(d \in \mathbb{Z}_{>0}\) with \(d \neq a^2\). Then there exists \(\epsilon_d \in \mathbb{Z}[\sqrt{d}], \epsilon_d \neq \pm 1\) such that every unit can be written as \(\pm \epsilon_d^n, n \in \mathbb{Z}\). Such an \(\epsilon_d\) is called a Fundamental Unit of \(\mathbb{Z}[\sqrt{d}]\). If \(\epsilon_d\) is a fundamental unit, then so is \(\pm \epsilon_d^{-1}\).

Proof. This is a consequence of Dirichlet’s Unit Theorem, which we will prove at the end of the course. \(\square\)

Example. We will show that \(\epsilon_3 = 2 + \sqrt{3} \in \mathbb{Z}[\sqrt{3}]\)

Let \(x_1 + y_1\sqrt{3} \in \mathbb{Z}[\sqrt{3}]\) be a fundamental unit. Without any lost of generality we can assume that \(x_1 \geq 0\). Now \((x_1 + y_1\sqrt{3})^{-1} = (x_1 - y_1\sqrt{3})/(x_1 + y_1\sqrt{3}) = \pm (x_1 - y_1\sqrt{3}).\) So without loss of generality we can also assume \(y_1 \geq 0\).

Put \(x_n + y_n\sqrt{3} = (x_1 + y_1\sqrt{3})^2 = x_1^2 + nx_1^{-1}y_1\sqrt{3} + \ldots\). So \(x_n = x_1^2 + \ldots + x_1^{-1}y_1\) and \(y_n = nx_1^{-1}y_1\). If \(x_1 = 0\) then \(3y_1^2 = \pm 1\) which is not possible. Similarly if \(y_1 = 0\) then \(x_1^2 = 1 \Rightarrow x_1 = \pm 1\) and \(\epsilon_3 = \pm 1\) which is impossible by definition. So \(x_1 \geq 1, y_1 \geq 1\). For \(n \geq 2: x_n \geq x_1^2 \geq x_1\) and \(y_n \geq n^{-1}y_1 \geq y_1\).

Conclusion: A solution \((x, y)\) of \(x^2 - 3y^2 = \pm 1\) with \(y \geq 1\) minimal is a Fundamental unit for \(\mathbb{Z}[\sqrt{3}]\). Hence \(2 + \sqrt{3}\) is a fundamental unit for \(\mathbb{Z}[\sqrt{3}]\), so all solution for \(x^2 + 3y^2 = \pm 1\) are obtained by \((x, y) = (\pm x_n, \pm y_n)\) where \(x_n + y_n\sqrt{3} = (2 + \sqrt{3})^n\).
2 Fields, Rings and Modules

2.1 Fields

Definition 2.1. If \(K \) is a field then by a field extension of \(K \), we mean a field \(L \) that contains \(K \). We will denote this by \(L/K \).

If \(L/K \) is a field extension, then multiplication of \(K \) on \(L \) defines a \(K \)-vector space structure on \(L \). The degree \([L : K]\) of \(L/K \) is the dimension \(\dim_K(L) \).

Example.

- \([K : K] = 1\)
- \([\mathbb{C} : \mathbb{R}] = 2\)
- \([\mathbb{R} : \mathbb{Q}] = \infty \) (uncountably infinite)

The Tower Law. If \(L/K \) and \(M/L \) are fields extensions with \(L \subseteq M \), then \([M : K] = [M : L][L : K]\).

Proof. Let \(\{x_\alpha : \alpha \in I\} \) be a basis for \(L/K \) and let \(\{y_\beta : \beta : J\} \) be a basis for \(M/L \). Define \(z_{\alpha \beta} = x_\alpha y_\beta \in M \). We claim that \(\{z_{\alpha \beta}\} \) is a basis for \(M/K \).

We show that they are linearly independent. If \(\sum_{\alpha, \beta} a_{\alpha \beta}z_{\alpha \beta} = 0 \) with finitely many \(a_{\alpha \beta} \in K \) non-zero. Then \(\sum_\beta (\sum_\alpha a_{\alpha \beta}x_\alpha)y_\beta = 0 \), since the \(y_\beta \) are linearly independent over \(L \) we have \(\sum_\alpha a_{\alpha \beta}x_\alpha = 0 \) for all \(\beta \). Since the \(x_\alpha \) are linearly independent over \(K \) we have \(a_{\alpha \beta} = 0 \) for all \(\alpha, \beta \).

We show spanning. If \(z \in M \), then \(z = \sum \lambda_\beta y_\beta \) for \(\lambda_\beta \in L \). For each \(\lambda_\beta = \sum_\alpha a_{\alpha \beta}x_\alpha \). So \(x = \sum_\beta (\sum_\alpha a_{\alpha \beta}x_\alpha) y_\beta = \sum_{\alpha, \beta} a_{\alpha \beta}x_\alpha y_\beta = \sum_{\alpha, \beta} a_{\alpha \beta}x_\alpha y_\beta \).

So \(\{z_{\alpha \beta}\} \) is a basis for \(M \) over \(K \), so \([M : K] = [M : L][L : K]\). \(\square \)

Corollary 2.2. If \(K \subseteq L \subseteq M \) are fields with \([M : K] < \infty \) then \([L : K][M : L] = [M : K]\).

Definition. \(L/K \) is called finite if \([L : K] < \infty \).

If \(K \) is a field and \(x \) is an indeterminate variable, then \(K(x) \) denotes the field of rational functions in \(x \) with coefficients in \(K \). That is

\[
K(x) = \left\{ \frac{f(x)}{g(x)} : f, g \in K[x], g \neq 0 \right\}
\]

If \(L/K \) is a field extension, \(\alpha \in L \). Then \(K(\alpha) \) is the subfield of \(L \) generated by \(K \) and \(\alpha \).

\[
K(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in K[x], g(\alpha) \neq 0 \right\} = M_{K \subseteq M \subseteq L \subseteq \alpha \in M}
\]

Let \(L/K \) be a field extension, \(\alpha \in L \). We say that \(\alpha \) is algebraic over \(K \) if there exists a non-zero polynomial \(f \in K[x] \) with \(f(\alpha) = 0 \).

Theorem 2.3. Let \(L/K \) be a field extension and \(\alpha \in L \). Then \(\alpha \) is algebraic over \(K \) if and only if \(K(\alpha)/K \) is a finite extension.

Proof. \(\Rightarrow \) Let \(n = [K(\alpha) : K] \) and consider \(1, \alpha, \ldots, \alpha^n \in K(\alpha) \). Notice that there are \(n + 1 \) of them, so they must be linearly dependent since the dimension of the vector space is \(n \). So there exists \(a_i \in K \) such that \(a_0 + a_1\alpha + \cdots + a_n\alpha^n = 0 \) with \(a_i \) not all zero. Hence by definition \(\alpha \) is algebraic.

\(\Rightarrow \) Assume that there exists \(f \neq 0 \in K[x] \) such that \(f(\alpha) = 0 \), and assume that \(f \) has minimal degree \(n \). We claim that \(f \in K[\alpha] \) is irreducible.

Suppose that \(f = gh \), with \(g, h \) non-constant. Then \(0 = f(\alpha) = g(\alpha)h(\alpha) \), so without loss of generality \(g(\alpha) = 0 \), but \(\deg(g) < \deg(f) \). This is a contradiction. Let \(f = a_nx^n + \cdots + a_0 \) with \(a_n \neq 0 \). Then \(f(\alpha) = 0 \Rightarrow a_n\alpha^n + \cdots + a_0 = 0 \Rightarrow \alpha^n = \frac{1}{a_n}(a_{n-1}\alpha^{n-1} + \cdots + a_0) \). So we can reduce any polynomial expression in \(\alpha \) of degree \(\geq n \) to one of degree \(\leq n - 1 \).

Hence \(K(\alpha) = \left\{ \frac{b_0 + \cdots + b_{n-1}\alpha^{n-1}}{c_0 + \cdots + c_{n-1}\alpha^{n-1}} : b_i, c_i \in K \right\} \). Pick \(\frac{b(\alpha)}{c(\alpha)} \in K(\alpha) \), now \(\deg(c) \leq n - 1 < \deg(f) \) and \(c(\alpha) \neq 0 \). Hence \(\gcd(c, f) = 1 \), so there exists \(\lambda, \mu \in K[x] \) with \(\lambda(x)c(x) + \mu(x)f(x) = 1 \). In particular \(1 = \lambda(\alpha)c(\alpha) + \mu(\alpha)f(\alpha) = \lambda(\alpha)c(\alpha), \) hence \(\lambda(\alpha) = \frac{1}{c(\alpha)} \in K[\alpha] \).

Any elements of \(K(\alpha) \) is a polynomial in \(\alpha \) of degree \(\leq n - 1 \). So if \(\alpha \) is algebraic over \(K \), we have just shown that \(K(\alpha) = K[\alpha] \) and \(1, \alpha, \ldots, \alpha^{n-1} \) is a basis for \(K[\alpha]/K \), hence \([K(\alpha) : K] = n \) \(\square \).
Theorem 2.4. Let L/K be a field extension, then the set M of all $\alpha \in L$ that are algebraic over K is a subfield of L containing K.

Proof. First $K \subseteq M$, as $\alpha \in K$ is a root of $x - \alpha \in K[x]$.

So take $\alpha, \beta \in M$, we need to show that $\alpha - \beta \in M$ and $\frac{\alpha}{\beta} \in M$ if $\beta \neq 0$. Consider the subfield $K(\alpha, \beta) \subseteq L$. Now $[K(\alpha)(\beta) : K] = [K(\alpha, \beta) : K(\alpha)][K(\alpha) : K]$. We have $[K(\alpha)(\beta) : K(\alpha)] \leq [K(\beta) : K]$ since the first one is the degree of the minimal polynomial of β over $K(\alpha)$, and β is algebraic, so there is $f \in K[x] \subset K[\alpha]$ such that $f(\beta) = 0$. Now $\alpha - \beta \in K(\alpha)(\beta)$ and if $\beta \neq 0$, $\frac{\alpha}{\beta} \in K(\alpha)(\beta)$. This implies that $K(\alpha - \beta) \subseteq K(\alpha, \beta) \Rightarrow [K(\alpha - \beta) : K][K(\alpha, \beta) : K] < \infty$ and $K\left(\frac{\alpha}{\beta}\right) \subseteq K(\alpha, \beta) \Rightarrow [K\left(\frac{\alpha}{\beta}\right) : K][K(\alpha, \beta) : K] < \infty$. Hence $\alpha - \beta$ and $\frac{\alpha}{\beta}$ are algebraic over K. \hfill \Box

Corollary 2.5. The set of algebraic number is a field. We denote this with $\overline{\mathbb{Q}}$

For any subfield $K \subset \mathbb{C}$, we let \overline{K} denote the algebraic closure of K in \mathbb{C}, i.e., the set of $\alpha \in \mathbb{C}$ that are algebraic over K.

For example $\overline{\mathbb{R}} = \mathbb{C} = \mathbb{R}(i)$.

We also conclude that $\overline{\mathbb{Q}} = \cup_{K \text{number field} K}$. Also $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$ so $\overline{\mathbb{Q}}$ itself is not a number field.

2.2 Rings and Modules

In this course we use the following convention for rings. Every ring R is assumed to be commutative and has 1. We also allow 1 to be 0, in which case $R = 0 = \{0\}$. A ring homomorphism $\phi : R \rightarrow S$ is assumed to send 1_R to 1_S. A subring R of a ring S is assumed to satisfy $1_R = 1_S$.

Example. Let R_1 and R_2 be two non-zero rings. Then we have a ring $R = R_1 \times R_2$ with $1_R = (1_{R_1}, 1_{R_2})$. Note that $R_1' = R_1 \times \{0\} \subset R$ is a ring, but $1_{R_1}' = (1, 0) \neq 1_R$ so R_1' is not a subring of R. Finally $\phi : R_1 \rightarrow R$ defined by $r \mapsto (r, 0)$ is not a ring homomorphism.

Definition 2.6. Let R be a ring then a module over R is an abelian group M with scalar multiplication by R, satisfying

- $1 \cdot m = m$
- $(r + s)m = rm + sm$
- $r(m + n) = rm + rn$
- $(rs)m = r(sm)$

For all $r, s \in R, m, n \in M$.

An homomorphism of R-modules is a homomorphism of abelian group that satisfies $\phi(rm) = r\phi(m)$ for all $r \in R, m \in M$.

Example. If R is a field, then modules are the same as vector spaces.

Any ideal I of R is an R-module

Any quotient R/I is an R-module

If $R \subseteq S$ are both rings, then S is an R-module

Let $R = \mathbb{Z}$. Then any abelian group is a \mathbb{Z}-module.

Definition 2.7. A module is free of rank n if it is isomorphism to R^n.

Theorem 2.8. If $R \neq 0$, the rank of a free module over R is uniquely determined, i.e., $R^m \cong R^n \Rightarrow m = n$

Proof. This is not proven in this module \hfill \Box

Definition 2.9. If R is a ring then an R-module M is finite if it can be generated by finitely many elements.

Example. $R = \mathbb{Z}, M = \mathbb{Z}[i]$ is finite with generators 1 and i

$R = \mathbb{Z}[2i], M = \mathbb{Z}[i]$. This is also finite with generators 1 and i, but it is not free.

$R = \mathbb{Z}, M = \mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{m}{2^n} : x \in \mathbb{Z}, m \geq 0\right\} \subseteq \mathbb{Q}$. This is not finite as any finite set has a maximum power of 2 occurring in the denominator.
2.3 Ring Extensions

Definition 2.10. Let R be a ring, then a ring extension of R is a ring S that has R as a subring.

A ring extension $R \subset S$ is finite if S is finite as an R-module.

Let $R \subset S$ be a ring extension, $s \in S$. Then s is said to be integral over R if there exists a monic polynomial $f = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in R[x]$ with $f(s) = 0$.

Theorem 2.11. Let $R \subset S$ be a ring extension, $s \in S$. Then the following are equivalent:

1. s is integral over R.
2. $R[s]$ is a finite extension of R.
3. There exists a ring S' such that $R \subset S' \subset S$, S' is finite over R and $s \in S'$.

Proof. Not proven in this module. Some of these are obvious. (See Commutative Algebra Theorem 4.2) □

Theorem 2.12. If $R \subset S$ is a ring extension, then the set S' of $s \in S$ that are integral over R is a ring extension of R inside S.

Proof. Note that $R \subset S'$ since $r \in R$ is a root of $x - r \in R[x]$.

Given $s_1, s_2 \in S'$ we want to prove that $s_1 - s_2, s_1s_2 \in S'$. We have $R \subset R[s_1] \subset R[s_1, s_2] \subset S$, now the first ring extension is finite since s_1 is integral over R. We also have s_2 is integral over R so in particular it is integral over $R[s_1]$. Take the generators for $R[s_1]$ as an R-module: $1, \ldots, s_1^n$ and take the generators for $R[s_1, s_2]$ as an $R[s_1]$-module: $1, \ldots, s_2^n$. Then $\{s_1^js_2^i : 1 \leq j \leq m, 1 \leq i \leq n\}$ is a set of generators for $R[s_1, s_2]$ as an R-module. Hence we conclude that $R[s_1, s_2]$ is a finite extension of R. Now $s_1 - s_2, s_1s_2 \in R[s_1, s_2]$. So if we apply the previous theorem, we have $s_1 - s_2, s_1s_2$ are integral over R. □

Definition 2.13. Let $R \subset S$ be an extension of rings, then the ring of R integral elements of S is called the integral closure of R in S.

Given an extension of rings $R \subset S$ then we say that R is integrally closed in S if the integral closure of R in S is R itself.

Theorem 2.14. Let $R \subset S$ be a ring extension and let $R' \subset S$ be the integral closure of R in S. Then R' is integrally closed in S.

Proof. Take $s \in S$ integral over R'. We want to show that s is integral over R. Take $f = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in R'[x]$ with $f(s) = 0$. Consider a subring of $R \subset R[a_0, a_1, \ldots, a_{n-1}] \subset R'$. Now $R \subset R[a_0] \subset R[a_0, a_1] \subset \cdots \subset R[a_0, \ldots, a_{n-1}]$. Now $f \in R[a_0, \ldots, a_{n-1}][x]$. So s is integral over $R[a_0, \ldots, a_{n-1}]$, hence $R[a_0, \ldots, a_{n-1}][s]$ is finite over $R[a_0, \ldots, a_{n-1}]$ and hence finite over R. So by Theorem 2.12 we have that s is integral over R. □

Definition 2.15. An element $\alpha \in \mathbb{C}$ is an algebraic integer if it is integral over \mathbb{Z}.

The ring of algebraic integers is denoted by \mathbb{Z}.

If K is a number field, then the ring of integers in K is denoted $\mathcal{O}_K = \mathbb{Z} \cap K =$ integral closure of \mathbb{Z} in K.

Example. Let $K = \mathbb{Q}$. Take $p/q \in \mathbb{Q}$ integral over \mathbb{Z} (assume that $\gcd(p, q) = 1$), then there exists $f(x) \in \mathbb{Z}[x]$ such that $f(p/q) = 0$. So $x - p/q$ is a factor of f in $\mathbb{Q}[x]$, but Gauss’ Lemma states “if $f \in \mathbb{Z}[x]$ is monic and $f = gh$ with $g, h \in \mathbb{Q}[x]$ then $g, h \in \mathbb{Z}[x]$”. So $x - p/q \in \mathbb{Z}[x]$, that is $p/q \in \mathbb{Z}$. So $\mathcal{O}_\mathbb{Q} = \mathbb{Z}$.

Consider $K = \mathbb{Q}(\sqrt{d})$, with $d \neq 1$ and d is square free. Consider $\alpha \in K$, $\alpha = a + b\sqrt{d}, a, b \in \mathbb{Q}$ and suppose that α is an algebraic integer. Assume that $\deg(\alpha) = 2$, that is the minimum monic polynomial f of α in $\mathbb{Q}[x]$ has degree 2. Then by Gauss, we know $f \in \mathbb{Z}[x]$, furthermore $f = (x - (a + b\sqrt{d}))(x - (a - b\sqrt{d})) = x^2 - 2ax + a^2 - db$. So we want $2a \in \mathbb{Z}$ and $a^2 - db \in \mathbb{Z}$.

So $2a \in \mathbb{Z} \Rightarrow a = \frac{a'}{2}$ with $a' \in \mathbb{Z}$. Then $a^2 - b^2d = \left(\frac{a'}{2}\right)^2 - b^2d = (a')^2 - d(2b)^2 \in 4\mathbb{Z}$. So (using the fact that d is square-free) $d(2b)^2 \in \mathbb{Z} \Rightarrow 2b \in \mathbb{Z}$ and $(a')^2 \equiv d(b')^2 \mod 4$. So we conclude:

- If a' is even, then $a \in \mathbb{Z}$, so b' is even and thus $b \in \mathbb{Z}$.
- If a' is odd, then $(a')^2 \equiv 1 \mod 4$, so b' is odd as well and $d \equiv 1 \mod 4$.

We have just proven the following:

7
Theorem 2.16. Let $d \in \mathbb{Z}$, with $d \neq 1$ and square free. Then $\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\sqrt{d}] & d \not\equiv 1 \mod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & d \equiv 1 \mod 4 \end{cases}$

Theorem 2.17. Let R be a UFD. Then R is integrally closed in its fraction field (the converse does not hold).

Proof. Take $s = \frac{a}{r_2}$ integral over R, and assume that r_1, r_2 are coprime (well defined since R is a UFD), we have to show that $r_2 \in R^*$.

If $r_2 \notin R^*$, then let $\pi \in R$ be any factor of r_2. Now s is integral, so there exists a_i and n such that $s^n + a_{n-1}s^{n-1} + \cdots + a_0 = 0$. Multiplying through by r_2^n we have $r_1^n + a_{n-1}r_1^{n-1}r_2 + \cdots + a_0r_2^n = 0$. Now since $r_2 \equiv 0 \mod \pi$, if we take mod both side we have $r_1^n \equiv 0 \mod \pi$. Hence $\pi | r_1^n \Rightarrow \pi | r_1$. This is a contradiction. \qed

The converse of this theorem is not true, as an example $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[\sqrt{-5}]$ is integrally closed but not a UFD since $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

8
3 Norms, Discriminants and Lattices

3.1 Conjugates, Norms and Traces

Theorem of Primitive Elements. Any number field K can be generated by a single elements $\theta \in K$. That is $K = \mathbb{Q}(\theta)$

\[\text{Proof.} \quad \text{See any courses in Galois Theory}\]

Consider a number field $K = \mathbb{Q}(\theta)$. This θ has a monic minimal polynomial, say $f_\theta \in \mathbb{Q}[x]$. We can factor f_θ over \mathbb{C}, say $f_\theta = (x - \theta_1)(x - \theta_2)\cdots(x - \theta_n)$, where $\theta_1 = \theta$ and all the θ_i are distinct. For each i we have a field embedding, which we denote $\sigma_i : K \hookrightarrow \mathbb{C}$ defined by $\theta \mapsto \theta_i$. These are all possible embedding of $K \hookrightarrow \mathbb{C}$

Example. $K = \mathbb{Q}[\sqrt{d}]$, then $f_\theta = x^2 - d = (x - \sqrt{d})(x + \sqrt{d})$. So we have $\sigma_1 = \text{id}$ and $\sigma_2 = a + b\sqrt{d} \mapsto a - b\sqrt{d}$

$K = \mathbb{Q}[\sqrt{2}]$, then $f_\theta = x^3 - 2 = (x - \sqrt{2})(x - \zeta_3\sqrt{2})(x - \zeta_3^2\sqrt{2})$ where $\zeta_3 = e^{2\pi i/3}$ a third root of unity. So we have:

- $\sigma_1 : \sqrt{2} \mapsto \sqrt{2}$ (i.e., the identity map),
- $\sigma_2 : \sqrt{2} \mapsto \zeta_3\sqrt{2}$
- $\sigma_3 : \sqrt{2} \mapsto \zeta_3^2\sqrt{2}$

Definition 3.1. Let K be a number field and $\sigma_1, \ldots, \sigma_n$ all the embeddings $K \hookrightarrow \mathbb{C}$. Let $\alpha \in K$. Then the elements $\sigma_i(\alpha)$ are called the conjugates of α.

Theorem 3.2. Let K be a number field, $n = [K : \mathbb{Q}]$. Take $\alpha \in K$, consider the multiplication by α as a linear map from the \mathbb{Q}-vector space K to itself. That is $\alpha : K \to K$ is defined by $\beta \mapsto \alpha \beta$. Then the characteristic polynomial of this map is equal to $P_\alpha(x) = \prod_{i=1}^{n}(x - \sigma_i(\alpha))$

\[\text{Proof.} \quad \text{Let } K = \mathbb{Q}(\theta) \text{ and consider the basis: } 1, \theta, \theta^2, \ldots, \theta^{n-1}. \text{ Let } M_\alpha \text{ be the matrix that describes the linear map } \alpha \text{ relative to this basis.}

First consider $\alpha = \theta$. Let $f_\theta = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Then we have

\[
M_\theta = \begin{pmatrix}
0 & 0 & \cdots & 0 & -a_0 \\
1 & 0 & \cdots & 0 & -a_1 \\
0 & 1 & \cdots & 0 & -a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -a_{n-1}
\end{pmatrix}
\]

We now calculated the characteristic polynomial of M_θ:

\[
\det(X \cdot I_n - M_\theta) = \det \begin{pmatrix}
x & 0 & \cdots & 0 & a_0 \\
-1 & x & \cdots & 0 & a_1 \\
0 & -1 & \cdots & 0 & a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & x + a_{n-1}
\end{pmatrix} = \sum a_k x^k
\]

Hence the characteristic polynomial of $M_\theta = f_\theta = \prod_{i=1}^{n}(x - \sigma_i(\theta))$ as required. Hence we know from Linear Algebra that there exists an invertible matrix A such that:

\[
M_\theta = A \begin{pmatrix}
\sigma_1(\theta) & 0 & \cdots & 0 \\
0 & \sigma_2(\theta) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_n(\theta)
\end{pmatrix} A^{-1}
\]
Now note that $M_{a+b} = M_a + M_b$ and $M_{a \cdot b} = M_a M_b$ (basic linear algebra). So if we have a polynomial $g \in \mathbb{Q}[x]$, then $M_{g\alpha} = g(M_{\alpha})$. Now we can write any $\alpha \in K$ as $g(\theta)$ for some $g \in \mathbb{Q}[X]$. Hence we have

$$M_{\alpha} = g(M_{\beta}) = A \begin{pmatrix} g(\alpha) & 0 & \cdots & 0 \\ 0 & g(\beta) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g(\alpha) \end{pmatrix} A^{-1}$$

$$= A \begin{pmatrix} \sigma_1(\alpha) & 0 & \cdots & 0 \\ 0 & \sigma_2(\alpha) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n(\alpha) \end{pmatrix} A^{-1}$$

Hence, the characteristic polynomial of M_{α} is $\prod_{i=1}^n (x - \sigma_i(\alpha))$ as required.

Corollary 3.3. For $\alpha \in K$, the coefficients of $\prod_{i=1}^n (x - \sigma_i(\alpha))$ are in \mathbb{Q}.

Definition 3.4. Let K be a number field, $\alpha \in K$. We define the **norm** of α as $N(\alpha) = N_{K/\mathbb{Q}}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha) \in \mathbb{Q}$.

Corollary 3.5. $N(\alpha) = \det(-\alpha) = \det(M_{\alpha})$

We can see that the norm is a multiplicative function, i.e., $N(\alpha \beta) = N(\alpha)N(\beta)$.

Definition 3.6. Let K be a number field and $\alpha \in K$. We define the **trace** of α as $\text{Tr}(\alpha) = \text{Tr}_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha) \in \mathbb{Q}$.

Corollary 3.7. $\text{Tr}(\alpha) = \text{Tr}(\alpha) = \text{Tr}(M_{\alpha})$

We can see that the trace is an additive function, i.e., $\text{Tr}(\alpha + \beta) = \text{Tr}(\alpha) + \text{Tr}(\beta)$.

Example. Let $K = \mathbb{Q}(\sqrt{d})$. Then we have:

- $\text{Tr}(a + b\sqrt{d}) = (a + b\sqrt{d}) + (a - b\sqrt{d}) = 2a$
- $N(a + b\sqrt{d}) = (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2$

Let $K = \mathbb{Q}(\sqrt{2})$ and recall that $x^3 - 2 = (x - \sqrt{2})(x - \sqrt{2})(x - \sqrt{2})$ where $\zeta_3 = e^{\frac{2\pi i}{3}}$ a third root of unity. Then we have:

- $\text{Tr}(a + b\sqrt{2} + c\sqrt{4}) = 3a + b\sqrt{2}(1 + \zeta_3 + \zeta_3^2) + c\sqrt{4}(1 + \zeta_3 + \zeta_3^2) = 3a$
- $N(a + b\sqrt{2} + c\sqrt{4}) = (a + b\sqrt{2} + c\sqrt{4})(a + b\sqrt{2} + c\sqrt{4})(a + b\sqrt{2} + c\sqrt{4}) = a^3 + 2b^2 + 4c^3 + 6abc$

3.2 Discriminant

Definition 3.8. Let K be a number field and $\alpha_1, \ldots, \alpha_n$ be a basis for K. Let $\sigma_1, \ldots, \sigma_n : K \rightarrow \mathbb{C}$ be all the embeddings. The **discriminant** of $(\alpha_1, \ldots, \alpha_n)$ is defined as

$$\left(\frac{\sigma_1(\alpha_1) \sigma_1(\alpha_2) \cdots \sigma_1(\alpha_n)}{\sigma_2(\alpha_1) \sigma_2(\alpha_2) \cdots \sigma_2(\alpha_n)} \right)^2$$

We denote this by $\Delta(\alpha_1, \ldots, \alpha_n)$ or by $\text{disc}(\alpha_1, \ldots, \alpha_n)$.
Theorem 3.9. We have

$$\Delta(a_1, \ldots, a_n) = \det \begin{pmatrix} \text{Tr}(a_1 a_1) & \text{Tr}(a_1 a_2) & \cdots & \text{Tr}(a_1 a_n) \\ \text{Tr}(a_2 a_1) & \text{Tr}(a_2 a_2) & \cdots & \text{Tr}(a_2 a_n) \\ \vdots & \vdots & \ddots & \vdots \\ \text{Tr}(a_n a_1) & \text{Tr}(a_n a_2) & \cdots & \text{Tr}(a_n a_n) \end{pmatrix}$$

Proof. Let $M = (\sigma_i(a_j))_{ij}$. Then we have $\Delta(a_1, \ldots, a_n) = \det(M)^2 = \det(M^2) = \det(M^T M)$. But note that the entries of $M^T M$ at (i, j) is $\sum_{k=1}^n \sigma_k(a_i) \cdot \sigma_k(a_j) = \sum_{k=1}^n \sigma_k(a_i a_j) = \text{Tr}(a_i a_j)$.

Corollary 3.10. We have $\Delta(a_1, \ldots, a_n) \in \mathbb{Q}$

Theorem 3.11. We have $\Delta(a_1, \ldots, a_n) \neq 0$

Proof. Suppose that $\Delta(a_1, \ldots, a_n) = 0$. Then there exists not all zero $c_1, \ldots, c_n \in \mathbb{Q}$ with $c_1 \begin{pmatrix} \text{Tr}(a_1 a_1) \\ \vdots \\ \text{Tr}(a_n a_1) \end{pmatrix} + \cdots + c_n \begin{pmatrix} \text{Tr}(a_1 a_n) \\ \vdots \\ \text{Tr}(a_n a_n) \end{pmatrix} = 0$. Hence

$$c_n \begin{pmatrix} \text{Tr}(a_n a_1) \\ \vdots \\ \text{Tr}(a_n a_n) \end{pmatrix} = 0. \text{ Hence } \begin{pmatrix} \text{Tr}(a_1 a_1) \\ \vdots \\ \text{Tr}(a_n a_n) \end{pmatrix} = 0. \text{ Put } \alpha = \sum c_j a_j, \text{ we have just shown that } \text{Tr}(a_i a_i) = 0 \forall i.$$

But we have that a_j forms a basis for K over \mathbb{Q}, hence $\text{Tr}(\beta a_i) = \theta \beta \in K$. We have $\alpha \neq 0$, so let $\beta = \alpha^{-1}$, then $\text{Tr}(\beta a_i) = \text{Tr}(1) = n = [K : \mathbb{Q}].$

Definition 3.12. The map $K \times K \to \mathbb{Q}$ defined by $(\alpha, \beta) \mapsto \text{Tr}(\alpha \beta)$ is known as the trace pairing on K. It is bilinear.

Let $K = \mathbb{Q}(\theta)$, this has basis $1, \ldots, \theta^{n-1}$. In general $\det \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$ is called a Vondemonde determinant and it is equal to $\prod_{1 \leq i < j \leq n} (x_j - x_i)$. (See Linear Algebra or Algebra I for a proof by induction). So in our case, $\Delta(1, \theta, \ldots, \theta^{n-1}) = \prod_{1 \leq i < j \leq n} (\sigma_i(\theta) - \sigma_j(\theta))^2$. Also note that $\Delta(f) := \Delta(1, \theta, \ldots, \theta^{n-1})$. (Generally, if $f = (x - a_1) \cdots (x - a_n)$ then $\Delta(f) := \prod_{1 \leq i < j \leq n} (a_i - a_j)^2$, check with the definition of a discriminant of a quadratic)

Example. Let $K = \mathbb{Q}(\sqrt{d})$. Consider the basis $1, \sqrt{d}$. We calculate the discriminant in two ways:

- $\Delta(1, \sqrt{d}) = \det \begin{pmatrix} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{pmatrix}^2 = (-2\sqrt{d})^2 = 4d$

- $\Delta(1, \sqrt{d}) = \det \begin{pmatrix} \text{Tr}(1) & \text{Tr}(\sqrt{d}) \\ \text{Tr}(\sqrt{d}) & \text{Tr}(d) \end{pmatrix} = \det \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d$

Now consider the basis $1, \frac{1 + \sqrt{d}}{2}$. Then $\Delta(1, \frac{1 + \sqrt{d}}{2}) = (-\sqrt{d})^2 = d$

Let $K = \mathbb{Q}(\sqrt{d})$, with basis $1, \sqrt{d}, \sqrt{d^2}$. Then we have

$$\Delta(1, \sqrt{d}, \sqrt{d^2}) = \det \begin{pmatrix} \text{Tr}(1) & \text{Tr}(\sqrt{d}) & \text{Tr}(\sqrt{d^2}) \\ \text{Tr}(\sqrt{d}) & \text{Tr}(\sqrt{d^2}) & \text{Tr}(d) \\ \text{Tr}(\sqrt{d^2}) & \text{Tr}(d) & \text{Tr}(\sqrt{d}) \end{pmatrix} = \det \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 3d \\ 0 & 3d & 0 \end{pmatrix} = -27d^2$$
3.3 Lattices

Definition 3.13. Let K be a number field. A lattice Λ in K is a subgroup generated by \mathbb{Q}-linearly independent elements of K. That is $\Lambda = \{a_1\alpha_1 + \cdots + a_n\alpha_n | n_i \in \mathbb{Z} \}$ where α_i are linearly independent over \mathbb{Q}. We always have $r \leq [K : \mathbb{Q}]$. The number r is called the rank of the lattice, this is sometimes denoted $\text{rk}(\Lambda)$.

Example. $\mathbb{Z}[i]$ is a lattice in $\mathbb{Q}(i)$

Theorem 3.14. Any finitely generated subgroup of a number field K is a lattice.

Proof. Let Λ be a finitely generated subgroup of K. By the Fundamental Theorem of Finitely Generated Abelian Group, we have $\Lambda \cong T \oplus \mathbb{Z}^r$, where T is the torsion. As K is a \mathbb{Q}-vector space, we have $T = 0$, so $\Lambda \cong \mathbb{Z}^r$. Let $\phi : \mathbb{Z}^r \to \Lambda$ be an isomorphism.

Claim: $\alpha_i = \phi(e_i)$ is a basis (i.e., linearly independent generating set) for Λ, where e_i is the standard basis for \mathbb{Z}^r. Now $\phi(c_1, \ldots, c_r) = \sum_{i=1}^n c_i \alpha_i$. Since ϕ is surjective, all elements of Λ are reached. If $\sum c_i \alpha_i = 0$ for $c_i \in \mathbb{Q}$ multiply c_i by the common denominator, then without loss of generality, we can assume $c_i \in \mathbb{Z}$. But we know that ϕ is injective, so for all i, $c_i = 0$. \hfill \Box

Definition 3.15. A lattice of K is said to be full rank if its rank $r = [K : \mathbb{Q}]$

Theorem 3.16. Let $\Lambda \subseteq K$ be a full rank lattice. Then $\Delta(\alpha_1, \ldots, \alpha_r)$ is the same for every basis $\alpha_1, \ldots, \alpha_r$ of Λ.

Proof. Suppose $(\alpha_i)_i$ and $(\beta_i)_i$ are basis for Λ. Then each β_i can be written as a linear combination of α_j with coefficients in \mathbb{Z}, i.e. $(\beta_1, \ldots, \beta_r) = A(\alpha_1, \ldots, \alpha_r)$ with A an $r \times r$ matrix with coefficients in \mathbb{Z}. Similarly $(\beta_1, \ldots, \beta_r) = B(\alpha_1, \ldots, \alpha_r)$.

Hence we have $AB = I_r$, so $A \in \text{GL}_r(\mathbb{Z})$, so $\det(A) = \pm 1$. Put $S = (\text{Tr}(\alpha_1 \alpha_1), \ldots, \text{Tr}(\alpha_r \alpha_r), \ldots, \text{Tr}(\alpha_{r-1} \alpha_{r-1}), \text{Tr}(\alpha_r \alpha_r))$. Then

$$
\begin{pmatrix}
\text{Tr}(\beta_1 \beta_1) & \cdots & \text{Tr}(\beta_1 \beta_r) \\
\vdots & \ddots & \vdots \\
\text{Tr}(\beta_r \beta_1) & \cdots & \text{Tr}(\beta_r \beta_r)
\end{pmatrix} = A^T S A.
$$

(Base change for matrices describing symmetric bilinear forms, see Algebra I)

So we have $\Delta(\beta_1, \ldots, \beta_r) = \det(A^T S A) = \det(A^2) \det(S) = \det(S) = \Delta(\alpha_1, \ldots, \alpha_r)$ \hfill \Box

Definition 3.17. Let $\Lambda \subseteq K$ be a full rank lattice, then we define $\Delta(\Lambda)$ to be the discriminant of any basis of Λ.

Theorem 3.18. Let K be a number field and $\Lambda \subseteq K$ be a full rank lattice with $\Lambda \subseteq O_K$. Then $\Delta(\Lambda) \in \mathbb{Z}$.

Proof. We have $\Delta(\Lambda) = \det((\text{Tr}(\alpha_i \alpha_j))_{ij})$ with $\alpha_i \in O_K$. If $\alpha \in O_K$, then $\text{Tr}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha) \in \mathbb{Z} \cap \mathbb{Q} = \mathbb{Z}$. Hence $\Delta(\Lambda) \in \mathbb{Z}$. \hfill \Box

Theorem 3.19. Let K be a number field and $\Lambda \subseteq \Lambda'$ be two full rank lattices. Then the index $(\Lambda' : \Lambda)$ is finite and $\Delta(\Lambda) = (\Lambda' : \Lambda)^2 \Delta(\Lambda')$.

Proof. All the elements of Λ can be written as an integral linear combination of some chosen basis of Λ'. So there exists $A \in M_n(\mathbb{Z})$ with $\Lambda = A\Lambda'$. Consider $\Lambda'/\Lambda \cong \mathbb{Z}^n/A\mathbb{Z}^n$, this is a finitely generated abelian group so by FTFGAG $\Lambda'/\Lambda \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_m \mathbb{Z} \oplus \mathbb{Z}'$, with $d_1|d_2|\ldots|d_m$. So by Smith Normal Form from Algebra I there exists $B, B' \in \text{GL}_n(\mathbb{Z})$ with $BAB' = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}$. As we have $\text{rk}(\Lambda') = \text{rk}(\Lambda)$, we have that $r = 0$, and thus $\det(A) = d_1 \ldots d_m = |\mathbb{Z}^n/A\mathbb{Z}^n| = (\Lambda' : \Lambda)$.

Furthermore $\Delta(\Lambda) = \Delta(\Lambda') = (\det A)^2 \Delta(\Lambda')$. \hfill \Box

Theorem 3.20. Let K be a number field with $n = [K : \mathbb{Q}]$. Then there exists a basis $\omega_1, \ldots, \omega_n$ of K/\mathbb{Q} such that $O_K = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n = \{\sum a_i \omega_i | a_i \in \mathbb{Z}\}$. (That is O_K is a full rank lattice in K)
Proof. We consider all $\Lambda \subset \mathcal{O}_K$ that are full rank lattices in K.

The first question is: do such Λ exist? Write $K = \mathbb{Q}(\theta)$, $\theta \in K$ and $f_0 = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ with $a_i \in \mathbb{Q}$. Now let d be a common denominator of the a_i, then $d\theta \in \mathcal{O}_K$. Also note that $\mathbb{Q}(\theta) = \mathbb{Q}(d\theta)$, so without loss of generality we can assume $\theta \in \mathcal{O}_K$. Then $\mathbb{Z}[\theta] \subseteq \mathcal{O}_K$, furthermore $1, \theta, \ldots, \theta^{n-1}$ are linearly independent over \mathbb{Z}, hence $\mathbb{Z}[\theta]$ is a full rank lattice.

Of all such Λ, we have that $\Delta(\Lambda) \in \mathbb{Z}$ (by Theorem 3.18). So consider Λ with $|\Delta(\Lambda)|$ minimal. Claim: $\Lambda = \mathcal{O}_K$.

Suppose $\Lambda \neq \mathcal{O}_K$. We do have $\Lambda \subset \mathcal{O}_K$, so take $\alpha \in \mathcal{O}_K \setminus \Lambda$. Then $\Lambda' := \Lambda + \mathbb{Z}\alpha$ is finitely generated as an abelian group of K and thus Λ' is a lattice of full rank. Also $\Lambda' \subset \mathcal{O}_K$. But we have $|\Delta(\Lambda)| = (\Lambda' : \Lambda)^2 |\Delta(\Lambda)|$, and since $\Lambda \neq \Lambda'$, we find $|\Delta(\Lambda)| > |\Delta(\Lambda')|$, which is a contradiction.

Definition 3.21. The discriminant of a number field K/\mathbb{Q} is defined as $\Delta(K/\mathbb{Q}) = \Delta(\mathcal{O}_K)$

Example. Let $K = \mathbb{Q}(\sqrt{d})$ with $d \neq 1$ and square free. Then $\Delta(K/\mathbb{Q}) = \Delta(\mathcal{O}_K) = \begin{cases} 4d & d \not\equiv 1 \mod 4 \\ d & d \equiv 1 \mod 4 \end{cases}$

Note that if $\Lambda \subset \mathcal{O}_K$ is a full rank sublattice, then $\Delta(\Lambda) = (\mathcal{O}_K : \Lambda)^2 \Delta(\mathcal{O}_K)$ by Theorem 3.19

Corollary 3.22. If $\Lambda \subset \mathcal{O}_K$ and $\Delta(\Lambda)$ is square free then $\Lambda = \mathcal{O}_K$.

13
4 Cyclotomic Fields

Definition 4.1. Let \(n \) be a positive integer. Then the \(n \)-cyclotomic field is \(\mathbb{Q}(\zeta_n) \) where \(\zeta_n = e^{2\pi i/n} \).

For simplicity we are going to assume that \(n = p^r \) with \(p \) being a prime.

Theorem 4.2. The minimal polynomial of \(\zeta_{p^r} \) is

\[
\Phi_{p^r} = \prod_{k=1, p \mid k}^{p^r} (x - \zeta_k^{p^r})
\]

Proof. First note that \(\Phi_{p^r}(\zeta_{p^r}) = 0 \)

In general, \(\prod_{k=1}^n (x - \zeta_k^n) = x^n - 1 \). We see this by noticing that every zero of the LHS is a zero of the RHS, the degree of both sides are the same and they both have the same leading coefficients. Consider

\[
\Phi_{p^r} = \prod_{k=1, p \mid k}^{p^r} (x - \zeta_k^{p^r}) = \frac{\prod_{k=1}^{p^r} (x - \zeta_k^{p^r})}{\prod_{k=1}^{p^r-1} (x - \zeta_k^{p^r-1})}
\]

and notice that \(\zeta_{p^r} = \zeta_{p^r-1} \). This means we can rewrite

\[
\Phi_{p^r} = \frac{\prod_{k=1}^{p^r} (x - \zeta_k^{p^r})}{\prod_{k=1}^{p^r-1} (x - \zeta_k^{p^r-1})} = \frac{x^{p^r} - 1}{x^{p^r-1} - 1} = x^{(p-1)p^{r-1}} + x^{(p-2)p^{r-1}} + \cdots + 1
\]

Hence we have \(\Phi_{p^r} \in \mathbb{Z}[x] \).

We finally show that \(\Phi_{p^r} \) is irreducible. Suppose that \(\Phi_{p^r} = fg \) with \(f, g \in \mathbb{Z}[x] \), \(f, g \) are both monic and non constant. Consider this \(\mod p \), we have

\[
\Phi_{p^r} = \frac{x^{p^r} - 1}{x^{p^r-1} - 1} \equiv (x - 1)^{p^r} \equiv (x - 1)^{(p-1)(p^{r-1})} \mod p
\]

(using Fermat’s Little Theorem). Let \(\overline{f}, \overline{g} \) denoted the reduction of \(f, g \mod p \), hence we have \(\overline{f}\overline{g} = (x - 1)^{(p-1)p^{r-1}} \mod p \). Now \(\mathbb{F}_p \) is a UFD, so we have \(\overline{f} = (x - 1)^m \) and \(\overline{g} = (x - 1)^k \) such that \(m + k = (p-1)p^{r-1} \). Hence we have \(f = (x - 1)^m + pF \) and \(g = (x - 1)^k + pG \) for some \(F, G \in \mathbb{Z}[x] \), that is, \(fg = (x - 1)^m + p(x - 1)^k F + p(x - 1)^m G + p^2 FG \).

Now consider \(x = 1 \), we get \(f(1)g(1) = p^2 F(1)G(1) \) on one hand and \(\Phi_{p^r}(1) = 1^{(p-1)p^{r-1}} + \cdots + 1 = p \) on the other hand. But \(p^2 \not\mid p \), so we have a contradiction and \(\Phi_{p^r} \) is irreducible. \(\Box \)

Note that \(\mathbb{Z}[\zeta_{p^r}] \subset \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} \).

Problem. What is \(\Delta(\mathbb{Z}[\zeta_{p^r}]) \)?

Let us denote \(\zeta_{p^r} \) by \(\zeta \). By definition we have

\[
|\Delta(\mathbb{Z}[\zeta])| = \prod_{k=1, p \mid k}^{p^r} \prod_{m=1, p \not\mid m}^{p^r} (\zeta^k - \zeta^m)
\]

Let us fix \(k \), we want to compute \(\prod_{m=1, p \not\mid m}^{p^r} (\zeta^k - \zeta^m) \). We do this by considering

\[
F_k = \prod_{m=1, p \not\mid m}^{p^r} (\zeta^k - \zeta^m) = \frac{\Phi_{p^r}(\zeta^k)}{\Phi_{p^r}(\zeta)} = \frac{x^{p^r} - 1}{(x^{p^r-1} - 1)(x - \zeta^k)}
\]

Now \(F_k(\zeta^k) = 0 \), so we need to use l’Hospital’s rule. We calculate

\[
\Phi'_{p^r}(x) = \frac{p^r x^{p^r-1}(x^{p^r-1} - 1) - p^{r-1} x^{p^r-1}(x^{p^r-1} - 1)}{(x^{p^r-1} - 1)^2}
\]

Now the roots of \(x^{p^r-1} - 1 \) are powers of \(\zeta_{p^r-1} = \zeta^p \), so \(\zeta^k \) is not a root of \((x^{p^r-1} - 1) \). Hence

\[
F_k(\zeta^k) = \Phi'_{p^r}(\zeta^k) = \frac{p^r \zeta^k(p^r-1)}{\zeta^{(p^r-1)k} - 1}
\]
Hence $|\Phi_p^r(\zeta_k)| = \frac{p^r}{|\zeta^r - \zeta^k|}$, so we have

$$|\Delta(\mathbb{Z}[\zeta])| = \prod_{k=1, p \nmid k}^{p^r} \frac{p^r}{|\zeta^k^{p^r} - 1|} = \frac{p^r(p^r - p^{r-1})}{\prod |\zeta^k^{p^r} - 1|}$$

Hence we finally compute

$$\prod_{k=1, p \nmid k}^{p^r} (x - \zeta^k^{p^r}) = \prod_{k=1, p \nmid k}^{p^r} (x - \zeta^k) = \left(\prod_{k=1}^{p-1} (x - \zeta^k)\right)^{p^{r-1}} = (\Phi_p(x))^{p^{r-1}}$$

Plucking in $x = 1$, we get $\Phi_p(x)^{p^{r-1}} = p^{r-1}$. Hence we conclude $|\Delta(\mathbb{Z}[\zeta])| = p^{r-3}p^{r} - p^{r-1} - p^{r-1} - p^{r-1} = p^{r-1}(p^{r} - p^{r-1})$

Now it is not important to remember what exactly it is, the key idea is that it is a power of p, the exact exponent does not matter.

In particular if $r = 1$ we get $|\Delta(\mathbb{Z}[\zeta_3])| = p^{p-2}$

Theorem 4.3. For any n we have $\mathbb{O}_{Q(\zeta_n)} = \mathbb{Z}[\zeta_n]$.

Proof. We will only prove this for $n = p$, with p prime.

We already know that $\mathbb{Z}[\zeta_p] \subset \mathbb{O}_{Q(\zeta_p)}$. We also know that $p^{p-2} = \Delta(\mathbb{Z}[\zeta]) = (\mathbb{O}_{Q(\zeta_p)} : \mathbb{Z}[\zeta])^2 \Delta(\mathbb{O}_{Q(\zeta_p)})$ (by Theorem 3.19).

Suppose that $\mathbb{Z}[\zeta_p] \not\subset \mathbb{O}_{Q(\zeta_p)}$, then $(\mathbb{O}_{Q(\zeta_p)} : \mathbb{Z}[\zeta]) = p^r$, where $*$ is an unknown exponent. Then $\mathbb{O}_{Q(\zeta_p)}/\mathbb{Z}[\zeta]$ is an abelian group of order divisible by p. Hence there exists $\sigma \in \mathbb{O}_{Q(\zeta_p)}/\mathbb{Z}[\zeta]$ with order p, i.e., there exists $\alpha \in \mathbb{O}_{Q(\zeta_p)}$ with $\sigma \alpha \in \mathbb{Z}[\zeta]$. We want to show that for any $\alpha \in \mathbb{O}_{Q(\zeta_p)}$ such that $\sigma \alpha \in \mathbb{Z}[\zeta]$ then we already have $\alpha \in \mathbb{Z}[\zeta]$.

Note that $\mathbb{Z}[\zeta_p] = \mathbb{Z}[1 - \zeta_p]$. Now $N(1 - \zeta_p) = \prod_{i=1}^{p-1} \sigma_i(1 - \zeta_p) = \prod_{i=1}^{p-1} (1 - \zeta_p^i) = \Phi_p(1) = p$. Hence we have that p factors as $\prod_{i=1}^{p-1} (1 - \zeta_p^i)$. Now for all i, we have $N(1 - \zeta_p^i) = \prod_{j=1}^{p-1} (1 - \sigma_j(\zeta_p^i)) = \prod_{j=1}^{p-1} (1 - \zeta_p^i)^{n_j} = N(1 - \zeta_p^i) = p$, hence in particular we have $N(1 - \zeta_p^i)^{n_j} = 1$, so $(1 - \zeta_p^i)^{n_j}$ is a unit for all i. Putting all of this together we have $p = \prod_{j=1}^{p-1} (1 - \zeta_p^i)^{n_j} = \prod_{j=1}^{p-1} (1 - \zeta_p)^{n_j}$.

We can write p as $a_1 + a_2(1 - \zeta_p) + \cdots + s(p - 2)(1 - \zeta_p)^{p-2} (\ast)$ with $a_i \in \mathbb{Z}$. We want to show that $p|a_i$ for all i. For $a \in \mathbb{Z}$ we have $p|a$ if and only if $(1 - \zeta_p)|a$ in $\mathbb{O}_{Q(\zeta_p)}$. One direction follows from the fact that $1 - \zeta_p$. For the other implication, suppose $(1 - \zeta_p)|a$, then $N(1 - \zeta_p)|N(a) = p|a$, hence $p|a$. (Note for any number field and $a \in \mathbb{Q}$, we have $N(a) = a[\mathbb{K} : \mathbb{Q}]$. We have now the tools to do a prove by induction to show that a_n is divisible by p.

Let $n = 0$ and consider (\ast) modulo $1 - \zeta_p$. We have $\sigma \alpha \equiv 0 \mod (1 - \zeta_p)$, also for $i \geq 1$ we have $a_i(1 - \zeta_p) \equiv 0 \mod (1 - \zeta_p)$. Hence we find that $a_0 \equiv 0 \mod (1 - \zeta_p)$, so $(1 - \zeta_p)|a_0$ and hence $p|a_0$.

Now suppose that $p|a_0, a_1, \ldots, a_{n-1}$ and that $n \leq p - 2$. We have that p is divisible by $(1 - \zeta_p)^{n+1}$, and so is $a_0, (1 - \zeta_p)a_1, \ldots, (1 - \zeta_p)(p - 1)\alpha \equiv (1 - \zeta_p)|a_n$ for $i \geq n$. Hence we have $1 - \zeta_p|a_n$, hence $p|a_n$. Hence we have shown by induction that $p|a_i \forall i$. Hence $p|\sigma \alpha \in \mathbb{Z}[\zeta] \Rightarrow \alpha \in \mathbb{Z}[\zeta]$.

So recap, we have shown if $\mathbb{Z}[\zeta_p] \not\subset \mathbb{O}_{Q(\zeta_p)}$, then we must have $\alpha \in \mathbb{O}_{Q(\zeta_p)} \setminus \mathbb{Z}[\zeta_p]$ such that $p\alpha \in \mathbb{Z}[\zeta_p]$. But we also shown that if $\alpha \in \mathbb{O}_{Q(\zeta_p)}$, with $p\alpha \in \mathbb{Z}[\zeta_p]$ then $\alpha \in \mathbb{Z}[\zeta_p]$, hence we have a contradiction. \hfill \Box

Example (Of the proof in action). What is $\mathbb{O}_{Q(\sqrt{2})}$? We know that $\mathbb{Z}[\sqrt{2}] \subset \mathbb{O}_{Q(\sqrt{2})}$, we also know that $\Delta(\mathbb{Z}[\sqrt{2}]) = -2(2^2) = -2^2 \cdot 3^2 = (\mathbb{O}_{Q(\sqrt{2})} : \mathbb{Z}[\sqrt{2}])^2 = \Delta(\mathbb{O}_{Q(\sqrt{2})})$. Hence $\mathbb{Z}[\sqrt{2}] \not\subset \mathbb{O}_{Q(\sqrt{2})}$, then either 2 divides the index or 3 divides the index.

Suppose that 2 divides the index. Then there exists $\alpha \in \mathbb{O}_{Q(\sqrt{2})} \setminus \mathbb{Z}[\sqrt{2}]$ with $2\alpha \in \mathbb{Z}[\sqrt{2}]$. Note that in $\mathbb{O}_{Q(\sqrt{2})}$ we have $2 = \sqrt{2}^2$. For $a \in \mathbb{Z}$ we have $2|a$ if and only if $\sqrt{2}|a$ in $\mathbb{O}_{Q(\sqrt{2})}$. Let $2\alpha = a_0 + a_1 \sqrt{2} + a_2 \sqrt{4}$. Consider this modulo $\sqrt{2}$, we have $0 \equiv a_0 \mod \sqrt{2}$. Hence $2|a_0$. Now considering this modulo $\sqrt{4}$, we have $0 \equiv a_1 \sqrt{2} \mod \sqrt{4}$, again implying that $\sqrt{2}|a_1$, hence $2|a_1$. So finally considering this modulo 2, we see that $2|a_2$. Hence $2\alpha \in 2\mathbb{Z}[\sqrt{2}]$, i.e., $\alpha \in \mathbb{Z}[\sqrt{2}]$. So 2 does not divide the index.

Now suppose that 3 divides the index. We claim that $3 = (1 + \sqrt{2})^3$-unit. Now $1 + \sqrt{2} = 1 + 2\sqrt{2} + 3\sqrt{4} + 4 = 3(1 + \sqrt{2} + \sqrt{4})$. Now $N(1 + \sqrt{2}) = 1^2 + 2 \cdot 1^2 = 3$, so $N((1 + \sqrt{2})^3) = 3^3 = N(3)$ and hence $(1 + \sqrt{2} + \sqrt{4})$ is a unit, proving our claim. Hence we have that for $\alpha \in \mathbb{Z}$, $3|\alpha$ if and only if $(1 + \sqrt{2})|\alpha$ in $\mathbb{O}_{Q(\sqrt{2})}$. So consider $\alpha \in \mathbb{O}_{Q(\sqrt{2})} \setminus \mathbb{Z}[\sqrt{2}]$ such that $3\alpha \in \mathbb{Z}[\sqrt{2}]$ and write $3\alpha = a_0 + a_1(1 + \sqrt{2}) + a_2(1 + \sqrt{2})^2$ (by changing the basis of
\[\mathbb{Z}[\sqrt{2}] \text{ to } \mathbb{Z}[1 + \sqrt{2}], \]

Then if we consider the equation modulo successive powers of \((1 + \sqrt{2})\), we find that each \(a_i\) is divisible by \((1 + \sqrt{2})\) and thus by 3. Again this leads to a contradiction.

Hence we have that \(\mathbb{Z}[\sqrt{2}] = \mathcal{O}_{\mathbb{Q}(\sqrt{2})} \)

\[Z[\sqrt{2}] \text{ to } Z[1 + \sqrt{2}]). \]

Then if we consider the equation modulo successive powers of \((1 + \sqrt{2})\), we find that each \(a_i\) is divisible by \((1 + \sqrt{2})\) and thus by 3. Again this leads to a contradiction.

Hence we have that \(\mathbb{Z}[\sqrt{2}] = \mathcal{O}_{\mathbb{Q}(\sqrt{2})} \)
5 Dedekind Domains

5.1 Euclidean domains

Definition 5.1. Let R be a domain (that is $0 \neq 1$ and there are no non-trivial solutions to $ab = 0$). An Euclidean function on R is a function $\phi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for all $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ with $a = qb + r$ and either $r = 0$ or $\phi(r) < \phi(b)$.

Example. $R = \mathbb{Z}$, and $\phi(n) = |n|$. Let $R = k[x]$ where k is any field and $\phi(f(x)) = \deg(f)$.

Lemma 5.4. Let $\mathcal{O}_Q(\sqrt{-3}) = \mathbb{Z}\left[\frac{1 + \sqrt{-3}}{2}\right]$ be a domain (that is $\alpha, \beta \in \mathbb{Z}\left[\frac{1 + \sqrt{-3}}{2}\right]$), and either $\alpha \in \mathbb{Z}$ or $\beta \in \mathbb{Z}$.

Proof. Suppose that $\alpha \in \mathbb{Z}$, we want to show that $\alpha \in \mathbb{Z}$. Consider the ideal $I = (\alpha, b)$. Let $\delta \in R$ be a generator for I, i.e., $(\pi, a) = (\delta)$. There exists $x, y \in R$ with $x\pi + ya = \delta$. Also $\pi \in (\delta)$ so $\delta \pi$. This means that either $\delta \sim 1$ or $\delta \sim \pi$. But the case $\delta \sim \pi$ cannot occur since $\pi \nmid a$ but $\delta | a$. So without loss of generality, assume that $\delta = 1$. Thus $x\pi + ya = 1$, hence $x\pi b + yab = b$, but since $\pi | ab$, we have $\pi | b$.

Theorem 5.5. A PID is a UFD.

Proof. Take $a \in R \setminus \{0\}$, such that a is not a unit. Assume that $a = \epsilon\pi_1 \cdots \pi_n = c\pi_1' \cdots \pi_m'$ are two distinct factorisations of a into irreducible. Without loss of generality we may assume that n is minimal amongst all factors a with non-unique factorisation. We have $\pi_1 | \pi_1' \cdots \pi_m'$ so by the lemma $\pi_1 | \pi_i'$ for some i. Without loss of generality we can assume that $i = 1$, so $\pi_1 | \pi_1'$ but both are irreducible, hence $\pi_1 \sim \pi_1'$. Without loss of generality we can assume that $\pi_1 = \pi_1'$. But then $\pi_2 \cdots \pi_n = \epsilon\pi_2' \cdots \pi_m'$ and $\pi_2 \cdots \pi_n$ has $n - 1$ irreducible factors, so by minimality of n, this factorisation into irreducible is unique.

We show that $\mathcal{O}_Q(\sqrt{-3}) = \mathbb{Z}\left[\frac{1 + \sqrt{-3}}{2}\right]$ is Euclidean. We claim that the Euclidean function is the Norm. $N(a + b\frac{1 + \sqrt{-3}}{2}) = (a + b\frac{1 + \sqrt{-3}}{2})(a + b\frac{1 + \sqrt{-3}}{2}) = a^2 + ab + b^2$ (Note that we had over $\mathbb{Q}(\sqrt{-3})$ $N(c + d\sqrt{-3}) = c^2 + 3d^2$) and this fits the previous line as $N(a + b\frac{1 + \sqrt{-3}}{2}) = N(a + b\frac{1}{2} + b\frac{1}{2}\sqrt{-3}) = (a + b\frac{1}{2})^2 + 3b^2 = a^2 + ab + b^2$. Suppose we are given $a = a + b\frac{1 + \sqrt{-3}}{2}$ and $\beta = c + d\frac{1 + \sqrt{-3}}{2}$ with $\beta \neq 0$. Then

$$\frac{\alpha}{\beta} = a + b\frac{1 + \sqrt{-3}}{2} = \frac{(a + b\frac{1 + \sqrt{-3}}{2})(c - d\frac{1 + \sqrt{-3}}{2})}{N(\beta)} = e + f\frac{1 + \sqrt{-3}}{2} \in \mathbb{Q}\left[\frac{1 + \sqrt{-3}}{2}\right]$$

(so note $e, f \in \mathbb{Q}$). Then pick $g, h \in \mathbb{Z}$ such that $|g - e|, |h - f| \leq \frac{1}{2}$ and set

$$q = g + h\frac{1 + \sqrt{-3}}{2}$$

$$r = \alpha - \beta q$$
Remark. Assume that $\phi : R \rightarrow \mathbb{Z}_{\geq 0}$ is Euclidean, where $R = \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$. Now $R^* = \{ \pm 1 \}$. Take an element $b \in R \setminus \{0, \pm 1\}$ with $\phi(b)$ as small as possible. For all $a \in R$ there exists $q, r \in R$ with $a = qb$ and $\phi(r) < \phi(b)$ or $r = 0$. Now since $\phi(b)$ is as small as possible, we have that $r \in \{0, 1, -1\}$, for all $a \in R$. We also have that $a \equiv r \mod b$, hence $R/(b)$ has at most 3 elements.

On the other hand the number of elements of $(R/(b)) = (R : (b))\Delta((b)) = (R : (b))^2\Delta(R)$ (by Theorem 3.19 since $(b) \subset R$). Let $R = \mathbb{Z} + \mathbb{Z}\theta$ where $\theta = \sqrt{d} \begin{cases} 1 & d \equiv 1 \mod 4 \\ 1 + \sqrt{d} & d \equiv 1 \mod 4 \end{cases}$. Then we have $(b) = \mathbb{Z}b + \mathbb{Z}b\theta$. Now $\Delta((b)) = \det \begin{pmatrix} b & \frac{\theta b}{\sqrt{d}} \\ \frac{\theta b}{\sqrt{d}} & \frac{\theta^2}{d} \end{pmatrix}^2 = (b\theta - b\theta)^2 = (b\theta)^2(\theta - \theta)^2 = N(b)^2\Delta(R)$. Hence we have $(R : (b))^2 = N(b)^2$, that is $(R : (b)) = N(b)$ (since the norm is positive). So if we show that $\forall b \in R \setminus \{0, \pm 1\}$ we have $N(b) > 3$ then $R/(b)$ has more than three elements, contradicting the first paragraph. Now we always have $N(a + b\sqrt{d}) = a^2 + |d|b^2$.

Suppose $d \equiv 1 \mod 4$, then for $a + b\sqrt{d}$ to be in R we need $a, b \in \mathbb{Z}$. Suppose that $a^2 + |d|b^2 \leq 3$ then $|a| \leq 1$ and $|d| > 11$, so $b = 0$, but $a + b\sqrt{d} \in \{0, \pm 1\}$.

If $d \equiv 1 \mod 4$ we can also have $a = \frac{a'}{2}, b = \frac{b'}{2}$ where $a', b' \in \mathbb{Z}$ and $a' \equiv b' \mod 2$. Then $N(a + b\sqrt{d}) = N \left(\frac{a' + b'\sqrt{d}}{2} \right) = \frac{1}{4}(a'^2 + |d|b'^2)$. Suppose $N(a + b\sqrt{d}) \leq 3$ then $a'^2 + |d|b'^2 \leq 12$. But $|d| \geq 13$, so again $b' = 0$ and $a'^2 \leq 12$ so $|a'| \leq 3$. Hence $a' \in \{-2, 0, 2\}$, implying $a + b\sqrt{d} \in \{0, \pm 1\}$. \hfill \square

Conjecture. Let K be a number field that is not $\mathbb{Q}(\sqrt{d})$ for some $d < 0$ then if \mathcal{O}_K is a UFD, then it is Euclidean.

Remark. In general $\phi = N$ does not work, then ϕ is very difficult to find.

5.2 Dedekind Domain

Definition 5.7. A prime ideal is an ideal $P \subset R$ satisfying $P \neq R$ and $\forall a, b \in R$ with $ab \in P$ then either $a \in P$ or $b \in P$.

Fact. $P \subset R$ is prime if and only if R/I is a domain.

Definition 5.8. A maximal ideal is an ideal $M \subset R$ satisfying $M \neq R$ and there are no ideals $I \neq R$ with $M \subset I \subset R$.

Fact. $M \subset R$ is a maximal ideal if and only if R/M is a field.

Every proper ideal $I \subset R$ is contained in a maximal ideal. (See commutative Algebra Theorem 1.4 and its Corollaries)

Example. Let $R = \mathbb{Z}$. Then its prime ideals are (0) and (p) where p is prime. Its maximal ideals are (p) (as $\mathbb{Z}/(p) = \mathbb{F}_p$ is a field).

Definition 5.9. A ring R is Noetherian if one and thus both of the following equivalent conditions holds.

1. Every ideal of R is finitely generated
2. Every ascending chains of ideals $I_0 \subset I_1 \subset \ldots$ is stationary, i.e., there exists $r > 0$ such that $I_i = I_j$ for all $i, j > r$.

Definition 5.10. Let R be a domain. Then R is a Dedekind Domain if:

1. R is Noetherian
2. R is integrally closed in its field of fractions
3. Every non-zero prime ideal is a maximal ideal

Example. Every field is a Dedekind domain (the only ideals are: $(0), (1)$)

Lemma 5.11. Every finite domain is a field.

Proof. Let R be a finite domain. Take $0 \neq a \in R$, we need to show there exists $x \in R$ with $ax = 1$. Consider the map $R \rightarrow R$ defined by $x \mapsto ax$. We note that $-a$ is injective, if $ab = ac$ then $a(b - c) = 0$, hence $b - c = 0$ since R is a domain. As R is finite, $-a$ is also surjective. Hence there exists x with $ax = 1$.

Theorem 5.12. If K is a number field, then O_K is a Dedekind domain.

Proof. Let $I \subset O_K$ be an ideal. If $I = (0)$ then it is finitely generated, so assume I is non-zero. Hence there exists $0 \neq a \in I$, so aO_K is a full rank lattice in O_K. We have $aO_K \subset I \subset O_K$, so I is a full rank lattice as well. It has $[K : \mathbb{Q}] < \infty$ generators as a free abelian group and the same elements generates it as an ideal. So O_K is Noetherian.

We know that $O_K = \mathbb{Z} \cap K$. Furthermore the integral closure of a ring R in an extension S is in fact integrally closed in S. So O_K is integrally closed in K.

Let $P \in O_K$ be a non-zero prime ideal. P is a full rank lattice so $(O_K : P) < \infty$. Hence O_K/P is a finite domain. So by the above lemma, O_K/P is a field and hence P is maximal.

Definition 5.13. Let R be a domain. Then a fractional ideal I of R is a R-submodule of the fields of fractions of R, such that there exists $0 \neq a \in R$ with $aI \subset R$

Example. Let us work out the fractional ideals of \mathbb{Z}. The ideals of \mathbb{Z} are (n) with $n \in \mathbb{Z}$. So fractional ideals are $I \subset \mathbb{Q}$ such that $3a \in \mathbb{Z}$ with $aI = (n)$ for some $n \in \mathbb{Z}$. That is $I = \frac{n}{a} \mathbb{Z} \subset \mathbb{Q}$.

Note that \mathbb{Q} is not a fractional ideal, as elements of \mathbb{Q} have arbitrary large denominators.

If R is a ring, $I, J \subset R$ are ideals, then IJ is the ideal generated by $\{ij : i \in I, j \in J\}$.

If R is a domain, I, J fractional ideals of R and K the field of fraction of R, then IJ is a K-submodule generated by $\{ij : i \in I, j \in J\}$. It is a fractional ideal as $abIJ \subset R$ (where a, b are such that $aI, bJ \subset R$)

Example. Let $R = \mathbb{Z}$ and consider $I = (a), J = (b)$ with $a, b \in \mathbb{Q}$. Then $IJ = (ab)$

Definition 5.14. Let R be a domain, K its field of fraction, $I \subset K$ a fractional ideal. Then I is called invertible if there exists a fractional ideal $J \subset K$ such that $IJ = R = (1)$

Example. Every non-zero fractional ideal of \mathbb{Z} is invertible.

Every principal non-zero fractional ideal (a) of R is invertible, consider $(a)(a^{-1}) = (1)$

Theorem 5.15. The invertible ideals of a domain R forms a group with respect to fractional ideal multiplication, with unit element $R = (1)$ and inverse $I^{-1} = \{a \in K \mid aI \subset R\}$ (K is the field of fractions of R)

Proof. Let $I \subset K$ be invertible, then there exists J with $IJ = R$. We want to show: if $a \in J$ then $aI \subset R$ and if $aI \subset R$ then $a \in J$. The first one follows directly. Consider $aIJ = aR$ and $aIJ \subset J$, so $aR \subset J$ means $a \in J$. Hence $J = I^{-1}$.

If I_1, I_2, I_3 are fractional ideals then $I_3(I_2I_3) = (I_1I_2)I_3$

Finally we show that if I, J are invertible then so is IJ^{-1}. We claim $(IJ^{-1})^{-1} = JI^{-1}$. To see this consider $(IJ^{-1})(JI^{-1}) = IRI^{-1} = II^{-1} = R$.

Theorem 5.16. Let R be a domain. Then the following conditions on R are equivalent

1. R is Dedekind
2. Every non-zero fractional ideals of R is invertible
3. Every non-zero ideals of \(R \) is the product of prime ideals.

4. Every non-zero ideal of \(R \) is the product of prime ideals uniquely.

We will prove this after some examples.

Example. \(\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[\sqrt{-5}] \) is not a UFD, we have \(6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \). But since \(\mathbb{Z}[\sqrt{-5}] \) is Dedekind (by Theorem 5.12), we can write (6) as the product of prime ideal uniquely. In fact (6) = \((2) \cdot (3) = (1 + \sqrt{-5})(1 - \sqrt{-5}) = (2,1 + \sqrt{-5})(2,1 - \sqrt{-5})(3,1 + \sqrt{-5})(3,1 - \sqrt{-5}) \). We check that \((2,1 + \sqrt{-5}) \) is prime. Now \(\mathbb{Z}[\sqrt{-5}]/(2,1 + \sqrt{-5}) \cong \mathbb{Z}[x]/(x^2 + 5, 2, 1 + x) \). Now \((2, x + 1, x^2 + 5 - x(x + 1) = (2, x + 1, -x + 5) = (2, x + 1) \). Hence \(\mathbb{Z}[\sqrt{-5}]/(2, 1 + \sqrt{-5}) \cong \mathbb{Z}[x]/(x + 1) \cong \mathbb{F}_2[x]/(x + 1) \cong \mathbb{F}_2 \), which is a field. Thus \((2, 1 + \sqrt{-5}) \) is maximal.

Definition 5.17. If \(R \) is a domain and \(K \) its field of fraction. Let \(I \) be a non-zero fractional ideal then \(R : I = \{ a \in K : aI \subset R \} \)

Note that from Theorem 5.15, we see that \(I \) is invertible if and only if \((R : I) \cdot I = R \)

Example 5.18. \(R = \mathbb{Z}[\sqrt{-3}] \) is not Dedekind. (As it is not algebraically closed)

We show that the ideal \(I = (2, 1 + \sqrt{-3}) \) is not invertible. \(R : I = \{ a + b\sqrt{-3} \in \mathbb{Q}(\sqrt{-3}) : 2(a + b\sqrt{-3}) \in \mathbb{Z}[\sqrt{-3}], (1 + \sqrt{-3})(a + b\sqrt{-3}) \in \mathbb{Z}[\sqrt{-3}] \}. \) From the first condition, we can rewrite \(a = \frac{a'}{2}, b = \frac{b'}{2} \) with \(a', b' \in \mathbb{Z} \).

So consider the second condition

\[
(1 + \sqrt{-3})\left(\frac{a'}{2} + \frac{b'}{2}\sqrt{-3}\right) = \frac{a'}{2} + \frac{b'}{2}\sqrt{-3} - 3\frac{b'}{2}
\]

So \(a' \equiv b' \mod 2 \), i.e.,

\[
\mathbb{Z}[\sqrt{-3}] : (2, 1 + \sqrt{-3}) = \left\{ \frac{a' + b'\sqrt{-3}}{2} : a', b' \in \mathbb{Z}, a' \equiv b' \mod 2 \right\} = \mathbb{Z}\left[\frac{1 + \sqrt{-3}}{2}\right]
\]

Now

\[
\mathbb{Z}\left[\frac{1 + \sqrt{-3}}{2}\right] \cdot (2, 1 + \sqrt{-3}) = \left(1, \frac{1 + \sqrt{-3}}{2}\right)(2, 1 + \sqrt{-3})
\]

\[
= \left(2, 1 + \sqrt{-3}, \frac{1 + \sqrt{-3}}{2}(1 + \sqrt{-3})\right)
\]

\[
= (2, 1 + \sqrt{-3}, \sqrt{-3} - 1)
\]

\[
= (2, 1 + \sqrt{-3})
\]

\[
= I
\]

\[
\ne R
\]

Hence \(I \) is not invertible.

We now show that \(I = (2) \) can not be written as the product of prime ideals. Suppose \(I = P_1P_2 \ldots P_n \), then \(I \subset P_i \) for all \(i \). Now \{ideals of \(R \) containing \(I \)\} ↔\{ideals of \(R/I \)\}. The bijection is defined by \(J \mapsto J/I \subset R/I \) and \(\{x : x \in J\} \sim \mathcal{J} \)

In our case

\[
\begin{align*}
R/I &= \mathbb{Z}[\sqrt{-3}]/(2) \\
&\cong \mathbb{Z}[x]/(x^2 + 3, 2) \\
&\cong \mathbb{Z}[x]/(x^2 + 1) \\
&\cong \mathbb{Z}[x]/(x + 1)^2 \\
&\cong \mathbb{Z}[x]/(x + 1)^2 \\
&\Rightarrow \{ a + be : a, b \in \mathbb{F}_2, c^2 = 0 \}
\end{align*}
\]

The ideals in \(R/I \) are \((0), (1) = (1 + \epsilon) \) and \((\epsilon) \). Which of these ideal is prime? \((1) \) is never prime, and \((0) \) is not prime as it is not a domain. So \((\epsilon) \) is the only maximal ideal and hence must be the only prime \(R/I \) has. Clearly \((2) \subset (2, 1 + \sqrt{-3}) \), which we saw maximal and so must be the only prime ideal which contains \((2) \).
So all P_i are equal to $(2, 1 + \sqrt{-3})$. Thus $(2) = (2, 1 + \sqrt{-3})^m$ for some m. Now $(2) \neq (1)$, hence $m \neq 0$ and $(2) \neq (2, 1 + \sqrt{-3})$ as the first is invertible but not the second so $m \neq 1$.

\[
(2, 1 + \sqrt{-3})^2 = (4, 2 + 2\sqrt{-3}, 1 - 3 + 2\sqrt{-3})
\]
\[
= (4, 2 + 2\sqrt{-3})
\]
\[
= (2)(2, 1 + \sqrt{-3})
\]
\[
\subset (2)
\]

So if $(2)(2, 1 + \sqrt{-3}) = (2)$, then $(2, 1 + \sqrt{-3}) = (2^{-1})(2) = (1)$ which is a contradiction. And for all $m \geq 2$ we have $(2, 1 + \sqrt{-3})^m \subset (2, 1 + \sqrt{-3})^2 \subset (2)$. Hence there is no m with $(2, 1 + \sqrt{-3})^m = (2)$.

The proof of Theorem 5.16 requires proofs by Noetherian induction. Here is a quick layout of how such a proof works. To prove a statement about ideals in a Noetherian ring R:

- First prove it for all maximal ideals.
- Then induction step: assume it holds for all $I \supseteq J$. Prove it hold for J

Why does this prove the statement for all ideal? Suppose the statement is false for a certain set $S \neq \emptyset$ of ideals: Pick any $I_0 \in S$. By induction step, there exists $I_1 \supseteq I_0$, for which the statement is false. Repeat and we get an infinite ascending chain, which is impossible in a Noetherian ring.

Proof of Theorem 5.16 [NB: This proof is rather long and was spread over several lectures. The lecturer got a big confuse at some point and so it also incomplete, it only proves some implications, including the most important for this course, Dedekind implies everything else. I have tried to reorganise this proof so that it makes more sense. I do know that he managed to prove it in one lecture successfully the following year (2011-2012) but I did not get a copy of it]

Note: If R is a field, the only ideals are (0) and (1) so there is nothing to prove. Hence assume that R is not a field.

2. \Rightarrow 3. Assume 2. We want to show that every ideal is the product of prime ideals. We first show that every invertible ideal is finitely generated. Let I be a fractional ideal of R, then there exists J with $IJ = (1)$, hence $1 \in IJ$. Now elements of IJ are sums of the form $r_1x_1y_1 + \cdots + r_nx_ny_n$ with $r_i \in R, x_i \in I$ and $y_i \in J$. Hence $1 = \sum r_i x_i y_i$ for some r_i, x_i, y_i. We claim that $I = (x_1, \ldots, x_n)$, to prove our claim we just need to show that $(x_1, \ldots, x_n)J = (1)$ (since inverses in groups are unique). It is obvious that $(1) \subseteq (x_1, \ldots, x_n)J$. On the other hand $(x_1, \ldots, x_n) \subseteq I$ so $(x_1, \ldots, x_n)J \subseteq IJ \subseteq (1)$.

Hence R is Noetherian, since every invertible ideal is finitely generated.

Lemma 5.19. Assuming 2., we have for non-zero ideals I, J: $I \subset J$ if and only if $J|I$ (that is there is a J' with $JJ' = 1$)

Proof. \Leftarrow Obvious

\Rightarrow Put $J' = IJ^{-1}$, this is a fractional ideal. We need to show that $IJ^{-1} \subset R$ (i.e., that it is an ideal and not just a fractional ideal). We have $I \subset J$, so $IJ^{-1} \subset JJ^{-1} = R$.

We now proceed by a proof by Noetherian induction.

If I is a maximal ideal, then I is itself a factorisation into prime ideals. Now let an ideal I not prime be given and assume that for all $J \supseteq I$, J has a factorization into primes. There exists a prime $P \supseteq I$, so $P|I$ and hence $I = PJ$ for some $J \subset R$. We want to show that $J \supseteq I$. We know that $I = PJ \subset J$. Suppose that $I = J$, then $PJ = J$, so multiply by J^{-1}, then $P = R$ which is a contradiction.

Hence we have just shown by Noetherian induction that every fractional ideal is a product of primes.

1., 2. & 3. \Rightarrow 4. Assume there is an ideal I that has two distinct factorisation into primes. That is $I = P_1 \ldots P_m = Q_1 \ldots Q_n$ and without loss of generality suppose that m is minimal. We have that no Q_i is equal to some P_j as otherwise if $Q_i = P_j$ then $P_1 \ldots P_{j-1}P_{j+1} \ldots P_m = IP_j^{-1} = Q_1 \ldots Q_{i-1}Q_{i+1} \ldots Q_n$ contradicting minimality of m.

21
We have $Q_1\ldots Q_n = P_1\ldots P_m \subset P_1$, so $P_1|Q_1\ldots Q_m$. Let $I' = IP_1^{-1} = P_2\ldots P_m = Q_1\ldots Q_nP_1^{-1}$. Now I' is an ideal of R but it has a factorisation into $n-1$ factors, so this factorisation is unique. We want to show that there exists i with $Q_i|I'$, equivalently there exists i with $I' \subset Q_i$. Assume that there is no such i, then $\forall i' \notin Q_i$. Consider P_i and Q_j which are distinct. We have $P_1, Q_1 \subset P_1 + Q_1$. We claim that $P_1 + Q_1 = R$. Since P_1 and Q_1 are maximal (assuming 1.) we have $P_1 \subset P_1 + Q_1 \Rightarrow P_1 + Q_1 = P_1$ or R, similarly, we conclude $P_1 + Q_1 = Q_1$ or R. Hence $P_1 + Q_1 = R$.

So there exists $p \in P_1, q \in Q_1$ with $p + q = 1$. So $I = (p + q)I = pI + qI \subset pQ_1 + qP_1 \subset P_1Q_1$. So $P_1|Q_1, I \Rightarrow Q_1|IP_1^{-1} = I'$. Hence we get a contradiction.

1. \Rightarrow 2.

We use Noetherian induction.

Let P be a maximal ideal, then we want to show that P is invertible. Pick $0 \neq a \in P$. Then the ideal (a) is invertible ($(a)(a^{-1}) = (a)$) and $(a) \subset P$.

Lemma 5.20. Let R be a Dedekind domain and let $I \neq 0$ be an ideal. There exists P_1, \ldots, P_n maximal ideals with $P_1 \ldots P_n \subset I$.

Proof. We’ll use Noetherian induction. If I is maximal then $I \subset I$. Assume for all $J \supseteq I$, we have prime ideals Q_i with $Q_1 \ldots Q_n \subseteq J$. We have to show that there exists P_i prime ideals with $P_1 \ldots P_n \subset I$. I itself is not prime because all non-zero primes are maximal.

This means there exists $a, b \in R$ such that $a, b \notin I$ but $ab \in I$. Consider the ideals $I + (a)$ and $I + (b)$. By induction hypothesis there exists P_i such that $P_1, \ldots, P_n \subset I + (a)$ and $P_{n+1} \ldots P_m \subset I + (b)$. Hence $P_1 \ldots P_n \subset (I + (a))(I + (b)) \subset I$.

Hence by the lemma, there exists P_1, \ldots, P_n with $P_1 \ldots P_n \subset (a)$ and without loss of generality we have n is minimal.

We will use the following lemma later in the proof.

Lemma 5.21. Let R be a Dedekind domain and let $I \subset R$ be a finitely generated ideal. Let $\phi : I \rightarrow I$ be a map such that $\phi(I) \subset I$, then there exists $a_0, \ldots, a_{n-1} \in J$ such that $\phi^n + a_{n-1}\phi^{n-1} + \cdots + a_0 = 0$.

A special case: Let $\alpha \in K$, the field of fraction of R, be such that $\alpha I \subset I$. Then there exists a relation $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_0 = 0$ with $a_i \in R$.

Proof. Choose a matrix that $A = (a_{ij})$, that describes ϕ in terms of x_i, the generators of I, and that satisfies $a_{ij} \in I$. By Cayley-Hamilton, if P_A is the characteristic polynomial of A, then $P_A(A) = 0$. Now $P_A = \det(XI_n - A) := X^n + a_{n-1}X^{n-1} + \cdots + a_0$ for some a_i which clearly are in R.

Corollary 5.22. If R is Dedekind and K its field of fraction. Let $I \subset R$ be an ideal and $\alpha \in K$ with $\alpha I \subset I$, then $\alpha \in R$.

As a recap, we have $P \neq 0$ is prime (and hence maximal). Take $0 \neq a \in P$, then there exists P_1, \ldots, P_n with $P_1 \ldots P_n \subset (a) \subset P$. We claim that one of the P_i is P. In general for prime ideals we have $IJ \subset P \Rightarrow I \subset P$ or $J \subset P$. (Otherwise, assume $I \notin P, J \notin P$, then there exists $a \in I, b \in J$ with $a \notin P, b \notin P$, but then $ab \notin P$). So without loss of generality assume $P_1 \subset P$, but P_1 is maximal so $P_1 = P$.

Let $J = P_2 \ldots P_n$, i.e., $P_1 \subset (a) \subset P$. Since we assumed n was minimal, we have $J \notin (a)$. So $P \subset (a)$, hence $P \subset (a)^{-1} = R$, but $a^{-1}J \notin R$.

Consider $R : P = \{ a \in K | aP \subset R \}$, we need to show that $(R : P)P = R$. Now $\forall \alpha \in R : P$, we have $\alpha P \subset P$, so by the corollary $R \subset (R : P)P \subset R$. We have $P \subset (R : P)P \subset P$, but P is maximal, so if $(R : P)P \neq R$ then $(R : P)P = P$. Hence if P is not invertible then $R : P = P$. Take $\alpha \in a^{-1}J \setminus R$. Then $\alpha P \subset R$, so $\alpha \in R : P$ but $\alpha \notin R$. Contradicting $R : P = R$, hence P is invertible.

So we have proven that every non-zero prime ideals (i.e., every maximal ideal) is invertible. We finish off the Noetherian induction.

Assume for all $J \supseteq I$ we have that J is invertible. We will show I is invertible. Choose a prime $P \supseteq I$.

We know that P is invertible. Consider $I \subset P^{-1}I \subset R$. (Since $P^{-1}I \subset PP^{-1} = R$) If $P^{-1}I \neq I$ then $P^{-1}I \supseteq I$, so $P^{-1}I$ is invertible. Then $I = RI = P(P^{-1}P)$ is invertible as well. So assume $P^{-1}I = I$.

For all $\alpha \in P^{-1}$ we have $\alpha I \subset I$, thus $\alpha \in R$. Hence $P^{-1} \subset R \Rightarrow PP^{-1} = R \subset RP = P$ which is a contradiction.
Definition 5.23. Let K be a number field. Then the **ideal group** of K is the group I_K consisting of all fractional ideals of O_K.

The **principal ideal group** of K, P_K, is the group of all principal ideals.

We have $P_K \triangleleft I_K$. The quotient I_K/P_K is called the **class group** of K.

An **ideal class** is a set $\{\alpha I : \alpha \in K^*\}$ of ideals.

Theorem 5.24. For all number field K, the class group is finite. The **class number** of K is $h_K := |Cl_K|$.

We will prove this later in the course.

Remark. If O_K is a PID, then $h_K = 1$ (in fact this is a if and only if statement.)

P_K is the trivial ideal class. Define a map $K^* \to P_K$ by $\alpha \mapsto (\alpha)$. Then $P_K \cong K^*/O_K^*$, so the kernel is O_K.

Lemma 5.25. If R is a UFD then for an irreducible elements, π, the ideal (π) is prime.

Proof. Take $a, b \in R$ with $ab \in (\pi)$. This means $\pi|ab$ hence $\pi|a \lor \pi|b$. So $a \in (\pi)$ or $b \in (\pi)$. □

Theorem 5.26. Let R be a Dedekind domain. Then R is a UFD if and only if R is a PID.

Proof. \Leftarrow Every PID is a UFD.

\Rightarrow Let $I \neq 0$ be any ideal that is not principal. We can write $I = P_1P_2 \ldots P_n$, without loss of generality say P_1 is not principal. Now take any $0 \neq a \in P_1$ and write $a = \pi_1 \ldots \pi_m$ with π_i irreducible. Then $(a) = (\pi_1)(\pi_2) \ldots (\pi_m)$. But $P_1|(a)$, so we get P_1 is not principal while (a) is, hence contradiction. □

So O_K is a UFD if and only if $h_K = 1$. We can say “h_K measures the non-uniqueness of factorisation on O_K.”

Example. Find all integer solutions to $x^2 + 20 = y^3$.

We can factorise this over $\mathbb{Z}[\sqrt{-5}] = \mathbb{Q}(\sqrt{-5})$ into $(x + 2\sqrt{-5})(x - 2\sqrt{-5}) = y^3$. Fact: $h_{\mathbb{Q}(\sqrt{-5})} = 2$.

As ideals we have $(x + 2\sqrt{-5}) \cdot (x - 2\sqrt{-5}) = (y^3)$. As usual, let us find the common factors of $(x + 2\sqrt{-5})$ and $(x - 2\sqrt{-5})$.

Suppose P is a prime ideal such that $P|(x + 2\sqrt{-5})$ and $P|(x - 2\sqrt{-5})$, then $(x + 2\sqrt{-5}, x - 2\sqrt{-5}) \subseteq P$. Now we have $(4\sqrt{-5}) \subseteq (x + 2\sqrt{-5}, x - 2\sqrt{-5})$. Note that $(2, 1 + \sqrt{-5})(2, 1 - \sqrt{-5}) = (4, 2 + 2\sqrt{-5}, 2 - 2\sqrt{-5}, 6) = (2)$, hence $(2) = (2, 1 + \sqrt{-5})^2$ (and we know from a previous exercise that $(2, 1 + \sqrt{-5})$ is prime). Furthermore $(\sqrt{-5})$ is prime:

$$\mathbb{Z}[\sqrt{-5}]/(\sqrt{-5}) \cong \mathbb{Z}[x]/(x^2 + 5, x) \cong \mathbb{Z}[x]/(5, x) \cong \mathbb{F}_5$$

So $(4\sqrt{-5}) = (2, 1 + \sqrt{-5})^4(\sqrt{-5}) \Rightarrow P = (2, 1 + \sqrt{-5})$ or $P = (\sqrt{-5})$.

Write $(x + 2\sqrt{-5}) = (2, 1 + \sqrt{-5})^e_1(\sqrt{-5})^{e_2} \prod P_i^{e_i}$. Apply the automorphism $\alpha \mapsto \bar{\alpha}$, to get $(x - 2\sqrt{-5}) = (2, 1 + \sqrt{-5})^{e_1}(\sqrt{-5})^{e_2} \prod P_i^{e_i}$ (since $(\sqrt{-5}) = (-\sqrt{-5})$ and as noted before $(2, 1 + \sqrt{-5}) = (2, 1 - \sqrt{-5})$). Note that the products P_i must be distinct. So we get $(x + 2\sqrt{-5})(x - 2\sqrt{-5}) = (2, 1 + \sqrt{-5})^{2e_1}(\sqrt{-5})^{2e_2} \prod P_i^{2e_i} \prod P_i^{e_i} = (y^3)$.

Since factorization into prime ideal is unique, we have $3|e_i$ for all i. Hence $(x + 2\sqrt{-5}) = I^3$ for some ideal I.

Let \bar{I} be the class of I. Then in $Cl_{\mathbb{Q}(\sqrt{-5})}$, we have $\bar{I}^3 = 1$ (since $(x + 2\sqrt{-5})$ is principal). Now the class group has order 2, hence $\bar{I} = 1$ since $gcd(2, 3) = 1$. Hence I is principal, so write $I = (a + b\sqrt{-5})$. $(x + 2\sqrt{-5}) = ((a + b\sqrt{-5})^3) \Rightarrow x + 2\sqrt{-5} = \text{unit} \cdot (a + b\sqrt{-5})^3$. Now units in $\mathbb{Z}[\sqrt{-5}]$ are ± 1, which are both cubes, so without loss of generality, $x + 2\sqrt{-5} = (a + b\sqrt{-5})^3$.

Hence $x + 2\sqrt{05} = a^3 + 3a^2b\sqrt{-5} - 5ab^2 - 5b^3\sqrt{-5} = (a^3 - 15ab^2) + \sqrt{-5}(3a^2b - 5b^3)$. So we need to solve $2 = b(3a^2 - 5b^2)$, but 2 is prime, so $b = \pm 1, \pm 2$.

If $b = \pm 1$, then $3a^2 - 5 = \pm 2$, either $3a^2 = 7$ which is impossible, or $3a^2 = 3 \Rightarrow a = \pm 1$. In that case we have $x = a^3 - 15ab^2 = \pm (1 - 15) = \pm 14$. Then $14^2 + 20 = 196 + 20 = 216 = 6^3 \Rightarrow (\pm 14, 16)$ are solutions.

If $b = \pm 2$, then $3a^2 - 20 = \pm 1$, so $3a^2 = 21$ or 19, but both cases are impossible.

Hence $(\pm 14, 16)$ are the only integer solutions to $x^2 + 20 = y^3$.

□
5.3 Kummer-Dedekind Theorem

Let K be a number field, and $I \subset \mathcal{O}_K$ a non-zero ideal. Note that I contains $a\mathcal{O}_K$ for any $a \in I$, hence we have that $(\mathcal{O}_K : I)$ is finite. This leads us to the following definition:

Definition 5.27. The norm of an ideal $I \subset \mathcal{O}_K$ is defined as $N(I) = \begin{cases} (\mathcal{O}_K : I) & I \neq 0 \\ 0 & I = 0 \end{cases}$

Theorem 5.28. For any principal ideal $(a) \subset \mathcal{O}_K$, we have $N((a)) = |N(a)|$

Proof. If $\omega_1, \ldots, \omega_n$ is a basis for \mathcal{O}_K, then $a\omega_1, \ldots, a\omega_n$ is a basis for (a). Now multiplication by a can be seen as a matrix A in terms of $\omega_1, \ldots, \omega_n$. So $(\mathcal{O}_K : a\mathcal{O}_K) = |\det A| = |N(a)|$. $lacksquare$

Theorem 5.29. The norm of ideals in \mathcal{O}_K is multiplicative. That is $N(IJ) = N(I)N(J)$

Proof. First note $N(\mathcal{O}_K) = 1$.

We can write every non-zero ideal as a product of prime ideals (as \mathcal{O}_K is Dedekind and using Theorem 5.16). So it suffices to prove that $N(IP) = N(I)N(P)$ where P is a non-zero prime. We have $N(IP) = (\mathcal{O}_K : IP)$ and $IP \subset I \subset \mathcal{O}_K$, hence $N(IP) = (I : IP)(\mathcal{O}_K : I) = (I : IP)N(I)$.

We must show that $(I : IP) = N(P) = (\mathcal{O}_K : P)$. Now P is maximal, so \mathcal{O}_K/P is a field. We have I/IP is a vector space over \mathcal{O}_K/P. We want to show that $d = \dim_{\mathcal{O}_K/P}IP/IP = 1$.

$IP \neq I$ as \mathcal{O}_K is Dedekind, so $I/IP \neq 0$, hence $d \geq 1$.

Suppose that $d \geq 2$, then there exists $\bar{a}, \bar{b} \in I/IP$ that are linearly independent over \mathcal{O}_K/P. Take lifts $a, b \in I$.

For all $x, y \in \mathcal{O}_K$ with $ax + by \in P$, we have $x \in P$ and $y \in P$. Write $I = P^nI'$, then $(a) \subset I$, so $P^n|(a)$, also $a \notin IP$, so $IP \nmid (a)$. Hence $P^{n+1} | (a)$. Similarly we find $P^{n+1} | (b)$. So we can rewrite this as $a = P^nI'J_1, b = P^nI'J_2$ with $P \nmid I'J_1, P \nmid I'J_2$. We have $(a)J_2 = (b)J_1$. Since $J_2 \notin P$, there exists $c \in J_2 \setminus P$. So $ac - be = 0 \in P \Rightarrow c \in P$. This is a contradiction. Hence the dimension is 1 as required. $lacksquare$

Corollary 5.30. If $N(I)$ is prime, then I is prime

Proof. If I is not prime, then $I = PI$ with P a non-zero prime and $I' \neq (1)$. Then $N(I) = N(P)N(I')$ cannot be prime. $lacksquare$

Theorem 5.31. If $I \subset \mathcal{O}_K$ is a non-zero prime, then $N(I) = p^f$ for some prime p and $f \in \mathbb{Z}_{>0}$

Proof. \mathcal{O}_K/I is a field (it is maximal) of $N(I)$ elements. Any finite field has p^f elements for some prime p and $f \in \mathbb{Z}_{>0}$.

Theorem 5.32. If I is a non-zero ideal, we have $N(I) \in I$

Proof. $N(I) = |\mathcal{O}_K/I|$ by definition. Then Lagrange theorem implies $N(I) \cdot \mathcal{O}_K/I = \mathcal{O}_K$, so $N(I)\mathcal{O}_K \subset I$.

Theorem 5.33. If P is a non-zero prime with $N(P) = p^f$ then $p \in P$

Proof. By the previous theorem we have $p^f \in P$. But since P is prime, $p \in P$. $lacksquare$

Kummer - Dedekind Theorem. Let $f \in \mathbb{Z}[x]$ be monic and irreducible. Let $\alpha \in \overline{\mathbb{Q}}$ be such that $f(\alpha) = 0$. Let $p \in \mathbb{Z}$ be prime. Choose $g_i(x) \in \mathbb{Z}[x]$ monic and $e_i \in \mathbb{Z}_{>0}$ such that $f \equiv \prod g_i(x)^{e_i} \mod p$ is the factorization of $\overline{f} \in \mathbb{F}_p[x]$ into irreducible (with $\overline{g_i} \neq \overline{g_j}$ for $i \neq j$). Then:

1. The prime ideals of $\mathbb{Z}[\alpha]$ containing p are precisely the ideals $(p, g_i(\alpha)) =: P_i$
2. $\prod P_i^{e_i} \subset (p)$
3. If all P_i are invertible then $\prod P_i^{e_i} = (p)$. Furthermore $N(P_i) = p^{f_i}$ where $f_i = \deg g_i$
4. For each i, let $r_i \in \mathbb{Z}[x]$ be the remainder of f upon division by g_i. Then P_i is not invertible if and only if $e_i > 1$ and $p| r_i$

Proof. 1. We have $\mathbb{Z}[\alpha] \cong \mathbb{Z}[x]/(f)$ (Galois Theory). Primes of $\mathbb{Z}[\alpha]$ containing p have a one to one correspondence to primes of $\mathbb{Z}[x]/(p) \cong \mathbb{Z}[x]/(f)$. But $\mathbb{Z}[x]/(p, f) \cong \mathbb{F}_p[x]/(\overline{f})$, so primes of $\mathbb{F}_p[x]/(\overline{f})$ have a one to one correspondence to primes of $\mathbb{F}_p[x]$ containing \overline{f}. We know $\mathbb{F}_p[x]$ is a PID. So these primes corresponds to irreducible $\overline{g} \in \mathbb{F}_p[x]$ such that $\overline{g}\overline{f} \iff \overline{f} \in (\overline{g})$.

 Working backward from this set of correspondence we get what we want.
2. Let \(I = \prod (p, g_i(\alpha))^{e_i} \). We want to show that \(I \subset (p) \), i.e., all elements of \(I \) are divisible by \(p \). Now \(I \) is generated by expression of the form \(p^d \prod_{i=1}^{d} g_i(\alpha)^{m_i}, m_i \leq e_i \). So the only non-trivial case is when \(d = 0 \), i.e., \(\prod g_i(\alpha)^{e_i} \). We have \(\prod g_i(x)^{e_i} \equiv f \mod p \). Substituting \(\alpha \) we get \(\prod g_i(\alpha)^{e_i} \equiv f(\alpha) \equiv 0 \mod p \).

3. Assume \(\mathbb{Z}[\alpha] = \mathcal{O}_{\mathbb{Q}(\alpha)} \). We have \(\prod P_i^{e_i} \subset (p) \Rightarrow (p) | \prod P_i^{e_i} \). Now \(N((p)) = |N(p)| = p^n \) where \(n = \deg f \). So \(N(\prod P_i^{e_i}) = \prod N(P_i^{e_i}) = p^{\sum e_i \cdot \deg (g_i)} = p^n \).

4. Left out as it requires too much commutative algebra.

\[\square \]

Example. Consider \(\mathbb{Q}(\sqrt{-5}) \), then \(\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[[\sqrt{-5}]] \). So take \(f = x^2 + 5 \).

- \(p = 2 \), then \(\mathcal{O} = x^2 + 1 = (x + 1)^2 \in \mathbb{F}_2[x] \). So \(g_1 = x + 1 \) and \(e_1 = 2 \). Now \((2) = P_1^2 = (2, 1 + \sqrt{-5})^2 \) and \(N(P_1) = 2 \). If \(P_1 \) principal? If \(P_1 = (\alpha) \) then \(N(\alpha) = |N(\alpha)| \). Now \(N(a + b\sqrt{-5}) = a^2 + 5b^2 \) which is never 2. Hence \(P_1 \) is not principal.

- \(p = 3 \), then \(\mathcal{O} = x^2 - 1 = (x + 1)(x - 1) \in \mathbb{F}_3[x] \). So we have \((3) = P_1P_2 \) where \(P_1 = (3, -1 + \sqrt{-5}) \) and \(P_2 = (3, 1 + \sqrt{-5}) \). Again we have \(N(P_1) = N(P_2) = 3 \), so neither are principal as \(3 \neq a^2 + 5b^2 \).

- \(p = 5 \), then \(\mathcal{O} = x^2 \in \mathbb{F}_5[x] \). So we get \((5) = (5, \sqrt{-5})^2 = (\sqrt{-5})^2 \) (since \(5 = -\sqrt{-5}\sqrt{-5} \)).

Consider \(\mathbb{Q}(\sqrt{2}) \), then \(\mathcal{O}_{\mathbb{Q}(\sqrt{2})} = \mathbb{Z}[[\sqrt{2}]] \). So take \(f = x^3 - 2 \).

- \(p = 2 \), then \(\mathcal{O} = x^3 \in \mathbb{F}_2[x] \). So \((2) = (2, \sqrt{2})^3 = (\sqrt{2})^3 \) (since \(2 = \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \)).

- \(p = 3 \), then \(\mathcal{O} = x^3 - 2 \) is a cubic. Cubic polynomials are reducible if and only if they have a root. If this case, i.e., in \(\mathbb{F}_3 \), we have 2 is a root. So \(x^3 - 2 = (x - 2)(x^2 + x + 1) = (x - 2)(x + 1)^2 = (x + 1)^3 \). Hence \((3) = (3, 1 + \sqrt{2})^3 \) and \(N(3, 1 + \sqrt{2}) = 3 \). Now \((3, 1 + \sqrt{2}) \) is principal if there exist \(\alpha \in (3, 1 + \sqrt{2}) \) with \(|N(\alpha)| = 3 \). Notice that \(N(1 + \sqrt{2}) = 1^3 + 2 \cdot 1^3 = 3 \), so \((3, 1 + \sqrt{2}) = (1 + \sqrt{2}) \).
6 The Geometry of Numbers

6.1 Minkowski’s Theorem

Let K be a number field of degree n. Let $\sigma_1, \ldots, \sigma_n : K \hookrightarrow \mathbb{C}$ be its complex embeddings. We see that if $\sigma : K \hookrightarrow \mathbb{C}$ is an embedding then $\overline{\sigma} : K \hookrightarrow \mathbb{C}$ defined by $\alpha \mapsto \overline{\sigma}(\alpha)$ is also an embedding. We have $\overline{\sigma} = \sigma$ so $-$ is an involution on $\{\sigma_1, \ldots, \sigma_n\}$, with fixed points being those σ with $\sigma(k) \subseteq \mathbb{R}$ for all $k \in K$.

Definition 6.1. Let K be a number field of degree n and $\sigma_1, \ldots, \sigma_n : K \hookrightarrow \mathbb{C}$ be its complex embeddings. Say there are r real embeddings $(\sigma(k) \subseteq \mathbb{R})$ and s pairs of complex embedding. So we have $r + 2s = n$. Then (r, s) is called the signature of K.

We can use $\sigma_1, \ldots, \sigma_n$ to embed K into \mathbb{C}^n by $\alpha \mapsto (\sigma_1(\alpha), \ldots, \sigma_n(\alpha))$. We view \mathbb{C}^n as \mathbb{R}^{2n} with the usual inner product, that is $||z_1, \ldots, z_n||^2 = |z_1|^2 + \cdots + |z_n|^2$.

Let $v_1, \ldots, v_m \in \mathbb{R}^{2n}$ be given, denote $P_{v_1, \ldots, v_m} := \{\lambda_1 v_1 + \cdots + \lambda_m v_m : \lambda_i \in [0, 1]\}$. We have (see Algebra I)

$$\text{Vol}(P_{v_1, \ldots, v_m}) = \left(\det \begin{pmatrix} \langle v_1, v_1 \rangle & \cdots & \langle v_1, v_m \rangle \\ \vdots & \ddots & \vdots \\ \langle v_m, v_1 \rangle & \cdots & \langle v_m, v_m \rangle \end{pmatrix}\right)^{1/2}$$

Theorem 6.2. $(\sigma_1, \ldots, \sigma_n)$ embeds K as a subset of $K_\mathbb{R} := \{z_1, \ldots, z_n \in \mathbb{C}^n : z_i = \overline{\sigma_j} \text{ when } \sigma_i = \overline{\sigma_j}\}$

Proof. For each $\alpha \in K$ we have $(\sigma_1(\alpha), \ldots, \sigma_n(\alpha)) = (z_1, \ldots, z_n)$ satisfied for i, j with $\sigma_i = \overline{\sigma_j}$. So $z_i = \sigma_i(\alpha) = \overline{\sigma_j(\alpha)} = \overline{\sigma_j(\alpha)}$.

Theorem 6.3. $K_\mathbb{R}$ has dimension n.

Proof. Without loss of generality let $\sigma_1, \ldots, \sigma_r$ be the real embedding of $K \hookrightarrow \mathbb{R}$ and let $\sigma_{r+i} = \overline{\sigma_{r+i}}$ for $i \in \{1, \ldots, s\}$. Identifying $\mathbb{C}^n \cong \mathbb{R}^{2n}$, we have $(x_1, y_1, x_2, y_2, \ldots, x_n, y_n)$ is in $K_\mathbb{R}$ if and only if:

- $y_i = 0$ for $i \in \{1, \ldots, r\}$
- $x_{r+i} = x_{r+i-s}$ for $i \in \{1, \ldots, s\}$
- $y_{r+i} = -y_{r+i-s}$ for $i \in \{1, \ldots, s\}$

The number of independent linear equation is $r + 2s = n$. Hence the dimension of $K_\mathbb{R} = 2n - n = n$.

Definition 6.4. Let V be a finite dimensional vector space over \mathbb{R}, with inner product \langle , \rangle (that is a positive definite symmetric bilinear form). Then V is called a Euclidean space.

Example. $V = \mathbb{R}^n$ with $\langle (x_1, \ldots, x_n), (y_1, \ldots, y_n) \rangle = x_1 y_1 + \cdots + x_n y_n$. Or V a subspace of \mathbb{R}^n (with the same inner product)

Fact. Any Euclidean space has an orthonormal basis.

Definition 6.5. Let V be an Euclidean space. A lattice Λ in V is a subgroup generated by \mathbb{R}-linearly independent vectors, v_1, \ldots, v_m.

The rank of the lattice is m.

The covolume of Λ is $\text{Vol}(P_{v_1, \ldots, v_m})$.

Theorem 6.6. O_K embeds as a full rank lattice in $K_\mathbb{R}$ of covolume $\sqrt{|\Delta(\mathcal{O}_K)|}$

Proof. Let $\omega_1, \ldots, \omega_n$ be a basis for \mathcal{O}_K. Put $\sigma(\alpha) = (\sigma_1(\alpha), \ldots, \sigma_n(\alpha)) \in K_\mathbb{R} \subset \mathbb{C}^n$ for all $\alpha \in K$. We have the vectors $\sigma(\omega_1), \ldots, \sigma(\omega_n) \in K_\mathbb{R}$.

26
So we need to show that $\text{Vol}(P_{\sigma(\omega_1),\ldots,\sigma(\omega_n)}) = \sqrt{\Delta(\mathcal{O}_K)} \neq 0$. We have
\[
\text{Vol}(P_{\sigma(\omega_1),\ldots,\sigma(\omega_n)})^2 = \det \left((\langle \sigma(\omega_i), \sigma(\omega_j) \rangle)_{ij} \right) \\
= \det \left(\left(\sum_{k=1}^n \sigma_k(\omega_i)\sigma_k(\omega_j) \right)_{ij} \right) \\
= \det \left(\left(\sum_{k=1}^n \sigma_k(\omega_i\omega_j) \right)_{ij} \right) \\
= \det \left((\text{Tr}(\omega_i\omega_j))_{ij} \right) \\
= \Delta(\mathcal{O}_K)
\]

\[\square\]

Corollary 6.7. For any non-zero ideal $I \subset \mathcal{O}_K$, we have $\sigma(I) \subset \mathbb{K}$ is a full rank lattice of covolume $\sqrt{|\Delta(\mathcal{O}_K)|} \cdot N(I)$

Proof. Obvious

Minkowski’s Theorem. Let Λ be a full rank lattice in a Euclidean space V of dimension n. Let $X \subset V$ be a bounded convex symmetric subset, satisfying $\text{Vol}(X) > 2^n \cdot \text{covolume}(\Lambda)$. Then X contains a non-zero point of Λ.

Proof. See Topics in Number Theory course

A small refinement to the theorem can be made: If X is closed then $\text{Vol}(X) \geq 2^n \cdot \text{covolume}(\Lambda)$ suffices.

6.2 Class Number

Theorem 6.8. Let K be a number field of signature (r, s). Then every non-zero ideal I of \mathcal{O}_K contains a non-zero element α with

\[|N(\alpha)| \leq \left(\frac{2}{\pi} \right)^s N(I) \sqrt{|\Delta(\mathcal{O}_K)|}\]

Proof. Let $n = r + 2s = [K : \mathbb{Q}]$. Consider for $t \in \mathbb{R}_{>0}$, the closed set $X_t = \{(z_1, \ldots, z_n) \in \mathbb{K} : |z_i| \leq t\}$. We claim that $\text{Vol}(X_t) = 2^{r+s} \pi^s t^n$

In terms of the orthogonal basis, X_t is isomorphic to $[-t, t]^r \times B(0, \sqrt{2}t)^s$ (where $B(a, r)$ is the standard notation for a ball of radius r centered at a, there is some bit of work need to see that the radius is indeed $\sqrt{2}t$). So

\[
\text{Vol}(X_t) = (2t)^2 (\pi(\sqrt{2}t)^2)^s \\
= 2^r t^r \pi^s 2^{2s}t^{2s} \\
= 2^{r+s} \pi^s t^{r+2s}
\]

Now choose t such that $\text{Vol}(X_t) = 2^n \text{covolume}(I$ in $\mathbb{K}) = 2^n N(I) \sqrt{|\Delta(\mathcal{O}_K)|}$. Then by Minkowski’s there is an $0 \neq \alpha \in I$ with $\sigma(\alpha) \in X_t$. So $|N(\alpha)| = \prod |\sigma_i(\alpha)| \leq t^n$, but since $s^{r+s} \pi^s t^n = 2^n N(I) \sqrt{|\Delta(\mathcal{O}_K)|}$, we have $|N(\alpha)| \leq t^n = \frac{2^n}{\pi^s} N(I) \sqrt{|\Delta(\mathcal{O}_K)|}$

A better set for the above proof is $X_t' = \{(z_1, \ldots, z_n) \in \mathbb{K} : |z_1| + \cdots + |z_n| \leq t\}$. In that case we have $\text{Vol}(X_t') = \frac{2^n \pi^s t^n}{n!}$. This can be proven using integral calculus.

Theorem 6.9. Every ideal $I \subset \mathcal{O}_K$ has an element $\alpha \neq 0$ with $|N(\alpha)| \leq \mu_K N(I)$ with

\[
\mu_K = \left(\frac{4}{\pi} \right)^s \frac{n!}{\pi^n} \sqrt{|\Delta(\mathcal{O}_K)|}
\]
Proof. Choose \(t \) with \(\text{Vol}(X'_t) = 2^n N(I) \sqrt{|\Delta(O_K)|} \), that is \(\frac{2^n t^n}{n!} = 2^n N(I) \sqrt{|\Delta(O_K)|} \). Then there exists \(0 \neq \alpha \in I \) with \(\sigma(\alpha) \in X'_t \). Hence

\[
|N(\alpha)| = \prod |\sigma_i(\alpha)| \\
\leq \left(\frac{\sum |\sigma_i(\alpha)|}{n} \right)^n \\
\leq \left(\frac{t}{n} \right)^n \\
= \frac{1}{n^n} n! 2^{n-r} n^{s} N(I) \sqrt{|\Delta(O_K)|} \\
= \frac{4^n n!}{\pi^s n^n} N(I) \sqrt{|\Delta(O_K)|}
\]

where the first inequality follows from the well known theorem that Geometric Mean \(\leq \) Arithmetic Mean. (If \(x_1, \ldots, x_n \in \mathbb{R}_{>0} \), then the Geometric mean is \((x_1, \ldots, x_n)^{1/n} \), while the arithmetic mean is \(\frac{1}{n} (x_1 + \cdots + x_n) \)) \(\square \)

Remark. The number \(\mu_K \) is sometimes called Minkowski’s constant.

Theorem 6.10. For any number field \(K \) we have

\[
|\Delta(O_K)| \leq \left(\frac{\pi}{4} \right)^{2s} \left(\frac{n^n}{n!} \right)^2
\]

Proof. Apply the above with \(I = O_K \). Then there exists \(\alpha \in O_K \) with \(|N(\alpha)| \leq \mu_K \). Also \(N(\alpha) \in \mathbb{Z} \) and non-zero if \(\alpha \neq 0 \). So \(|N(\alpha)| \geq 1 \). Hence

\[
\mu_K = \left(\frac{4}{\pi} \right)^s \frac{n!}{n^n} \sqrt{|\Delta(O_K)|} \geq 1 \Rightarrow |\Delta(O_K)| \leq \left(\frac{\pi}{4} \right)^{2s} \left(\frac{n^n}{n!} \right)^2
\]

\(\square \)

Corollary 6.11. If \(K \neq \mathbb{Q} \), then \(|\Delta(O_K)| \neq 1 \)

Proof. We have \(n \geq 2 \). We need to show that \(\left(\frac{\pi}{4} \right)^{2s} \left(\frac{n^n}{n!} \right)^2 > 1 \). Now \(\left(\frac{\pi}{4} \right)^{2s} \geq \left(\frac{\pi}{4} \right)^n \), so we need to show \(\left(\frac{n^n}{n!} \right)^2 > 1 \). This can easily be done by induction. \(\square \)

Corollary 6.12. Let \(K \) be a number field and let \(C \) be an ideal class of \(K \). Then there exists \(I \in C \) with \(N(I) \leq \mu_K \)

Proof. Apply Theorem 6.9 to an ideal \(J \in C^{-1} \). (Note: if \(J \in C^{-1} \) is any fractional ideal there is an \(a \in O_K \) with \(aJ \subset O_K \), since \(aJ \in C^{-1} \) we may suppose without lose of generality that \(J \) is an ideal).

So there exists \(\alpha \in J \) with \(|N(\alpha)| \leq \mu_K N(J) \). Consider \(\alpha J^{-1} \), we have \(J(\alpha) \) so \(I := (\alpha)J^{-1} \) is an ideal of \(O_K \). Furthermore \(N(I) = N((\alpha))N(J^{-1}) \leq \mu_K N(J)N(J^{-1}) = \mu_K \)

\(\square \)

Corollary 6.13. The class group of any number field is finite.

Proof. Every class is represented by an ideal of bounded norm and norms are in \(\mathbb{Z}_{>0} \). So it suffices to show that for any \(n \in \mathbb{Z}_{>0} \) we have \# \{ \(I \subset O_K : N(I) = n \) \} < \infty

Let \(n \in \mathbb{Z}_{>0} \) be given and \(I \subset O_K \) be an ideal with \(N(I) = n \). Factor \(n \) into primes, \(n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} \), and factor \(I \) into prime ideals \(I = P_1 f_1 \cdots P_r f_r \). Then we have \(N(I) = N(P_1)^{e_1} N(P_2)^{e_2} \cdots N(P_r)^{e_r} = p_1^{e_1} \cdots p_r^{e_r} \). By Kummer - Dedekind, for any \(p \) there exists finitely many prime ideals whose norms is a power of \(p \). So there are finitely many prime ideals \(P \) whose norm is a power of one of the \(p_i \). Furthermore if \(N(P_i) = p_i^{f_i} \), then \(f_i \leq e_i \), so there are finitely many possibilities. \(\square \)

Example.

- Let \(K = \mathbb{Q}(\sqrt{-5}) \), note that it has signature \((0, 1)\). Then we have

\[
\mu_K = \left(\frac{4}{\pi} \right)^s \frac{n!}{n^n} \sqrt{|\Delta(O_K)|} = \frac{4}{\pi} \frac{2^n}{4 \cdot 5} = \frac{1}{\pi} \sqrt{80} < \frac{1}{3} \sqrt{81} = 3
\]

So every ideal class is represented by an ideal of norm at most 2. Let us work out the ideals of norm 2. By Kummer - Dedekind, we know \((2) = (2, 1 + \sqrt{-5})^2 \), and \(N((2, 1 + \sqrt{-5}) = 2 \).

We have seen before that \((2, 1 + \sqrt{-5}) \) is not principal. So there are two ideal class in \(O_K \). They are \([(1)], [(2, 1 + \sqrt{-5})] \), so \(h_k = 2 \Rightarrow \mathcal{C}_K \cong \mathbb{Z}/2\mathbb{Z} \)

28

Let $K = \mathbb{Q}(\sqrt{-19})$, note that is has signature $(0, 1)$. Then we have

$$
\mu_K = \left(\frac{4}{\pi}\right)^s \frac{n!}{\pi^n} \sqrt{|\Delta(O_K)|} = \frac{4}{\pi^4} \sqrt{19} = \frac{1}{\pi} \sqrt{76} < \frac{1}{3} \sqrt{81} = 3
$$

Also here, every ideal class is represented by an ideal of norm 1 or 2. Apply Kummer - Dedekind to factor (2). $O_K = \mathbb{Z} \left[\frac{1+\sqrt{-19}}{2}\right]$, hence $f_n = \left(x - \frac{1+\sqrt{-19}}{2}\right) \left(x - \frac{1-\sqrt{-19}}{2}\right) = x^2 - x + 5$. So $f \equiv x^2 + x + 1 \in \mathbb{F}_2[x]$, but this is an irreducible polynomial. So $(2) = (2, 0) = (2)$ is a prime ideal, of norm 4. Hence there are no ideals of norm 2.

So $h_K = 1$, hence O_K is a PID.

Let $K = \mathbb{Q}(\sqrt{-14})$, this has signature $(0, 1)$. Then we have

$$
\mu_K = \left(\frac{4}{\pi}\right)^s \frac{n!}{\pi^n} \sqrt{|\Delta(O_K)|} = \frac{4}{\pi^4} \sqrt{4 \cdot 14} = \frac{1}{\pi} \sqrt{56 \cdot 14} \leq \frac{1}{3} \sqrt{152} = 5
$$

So only ideals of norms at most 4 are of concern. Every ideal can be factored into prime ideals. So the class group is generated by classes represented by prime ideals of norm $\leq \mu_K$. Prime ideals of norm ≤ 4 are prime ideals dividing (2) or (3). Hence we apply Kummer - Dedekind. We have $f = x^2 + 14$

- $p = 2$: $x^2 + 14 \equiv x^2 \mod 2$. So $(2) = (2, \sqrt{-14})^2 := P^2$. Note that $N(P) = 2$
- $p = 3$: $x^2 + 14 \equiv x^2 - 1 \equiv (x - 1)(x + 1) \mod 3$. So $(3) = (3, \sqrt{-14} - 1)(3, \sqrt{-14} + 1) := QR$. Note that $N(Q) = N(R) = 3$

So ideals of norms less than 4 are $(1), P, Q, R, P^2$. Note that P^2 is principal as it is (2), so $[P^2] = [(1)]$. Since $N(a + b\sqrt{-14}) = a^2 + 14b^2$ but 2 and 3 are not of this form, we have that P, Q, R are not principal. Also note that $QR = (3)$ so $[Q][R] = 1$

We claim that $[(1)], [P], [Q], [R]$ are four distinct elements of the class group.

Suppose that $[P] = [Q]$. Then $[Q][Q] = [P]^2 = 1 = [Q][R] \Rightarrow [Q] = [R]$. Furthermore, since $N(Q) = N(R) = 3$, if $[Q] = [R]$ then $[QR] = 1 = [QQ]$. Hence Q^2 is principal, $N(Q^2) = N(Q)^2 = 9$, so we need to solve $a^2 + 14b^2 = 9 \Rightarrow a = 3, b = 0$. Hence $Q^2 = (3) = QR$. Which is a contradiction.

This argument also showed $[Q] \neq [R]$. A similar argument shows that $[P] \neq [R]$.

Hence we have that $h_K = 4$. (With not too much work we can show that $\text{Cl}_K \cong \mathbb{Z}/4\mathbb{Z}$)

6.3 Dirichlet’s Unit Theorem

Dirichlet’s Unit Theorem. Let K be a number field of signature (r, s). Let W be the group of roots of unity in K. Then W is finite, and $O_K^* \cong W \times \mathbb{Z}^{r+s-1}$. That is, there exists $\eta_1, \ldots, \eta_{r+s-1} \in O_K^*$ such that every unit in O_K can be uniquely written as $\omega \cdot \eta_1^{k_1} \cdots \eta_{r+s-1}^{k_{r+s-1}}$ with $\omega \in W$ and $k_i \in \mathbb{Z}$.

Example. Let $K = \mathbb{Q}(\sqrt{d})$ with $d > 0$ and square free. Then it has signature $(2, 0)$, so $r + s - 1 = 1$. Also $W = \{\pm 1\}$. Hence $O_K^* \cong W \times \mathbb{Z} = \{\pm 1\} \times \mathbb{Z} = \pm \epsilon_d^s$ (where ϵ_d as is as in section 1)

If $K = \mathbb{Q}(\sqrt{d})$ with $d < 0$ square free, then it has signature $(0, 1)$, so $O_K^* = W$, which is finite (see next lemma).

Fact. A subgroup $\Lambda \subset \mathbb{R}^n$ is a lattice if and only if for any $M \in \mathbb{R}_{>0}$ we have $[-M, M]^n \cap \Lambda$ is finite.

Lemma 6.14. The group W is finite.

Proof. If $\omega \in W$, then for all $\sigma_i : K \rightarrow \mathbb{C}$ we have $\sigma_i(\omega)$ is a root of unity (if $\omega^n = 1$ then $\sigma_i(\omega)^n = 1$). So $\sigma(\omega) = (\sigma_1(\omega), \ldots, \sigma_n(\omega)) \in \{z_1, \ldots, z_n\} \in K^n : |z_i| = 1 \forall i \}$. This is a bounded subset of K^n. Also $\omega \in O_K$ as it satisfies some monic polynomial $x^n - 1 \in \mathbb{Z}[x]$. Hence $\sigma(W) \subset \sigma(O_K) \cap$ bounded set, but $\sigma(O_K)$ is a lattice, hence by the fact, $\sigma(W)$ is finite.

Proof of Dirichlet’s Unit Theorem. Let $K_K^* = \{(z_1, \ldots, z_n) \in K^n : z_i \neq 0 \forall i\}$. We have $O_K^* \hookrightarrow K^* \hookrightarrow K_K^*$. We will use logarithms: define $\log : K_K^* \rightarrow \mathbb{R}^n$ by $(z_1, \ldots, z_n) \mapsto (\log |z_1|, \ldots, \log |z_n|)$. This is a group homomorphism. Also define $L : O_K \rightarrow \mathbb{R}^n$ by $\alpha \mapsto \log(\sigma(\alpha)) = (\log |\sigma_1(\alpha)|, \ldots, \log |\sigma_n(\alpha)|)$, this is also a group homomorphism.

29
Lemma 6.15. \(\ker(L) = W \)

Proof. \(\supseteq \): For all \(\omega \in W \) and \(\sigma_i \), we have \(|\sigma_i(\omega)| = 1 \), so \(\log |\sigma_i(\omega)| = 0 \)

\(\subseteq \): Take \(\alpha \in \ker(L) \). Then \(\log |\sigma_i(\alpha)| = 0 \) for all \(i \). So \(\alpha \) is in some finite set. For every \(n \), we have \(\alpha^n \in \ker(L) \) which is a finite set, so there are some \(n > m \), with \(\alpha^n = \alpha^m \) and \(n \neq m \). Then \(\alpha^{n-m} = 1 \).

\(\blacksquare \)

Lemma 6.16. \(\text{im}(L) \) is a lattice in \(\mathbb{R}^n \).

Proof. We must show that \([-M, M]^n \cap \text{im}(L) \) is finite. Take \(\lambda = (x_1, \ldots, x_n) \in [-M, M]^n \cap \text{im}(L) \) (where \(\alpha \in \mathcal{O}_K^* \subset \mathcal{O}_K \)). We have for all \(i \), \(|\log|\sigma_i(\alpha)|| \leq M \), so \(|\sigma_i(\alpha)| \leq e^M \), hence \(\alpha \) is bounded set \(\cap \sigma(\mathcal{O}_K) \) finite. So there are finitely many possibilities for \(\alpha \)

\(\blacksquare \)

Put \(\Lambda = L(\mathcal{O}_K^*) \subset \mathbb{R}^n \). Eventually, we have to show that \(\text{rk}(\Lambda) = r + s - 1 \).

Lemma 6.17. We have that \(\text{rk}(\Lambda) \leq r + s - 1 \)

Proof. Order \(\sigma_i \) such that \(\sigma_1, \ldots, \sigma_r \) are real and \(\sigma_{r+i} = \sigma_{r+i}^{-1} \) for \(i = 1, \ldots, s \). Take \(\alpha \in \mathcal{O}_K^* \). Then for \(i \in \{1, \ldots, s\} \) we have \(\sigma_{r+i}(\alpha) = \sigma_{r+i}^{-1}(\alpha) \). Hence \(\log |\sigma_{r+i}(\alpha)| = \log |\sigma_{r+i}^{-1}(\alpha)| = \log |\sigma_{r+i}(\alpha)| \).

So for \((x_1, \ldots, x_n) \in \Lambda \), we have \(x_{r+i} = x_{r+i}^{-1} \) for \(i = 1, \ldots, s \). Hence we have found \(s \) relations. So \(\Lambda \subset \text{subspace of dimension } n - r = 2s - r + s \)

So we need to find one extra relation. Now \(\alpha \) is a unit, so \(|N(\alpha)| = 1 \). So \(|N(\alpha)| = |\sigma_1(\alpha) \cdots \sigma_n(\alpha)| = |\sigma_1(\alpha)| \cdots |\sigma_n(\alpha)| = 1 \Rightarrow \log |\sigma_1(\alpha)| + \cdots + \log |\sigma_n(\alpha)| = 0 \). So we have also the relation \(x_1 + \cdots + x_n = 0 \). This shows \(\Lambda \subset V \subset \mathbb{R}^n \), where \(V \) is a subspace of dimension \(r + s - 1 \) defined by these relations.

\(\blacksquare \)

So we are left to prove that \(\text{rk}(\Lambda) \geq r + s - 1 \) or \(\Lambda \) is a full rank lattice in \(V \).

Note that for \(\alpha \in \mathcal{O}_K^* \), we have \(\sigma_1(\alpha) \cdots \sigma_n(\alpha) = \pm 1 \). So \(\sigma(\mathcal{O}_K^*) \subset \{ (z_1, \ldots, z_n) \in K_R^* : z_1 \cdots z_n = \pm 1 \} = E \). We have to construct lots of units:

The idea: if \((\alpha) = (\beta) \) then \(\beta/\alpha \) is a unit. So we will construct lots of \(\alpha \in \mathcal{O}_K^* \) by generating finitely many ideals. Consider \(X_t = \{ (z_1, \ldots, z_n) \in K_R : |z_i| \leq t \} \). Choose \(t \) such that \(\text{Vol}(X_t) = 2^n \sqrt{|\Delta(\mathcal{O}_K)|} \).

Then by Minkowski’s theorem, there exists a non-zero element in \(\sigma(\mathcal{O}_K) \cap X_t \).

For any \(e \in E \), consider \(eX_t = \{ (z_1, \ldots, z_n) \in K_R : |z_i| < |e_i|t \} \). Then \(\text{Vol}(eX_t) = |e_1 \cdots e_n| \text{Vol}(X_t) = \text{Vol}(X_t) \).

So by Minkowski’s there exists a non-zero element in \(\sigma(\mathcal{O}_K) \cap eX_t \). Covering \(E \) with boxes \(eX_t \) means we get lots of elements \(a_e \in \sigma(\mathcal{O}_K) \cap eX_t \forall e \in E \). We have \(|N(a_e)| = \prod |\sigma_i(a_e)| \leq \prod |e_i|t \leq t^n \).

So the norms of \(a_e \) are bounded, hence \(N(a_e) = |N(a_e)| \) is bounded.

So the set of ideals \(\{ (a_e) : e \in E \} \) is finite. Let \(b_1, \ldots, b_m \) be such that \(\{ (a_e) : e \in E \} = \{ (b_1), \ldots, (b_m) \} \).

For all \(e \in E \) there is some \(i \in \{1, \ldots, m\} \) such that \((a_e)(b_i) = (b_i) \). So \(U_e = a_e/b_i \) is a unit of \(\mathcal{O}_K^* \).

Claim: \(S = \{ U_e : e \in E \} \) generates a full rank lattice in \(V \), after applying \(L \). If \(\langle L(S) \rangle \) is not of full rank, then \(L(S) \) spans a subspace \(Z \not\subset V \). Consider \(Y := \cup (b_i^{-1} \cdot X_i) \subset K_R^* \), it is bounded and without loss of generality we can choose it, such that \((1) \in Y \). Consider \(\cup_{e \in E} U_e^{-1} \cdot Y \) (all of these are bounded)

We want to show that \(e^{-1} \in U_e^{-1}Y = \frac{a_e}{a_e} \cdot Y \). By construction, \(b_i \cdot Y \supset X_i \), so \(\frac{a_e}{a_e} \cdot Y \supset \frac{1}{a_e} \cdot X_i \). We have \(a_e \in eX_t \), so \(\frac{1}{a_e} \in \frac{1}{a_e} X_i \). Hence \(\cup_{e \in E} U_e^{-1} \) contains \(E \). So \(V = \cup_{s \in S} \log(s) + \log(Y) \). We are assuming \(\log(s) \in Z \) and \(\log(Y) \) is bounded. If \(Z \neq V \) then \(V \) is at some bounded distance from \(Z \). This proves that \(\langle L(S) \rangle \) is of full rank.

So \(L(\mathcal{O}_K^*) \) is a full rank lattice in \(V \). Hence it has rank \(r + s - 1 \), i.e., \(L(\mathcal{O}_K^*) \cong \mathbb{Z}^{r+s-1} \).

Lemma 6.18. Let \(A \) be an abelian group, let \(A' \subset A \) be a subgroup and put \(A'' = A/A' \). If \(A'' \) is free (i.e., \(\cong \mathbb{Z}^n \) for some \(n \)), then \(A \cong A' \times A'' \)

Proof. Omitted, but can be found in any algebra course.

\(\blacksquare \)

In our case, we have \(A = \mathcal{O}_K^* \) and \(A' = W \). Then by the first isomorphism theorem \(A'' \cong L(\mathcal{O}_K^*) \) (as \(W = \ker(L) \)). So using the lemma, we have \(A \cong W \times L(\mathcal{O}_K^*) \cong L \times \mathbb{Z}^{r+s-1} \) as required.

\(\blacksquare \)